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Motivation
Natural Language Processing and Large Language Models

• Undoubtedly, large-language models have changed our life in many areas, including academia and
science.

• In one task of Natural Language Processing (NLP), words from a dictionary are ordered by their
probability to be next in a sentence (query).

• Needs knowledge not only of the last word, but the whole sentence (memory).
Even more true in German than English. . .

• In MLP/FFNN, vanishing gradient problem leads to loss of memory — no attention is paid to the
past or context!

• Cure: Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM).
• These are not new. Why the revolution during the last four years?

⇝ GPT = Generative Pretrained Transformer

⇝ introduction of the transformer architecture in Deep Learning was the breakthrough!
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Motivation
Attention is all you need. . .

Presented at 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA.
Cited 132,331 times so far (September 6, 2024, 12:11pm).
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Motivation
Attention and Surrogate Modeling

• Our question: is attention/are transformer networks any good for surrogate modeling?

• A sentence is a sequence of words, pretrained transformer network suggests the next word.

• Words are encoded as vectors for input into the transformer.

• Analogy: a trajectory of a time-dependent problem is a sequence of vectors x(t0), . . . , x(tk). Can a
pretrained transformer network suggest x(tk+1)?

• Such a pretrained transformer network could serve as a surrogate of a dynamical system for
forecasting/extrapolation.

• Attempts to use RNNs or LSTMs in surrogate models have been attempted with certain success,
e.g., [Otto/Rowley 2017, Fresca/Manzoni/Dedé 2021, Feng 2023,. . . ].

• Remark: the attention mechanism should in particular be useful for non-Markovian time series
data.
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Background

Problem setting

dx(µ, t)

dt
= f(x(µ, t),µ) +Bu(µ, t),

y(µ, t) = g(x(µ, t)).
where

• x(µ, t) ∈ Rn is the state-space variable,

• µ = (µ1, . . . , µm) ∈ Rm is the vector of parameters,

• u(µ, t) is an external, potentially parameter-dependent, input signal, and

• y(µ, t) = (y1(µ, t), . . . , yq(µ, t))
T ∈ Rq denotes the quantities-of-interest (QoIs) or system output.

• Aim to predict long-term evolution of y(µ, t) under variation of both, µ and u(µ, t).

• We try and adapt the Temporal Fusion Transformer (TFT) model suggested for forecasting in

B. Lim, S. Ö. Arik, N. Loeff, T. Pfister. Temporal fusion transformers for interpretable multi-horizon time series
forecasting. International Journal of Forecasting 37:1748–1764, 2021.
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Existing Work on Neural Networks for Prediction of Dynamical Systems

Spatial-temporal x(µ, t) prediction using DNNs

• Intrusive MOR [J. Barnett et. al., 2023], [Y. Kim et. al., 2022], [K. Lee & K. Carlberg, 2020].

• Combine data compression (POD, autoencoder) with latent space dynamics identification via e.g.,
feedforward NN, LSTM, CNN, RBF interpolation, DMD, SINDy, neural operator, etc.
[J. Duan & J. S. Hesthaven, 2024], [S. Fresca et al., 2021], [C. Bonneville et al., 2024],
[K. Kontolati et al., 2024], [P. Goyal & P. B., 2021/24], . . ..

• Predicting the dynamics via neural operator learning [Z. Li et al., 2021], [L. Lu et al., 2021], . . ..

Spatial-temporal x(µ, t) prediction using transformers

• Combine autoencoder with latent space dynamics identification via transformers
[N. Geneva & N. Zabaras, 2022], [A. Solera-Rico, et. al., 2024].

• Neural operator learning using transformers
[Z. Hao et. al., 2023], [E. Calvello et. al., 2024], [O. Ovadia et. al., 2024], . . ..
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Highlights of TFT

Interpretability

• µ and u(µ, t) are separately considered as two different classes of inputs to the transformer. In
other existing transformer related works, they are blended.

• An interpretable multi-head attention is proposed and used in TFT; vanilla attention is used in
other existing works.

Automatic hyperparameter determination

The TFT hyperparameters, such as learning rates, mini-batch size, dropout rate, number of heads, and
so on, can be automatically tuned during the optimization process. There is no need for manual
hyperparameter fine-tuning.

