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@ Overview

1. Model Order Reduction of Dynamical Systems
Problem Setting
From intrusive to non-intrusive MOR

2. Data-driven/-enhanced Model Reduction
A Brief History of System Identification
Operator Inference

3. Preserving Stability in Operator Inference
Linear Systems / Local Stability
Nonlinear Systems / Global Stability
Nonlinear Dynamics with Attractor
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@ Model Order Reduction of Dynamical Systems

Original System

JE) = f(ta(0),ud)),
2:{ 0 2 sy

o states z(t) € R",

o inputs u(t) € R™,

@ outputs y(t) € RP.

U
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@ Model Order Reduction of Dynamical Systems

Original System

5. {0 2 st
y(t) g(t, x(t), u(t)),

o states z(t) € R",

o inputs u(t) € R™,

@ outputs y(t) € RP.

U

Reduced-Order Model (ROM)

~

oF { (1)
y(t) g(t, 2(t), u(t)),
o states #(t) € R", r < n,
o inputs u(t) € R™,
o outputs §(t) € RP.

U
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@ Model Order Reduction of Dynamical Systems

Original System Reduced-Order Model (ROM)

oy { i(t) = f(tat),u), oF { (1) = f(t(0),u)),
y(t) = g(t’x(t)au(t))a y(t) = g(tai(t))u(t))a
o states z(t) € R", o states #(t) € R", r < n,
o inputs u(t) € R™, o inputs u(t) € R™,
@ outputs y(t) € RP. o outputs §(t) € RP.

U

|ly — 9|| < tolerance - ||u|| for all admissible input signals.

Secondary goal: reconstruct approximation of = from Z.
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Model Order Reduction of Linear Systems

Linear Time-Invariant (LTI) Systems

Original System Reduced-Order Model (ROM)

5. {i(t) = Axz(t) + Bu(t), s . | #(t) = As(t) + Bu(y),
§(t) = C2(t) + Duf(t).

y(t) = Cx(t) + Du(t). 8

o states z(t) € R", o states #(t) e R", r < n
o inputs u(t) € R™, o inputs u(t) € R™,
o outputs y(t) € RP. o outputs g(t) € RP.
U Y U Y

|ly — §]| < tolerance - ||ul|| for all admissible input signals.
Secondary goal: reconstruct approximation of = from Z.
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Model Order Reduction of Linear Systems

Model Reduction Schematically

o E,AcR™"

B Rnxm
e ECEN 4+ EOFN:E0 °be
o C c RP*™
o D c RP*™
ve)= [ -0+ B«

o E,AecR™"

° B c RTX™

o C e RPX"

o D e RPX™
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@ From intrusive to non-intrusive MOR

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V C R™.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space) along
complementary subspace W (test space), where

range(V) =V, range(W)=W, WTV =1I,.
The reduced-order model is

g=wTz, A=wTAv, B:=wTB, C:=cV, (D:=D).
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@ From intrusive to non-intrusive MOR

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V C R™.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space) along
complementary subspace W (test space), where

range(V) =V, range(W)=W, WTV =1I,.
The reduced-order model is
g=wTz, A=wTAv, B:=wTB, C:=cV, (D:=D).

But: we need the matrices A, B, C, D to compute the reduced-order model!
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Data-driven/-enhanced Model Reduction

Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y =), given u(t) or U(s):

U Yy
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Data-driven/-enhanced Model Reduction

Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y =), given u(t) or U(s):

U Yy

Black box 3: the only information we can get is either
@ time domain data / times series: uy ~ u(ty) and z =~ x(tg) or yp =~ y(ty), or
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Learning Models from Data

@ Data-driven/-enhanced Model Reduction

Now assume we are only given an oracle, allowing us to compute y (including cases with
y =), given u(t) or U(s):

U Yy

Black box 3: the only information we can get is either
@ time domain data / times series: uy ~ u(ty) and z =~ x(tg) or yp =~ y(ty), or
o frequency domain data / measurements: Uy ~ U(jw) and X & X (Jwy) or Yy = Y (Jwy)-
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Data-driven/-enhanced Model Reduction

Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y =), given u(t) or U(s):

