MaRDI Mathematical Research Data Initiative

Reisensburg Workshop on Nonlinear and Structure-Preserving Model Reduction January 20–22, 2025

Peter Benner, Kathryn Lund, Ashwin Nayak, Jens Saak Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

- · First mentions around the turn of the millennium
- Initially discovered in medicine, psychology and biology
- Now relevant in all disciplines
- · Presents itself in various forms

- · First mentions around the turn of the millennium
- Initially discovered in medicine, psychology and biology
- Now relevant in all disciplines
- · Presents itself in various forms

Replicate same researcher, same lab, same experiment → same result

- Reproduce different researchers, their own labs, same experiment
 - \rightsquigarrow same result

- · First mentions around the turn of the millennium
- Initially discovered in medicine, psychology and biology
- Now relevant in all disciplines
- Presents itself in various forms

Replicate same researcher, same lab, same experiment → same result

- Reproduce different researchers, their own labs, same experiment
 - \rightsquigarrow same result
 - Reuse different researchers, their own labs, adapt to their experiments
 - \rightsquigarrow new discoveries

- · First mentions around the turn of the millennium
- Initially discovered in medicine, psychology and biology
- Now relevant in all disciplines
- Presents itself in various forms
- More than 70% of researchers have tried and failed to reproduce another scientist's experiments.
- More than 50% have failed to reproduce their own experiments.
- The majority replied that there is a significant reproducibility crisis!

- Unique and persistent identifier (e.g. DOI)
- Rich metadata (machine-readable) .
- Indexed in a searchable resource .

Transparent access

Accessible metadata

https://www.go-fair.org/fair-principles/

.

Nationale Forschungsdaten Infrastruktur

- 26 consortia across the disciplines
- Base4NFDI alliance for basic services
- 90 million € annual budget
- Organized as "eingetragener Verein"
- Members are most participating institutions

- · The one consortium of mathematics
- 16 institutions and partners
- Kick-off November 2021
- 28 (full-time equivalent) employees
- Funding over a period of five years

- The one consortium of mathematics
- 16 institutions and partners
- Kick-off November 2021
- 28 (full-time equivalent) employees
- Funding over a period of five years

Objects / Data problem input model benchmark algorithm output solution visualization

M1 Knowledge Graph of Numerical Algorithms

M2 Open Interfaces for Scientific Computing

M3 Benchmark Framework

M4 Description and Design of FAIR CSE workflows

TA2 Objectives

- Verified research data in scientific computing and its fields of application
- FAIR principles for computer-based experiments and the entailing data
- Ontology of mathematical objects
- Confirmable workflows for trustworthy computations
- Dissemination of numerical methods and algorithms

Database Curation

- Define benchmark instance and "algorithm isotope"
- Determine important searchable attributes and aggregate metadata
- Automate curation process to avoid human error
- Choose file-naming schemes and standards that are FAIR¹ and conform to community traditions

Benchmark Framework

- Identify domain-specific aspects of each module
- Choose intuitive and informative performance measures
- Develop platform-independent interfaces

Community Engagement

- Ensure proper licensing
- Encourage researchers to contribute their data, provide feedback, and conform to standards
- KISS²: Reduce barriers to cooperation by providing workflows, GUIs, easy-to-follow guidelines, etc.

¹ https://www.go-fair.org/fair-principles/ ²Keep It Simple, Silly https://en.wikipedia.org/wiki/KISS_principle

- Description of basic MOR methods.
- Collection of curated benchmark examples.
- Detailed description and comparison of available MOR techniques.
- Aggregate MOR literature and BibTeX data.

