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Early Encounters

1995: The boom box talk at ICIAM 1995 in
Hamburg.
(⇝ the CD player model reduction benchmark example,

used till today!)

. . . [memory loss]
[Chahlaoui/Van Dooren 2002/2005]

Paul’s work [Bojanczyk/Golub/Van Dooren 1992, Sreedhar/Van Dooren 1993/1999] (also:
[Hench/Laub 1994]) on periodic/product QR and QZ algorithms inspired work on inverse-free spectral
projection methods for collapsing products of matrices and matrix pencils and solving periodic Riccati
equations ⇝ joint work with Ralph Byers [B./Byers 2001].

This work became part of my habilitation thesis, defended 2001 in Bremen.

Paul was on the committee and attended the Habilitation Colloquium on May 4, 2001 in Bremen!
(Photo documentary exists, but has gone missing. . . )

Peter Benner Pencil Arithmetic with Applications 3/22



Early Encounters

1995: The boom box talk at ICIAM 1995 in
Hamburg.
(⇝ the CD player model reduction benchmark example,

used till today!)

. . . [memory loss]
[Chahlaoui/Van Dooren 2002/2005]

Paul’s work [Bojanczyk/Golub/Van Dooren 1992, Sreedhar/Van Dooren 1993/1999] (also:
[Hench/Laub 1994]) on periodic/product QR and QZ algorithms inspired work on inverse-free spectral
projection methods for collapsing products of matrices and matrix pencils and solving periodic Riccati
equations ⇝ joint work with Ralph Byers [B./Byers 2001].

This work became part of my habilitation thesis, defended 2001 in Bremen.

Paul was on the committee and attended the Habilitation Colloquium on May 4, 2001 in Bremen!
(Photo documentary exists, but has gone missing. . . )

Peter Benner Pencil Arithmetic with Applications 3/22



Early Encounters

1995: The boom box talk at ICIAM 1995 in
Hamburg.
(⇝ the CD player model reduction benchmark example,

used till today!)

. . . [memory loss]
[Chahlaoui/Van Dooren 2002/2005]

Paul’s work [Bojanczyk/Golub/Van Dooren 1992, Sreedhar/Van Dooren 1993/1999] (also:
[Hench/Laub 1994]) on periodic/product QR and QZ algorithms inspired work on inverse-free spectral
projection methods for collapsing products of matrices and matrix pencils and solving periodic Riccati
equations ⇝ joint work with Ralph Byers [B./Byers 2001].

This work became part of my habilitation thesis, defended 2001 in Bremen.

Paul was on the committee and attended the Habilitation Colloquium on May 4, 2001 in Bremen!
(Photo documentary exists, but has gone missing. . . )

Peter Benner Pencil Arithmetic with Applications 3/22



Early Encounters

1995: The boom box talk at ICIAM 1995 in
Hamburg.
(⇝ the CD player model reduction benchmark example,

used till today!)

. . . [memory loss]
[Chahlaoui/Van Dooren 2002/2005]

Paul’s work [Bojanczyk/Golub/Van Dooren 1992, Sreedhar/Van Dooren 1993/1999] (also:
[Hench/Laub 1994]) on periodic/product QR and QZ algorithms inspired work on inverse-free spectral
projection methods for collapsing products of matrices and matrix pencils and solving periodic Riccati
equations ⇝ joint work with Ralph Byers [B./Byers 2001].

This work became part of my habilitation thesis, defended 2001 in Bremen.

Paul was on the committee and attended the Habilitation Colloquium on May 4, 2001 in Bremen!
(Photo documentary exists, but has gone missing. . . )

Peter Benner Pencil Arithmetic with Applications 3/22



Early Encounters

1995: The boom box talk at ICIAM 1995 in
Hamburg.
(⇝ the CD player model reduction benchmark example,

used till today!)

. . . [memory loss]
[Chahlaoui/Van Dooren 2002/2005]

Paul’s work [Bojanczyk/Golub/Van Dooren 1992, Sreedhar/Van Dooren 1993/1999] (also:
[Hench/Laub 1994]) on periodic/product QR and QZ algorithms inspired work on inverse-free spectral
projection methods for collapsing products of matrices and matrix pencils and solving periodic Riccati
equations ⇝ joint work with Ralph Byers [B./Byers 2001].

This work became part of my habilitation thesis, defended 2001 in Bremen.

