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Model Order Reduction of Dynamical Systems

Original System

Σ :

{
ẋ(t) = f(t, x(t), u(t)),
y(t) = g(t, x(t), u(t)),

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂(t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)),

states x̂(t) ∈ Rr, r ≪ n,

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

∥y − ŷ∥ < tolerance · ∥u∥ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.
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Model Order Reduction of Linear Systems
Linear Time-Invariant (LTI) Systems

Original System

Σ :

{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t).

states x̂(t) ∈ Rr, r ≪ n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

∥y − ŷ∥ < tolerance · ∥u∥ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.
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Model Order Reduction of Linear Systems
Model Reduction Schematically

E,A ∈ Rn×n

B ∈ Rn×m

C ∈ Rp×n

D ∈ Rp×m

Ê, Â ∈ Rr×r

B̂ ∈ Rr×m

Ĉ ∈ Rp×r

D̂ ∈ Rp×m
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From intrusive to non-intrusive MOR

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V ⊂ Rn.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space) along
complementary subspace W (test space), where

range(V ) = V, range(W ) = W, WTV = Ir.

The reduced-order model is

x̂ = WT x, Â := WTAV, B̂ := WTB, Ĉ := CV, (D̂ := D).

But: we need the matrices A,B,C,D to compute the reduced-order model!

Using proprietary simulation software, we would need to intrude the software to get the matrices

⇝ intrusive MOR

= learning (compact, surrogate) models from (full, detailed) models.

This is often impossible!

⇝ non-intrusive MOR

= LEARNING (compact, surrogate) MODELS FROM DATA!
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Data-driven/-enhanced Model Reduction
Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y ≡ x), given u(t) or U(s):

Black box Σ: the only information we can get is either

time domain data / times series: uk ≈ u(tk) and xk ≈ x(tk) or yk ≈ y(tk), or

frequency domain data / measurements: Uk ≈ U(ȷωk) and Xk ≈ X(ȷωk) or Yk ≈ Y (ȷωk).
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Data-driven/-enhanced Model Reduction
Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y ≡ x), given u(t) or U(s):

Black box Σ: the only information we can get is either

time domain data / times series: uk ≈ u(tk) and xk ≈ x(tk) or yk ≈ y(tk), or

frequency domain data / measurements: Uk ≈ U(ȷωk) and Xk ≈ X(ȷωk) or Yk ≈ Y (ȷωk).

Some methods:

System identification (incl. ERA, N4SID, MOESP): frequency and time domain
[Ho/Kalman 1966; Ljung 1987/1999; Van Overschee/De Moor 1994; Verhaegen 1994; De Wilde, Eykhoff, Moonen, Sima, . . . ]

Neural networks: frequency and time domain [Narendra/Parthasarathy 1990; Lee/Carlberg 2019;

Antonini/B./Feng/Romano 2022; . . . ]

Loewner interpolation: frequency (and time) domain [Antoulas/Anderson 1986; Mayo/Antoulas 2007;

Gosea, Gugercin, Ionita, Lefteriu, Peherstorfer, . . . ]

Koopman/Dynamic Mode Decomposition (DMD): time domain
[Mezič 2005; Schmid 2008; Brunton, Kevrekidis, Kutz, Rowley, Noé, Nüske, Schütte, Peitz, Klus, . . . ],

for control systems [Kaiser/Kutz/Brunton 2017, B./Himpe/Mitchell 2018]

Operator inference (OpInf): time domain [Peherstorfer/Willcox 2016; Kramer, Qian, Farcas, B., Goyal,

Pontes Duff, Yıldız,. . . ]
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for control systems [Kaiser/Kutz/Brunton 2017, B./Himpe/Mitchell 2018]

Operator inference (OpInf): time domain [Peherstorfer/Willcox 2016; Kramer, Qian, Farcas, B., Goyal,

Pontes Duff, Yıldız,. . . ]

© benner@mpi-magdeburg.mpg.de Learning Globally Stable Dynamics –— a Matrix-theoretic Perspective 8/23

mailto:benner@mpi-magdeburg.mpg.de


Data-driven/-enhanced Model Reduction
Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y ≡ x), given u(t) or U(s):

Black box Σ: the only information we can get is either

time domain data / times series: uk ≈ u(tk) and xk ≈ x(tk) or yk ≈ y(tk), or

frequency domain data / measurements: Uk ≈ U(ȷωk) and Xk ≈ X(ȷωk) or Yk ≈ Y (ȷωk).