- Encourage community engagement lowering contribution barrier
- Ensure proper content licensing
- Ensure proper citation and references

I'ON MOR WID			Q	2
MOR Wiki		105 ARTICLES	A RECENT ON	
Main Page	VIEW SOURCE	٣	💭 DISCUSSIC	IN
welcome to the MOH Wiki				
Contents				
Verticide to the MUH Wilki Contents I Introduction 1.1 How to use the MOR Whil 1.2 MORB: Model Onter Reduction Benchmarker 1.3 Catatore 2. Last of all Categories in the Whil				

- A semi-discretized heat transfer problem for optimal cooling of steel profiles.
- The models order differs due to four different refinements applied to the computational mesh.
- Uses ALBERTA based FEM descretization with P1 elements.
- This benchmark is part of the Oberwolfach Benchmark Collection, #38881.

http://modelreduction.	org							
84		Q						
MOR Wiki Mor Wici - Community - © Explore -								
Steel Profile	I VIEW BOURCE V DISCUSSION							
		Steel Profile						
Capitanta		Background						
Description: A Berni-discretized Heat Transfer Problem for Optimal Cooling of Steel Probles 1.1 Model Equations	Benchmark ID	steelProtile_n1357m7q6 steelProtile_n5177m7q6 steelProtile_n20209m7q6 steelProfile_n79841m7q6						
1.2 Discretized Model 2 Acknowledgements	Category	oberwolfach						
3 Origin	System-Class	LTI-FOS						
4 Data 5 Dimensions		Parameters						
6 Otalion 7 References 8 Contact	nstates	1357 5177 20209 79841						
Description: A Semi-discretized Heat Transfer	ninputs	7						
Problem for Optimal Cooling of Steel Profiles	noutputs	6						
Constitution from the extension of th	riparameters	0						
 verm-orscretzed real transver problem for optimal cooling of steel profiles. Several generalized state-space models arising from a semi-discretization of a 	components	A, B, C, E						
controlled heat transfer process for onlineal ocoline of steel profiles are		Copyright						
successful. The models under dWare due is dWaread officiencies and ad is the								
presented. The models order differs due to different refinements applied to the computational mesh.								
presented. The models order differs due to different refinements applied to the computational mosh.	Creator	Jens Saak Peter Benner						

- A semi-discretized heat transfer problem for optimal cooling of steel profiles.
- The models order differs due to four different refinements applied to the computational mesh.
- Uses ALBERTA based FEM descretization with P1 elements.
- This benchmark is part of the Oberwolfach Benchmark Collection, #38881.

We		C							
MORWIN									
		ARTICLES							
addition committee of Execute	COMMUNITY * ID EXPLORE *								
Steel Profile	WEW SOUR	CE V DISCUSSION							
Steer Prome									
		Steel Brofile							
Restarts.		Background							
Centeres 1 Description: A Semi-discretized Heat Transfer Problem for Optimal Cooling o Stoel Probles 1.1 Model Equators	Benchmark ID	steelProtie_n1357m7q6 steelProtie_n5177m7q6 steelProtie_n23209m7q6 steelProtie_n23209m7q6 steelProtie_n23041m7q6							
1.2 Discretzed Model	Category	oberwolfach							
3 Cright	System-Class	LTI-FOS							
4 Data 5 Dimensions		Parameters							
6 Otalon 7 References 8 Contact	nstates	1357 5177 20209 79841							
Description: A Semi-discretized Heat Transfer	ninputs	7							
Problem for Optimal Cooling of Steel Profiles	noutputs	6							
	riparameters	0							
Several generalized state-space models arising from a semi-discretization of	a components	A, B, C, E							
controlled heat transfer process for optimal cooling of steel profiles are presented. The models order differs due to different refinements explicit to th		Copyright							
computational mesh.	License								
	Creator	Jens Saak Peter Benner							
Model Equations	Editor	Jens Saak							

- A semi-discretized heat transfer problem for optimal cooling of steel profiles.
- The models order differs due to four different refinements applied to the computational mesh.
- Uses ALBERTA based FEM descretization with P1 elements.
- This benchmark is part of the Oberwolfach Benchmark Collection, #38881.