Paul was on the committee and attended the Habilitation Colloquium on May 4, 2001 in Bremen!
(Photo documentary exists, but has gone missing. . . )

Peter Benner Pencil Arithmetic with Applications 3/22



Early Encounters — NICONET (EU project 1998–2002)
Developing SLICOT — the Subroutine Library in Systems and Control — to Industry Standard

The NICONET team at the Annual Meeting 2002 in Oxford, organized by Sven Hammarling.
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Overview

1. Pencil Arithmetic
Basic Definitions and Properties
Matrix pencil products
Matrix pencil sums

2. Some Theoretical Considerations

3. Some Applications
Linear differential-algebraic equations
Periodic 2D Decriptor Systems
Commuting Pencils

4. References
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Pencil Arithmetic

Basic Question(s)

Given two matrix pencils A−λB,C−λD ∈ Cn×m(λ), can we define meaningful arithmetic operations for them?

E.g., for addition and multiplication, assuming n = m and B,D nonsingular,

B−1A+D−1C and B−1A ·D−1C

are well-defined via standard matrix addition and multiplication. How about singular cases?

⇝ pencil arithmetic [B./Byers 1997 – 2006].

Later question: What does it mean for a pair of matrix pencils to commute? And what are conditions for that?

⇝ joint work with PVD [B./Van Dooren 2023/2025].

Also: relations to 2-point boundary value problems for linear descriptor systems.
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Remembering Ralph Byers (1955–2007)

Ralph working on pencil arithmetic in Chemnitz, April 2004.
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Pencil Arithmetic
Basic Definitions and Properties

(Left-handed) matrix relation on Cn

For matrix pencil A− λE ∈ Cm×n:

(E\A) = {(x, y) ∈ Cn × Cn | Ey = Ax} ⊂ Cn × Cn.

Also called pullback of E and A (in category theory).

Definition (Action of (E\A) on x ∈ Cn)

For x ∈ Cn, the x-section of (E\A) is the set (E\A)x ≡ {y ∈ Cn | (x, y) ∈ (E\A)}.

Applications [3]

Linear descriptor difference equation:

Ekxk+1 = Akxk ⇐⇒ (xk, xk+1) ∈ (Ek\Ak).

Linear differential algebraic equation (DAE):

E(t)ẋ(t) = A(t)x(t) ⇐⇒ (x, ẋ) ∈ (E(t)\A(t)).
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Peter Benner Pencil Arithmetic with Applications 8/22



Pencil Arithmetic
Basic Definitions and Properties

(Left-handed) matrix relation on Cn

For matrix pencil A− λE ∈ Cm×n:

(E\A) = {(x, y) ∈ Cn × Cn | Ey = Ax} ⊂ Cn × Cn.

Also called pullback of E and A (in category theory).

Definition (Action of (E\A) on x ∈ Cn)

For x ∈ Cn, the x-section of (E\A) is the set (E\A)x ≡ {y ∈ Cn | (x, y) ∈ (E\A)}.

Applications [3]

Linear descriptor difference equation:

Ekxk+1 = Akxk ⇐⇒ (xk, xk+1) ∈ (Ek\Ak).

Linear differential algebraic equation (DAE):
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Pencil Arithmetic
Matrix pencil products

Definition

For E1, A1 ∈ Cm×n and E2, A2 ∈ Cp×n, the composite or product matrix relation of (E2\A2) with (E1\A1) is

(E2\A2)(E1\A1) =
{
(x, z) ∈ Cn × Cn

∣∣∣ There exists y ∈ Cn such that
y ∈ (E1\A1)x and z ∈ (E2\A2)y.

}

=

(x, z) ∈ Cn × Cn

∣∣∣∣∣∣∣
There exists y ∈ Rn such that[

A1 −E1 0
0 A2 −E2

] x
y
z

 = 0.


Remarks

a) Product matrix relation is associative with multiplicative identity (I\I).
b) (E\A)−1 = (A\E), but (E\A)−1(E\A) = (I\I) iff E+A nonsingular.

c) Product relation may or may not have matrix representation with the same number of rows as the factors
( ([1]\[0])([0]\[1]) = {(0, 0)} ).
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Pencil Arithmetic
Computing pencil products

Recall product-of-fractions formula for scalars a1, a2, e1, e2:

(a1/e1)(a2/e2) = (a1a2)/(e1e2)

Theorem [2]

Consider relations (E1\A1) and (E2\A2) where E1, A1 ∈ Cm×n and E2, A2 ∈ Cp×n. If Ã2 ∈ Cq×m and
Ẽ1 ∈ Cq×p satisfy

null[Ã2, Ẽ1] = range

[
−E1

A2

]
,

then

(E2\A2)(E1\A1) = ((Ẽ1E2)\(Ã2A1))

=
{
(x, z) ∈ Cn × Cn

∣∣∣ Ẽ1E2z = Ã2A1x
}
.