U Yy

Black box 3: the only information we can get is either

@ time domain data / times series: uy ~ u(ty) and z =~ x(tg) or yp =~ y(ty), or

o frequency domain data / measurements: Uy ~ U(jw) and X & X (Jwy) or Yy = Y (Jwy)-
Some methods:

@ System identification (incl. ERA, N4SID, MOESP): frequency and time domain

[Ho/KALMAN 1966; LiuNG 1987/1999; VAN OVERSCHEE/DE MOOR 1994; VERHAEGEN 1994; DE WILDE, EYKHOFF, MOONEN, SIMA4, . ..]
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Data-driven/-enhanced Model Reduction

Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y =), given u(t) or U(s):

U Yy

Black box 3: the only information we can get is either

@ time domain data / times series: uy ~ u(ty) and z =~ x(tg) or yp =~ y(ty), or

o frequency domain data / measurements: Uy ~ U(jw) and X & X (Jwy) or Yy = Y (Jwy)-
Some methods:

@ System identification (incl. ERA, N4SID, MOESP): frequency and time domain

[Ho/KALMAN 1966; LiuNG 1987/1999; VAN OVERSCHEE/DE MOOR 1994; VERHAEGEN 1994; DE WILDE, EYKHOFF, MOONEN, SIMA4, . ..]

@ Neural networks: frequency and time domain [Narexora/Parriasaratiy 1990; Lik/CARLBERG 2019;
ANTONINI/B./FENG/ROMANO 2022; ...]
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Data-driven/-enhanced Model Reduction

Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y =), given u(t) or U(s):

U Yy

Black box 3: the only information we can get is either
@ time domain data / times series: uy ~ u(ty) and z =~ x(tg) or yp =~ y(ty), or
o frequency domain data / measurements: Uy ~ U(jw) and X & X (Jwy) or Yy = Y (Jwy)-

Some methods:
@ System identification (incl. ERA, N4SID, MOESP): frequency and time domain

[Ho/KALMAN 1966; LiuNG 1987/1999; VAN OVERSCHEE/DE MOOR 1994; VERHAEGEN 1994; DE WILDE, EYKHOFF, MOONEN, SIMA4, . ..]
@ Neural networks: frequency and time domain [Narexora/Parriasaratiy 1990; Lik/CARLBERG 2019;
ANTONINI/B./FENG/ROMANO 2022; ...]
@ Loewner interpolation: frequency (and time) domain [AxrouLas/ANpERsox 1986; Mayo/ANToULAS 2007;

GOSEA, GUGERCIN, [ONITA, LEFTERIU, PEHERSTORFER, .. .|
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Data-driven/-enhanced Model Reduction

Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y =), given u(t) or U(s):

U Yy

Black box 3: the only information we can get is either
@ time domain data / times series: uy ~ u(ty) and z =~ x(tg) or yp =~ y(ty), or
o frequency domain data / measurements: Uy ~ U(jw) and X & X (Jwy) or Yy = Y (Jwy)-

Some methods:
@ System identification (incl. ERA, N4SID, MOESP): frequency and time domain
[Ho/KALMAN 1966; LiuNG 1987/1999; VAN OVERSCHEE/DE MOOR 1994; VERHAEGEN 1994; DE WILDE, EYKHOFF, MOONEN, SIMA4, . ..]
@ Neural networks: frequency and time domain [Narexora/Parriasaratiy 1990; Lik/CARLBERG 2019;
ANTONINI/B./FENG/ROMANO 2022; ...]
@ Loewner interpolation: frequency (and time) domain [AxrouLas/ANpERsox 1986; Mayo/ANToULAS 2007;
GOSEA, GUGERCIN, [ONITA, LEFTERIU, PEHERSTORFER, .. .|

@ Koopman/Dynamic Mode Decomposition (DMD): time domain
[MEzIC 2005; ScrMmip 2008; BRUNTON, KEVREKIDIS, KUTZ, ROWLEY, NOE, NUSKE, ScutTTe, PEITZ, KLUS, .. .],
for control systems [Kaiser/KuTz/BRUNTON 2017, B./Hivpe/MITCHELL 2018]
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Data-driven/-enhanced Model Reduction

Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y =), given u(t) or U(s):