Some methods:

System identification (incl. ERA, N4SID, MOESP): frequency and time domain
[Ho/Kalman 1966; Ljung 1987/1999; Van Overschee/De Moor 1994; Verhaegen 1994; De Wilde, Eykhoff, Moonen, Sima, . . . ]

Neural networks: frequency and time domain [Narendra/Parthasarathy 1990; Lee/Carlberg 2019;

Antonini/B./Feng/Romano 2022; . . . ]

Loewner interpolation: frequency (and time) domain [Antoulas/Anderson 1986; Mayo/Antoulas 2007;

Gosea, Gugercin, Ionita, Lefteriu, Peherstorfer, . . . ]

Koopman/Dynamic Mode Decomposition (DMD): time domain
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A Brief History of System Identification

A paper from 1990. . .

Narendra, K.S., Parthasarathy, K. (1990): Identification and control of dynamical systems using neural networks. IEEE
Transactions on Neural Networks 1(1):4–27.
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A Brief History of System Identification

A book from 1996. . .

Narendra, K.S., Parthasarathy, K. (1990): Identification and control of dynamical systems using neural networks. IEEE
Transactions on Neural Networks 1(1):4–27.

Suykens, J.A.K., Vandewalle, J.P.L., de Moor, B.L. (1996): Artificial Neural Networks for Modelling and Control of
Non-Linear Systems. Springer US.
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Operator Inference
Basic Algorithm: ”Empirical Model Reduction” [Kravtsov/Kondrashov/Ghil 2005]

Problem setting: infer (smooth) nonlinear dynamical system,

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn.

Goal: learn dynamical system from given snapshots xk := x(tk), uk := u(tk), tk := kh, h > 0
for k = 0, 1, . . . ,K (using simulation software, or measurements from real life experiment).

Impose an expressive, yet simple nonlinear structure.

Here: try to infer quadratic-linear system

˙̂x(t) = Âx̂(t) + Ĥ (x̂(t)⊗ x̂(t)) + B̂u(t),

where P ⊗Q := [pijQ]ij denotes the Kronecker (tensor) product, from data

X := [x0, x1, . . . , xK ] ∈ Rn×(K+1), U := [u0, u1, . . . , uK ] ∈ Rm×(K+1).

Requires snapshot matrix of time derivatives: if residuals f(xj , uj) are available

Ẋ := [ ẋ(0), ẋ(t1), . . . , ẋ(tK) ] = [ f(x0, u0), f(x1, u1), . . . , f(xK , uK) ] ∈ Rn×(K+1),

otherwise, approximate time-derivatives by finite differences ⇝ ≈ Ẋ.

Solve the linear least-squares problem (regression):

(A∗, H∗, B∗) := argmin(A,H,B)

∥∥∥∥Ẋ −
[
A H B

]  X
X2

U

∥∥∥∥2
F

+ R(A, H, B)

with potential regularization R and X2 := [x0 ⊗ x0, . . . , xK ⊗ xK ].
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Operator Inference
Basic Algorithm: ”Empirical Model Reduction” [Kravtsov/Kondrashov/Ghil 2005]
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˙̂x(t) = Âx̂(t) + Ĥ (x̂(t)⊗ x̂(t)) + B̂u(t),

where P ⊗Q := [pijQ]ij denotes the Kronecker (tensor) product, from data

X := [x0, x1, . . . , xK ] ∈ Rn×(K+1), U := [u0, u1, . . . , uK ] ∈ Rm×(K+1).

Requires snapshot matrix of time derivatives: if residuals f(xj , uj) are available
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Operator Inference
Full algorithm with data compression [Peherstorfer/Willcox 2016]

(Regularized) Operator Inference least-squares (OpInf) problem

(A∗, H∗, B∗) := argmin(A,H,B)

∥∥∥∥Ẋ −
[
A H B

] X
X2

U

∥∥∥∥2

F

+ R(A, H, B)

may be computationally too complex if state-space is too large (say, n > 30).