Computable, e.g., via QR decomposition[
−E1

A2

]
=

[
Q11 ÃH

2

Q21 ẼH
1

] [
R
0

]
.
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Pencil Arithmetic
Matrix pencil sums

Definition

(E1\A1) + (E2\A2) =

{
(x, z) ∈ Cn × Cn

∣∣∣∣∣ ∃ y1, y2 ∈ Cn, such that
y1 ∈ (E1\A1)x, y2 ∈ (E2\A2)x,
and z = y1 + y2.

}
Equivalently,

(E1\A1) + (E2\A2) =

(x, z)

∣∣∣∣∣∣∣∣
∃ y1, y2 ∈ Cn, such that A1 −E1 0 0

A2 0 −E2 0
0 I I −I


 x

y1

y2

z

 = 0.



Remarks

a) The matrix relation sum is associative with additive identity (I\0).
b) A matrix relation has an additive inverse if and only if it is a linear transformation on Cn.
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Pencil Arithmetic
Computing pencil sums

Recall sum-of-fractions formula for scalars a1, a2, e1, e2:

a1/e1 + a2/e2 = (e2a1 + e1a2)/(e1e2)

Theorem [3]

Consider matrix relations (E1\A1) and (E2\A2) with E1, A1 ∈ Cm×n and E2, A2 ∈ Cp×n. If Ẽ2 ∈ Cq×m and
Ẽ1 ∈ Cq×p satisfy

null[Ẽ2, Ẽ1] = range

[
−E1

E2

]
,

then

(E2\A2) + (E1\A1) = ((Ẽ1E2)\(Ẽ2A1 + Ẽ1A2))

=
{
(x, z)

∣∣∣ Ẽ1E2z = (Ẽ2A1 + Ẽ1A2)x
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Computing pencil sums

Recall sum-of-fractions formula for scalars a1, a2, e1, e2:

a1/e1 + a2/e2 = (e2a1 + e1a2)/(e1e2)

Theorem [3]
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then

(E2\A2) + (E1\A1) = ((Ẽ1E2)\(Ẽ2A1 + Ẽ1A2))

=
{
(x, z)

∣∣∣ Ẽ1E2z = (Ẽ2A1 + Ẽ1A2)x
}
.

Remark

If E1 = E2 = I, then Ẽ1 = Ẽ2 = I is a possibility. ⇝ Matrix addition

(I\A1) + (I\A2) = (I\(A1 +A2)).
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Some Theoretical Considerations
Mutual deflating subspaces

Theorem [6] — products respect mutual deflating subspace

Let (E\A) = (E2\A2)(E1\A1). Suppose that X ∈ Cn×k, and S1, T1, S2, T2 ∈ Ck×p satisfy

E1XS1 = A1XT1, E2XS2 = A2XT2.

If S̃1, T̃2 satisfy

null[S1, T2] = range

[
−T̃2

S̃1

]
,

then
EX(S2S̃1) = AX(T1T̃2).

Moreover, if p = k and rank
([
−T̃2

S̃1

])
= k, then λ(S2S̃1)− (T1T̃2) is regular and range(X) is a right deflating

subspace of λE −A if and only if [S1, T2] has full row rank and T1 0
−S1 T2

0 −S2

 has full column rank.
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E1XS1 = A1XT1, E2XS2 = A2XT2.

If T̃1 and T̃2 satisfy null[−T1, T2] = range
[
T̃2

T̃1

]
, then

EX(S1T̃2 + S2T̃1) = AX(T1T̃2).

Moreover, if λ(T1T̃2)− (S1T̃2 + S2T̃1) is regular, then range(X) is a right deflating subspace of λE −A.
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Some Applications
Linear differential-algebraic equations [B./Byers 1998/99]

Consider linear, time invariant, DAE

Eẋ = Ax, where E, A ∈ Cm×n (1)

and x = x(t) : R → Cn is a classical, smooth solution.

Well-known: if range(A) ⊂ range(E) and E has full column rank n, then ∀ t0, t1 ∈ Rn:

x(t1) = exp(E+A(t1 − t0))x(t0).

This can be extended easily to the cases

range(A) ̸⊂ range(E),

E rank-deficient

using pencil arithmetic!