U Yy

Black box 3: the only information we can get is either
@ time domain data / times series: uy ~ u(ty) and z =~ x(tg) or yp =~ y(ty), or
o frequency domain data / measurements: Uy ~ U(jw) and X & X (Jwy) or Yy = Y (Jwy)-

Some methods:
@ System identification (incl. ERA, N4SID, MOESP): frequency and time domain
[Ho/KALMAN 1966; LiuNG 1987/1999; VAN OVERSCHEE/DE MOOR 1994; VERHAEGEN 1994; DE WILDE, EYKHOFF, MOONEN, SIMA4, . ..]
@ Neural networks: frequency and time domain [Narexora/Parriasaratiy 1990; Lik/CARLBERG 2019;
ANTONINI/B./FENG/ROMANO 2022; ...]
@ Loewner interpolation: frequency (and time) domain [AxrouLas/ANpERsox 1986; Mayo/ANToULAS 2007;
GOSEA, GUGERCIN, [ONITA, LEFTERIU, PEHERSTORFER, .. .|

@ Koopman/Dynamic Mode Decomposition (DMD): time domain
[MEzIC 2005; ScrMmip 2008; BRUNTON, KEVREKIDIS, KUTZ, ROWLEY, NOE, NUSKE, ScutTTe, PEITZ, KLUS, .. .],
for control systems [Kaiser/KuTz/BRUNTON 2017, B./Hivpe/MITCHELL 2018]
(] Operator inference (Oplnf) time domain [PEHERSTORFER/WILLCOX 2016; KRAMER, QIAN, FARCAS, B., GOYAL,

PoNTES DUFF, YILDIZ,. . .]
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4 IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 1. NO. I. MARCH 1990

Identification and Control of Dynamical Systems
Using Neural Networks

KUMPATI S. NARENDRA FELLOW, 1EEE, AND KANNAN PARTHASARATHY

Abstract—The paper demonstrates that neural networks can be used
effectively for the identification and control of nonlinear dynamicat
systems. The emphasis of the paper is on models for both identification
and control. Static and dynamic back-propagation methods for the ad-
Jjustment of parameters are discussed. In the models that are intro-
duced, multilayer and recurrent networks are interconnected in novel
configurations and hence there is a real need to study them in a unified
fashion. Simulation results reveal that the identification and adaptive
<control schemes suggested are practically feasible. Basic concepts and
definitions are introduced throughout the paper, and theoretical ques-
tions which have to be addressed are also described.

agdeburg.mpg.de
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are well known for such systems [1]. In this paper our
interest is in the identification and control of nonlinear
dynamic plants using neural networks. Since very few re-
sults exist in nonlinear systems theory which can be di-
rectly applied, i care has to be ised in the
statement of the problems, the choice of the identifier and
controller structures, as well as the generation of adaptive
laws for the adjustment of the parameters.

Two classes of neural networks which have received
considerable attention in the area of artificial neural net-

N
Narendra, K.S., Parthasarathy, K. (1990): Identification and control of dynamical systems using neural networks. |EEE
Transactions on Neural Networks 1(1):4-27.
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Fig. 2. A three layer neural network.

Fig. 3. A block diagram representation of a three layer network.

N
Narendra, K.S., Parthasarathy, K. (1990): Identification and control of dynamical systems using neural networks. |EEE
Transactions on Neural Networks 1(1):4-27.
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N
Narendra, K.S., Parthasarathy, K. (1990): Identification and control of dynamical systems using neural networks. |[EEE
Transactions on Neural Networks 1(1):4-27.

ﬁ Suykens, J.AK., Vandewalle, J.P.L., de Moor, B.L. (1996): Artificial Neural Networks for Modelling and Control of
Non-Linear Systems. Springer US.
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Operator Inference

Basic Algorithm: " Empirical Model Reduction” [KravTsov/KONDRASHOV/GHIL 2005]

Problem setting: infer (smooth) nonlinear dynamical system,
&(t) = fz(t),u(t)), «(0)=wzo €R".