1WN			2			
MOR Wiki Mor Nici - community - @ exercise -		105 ARTICLES				
Steel Profile						
		Steel Profile				
Centents 1 Description: A Semi-discretized Heal Transfer Problem for Optimal Cooling of Stoel Probles 1.1 Model Flucture	Benchmark ID	Background steelProtie_n1357m7q6 steelProtie_n5177m7q6 steelProtie_n20209m7q6 steelProtie_n29841m7q6				
1.2 Discretzed Model 2 Addroxhologenerits 3 Origin 4 Data	Category System-Class	oberwolfach LTI-FOS				
6 Otmonions 6 Otation 7 Retremose 8 Consect	instates	1367 5177 20209 79641				
Description: A Semi-discretized Heat Transfer Problem for Optimal Cooling of Steel Profiles	ninputs noutputs	7 6				
A Semi-discretized heat transfer problem for optimal cooling of steel profiles. Several generalized state-space models arising from a semi-discretization of	a components	0 A, B, C, E				
controlled heat transfer process for optimal cooling of steel profiles are presented. The models order differs due to different refinements applied to th computational mesh.	License Creator	Copyright Jons Sask Pater Benner				
Model Equations						

MaRDIMark

- Generic extensible toolkit specification
- Language agnostic interoperability
- FAIR comparison among different algorithm implementations
- Flexible performance measures
- · Versatile visualizations of results

- Connect with Knowledge graphs
- Use open interfaces
- Confirmable workflows
- Integrate into MaRDI portal

A generic, extensible benchmark framework specification

MORB: Model Order Reduction Benchmarker

- A MaRDIMark implementation for Model Order Reduction community.
- Simple proof-of-concept to get feedback.
- Serve as a template for other mathematical communities.
- Focus on Linear Time-Invariant, First-Order Systems (LTI-FOS).

Linear Time-Invariant (LTI) System

$$\begin{aligned} E\dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= Cx(t) + Du(t). \end{aligned} \Leftrightarrow H(s) &= C(sE - A)^{-1}B \end{aligned}$$

Challenges

- Ensuring benchmark data is encoded uniformly (.mat, v7.3)
- · Calling external software as "black box"-es and without unnecessary overhead
- Distinguish unique implementation of an algorithm ("algorithm isotope")
- Find subroutines that compute measures (e.g. error, speed etc.) efficiently and accurately.