Peter Benner Pencil Arithmetic with Applications 14/22



Some Applications
Linear differential-algebraic equations [B./Byers 1998/99]

Consider linear, time invariant, DAE
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Consider linear, time invariant, DAE

Eẋ = Ax, where E, A ∈ Cm×n (1)

and x = x(t) : R → Cn is a classical, smooth solution.

Definition [3]
The exponential relation is defined by

exp(E\(A(t1 − t0))) =
∞∑

k=0

(t1 − t0)k

k!
(E\A)k.
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Extension to singular pencils possible.
(exp(E\(A(t1 − t0))) does not capture this case completely.)
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Some Applications
Periodic 2D Decriptor Systems [B./Van Dooren 2023]

2D Systems

Consider the following system of linear relations

Bxk+1,ℓ = Axk,ℓ, Dxk+1,ℓ+1 = Cxk+1,ℓ,
Dxk,ℓ+1 = Cxk,ℓ, Bxk+1,ℓ+1 = Axk,ℓ+1,

(2)

on an infinite two-dimensional grid with “basic cell”

C
xk+1,ℓ

−→
←− xk+1,ℓ+1

D
A ↑ ↓ B A ↑ ↓ B

C
xk,ℓ

−→
←− xk,ℓ+1

D

Question: are the two paths xk,ℓ → xk+1,ℓ+1 compatible?

Trivial answer if B,D invertible:

xk+1,ℓ+1 = D−1CB−1Axk,ℓ = B−1AD−1Cxk,ℓ, ∀xk,ℓ, i.e., iff (B\A) and (D\C) commute!

Here: consider descriptor systems, i.e., B,D singular.
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Periodic 2D Decriptor Systems
The Main Result

Consider the following two point boundary value problems −A B 0
0 −C D

Wk,ℓ 0 Wk+1,ℓ+1

 xk,ℓ

xk+1,ℓ

xk+1,ℓ+1

 =

 0
0
w

 , (3)

and  −C D 0
0 −A B

Wk,ℓ 0 Wk+1,ℓ+1

 xk,ℓ

xk,ℓ+1

xk+1,ℓ+1

 =

 0
0
w

 , (4)

where w is an arbitrary n-vector and Wk,ℓ and Wk+1,ℓ+1 are n× n matrices that make the systems (3) and (4) have a
unique solution.

Definition

The 2D periodic descriptor system (3) is conditionable if

D
−A B

−C D

. . .
. . .

−A B
−C




m block rows

has full column rank for all m.
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Periodic 2D Decriptor Systems
The Main Result

Theorem

Let the 2D periodic system given in (2) be conditionable. Then any two trajectories

xk,ℓ → xk+1,ℓ → xk+1,ℓ+1

and
xk,ℓ → xk,ℓ+1 → xk+1,ℓ+1

corresponding to the two-point BVPs (3) and (4) have the same end-points xk,ℓ and xk+1,ℓ+1 for all
conditionable end-point conditions Wk,ℓ, Wk+1,ℓ+1 and w, if and only if the orthogonal complements[
−C+ B+

]
∈ Cn×2n and

[
−A+ D+

]
∈ Cn×2n defined from[

−C+ B+

] [ B
−C

]
= 0,

[
−C+ B+

] [ −C∗+
B∗+

]
= In,

[
−A+ D+

] [ D
−A

]
= 0,

[
−A+ D+

] [ −A∗+
D∗+

]
= In

satisfy

rank

[
C+A B+D
A+C D+B

]
= n. (3)
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Commuting Pencils
Commuting Matrices

Definition

Two matrices A,B ∈ Cn×n commute if
AB = BA,

i.e., if their commuatator or Lie bracket is zero:

[A,B] := AB −BA = 0.

(Trivial) example

If A,B ∈ Cn×n are both diagonal, then they commute.

Theorem (Horn/Johnson, “Matrix Analysis”, CUP)

If two matrices A,B ∈ Cn×n are simultaneously diagonalizable, i.e., ∃P ∈ Cn×n nonsingular such that both
P−1AP and P−1BP are diagonal, then they commute.

(Not so trivial) example

Mass and stiffness matrices of a finite element discretization are simultaneously diagonalizable and thus
commute, which is the basis of Modal Analysis.
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Sets of Commuting Matrices

Definition

A set of matrices M := {Aj , j = 1, . . . ,m} is said to be commuting if every pair from M commutes, i.e.

AiAj = AjAi ∀ i, j ∈ {1, . . . ,m}.