Goal: learn dynamical system from given snapshots xy := x(tx), ug := u(tg), tg ;== kh, h >0
for k =0,1,..., K (using simulation software, or measurements from real life experiment).
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' Operator Inference
Basic Algorithm: " Empirical Model Reduction” [KRrAvTs KONDRASHOV/GHIL 2005]

Problem setting: infer (smooth) nonlinear dynamical system,
z(t) = f(z(t),u(t)), =z(0)==xz9 € R™

Goal: learn dynamical system from given snapshots xy := x(tx), ug := u(tg), tg ;== kh, h >0
for k =0,1,..., K (using simulation software, or measurements from real life experiment).

Impose an expressive, yet simple nonlinear structure.

Here: try to infer quadratic-linear system
&(t) = Az (t) + H (2(t) @ 2(t)) + Bu(t),
where P® Q := [PijQ]ij denotes the Kronecker (tensor) product, from data

e]R'n.><(1(+1)7 ERmX(K+1).

X :=[zo0,21,..., 2K ] U :=[uo,u1,...,ur ]
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' Operator Inference
Basic Algorithm: " Empirical Model Reduction” [KravT KONDRASHOV/GHIL 2005]

Problem setting: infer (smooth) nonlinear dynamical system,
z(t) = f(z(t),u(t)), =z(0)==xz9 € R™

Goal: learn dynamical system from given snapshots xy := x(tx), ug := u(tg), tg ;== kh, h >0
for k =0,1,..., K (using simulation software, or measurements from real life experiment).

Impose an expressive, yet simple nonlinear structure.
Here: try to infer quadratic-linear system
&(t) = Az (t) + H (2(t) @ 2(t)) + Bu(t),
where P® Q := [PijQ]ij denotes the Kronecker (tensor) product, from data

ERnX(K+1), ERmX(K+1).

X :=[zo0,21,..., 2K ] U :=[uo,u1,...,ur ]

@ Requires snapshot matrix of time derivatives: if residuals f(x;,u;) are available

X = [#(0),2(t1), ..., &(tx) | = [ f(zo,u0), flz1,u1), ..., fler, ur) ] € RPEFD

otherwise, approximate time-derivatives by finite differences ~~ ~ X.
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: Operator Inference
: Basic Algorithm: " Empirical Model Reduction” [KravTsov/KONDRASHOV/GHIL 2005]

Problem setting: infer (smooth) nonlinear dynamical system,
z(t) = f(z(t),u(t)), =z(0)==xz9 € R™

Goal: learn dynamical system from given snapshots xy := x(tx), ug := u(tg), tg ;== kh, h >0
for k =0,1,..., K (using simulation software, or measurements from real life experiment).

Impose an expressive, yet simple nonlinear structure.
Here: try to infer quadratic-linear system
&(t) = Az (t) + H (2(t) @ 2(t)) + Bu(t),
where P® Q := [PijQ]ij denotes the Kronecker (tensor) product, from data

ERnX(K+1), ERmX(K+1).

X :=[zo0,21,..., 2K ] U :=[uo,u1,...,ur ]

@ Requires snapshot matrix of time derivatives: if residuals f(x;,u;) are available

X = [x(o)vm(tl)v cee ﬂt(tK) ] = [f($07 uO)v f(mlvul)v ey f(vauK) ] € RnX(K+1)7
otherwise, approximate time-derivatives by finite differences ~~ ~ X.
@ Solve the linear least-squares problem (regression):

X |2
(As, Hi, By) := argmin(AYH’B)HX -[A H B] )((12 + R(A, H, B)
F

with potential regularization R and X2 := [z0 ® 0, ..., Tx ® Tf].
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Operator Inference

Full algorithm with data compression [PEHERSTORFER/WILLCOX 2016]

—

Regularized) Operator Inference least-squares (Oplnf) problem

X 2
(A, H.,B.) :==argmin 4 4 5|X - [A H B]|X? + R(A, H, B)
U F

may be computationally too complex if state-space is too large (say, n > 30).
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Operator Inference

Full algorithm with data compression [PEHERSTORFER/WILLCOX 2016]

—

Regularized) Operator Inference least-squares (Oplnf) problem

X

2
(A, H.,B.) :==argmin 4 4 5|X - [A H B]|X? + R(A, H, B)
U F

may be computationally too complex if state-space is too large (say, n > 30).