Peter Benner, benner@mpi-magdeburg.mpg.de Transformer for output learning 7/20
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Background

Temporal y(µ, t) prediction using transformer

• No need of data compression.

• We apply TFT [B. Lim et. al., 2021], a transformer model that gives improved interpretability of the
learning process and the attention mechanism.

• TFT was originally used for predicting the quantiles of a scalar-valued output.

• Main modifications of the TFT structure are: modified loss function and modified data format.

• We extended TFT to multiple-output TFT for system dynamics prediction. The multiple-output
TFT is able to predict the actual values of vector-valued system outputs.

• Multiple-output TFT adds new dimension to its interpretability.
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The Structure of the TFT
The complete architecture

Building Blocks

• Gating: Gated Residual
Network (GRN).

• Variable selection:
Selecting the most relevant
input variables.

• Static covariate encoders:
Integrating parameters
µ1, ..., µm into the network.

• Temporal processing:
LSTM encoder, decoder &
interpretable multi-head
attention.
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The Structure of the TFT
Building blocks

Gated Residual Network (GRN)

• GRN is an important building block in different parts of the transformer, which provides a
non-linear process step: GLU, only where needed.

GRN(a, c) = LayerNorm(a+ GLU(η1)).

• Gated Linear Unit (GLU): in GRN, GLU is
skipped when its output is close to 0.
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Gated Residual Network (GRN)

• GRN is an important building block in different parts of the transformer, which provides a
non-linear process step: GLU, only where needed.

Variable Selection Network (VSN)

• VSN, selecting relevant input variables, greatly improves the performance and the interpretability of
the TFT model via putting larger weights on the most salient ones.

Static Covariate Encoder

• The static covariate encoder integrates parameters µ1, . . . , µm into the network.
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The Structure of the TFT
Building blocks

Temporal processing

• LSTM encoder-decoder is responsible for local temporal processing. Multi-heard attention is
responsible for global temporal processing.

LSTM encoder-decoder

• n = −k, · · · , 0, 1, · · · , τmax are the
position indices.

• The inputs ξ̃t+n, n = −k, . . . , 0
include the information of both
u(t− tn) and y(t− tn).
ξ̃t+n, n = 1, . . . , τmax include the
information of u(t+ tn) only.

• The outputs of the LSTM
encoder-decoder, ϕ(t, n), are fed into
the multi-head attention.
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The Structure of the TFT
Interpretable multi-head attention

Self-attention

• In TFT, inputs θ = [θ1, · · · ,θNt
] ∈ RNt×d to the self-attention

integrates µ, u(t,µ) and y(t,µ). Nt is the number of time steps.

• θ is linearly transformed into Queries Q = θWQ, Keys
K = θWK and Values V = θWV .

• The attention weight matrix A is derived from the scaled outer
product QKT followed by a softmax function.
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Self-attention

• In TFT, inputs θ = [θ1, · · · ,θNt
] ∈ RNt×d to the self-attention

integrates µ, u(t,µ) and y(t,µ). Nt is the number of the time
steps.

• θ is linearly transformed into Queries Q = θWQ, Keys
K = θWK and Values V = θWV .

• The attention weight matrix A is derived from the scaled outer
product QKT followed by a softmax function.

• The magnitude of the entry Ai,j in the attention weight matrix
A interprets the correlation between the feature at ti and the
feature at tj in the time series.
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The Structure of the TFT
Interpretable multi-head attention

Standard multi-head attention

Multi-head attention

• Attention is employed nh times in parallel
resulting in nh heads with nh attention
weight matrices Ah, h = 1, . . . , nh.

• However, various Ah might not be
sufficiently informative to describe the
correlation between the features.
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The Structure of the TFT
Interpretable multi-head attention

Interpretable multi-head attention

Interpretable multi-head attention

• Interpretable multi-head attention
averages the attention weight matrices
Ah, h = 1, . . . , nh, leading to a single
attention weight matrix A.

• Interpretable multi-head attention
resembles the formulation of
self-attention, allowing simple
interpretability studies by analyzing a
single attention weight matrix, like in
self-attention.