Theorem (e.g., Gantmacher 1959)

If a matrix M ∈ M from a commuting set has a block-diagonal decomposition

T−1MT =

[
M1,1 0
0 M2,2

]
, M1,1 ∈ Cn1×n1 ,M2,2 ∈ Cn2×n2 ,

where the spectra of M1,1 and M2,2 are disjoint, then every other matrix in that set has a similar block-diagonal
decomposition, using the same similarity transformation T .
When partitioned as

T =
[
T1 T2

]
,

the column spaces of T1 and T2 span the spaces T1 and T2, respectively. These spaces are also invariant for
every matrix in the set M.
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Commuting Pencils
The Main Result

Theorem (B./Van Dooren 2023)

Given two n× n pencils zB1 −A1 and zB2 −A2 so that

[
−A1 zB1

zB2 −A2

]
is regular. Under this condition, the

pencils zB1 −A1 and zB2 −A2 commute if and only if

rank

[
−A+2A1 B+1B2

−A+1A2 B+2B1

]
= n, (4)

where A+1, A+2, B+1 and B+2 are defined via

ker
[
A+2 B+1

]
= range

[
B1

−A2

]
, ker

[
A+1 B+2

]
= range

[
B2

−A1

]
.

Moreover, the pencils zB1 −A1 and zB2 −A2 will then also be regular.

Note: if B1 and B2 are invertible, then the rank condition (4) is equivalent to the commutativity B−1
1 A1 and B−1

2 A2,
meaning

B−1
2 A2B

−1
1 A1 = B−1

1 A1B
−1
2 A2.

The rank condition (4) can be computationally tested with O(n3) flops [B./Byers 2006].
Not so for a set of m > 2 matrix pencils ⇝ m(m− 1)/2 such tests.
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Commuting Pencils
Main Result(s)

Definition

A set of pencils P := {zBj −Aj , j = 1, . . . ,m} with Bj invertible is commuting if every pair of left quotients
(B−1

i Ai, B
−1
j Aj) commutes.

(Generalizes to singular Bj using commutativity of all (Bi\Ai) and (Bj\Aj).)
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A set of pencils P := {zBj −Aj , j = 1, . . . ,m} with Bj invertible is commuting if every pair of left quotients
(B−1

i Ai, B
−1
j Aj) commutes.

(Generalizes to singular Bj using commutativity of all (Bi\Ai) and (Bj\Aj).)

Theorem

If a pencil (zB −A) ∈ P from a commuting set has a block-diagonal decomposition

S(zB −A)T = diag (zB1,1 −A1,1, . . . , zBk,k −Ak,k) , Bi,i, Ai,i ∈ Cni×ni ,

where the spectra of the diagonal pencils zBi,i −Ai,i are disjoint, then every pencil in P has such a
decomposition, using equivalence transformations (Sj , T ) with the same right transformation T .
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where the spectra of the diagonal pencils zBi,i −Ai,i are disjoint, then every pencil in P has such a
decomposition, using equivalence transformations (Sj , T ) with the same right transformation T .

Corollary

A set of diagonalizable pencils P is a commuting set if and only if the pencils are simultaneously diagonalizable
using equivalence transformations (Sj , T ) with the same right transformation T .
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Corollary

A set of diagonalizable pencils P is a commuting set if and only if the pencils are simultaneously diagonalizable
using equivalence transformations (Sj , T ) with the same right transformation T .

Theorem

If P is a set of commuting pencils, then there exist unitary equivalence transformations (V H
j , U) with a common

right transformation U , that triangularize each pencil in P via

V H
j (zBj −Aj)U.
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Main Result(s)

Definition

A set of pencils P := {zBj −Aj , j = 1, . . . ,m} with Bj invertible is commuting if every pair of left quotients
(B−1

i Ai, B
−1
j Aj) commutes.

(Generalizes to singular Bj using commutativity of all (Bi\Ai) and (Bj\Aj).)

Corollary

A set of diagonalizable pencils P is a commuting set if and only if the pencils are simultaneously diagonalizable
using equivalence transformations (Sj , T ) with the same right transformation T .

Theorem

If P is a set of commuting pencils, then there exist unitary equivalence transformations (V H
j , U) with a common

right transformation U , that triangularize each pencil in P via

V H
j (zBj −Aj)U.

1 This allows computational O(n3) algorithm to test commutativity based on Jacobi algorithm

2 Case of singular Bi can be treated via Moebius transformations.
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All the best, Paul!

Photo taken by Frank Uhlig during ILAS conference, July 2016, in Leuven.
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