Idea: compress trajectories using POD / PCA:

© Let X :=[z0,21,...,0x 1,2k ] € R"*ETT he the matrix of all snapshots.
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Operator Inference

Full algorithm with data compression [PEHERSTORFER/WILLCOX 2016]

(Regularized) Operator Inference least-squares (Oplnf) problem
) X |2

(As, H., B.) := argmin 4 4 )| X —[A H B]|X? + R(A, H, B)
U | llF

may be computationally too complex if state-space is too large (say, n > 30).

Idea: compress trajectories using POD / PCA:
© Let X :=[z0,21,...,0x 1,2k ] € R"*ETT he the matrix of all snapshots.

® Compute principal / dominant singular vectors via SVD X = Q>V7T and set
W :=Q(:,1:r) such that ZkK:;ﬂlﬁ_l or < € (potentially, use centered data).
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Operator Inference

Full algorithm with data compression [PEHERSTORFER/WILLCOX 2016]

—

Regularized) Operator Inference least-squares (Oplnf) problem

X 2
(A, H.,B.) :==argmin 4 4 5|X - [A H B]|X? + R(A, H, B)
U F

may be computationally too complex if state-space is too large (say, n > 30).

Idea: compress trajectories using POD / PCA:

© Let X :=[z0,21,...,0x 1,2k ] € R"*ETT he the matrix of all snapshots.

® Compute principal / dominant singular vectors via SVD X = Q>V7T and set
W :=Q(:,1:r) such that ZkK:;ﬂlﬁ_l or < € (potentially, use centered data).

® Compute compressed snapshot matrices X = wTXx, X2 =X ®X, X =wTX.
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Operator Inference

Full algorithm with data compression [PEHERSTORFER/WILLCOX 2016]

(Regularized) Operator Inference least-squares (Oplnf) problem
) X |2

(As, H., B.) := argmin 4 4 )| X —[A H B]|X? + R(A, H, B)
U | llF

may be computationally too complex if state-space is too large (say, n > 30).

Idea: compress trajectories using POD / PCA:
© Let X :=[z0,21,...,0x 1,2k ] € R"*ETT he the matrix of all snapshots.
® Compute principal / dominant singular vectors via SVD X = Q>V7T and set
W :=Q(:,1:r) such that ZkK:;ﬂlﬁ_l or < € (potentially, use centered data).
® Compute compressed snapshot matrices X = wTXx, X2 =X ®X, X =wTX.
@ Apply Oplnf using X’,Xz,f( and compute reduced-order model via

X-[A B B]|x?
U

2
+ R(A, H, B).
F

(As, Hy, By) := argmin 4 g gz,
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Shallow Water Equations

@ Operator Inference: Numerical Example

o Parameterized shallow water equations are given by [YiLpiz ET AL 2021]
0 _ R - _ 3 2,2
5= —hy +sinf v — 4, — 0ly + 6 cos O(ht), — s (8cos0)” (h7)e,
6"* h+'9~+15'9 0 h — av V0
at’U = y Sin u 2 sin U cos UVg ’U’Uy
_ 1 _ 3 2,2
+ dcosb (hu)y+§h(vz—uy) —g(écosa) (h%)y,
o

_ . 1 2
&h = —(ht), — (h)y + Eécos O(h™)q-

Parameterized by the latitude 6.

a =: (@;0) is the canonical velocity.
h is the height field.

o We collect the training data for 5 different parameter realizations 6 in [%, g]

Infer a reduced parametric model of order r = 75 directly from data.
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Operator Inference: Numerical Example

Shallow Water Equations

o Parameterized shallow water equations are given by [YiLDIZ ET AL 2021]
19} 3
aﬁ = —hy +sin0 © — @, — 0y + 6 cos O(hta), — s (6 c056)2 (h2)m7
0 5= hy +sin 6 a + ! 0sin @ 0 h —av U0
at”U = Yy smo u 2 sin U cos UVg VUy

+ Scosb ((mz)y + %h(f;z - ay)) - Z (6 cos0)® (h?)y,

1
9 = Z(hi)e — (h), + 55008 0(h%)..

ot
. . . 51
o Comparison of the height field for the parameter 0 = bR
L1 4
2
1.05 0

-4 2 0 2 4

(b) Learned parametric model
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Operator Inference: Numerical Examples

Navier-Stokes Equations

Tailored operator inference for incompressible Navier-Stokes equations, by heeding
incompressibility condition.