Peter Benner, benner@mpi-magdeburg.mpg.de Transformer for output learning 14/20

mailto:benner@mpi-magdeburg.mpg.de


Multiple-output TFT Prediction
Implementation

Actual-valued output prediction

Original TFT utilizes quantile loss to predict the quantile values of traffic volume, electricity consumption, etc.

We modified the loss function to MSE to enable TFT to predict the actual values of the system outputs.

Multiple-output prediction

• Original TFT: scalar-valued output prediction.

• The proposed multiple-output TFT framework:
multiple outputs with extended interpretability.

• In the weight matrix A of the original TFT, each
scalar element Ai,j describes the correlation
between the single output at ti and itself at tj .

• In multiple-output TFT, the element ak,ℓ in the

i, j-th block Ãi,j provides the correlation
between the k-th output at ti and the ℓ-th
output at tj .
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Computational Results
Numerical example: Lorenz-63

Lorenz-63 model

Governing equations of chaotic dynamics of the Lorenz-63 model:

dx

dt
= σ (y − x) ,

dy

dt
= x (ρ− z)− y,

dz

dt
= xy − βz.

General setting:

• ρ = 28, σ = 10 and β = 8/3.

• Parameters: random initial states x0 ∼ U(−20, 20), y0 ∼ U(−20, 20)
and z0 ∼ U(10, 40).

• Training data: time series with 2048 groups of random initial states,
training time: 2.7 hours.

• Testing: time series with 256 groups of random initial states. Given
any x0, y0, z0, multiple-output TFT is used to predict x(t), y(t), z(t) at
the subsequent 127 time steps. Prediction time for each testing case is
0.4ms on average. One of the four testing cases.
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the subsequent 127 time steps. Prediction time for each testing case is
0.4ms on average. One of the four testing cases.
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FitzHugh-Nagumo model

Governing equations of the FitzHugh-Nagumo model:

ε
∂v(x,t,ε,c)

∂t = ε
∂2v(x,t,ε,c)

∂x2
+ f(v(x, t, ε, c))− w(x, t, ε, c) + c,

∂w(x,t,ε,c)
∂t = bv(x, t, ε, c)− γw(x, t, ε, c) + c, x ∈ [0, L], t ∈ [0, 5]s,
f(v) = v(v − 0.1)(1− v), L = 1, b = 0.5, γ = 2.

Boundary conditions:
v(x, 0, ε, c) = 0, w(x, 0, ε, c) = 0, x ∈ [0, L],

vx(0, t, ε, c) = −u(t), vx(L, t, ε, c) = 0, t ∈ [0, 5]sec.

General setting:

• Parameters: ε ∈ [0.01, 0.04] and c ∈ [0.03, 0.07], so that µ = (ε, c)T .

• Time-dependent external input: u(t) = 5× 104t3e(−15t).

• Given initial value of outputs y(0, 0,µ) = (v(0, 0,µ), w(0, 0,µ))T at any parameter value, multiple-output
TFT is used to predict the subsequent 499 time steps.

• Training data: Time series corresponding to 120 training parameter sets, training time is 33min.
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FitzHugh-Nagumo model

• Testing: Time series corresponding to 6 testing parameter sets {µ∗
1, · · · ,µ∗

6}.
• Prediction time for all 6 testing cases: 0.5 seconds.

Six testing cases for 499 time steps prediction.
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Computational Results
Numerical example: FitzHugh-Nagumo

FitzHugh-Nagumo model: numerical illustration of the attention weight matrix

The attention weight matrix of the multiple-output TFT: in contrast to the diagonal (scalar) elements of the

attention weight matrix of the original TFT, this matrix has 2× 2 diagonal blocks, as this example has 2

outputs. This illustrates the correlations between the different outputs at individual time instants.
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Conclusions

Conclusions and Outlook

• We have adapted the transformer model TFT in order to predict the outputs of parametric
dynamical systems with time-varying external inputs.

• We extend the original framework of TFT to multiple-output TFT which is capable of predicting
multiple outputs.

• Multiple-output TFT enriches the interpretable information of the original TFT by adding the
correlation between different outputs within two individual time instants.

• Future work could be combining TFT with data compression to realize spatial-temporal prediction
in the parameter domain.

• Future work must be the better understanding of TFT/transformer models and their mathematical
analysis.
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