Idea: compress trajectories using POD / PCA:

1 Let X := [x0, x1, . . . , xK−1, xK ] ∈ Rn×K+1 be the matrix of all snapshots.

2 Compute principal / dominant singular vectors via SVD X = QΣV T and set
W := Q(:, 1 : r) such that

∑K+1
k=r+1 σk < ε (potentially, use centered data).

3 Compute compressed snapshot matrices X̂ := WTX, X̂2 := X̂ ⊗ X̂,
˙̂
X := WT Ẋ.

4 Apply OpInf using X̂, X̂2,
˙̂
X and compute reduced-order model via

(Â∗, Ĥ∗, B̂∗) := argmin(Â,Ĥ,B̂)

∥∥∥∥ ˙̂
X −

[
Â Ĥ B̂

]  X̂

X̂2

U

∥∥∥∥2

F

+ R(Â, Ĥ, B̂).
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[
A H B

] X
X2

U

∥∥∥∥2

F

+ R(A, H, B)

may be computationally too complex if state-space is too large (say, n > 30).

Idea: compress trajectories using POD / PCA:

1 Let X := [x0, x1, . . . , xK−1, xK ] ∈ Rn×K+1 be the matrix of all snapshots.

2 Compute principal / dominant singular vectors via SVD X = QΣV T and set
W := Q(:, 1 : r) such that

∑K+1
k=r+1 σk < ε (potentially, use centered data).

3 Compute compressed snapshot matrices X̂ := WTX, X̂2 := X̂ ⊗ X̂,
˙̂
X := WT Ẋ.
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(Â∗, Ĥ∗, B̂∗) := argmin(Â,Ĥ,B̂)
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∥∥∥∥ ˙̂
X −

[
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Operator Inference: Numerical Example
Parameterized Shallow Water Equations

Parameterized shallow water equations are given by [Yıldız et al 2021]

∂

∂t
ũ = −hx + sin θ ṽ − ũũx − ṽũy + δ cos θ(hũ)x −

3

8
(δ cos θ)

2
(h

2
)x,

∂

∂t
ṽ = −hy + sin θ ũ +

1

2
δ sin θ cos θ h − ũṽx − ṽṽy

+ δ cos θ

(
(hũ)y +

1

2
h (ṽx − ũy)

)
−

3

8
(δ cos θ)

2
(h

2
)y,

∂

∂t
h = −(hũ)x − (hṽ)y +

1

2
δ cos θ(h

2
)x.

Parameterized by the latitude θ.

ũ =: (ũ; ṽ) is the canonical velocity.

h is the height field.

We collect the training data for 5 different parameter realizations θ in
[π
6
,
π

3

]
.

Infer a reduced parametric model of order r = 75 directly from data.
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3

8
(δ cos θ)

2
(h

2
)x,

∂

∂t
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2
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2
)x.

Comparison of the height field for the parameter θ =
5π

24
:
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(a) FOM
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(b) Learned parametric model
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Operator Inference: Numerical Examples
Navier-Stokes Equations

Tailored operator inference for incompressible Navier-Stokes equations, by heeding
incompressibility condition. [B./Goyal/Heiland/Pontes Duff 2022]

Γ0 Γ1

0.12

0.14

y p
(t)

=
C p

p(
t) Full Order Model

0.12

0.14

y p
(t)

=
C p

p(
t) Operator Inference

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time t

10 5
10 3

10 7

y p
(t)

y p
(t)

Approximation Error
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Preserving Stability in Operator Inference
Linear Systems / Local Stability

Asymptotic (exponential, Lyapunov) stability of linear systems

ẋ(t) = Ax(t), x(0) = x0,

can be explicitly parameterized:

Theorem (Gillis/Sharma 2017)

A matrix A ∈ Rn×n is asymptotically stable (Hurwitz, Lyapunov stable) if and only if it
can be represented as

A = (J −R)Q,

where J = −JT and R = RT , Q = QT are both positive definite.

=⇒ Stability-preserving OpInf for linear systems [Goyal/Pontes Duff/B. 2023]:

(S∗, L∗,K∗) := argminL,K upper triangular
with positive diagonals

(
∥Ẋ − (S − ST − LTL)KTKX∥2F +R(L,K, S)

)
.