Approximation Error

0.60 0.‘25 0.‘50 0.‘75 1.60 1.‘25 1.‘50 1.‘75 2.60
time t
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Linear Systems / Local Stability

@ Preserving Stability in Operator Inference

Asymptotic (exponential, Lyapunov) stability of linear systems
z(t) = Ax(t), z(0) = wo,

can be explicitly parameterized:

Theorem (Gillis/Sharma 2017)

A matrix A € R™*" is asymptotically stable (Hurwitz, Lyapunov stable) if and only if it
can be represented as

A= (J-R)Q,
where J = —JT and R = RT, Q = QT are both positive definite.
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Linear Systems / Local Stability

@ Preserving Stability in Operator Inference

Asymptotic (exponential, Lyapunov) stability of linear systems
z(t) = Ax(t), z(0) = wo,

can be explicitly parameterized:

Theorem (Gillis/Sharma 2017)

A matrix A € R™*" is asymptotically stable (Hurwitz, Lyapunov stable) if and only if it
can be represented as

A= (J-R)Q,
where J = —JT and R = RT, Q = QT are both positive definite.

— Stability-preserving OplInf for linear systems [GovyaL/PoNTEs Durr/B. 2023]:
(Si, L, K.) := argmin 1, i wper sriangaer (| X — (S — ST — LTL) KT KX ||% + R(L, K, S)).
with positive diagonals

The matrix obtained from this nonlinear (regularized) least-squares problem,
A= (8. - sT-LIL.) KIK.,
is guaranteed to be stable due to [GiLLIS/SHARMA 2017].

Related work by Schwerdtner, Voigt, . ..
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Preserving Stability in Operator Inference

Linear Systems / Local Stability— Numerical Example

Consider 1D Burgers' equation for viscous flow

v+ vV = Vugg in (0,1) x (0,7
vz(0,t) = wz(1,t) = 0,
v(z,0) = wo(z,p),

discretized on uniform 1000 x 500 space-time grid for 17 4 3 training+testing initial conditions.

Reduced-order model (r = 21) computed using standard ("LSI") and stabilized ("SLSI") Oplnf
applied to (POD)-projected data.
(Implementation using PyTorch and Adam optimizer for solving nonlinear regression problem.)

100 A

imag part
o
<
<
S O
imag part

relative error

—50
o 0
~100 0
—300 —100 0 R — test2 test3
real part real part
Errors for different initial conditions
Eigenvalues of linearization (test data)
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Nonlinear Systems / Global Stability

@ Preserving Stability in Operator Inference

Solving the Oplnf regression problem
(As, H.) = argmin , )| X — [A H] {XQ} |5 +R(AH)
using the stability-constraint on A as just discussed leads to a nonlinear system with

local Lyapunov stability, noting that the inferred Q. = KX K. > 0 provides a quadratic
Lyapunov function for the identified system [GovaL/PoNTEs DUFrF/B. 2023].
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Nonlinear Systems / Global Stability

@ Preserving Stability in Operator Inference

Solving the Oplnf regression problem
(As, H.) = argmin , )| X — [A H] {XQ} |5 +R(AH)

using the stability-constraint on A as just discussed leads to a nonlinear system with
local Lyapunov stability, noting that the inferred Q. = KX K. > 0 provides a quadratic
Lyapunov function for the identified system [GovaL/PoNTEs DUFrF/B. 2023].

We can achieve more for energy-preserving quadratic systems, i.e.,
Hiji + Hirj + Hjir + Hjii + Hiij + Hijo =0 forall 4,5,k € {1,...,n}.

Note: the latter is equivalent to 27 H(z ® x) = 0 for all & € R"™ [ScuLeceL/Noack 2015].
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Preserving Stability in Operator Inference

Nonlinear Systems / Global Stability

Solving the Oplnf regression problem
(As, H.) = argmin , )| X — [A H] {X2} |5 +R(AH)

using the stability-constraint on A as just discussed leads to a nonlinear system with
local Lyapunov stability, noting that the inferred Q. = KT K. > 0 provides a quadratic
Lyapunov function for the identified system [GovaL/PoNTEs DUFrF/B. 2023].