filename	MORWikiPag eName	directory	MORWikiLink	nStates	ninputs	nOutputs	components	nParam eters	systemClass	ISDAE	daeDiff Index	is Square	isStateSpa ceSymm	isSysSym m	isPassive	isContracti Ve	isStable	nUnstabPo les	isASymm	IsACholAbl e	isASparse	nnzA	condA
inear108eam_n14m1q1	Linear 1D Bear	oberwolfach	https://morwiki.mj	14	1	1	B, C, E, K, M	0	LTI-SOS			1	0	1					NaN	NaN	NaN	NaN	NaN
nonlinearHeatTransfer_n*	Nonlinear Heat	oberwolfach	https://morwiki.mj	15	2	2	A, B, C, E	0	LTI-FOS	0	0	1	0	0			0	15	1	1	1	43	4.80E+02
nonlinearHeatTransfer_n	Nonlinear Heat	oberwolfach	https://morwiki.mj	15	2	2	A, B, C, E, F, f	0	NLTI-FOS			1	NaN	NaN					1	1	1	43	4.80E+02
Inear1DBeam_n18m1q1	Linear 1D Bear	oberwolfach	https://monwiki.mj	18	1	1	B, C, E, K, M	0	LTI-SOS			1	0	1					NaN	NaN	NaN	NaN	NaN
electrostaticBeam_n38m*	Electrostatic Be	oberwolfach	https://morwiki.mj	38	1	1	B, C, E, F, K, M, f	0	NLTI-SOS			1	NaN	NaN					NaN	NaN	NaN	NaN	NaN
buildingModel_n48m1q1	Building Model	slicot	https://monwiki.mj	48	1	1	A, B, C	0	LTI-FOS	0	0	1	0	1	0	0	1	0	0	0	1	1176	1.23E+04
newEngland_n66m1q1	Power System	power_system	https://morwiki.mj	66	1	1	A, B, C	0	LTI-FOS	0	0	1	0	1	0	0	0	1	0	0	0	NaN	3.03E+11
convectionReaction_n84r	Convection Re-	slicot	https://morwiki.mj	84	1	1	A, B, C	0	LTI-FOS	0	0	1	0	1	0	0	0	1	0	0	1	382	7.36E+00
orrSommerfeld_n100m1q	Orr-Sommerfel	slicot	https://monwiki.mj	100	1	1	A, B, C	0	LTI-FOS	0	0	1	0	1	0	0	1	0	0	0	1	10000	7.36E+02
odPlayer_n120m2q2	CD Player	slicot	https://monwiki.mj	120	2	2	A, B, C	0	LTI-FOS	0	0	1	0	0	0	0	1	0	0	0	1	240	1.81E+04
heatEquation_n200m1q1	Heat Equation	slicot	https://morwiki.mj	200	1	1	A, B, C, E	0	LTI-FOS	0	0	1	0	1			0	4	1	0	1	599	6.51E+03
random_n200m1q1	Random	slicot	https://morwiki.mj	200	1	1	A, B, C	0	LTI-FOS	0	0	1	0	1	0	0	1	0	0	0	1	2132	3.00E+03
transmissionLines_n256n	Transmission L	slicot	https://morwiki.mj	256	2	2	A, B, C, E	0	LTI-FOS	0	1	1	0						1	1	0	256	2.22E+05
iss_n270m3q3	International Sp	slicot	https://monwiki.mj	270	3	3	A, B, C	0	LTI-FOS	0	0	1	0	0	0	0	1	0	0	0	1	405	9.68E+03
rclCircuitEquations_n306	RGL Circuit Eq	oberwolfach	https://monwiki.mj	305	2	2	A, B, C, E	0	LTI-FOS	1		1	0				0	168	0	0	1	696	Inf
clampedBearn_n348m1q	Clamped Beam	slicot	https://morwiki.mj	349	1	1	A, B, C	0	LTI-FOS	0	0	1	0	1	0	0	1	0	0	0	1	60726	3.74E+07
electrostaticBeam_n398n	Electrostatic Be	oberwolfach	https://morwiki.mj	398	1	1	B, C, E, F, K, M, f	0	NLTI-SOS			1	NaN	NaN					NaN	NeN	NaN	NaN	NaN
nonlinearHeatTransfer_n-	Nonlinear Heat	oberwolfach	https://morwiki.mj	410	2	2	A, B, C, E, F, f	0	NLTI-FOS			1	NaN	NeN					1	1	1	1228	3.37E+05
peecModel_n480m1q1	PEEC Model (S	slicot	https://monwiki.mj	480	1	1	A, B, C, E	0	LTI-FOS	1		1	0	1			0	264	1	0	1	1346	1.85E+14
mna_n578m9q9	Modified Nodal	slicot	https://monwiki.mj	578	9	9	A, B, C, E	0	LTI-FOS	1		1	0				0	290	0	0	1	1694	2.63E+09
earthAtmosphere_n598m	Earth Atmosphe	slicot	https://morwiki.mj	599	1	1	A, B, C	0	LTI-FOS	0	0	1	0	1	0	0	1	0	0	0	0	357406	1.60E+02
mna_n980m4q4	Modified Nodal	slicot	https://morwiki.mj	900	- 4	4	A, B, C, E	0	LTI-FOS	1		1	0				0	258	0	0	1	2872	6.03E+07
penz/FOM_n1006m1q1	Penzl's FOM	slicot	https://morwiki.mj	1005	1	1	A, B, C	0	LTI-FOS	0	0	1	0	1			0	258	0	0	1	1012	1.00E+03
steelProfile_n1357m7q6	Steel Profile	oberwolfach	https://monwiki.mj	1357	7	6	A, B, C, E	0	LTI-FOS	0	0	0	0	0			1	0	1	0	1	8985	2.23E+04
iss_n1412m3q3	International Sp	slicot	https://monwiki.mj	1412	3	3	A, B, C	0	LTI-FOS	0	0	1	0	0			1	0	0	0	1	2118	7.75E+01
peekinductor_n1434m1q	Peek Inductor	oberwolfach	https://morwiki.mj	1434	1	1	A, B, C, E	0	LTI-FOS	0	0	1	0	1			1	0	1	0	1	18228	1.47E+05
transmissionLines_n1600	Transmission L	misc	https://morwiki.mj	1600	14	14	A, B, C, E	0	LTI-FOS	0	1	1	0						0	0	1	5280	Inf
tunableOpticalFilter_n166	Tunable Optica	oberwolfach	https://morwiki.mj	1668	1	5	A, B, C, E	0	LTI-FOS	0	0	0	0	0			1	0	1	0	1	10750	7.23E+04
rclCircuitEquations_n184	RCL Circuit Eq	oberwolfach	https://monwiki.mj	1841	16	16	A, B, C, E	0	LTI-FOS	1		1	0	1			0	945	0	0	1	5881	4.04E+07
circularPiston_n2025m1q	Circular Piston	oberwolfach	https://monwiki.mj	2025	1	2025	B, C, E, K, M	0	LTI-SOS			0	0	0					NaN	NaN	NaN	NaN	NaN
transmissionLines_n2624	Transmission L	misc	https://monwiki.mj	2624	30	30	A, B, C, E	0	LTI-FOS	0	1	1	0						0	0	1	8640	Inf
thermalModel_n4257m1q	Thermal Model	oberwolfach	https://monwiki.mj	4257	1	7	A, B, C, E	3	AP-LTI-FOS	0	1	0	0	0									
micropyrosThruster_n425	Micropyros Thr	oberwolfach	https://morwiki.mj	4257	1	7	A, B, C, E	0	LTI-FOS	0	0	0	0	0			1	0	1	0	1	37465	2.52E+16