The matrix obtained from this nonlinear (regularized) least-squares problem,

A∗ =
(
S∗ − ST

∗ − LT
∗ L∗

)
KT

∗ K∗,

is guaranteed to be stable due to [Gillis/Sharma 2017].

Related work by Schwerdtner, Voigt, . . .
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Preserving Stability in Operator Inference
Linear Systems / Local Stability— Numerical Example

Consider 1D Burgers’ equation for viscous flow

vt + vvx = νvxx in (0, 1)× (0, T )

vx(0, t) = vx(1, t) = 0,

v(x, 0) = v0(x, µ),

discretized on uniform 1000× 500 space-time grid for 17 + 3 training+testing initial conditions.

Reduced-order model (r = 21) computed using standard (”LSI”) and stabilized (”SLSI”) OpInf
applied to (POD)-projected data.
(Implementation using PyTorch and Adam optimizer for solving nonlinear regression problem.)

Eigenvalues of linearization
Errors for different initial conditions

(test data)
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Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability

Solving the OpInf regression problem

(A∗, H∗) := argmin(A,H)

∥∥Ẋ −
[
A H

] [X
X2

] ∥∥2

F
+R(AH)

using the stability-constraint on A as just discussed leads to a nonlinear system with
local Lyapunov stability, noting that the inferred Q∗ = KT

∗ K∗ > 0 provides a quadratic
Lyapunov function for the identified system [Goyal/Pontes Duff/B. 2023].

We can achieve more for energy-preserving quadratic systems, i.e.,

Hijk +Hikj +Hjik +Hjki +Hkij +Hkji = 0 for all i, j, k ∈ {1, . . . , n}.

Note: the latter is equivalent to xTH(x⊗ x) = 0 for all x ∈ Rn
[Schlegel/Noack 2015].

Theorem (Goyal/Pontes Duff/B. 2023)

An energy-preserving quadratic system

ż = Az +H(z ⊗ z)

is monotonically and globally asymptotically stable if and only if the symmetric part of A
is asymptotically stable.
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Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability

Theorem (Goyal/Pontes Duff/B. 2023)

An energy-preserving quadratic system

ż = Az +H(z ⊗ z)

is monotonically and globally asymptotically stable (GAS) if and only if the symmetric
part of A is asymptotically stable.

Question: can we encode the energy-preservation property explicitly, so that we
constrain the OpInf problem accordingly? (If the answer is yes, then we can learn a GAS model using OpInf.)

Answer: yes, we can!

Theorem (Goyal/Pontes Duff/B. 2023)

A locally Lyapunov stable quadratic system in Rn

ż = Az +H(z ⊗ z), A = (J −R)Q, J = −JT , R = RT > 0, Q = QT > 0,

is generalized energy-preserving w.r.t. Q, i.e., xTQH(x⊗ x) = 0 for all x, if

H = [H1Q, . . . ,HnQ] , where Hj = −HT
j , j = 1, . . . , n.

Moreover, V (x) = 1
2
xTQx is a global Lyapunov function for the quadratic system.

Note: the converse is true, too! [Gkimisis/Pontes Duff/Goyal/B. 2025]
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ż = Az +H(z ⊗ z)

is monotonically and globally asymptotically stable (GAS) if and only if the symmetric
part of A is asymptotically stable.

Question: can we encode the energy-preservation property explicitly, so that we
constrain the OpInf problem accordingly? (If the answer is yes, then we can learn a GAS model using OpInf.)

Answer: yes, we can!

Theorem (Goyal/Pontes Duff/B. 2023)

A locally Lyapunov stable quadratic system in Rn
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Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability

Constrained OpInf problem for learning GAS systems [Goyal/Pontes Duff/B. 2023]

(A∗, H∗) := argmin(A,H)

∥∥Ẋ −
[
A H

] [X
X2

] ∥∥2

F
+R(A, H)

subject to the stability constraints

A =
(
S − ST − LTL

)
KTK with L,K upper triangular with positive diagonals

H = [H1Q, . . . ,HnQ] , with Hj = −HT
j , j = 1, . . . , n.

Implementation:

Usually, as discussed before, the data are projected onto the leading r PCA modes
for dimension reduction.

Quite involved optimization problem, can be solved via stochastic gradient descent
(Adam) and backpropagation (setting Q = Ir may be necessary).