We can achieve more for energy-preserving quadratic systems, i.e.,
Hiji + Hirj + Hjir + Hjii + Hiij + Hijo =0 forall 4,5,k € {1,...,n}.

Note: the latter is equivalent to 27 H(z ® x) = 0 for all & € R"™ [ScuLeceL/Noack 2015].

Theorem (Goyal/Pontes Duff/B. 2023)
An energy-preserving quadratic system

:=A24+H(z® z)

is monotonically and globally asymptotically stable if and only if the symmetric part of A
is asymptotically stable.
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Nonlinear Systems / Global Stability

@ Preserving Stability in Operator Inference

Theorem (Goyal/Pontes Duff/B. 2023)
An energy-preserving quadratic system

2=Az+ H(z® z)

is monotonically and globally asymptotically stable (GAS) if and only if the symmetric
part of A is asymptotically stable.
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Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability

Theorem (Goyal/Pontes Duff/B. 2023)
An energy-preserving quadratic system

2=Az+ H(zQ® z)

is monotonically and globally asymptotically stable (GAS) if and only if the symmetric
part of A is asymptotically stable.

Question: can we encode the energy-preservation property explicitly, so that we
constrain the Oplnf problem accordingly? (if the answer is yes, then we can learn a GAS model using Oplnf.)
Answer: yes, we can!

Theorem (Goyal/Pontes Duff/B. 2023)

A locally Lyapunov stable quadratic system in R™

t=Az+ H(2Q 2), A=J-RQ, J=-J", R=R" >0, Q=Q" >0,

is generalized energy-preserving w.r.t. Q, i.e., tT QH(x ® ) = 0 for all z, if
H=[H:Q,...,H.Q], where Hj=—H}, j=1,...,n.
Moreover, V (z) = %xTQx is a global Lyapunov function for the quadratic system.

Note: the converse is true, too! [Gkivisis/PoNTES DUFF/GOYAL/B. 2025]
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Nonlinear Systems / Global Stability

@ Preserving Stability in Operator Inference

Constrained Oplnf problem for learning GAS systems [GoyAL/PonTES DUFF/B.

(Ay, Hy) = argmin(A’H)”X— [A H] [X2] ||F+R (A, H)
subject to the stability constraints
= (S =§"= LTL) KTK with L, K upper triangular with positive diagonals

H=[HQ,...,H.Q], with H;=-H, j=1,...,n
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Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability

Constrained Oplnf problem for learning GAS systems [GovAaL/PoNTES DUFF/B. 2

(Ay, Hy) = argmin(A’H)”X -[A H] [X2] ||F—|—R (A, H)
subject to the stability constraints
= (S =§"= LTL) KTK with L, K upper triangular with positive diagonals

H=[HQ,...,H.Q], with H;=-H, j=1,...,n

Implementation:
o Usually, as discussed before, the data are projected onto the leading » PCA modes
for dimension reduction.
@ Quite involved optimization problem, can be solved via stochastic gradient descent
(Adam) and backpropagation (setting Q = I, may be necessary).

o We do not explicitly need derivative data by using a Neural ODE approach for noisy
data [GovaL/B. 2023].
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Preserving Stability in Operator Inference

Nonlinear Systems / Global Stability— Numerical Example

Consider again 1D Burgers’ equation for viscous flow

v+ Vv = oz in (0,1) x (0,T)
v(0,t) = w(l,t) = 0,
’U(ZE,O) = 1)0((2, )u‘)i

discretized on uniform 250 x 500 space-time grid for 17 + 3 training+testing initial conditions
and v = 0.05.

Reduced-order model (r = 20) computed using standard, locally stable (lasMl) and globally
stable (gasMI) Oplnf applied to (POD)-projected data.
(Implementation using PyTorch and Adam optimizer for solving nonlinear regression problem.)