Collection and classification of benchmarks


```
"ht" · f
  "o-mess-v3.0": [
         "max order": 100.
         "tol": 1e-6
     },
         "tol": 1e-12
  ].
  "o-morlab-v6.0": [
         "tol": 1e-6
  1.
  "pymor": [
         "tol" · 1e-6
```

JSON-based readable input files

```
from morb.driver import Benchmark
import morb.analyzer
import morb.explorer.plot
import morb.explorer.report
```

Set up problem and algo_isos
prob_id = 'newEngland_n66m1q1'
algo_iso_json = f'configs/{prob_id}.json'

```
# Run benchmark and compute measures
benchmark = Benchmark(prob_id, algo_iso_json).run()
measures = morb.analyzer.calc_meas(benchmark)
```

```
# Generate all plots
morb.explorer.plot.make_all_plots(measures)
```

```
# Generate report
morb.explorer.report.make_tex(measures)
```

Python-based easy-to-use interface

MORB | Explorer

- Measures: Timings and Error
- Plots: Error, Bode Plots, Sigma plot and Frobenius plot.
- T_EX Report: autogenerated with specifications, simple formatting and system information.
- · PDF Report: Easily distributed and viewed.

Closing Remarks

Takeaways

- Ensure content licensing and proper citation culture.
- Lower barriers for contributors.
- Lower turn-around times to reproduce results.

How can you contribute?

- Most MORWiki benchmarks are LTI or parametric LTI Add more benchmark cases
- Log and improve accessibility to software metadata.
- Clear definitions and distinctions of performance measures.
- Develop FAIR software with a fair comparison and proper credits.

MaRDI TA2 Team

Hendrik Kleikamp

Dmitry Kabanov

Jens Saak

Stephan Rave

Jan Heiland

Ashwin Nayak

Pavan Veluvali

Peter Benner

Maximilian Bindhak

Mario Ohlberger

Frank Wübbeling