We do not explicitly need derivative data by using a Neural ODE approach for noisy
data [Goyal/B. 2023].
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Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability
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Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability— Numerical Example

Consider again 1D Burgers’ equation for viscous flow

vt + vvx = νvxx in (0, 1)× (0, T )

v(0, t) = v(1, t) = 0,

v(x, 0) = v0(x, µ),

discretized on uniform 250× 500 space-time grid for 17 + 3 training+testing initial conditions
and ν = 0.05.

Reduced-order model (r = 20) computed using standard, locally stable (lasMI) and globally
stable (gasMI) OpInf applied to (POD)-projected data.
(Implementation using PyTorch and Adam optimizer for solving nonlinear regression problem.)

(missing data = blow-up in numerical simulation)
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Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability— Numerical Example

Consider again 1D Burgers’ equation for viscous flow

Full simulation for test initial condition (not seen during training)
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Preserving Stability in Operator Inference
Nonlinear Dynamics with Attractor

So far, we considered asymptotically stable systems.

However, there exist quadratic systems without any stable points, e.g., chaotic
Lorenz example.

Despite having no stable point, these systems might have an attractor, meaning
there exists a bounded region (a ball) where all trajectories for some set of initial
conditions get trapped. (Attractor is sometimes also called ”trapping region”.) Call
such systems ATR systems.

Inference of ATR quadratic systems [Goyal/Pontes Duff/B. 2023]

For energy-preserving quadratic systems, an ATR system can be turned into a GAS system
by translation x(t) → x(t)− y
We, thus, require to solve the following constraint problem:

min
A,H,y

∥∥∥Ẋ −A(X − y)−H(X − y)2
∥∥∥

subject to Λ(A) ∈ C− and H is energy preserving.

Note that we do not know y a priori, it is learned from the data.
The radius r can be computed based on the minimum eigenvalues of A.
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∥∥∥Ẋ −A(X − y)−H(X − y)2
∥∥∥

subject to Λ(A) ∈ C− and H is energy preserving.

Note that we do not know y a priori, it is learned from the data.
The radius r can be computed based on the minimum eigenvalues of A.

© benner@mpi-magdeburg.mpg.de Learning Globally Stable Dynamics –— a Matrix-theoretic Perspective 20/23

mailto:benner@mpi-magdeburg.mpg.de


Preserving Stability in Operator Inference
Nonlinear Dynamics with Attractor

So far, we considered asymptotically stable systems.
However, there exist quadratic systems without any stable points, e.g., chaotic
Lorenz example.
Despite having no stable point, these systems might have an attractor, meaning
there exists a bounded region (a ball) where all trajectories for some set of initial
conditions get trapped. (Attractor is sometimes also called ”trapping region”.) Call
such systems ATR systems.

Figure: An illustration of nonlinear dynamics with attractor.
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Preserving Stability in Operator Inference
Nonlinear Dynamics with Attractor— Numerical Example (Lorenz63 system)

(a) For initial condition [10, 10,−10].

(b) For initial condition [100,−100, 100].

(c) For initial condition [−500, 500, 500].

Figure: A comparison of the time-domain simulations of the learned models for testing initial
conditions.
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Conclusions

OpInf is a regression-based powerful method to infer linear and certain nonlinear
dynamical systems from data. Looks simple, but devil is in the details.

Stability constraints can be encoded explicitly in the regression problem for the
model inference.

Extension to nonlinear systems with attractor [Goyal/Pontes Duff/B. 2023].

For application to control problems (”BIBO stability”), see [Pontes Duff/Goyal/B. 2024].

For application to parametric problems, see [Mamidisetti/Pontes Duff/Goyal/B. 2025].

The same approach can also be used to infer stable systems from a richer (than just
quadratics) dictionary using sparse regression (SINDy).

Recent work combines OpInf with neural networks to solve nonlinear identification
problems.

Applications to surrogate modeling for Digital Twins of, e.g., energy conversion
processes show promising results when stability encoding is used.

Error bounds for non-intrusive MOR not well developed yet, but theoretic results
indicate that the OpInf model asymptotically (when increasing the number of
snapshots) yields the POD model. Then, intrusive MOR error bounds can be
applied.
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