—#= OpInf-benchmark
Test 1 Test 2 Test 3

© lasMI —+— gasMI

100

relative error

—10 -5 0
regularization parameter for H (in logscale)

(missing data = blow-up in numerical simulation)
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Preserving Stability in Operator Inference

Nonlinear Systems / Global Stability— Numerical Example

Consider again 1D Burgers' equation for viscous flow

tearned model abmolute error

sround-truth

(%3
Hie 05 5
Lo 00 = Lo 00 = Lo 00

(a) Using opInf-benchmark.

learned maodel absolute error

eftur in log-seale

Lo on Lo 00

(b) Using lasMI.

tearned model abmolute error

e in log-seile

.

.5
Hine
Lo 00

10 0.0 x
(c) Using gasMI.
Full simulation for test initial condition (not seen during training)
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Preserving Stability in Operator Inference

Nonlinear Dynamics with Attractor

@ So far, we considered asymptotically stable systems.
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Preserving Stability in Operator Inference

Nonlinear Dynamics with Attractor

@ So far, we considered asymptotically stable systems.

@ However, there exist quadratic systems without any stable points, e.g., chaotic
Lorenz example.
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Nonlinear Dynamics with Attractor

@ Preserving Stability in Operator Inference

@ So far, we considered asymptotically stable systems.

o However, there exist quadratic systems without any stable points, e.g., chaotic
Lorenz example.

@ Despite having no stable point, these systems might have an attractor, meaning
there exists a bounded region (a ball) where all trajectories for some set of initial
conditions get trapped. (Attractor is sometimes also called " trapping region”.) Call
such systems ATR systems.

x 10 —10

Figure: An illustration of nonlinear dynamics with attractor.

Learning Globally Stable Dynamics a Matrix-theoretic Perspective
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Preserving Stability in Operator Inference

Nonlinear Dynamics with Attractor

@ So far, we considered asymptotically stable systems.
@ However, there exist quadratic systems without any stable points, e.g., chaotic
Lorenz example.

o Despite having no stable point, these systems might have an attractor, meaning
there exists a bounded region (a ball) where all trajectories for some set of initial
conditions get trapped. (Attractor is sometimes also called "trapping region”.) Call
such systems ATR systems.

Inference of ATR quadratic systems [GoyAL/PoNTES DUFF/B. 2
o For energy-preserving quadratic systems, an ATR system can be turned into a GAS system
by translation z(t) — z(t) —y
o We, thus, require to solve the following constraint problem:

i [ A = o

subject to A(A) € CT and H is energy preserving.

o Note that we do not know y a priori, it is learned from the data.
o The radius 7 can be computed based on the minimum eigenvalues of A.

Learning Globally Stable Dynami a Matrix-theoretic Perspective
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Preserving Stability in Operator Inference

Nonlinear Dynamics with Attractor— Numerical Example (Lorenz63 system)

ground-truth RK4-STNDy atrhI
10 40 40
0 0 2
0 o 0
0 10 0
20 20 20
=y Oy o, Oy =y Oy
I T I
(a) For initial condition [10, 10, —10].
ground-truth RK4-STNDy atrhI
100 100 100
0 o 0
100 100 100
0 0 0
0 0 v o
0 100 —100 ! x 0 100 —100 a0 100 —100 !

(b) For initial condition [100, —100, 100].

ground-truth RK4-SINDy atrMI
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@ Conclusions

@ Oplnf is a regression-based powerful method to infer linear and certain nonlinear
dynamical systems from data. Looks simple, but devil is in the details.

@ Stability constraints can be encoded explicitly in the regression problem for the
model inference.

Extension to nonlinear systems with attractor [Govar/Pontes Durr/B. 2023].
For application to control problems (" BIBO stability” ), see [Pontes Durr/Govar/B. 2024].

For application to parametric problems, see [Mawibiserri/Pontes Durr/Govar/B. 2025].

The same approach can also be used to infer stable systems from a richer (than just
quadratics) dictionary using sparse regression (SINDy).

@ Recent work combines Oplnf with neural networks to solve nonlinear identification
problems.

o Applications to surrogate modeling for Digital Twins of, e.g., energy conversion
processes show promising results when stability encoding is used.

o Error bounds for non-intrusive MOR not well developed yet, but theoretic results
indicate that the OpInf model asymptotically (when increasing the number of
snapshots) yields the POD model. Then, intrusive MOR error bounds can be
applied.
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