

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

Periodic Optimal Control of a Plug Flow Reactor Model with an Isoperimetric Constraint

Yevgeniia Yevgenieva^{1,3}, Alexander Zuyev^{1,2,3}, Peter Benner^{1,2}, Andreas Seidel-Morgenstern^{1,2}

4th Workshop on Optimal Control of Dynamical Systems and Applications Villany (Hungary), February 26–28, 2025

Affiliations:

¹Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg ²Otto von Guericke University Magdeburg ³Institute of Applied Mathematics & Mechanics, NAS of Ukraine

Motivation

- 2 Plug flow reactor model
- 3 Plug flow reactor model with two controls
- 4 Numerical simulations
- 5 Conclusion and future research

Motivation

- 2 Plug flow reactor model
- **3** Plug flow reactor model with two controls
- 4 Numerical simulations
- **5** Conclusion and future research

Motivation. Continuous Stirred Tank Reactor Model [Petkovska/Seidel-Morgenstern 2012]

$$V\frac{dC_A}{dt} = F(C_{A_0} - C_A) - kVC_A^n \quad t \in [0, \tau]$$

$$\frac{1}{\tau} \int_0^\tau C_P(t)dt \quad \to \max, \text{ or } \frac{1}{\tau} \int_0^\tau C_A(t)dt \quad \to \min,$$

 $\mathcal{C}_{\mathcal{P}}$ is the product concentration

$$C_P = \overline{C}_P = const$$
$$\frac{1}{\tau} \int_0^\tau C_P(t) dt > \overline{C}_P$$

M. Petkovska, A. Seidel-Morgenstern (2012). Evaluation of periodic processes. Chapter 14 in: P.L. Silveston, R.R. Hudgins (Eds.), Periodic Operation of Chemical Reactors, 387-413.

Motivation. Continuous Stirred Tank Reactor Model

An isoperimetric optimal control problem with periodic inputs was solved in¹

$$V\frac{dC_A}{dt} = F(C_{A_0} - C_A) - kVC_A^n, \quad t \in [0, \tau]$$
$$\frac{1}{\tau} \int_0^\tau C_A(t)dt \to \min,$$

¹A. Zuyev, A. Seidel-Morgenstern, P. Benner (2017), Chem. Eng. Sci., 161:206-214.

Motivation. Continuous Stirred Tank Reactor Model

An isoperimetric optimal control problem with periodic inputs was solved in¹

$$V\frac{dC_A}{dt} = F(C_{A_0} - C_A) - kVC_A^n, \quad t \in [0, \tau]$$
$$\frac{1}{\tau} \int_0^\tau C_A(t)dt \quad \to \min,$$

$$C_A(0) = C_A(\tau), \qquad \frac{1}{\tau} \int_0^\tau C_{A_0}(t) dt = \overline{C}, \qquad C_{A_0} \in [C_{\min}, C_{\max}]$$

¹A. Zuyev, A. Seidel-Morgenstern, P. Benner (2017), Chem. Eng. Sci., 161:206-214.

Motivation. Continuous Stirred Tank Reactor Model

An isoperimetric optimal control problem with periodic inputs was solved in¹

$$V\frac{dC_A}{dt} = F(C_{A_0} - C_A) - kVC_A^n, \quad t \in [0, \tau]$$
$$\frac{1}{\tau} \int_0^\tau C_A(t)dt \to \min,$$

$$egin{aligned} C_A(0) &= C_A(au), & rac{1}{ au} \int_0^ au C_{A_0}(t) dt = \overline{C}, & C_{A_0} \in [C_{\min}, C_{\max}] \ & egin{aligned} C_{A_0}(t) &= egin{cases} C_{\max}, & t \leqslant au^*, \ C_{\min}, & t > au^*. \end{aligned}$$

¹A. Zuyev, A. Seidel-Morgenstern, P. Benner (2017), Chem. Eng. Sci., 161:206-214.

PFR model²:

$$\frac{\partial C_A(x,t)}{\partial t} + v \frac{\partial C_A(x,t)}{\partial x} = -kC_A(x,t)^n, \ x \in [0,L]$$
$$C_A(0,t) = C_{A_0}(t) - \text{control}$$
$$\text{Cost:} \ \frac{1}{\tau} \int_0^\tau C_A(L,t) \, v \, dt \ \to \min$$

²M. Petkovska, A. Seidel-Morgenstern (2013), Evaluation of periodic processes.

PFR model²:

$$\frac{\partial C_A(x,t)}{\partial t} + v \frac{\partial C_A(x,t)}{\partial x} = -kC_A(x,t)^n, \ x \in [0,L]$$
$$C_A(0,t) = C_{A_0}(t) - \text{control}$$
$$\text{Cost:} \ \frac{1}{\tau} \int_0^\tau C_A(L,t) \, v \, dt \ \to \min$$

* Periodic control strategy improves the performance [J.M. Douglas (1967); M. Felischak, L. Kaps, C. Hamel, D. Nikolic, M. Petkovska, A. Seidel-Morgenstern (2021), M. Petkovska, A. Seidel-Morgenstern (2013)]

²M. Petkovska, A. Seidel-Morgenstern (2013), Evaluation of periodic processes.

PFR model²:

$$\frac{\partial C_A(x,t)}{\partial t} + v \frac{\partial C_A(x,t)}{\partial x} = -kC_A(x,t)^n, \ x \in [0,L]$$
$$C_A(0,t) = C_{A_0}(t) - \text{control}$$
$$\text{Cost:} \ \frac{1}{\tau} \int_0^\tau C_A(L,t) \, v \, dt \ \to \min$$

- * Periodic control strategy improves the performance [J.M. Douglas (1967); M. Felischak, L. Kaps, C. Hamel, D. Nikolic, M. Petkovska, A. Seidel-Morgenstern (2021), M. Petkovska, A. Seidel-Morgenstern (2013)]
- * Analytical comparison of different control strategies
 [H. Grabmüller, U. Hoffmann, K. Schädlich (1985); K. Styczeń (1991)]

²M. Petkovska, A. Seidel-Morgenstern (2013), Evaluation of periodic processes.

Peter Benner benner@mpi-magdeburg.mpg.de

PFR model²:

$$\frac{\partial C_A(x,t)}{\partial t} + v \frac{\partial C_A(x,t)}{\partial x} = -kC_A(x,t)^n, \ x \in [0,L]$$
$$C_A(0,t) = C_{A_0}(t) - \text{control}$$
$$\text{Cost:} \ \frac{1}{\tau} \int_0^\tau C_A(L,t) v \, dt \ \to \min$$

- * Periodic control strategy improves the performance [J.M. Douglas (1967); M. Felischak, L. Kaps, C. Hamel, D. Nikolic, M. Petkovska, A. Seidel-Morgenstern (2021), M. Petkovska, A. Seidel-Morgenstern (2013)]
- * Analytical comparison of different control strategies
 [H. Grabmüller, U. Hoffmann, K. Schädlich (1985); K. Styczeń (1991)]

What is the best (optimal) strategy?

²M. Petkovska, A. Seidel-Morgenstern (2013), Evaluation of periodic processes.

1 Motivation

② Plug flow reactor model

3 Plug flow reactor model with two controls

- 4 Numerical simulations
- **5** Conclusion and future research

Optimal control problem for PFR model

$$\frac{\partial C_A(x,t)}{\partial t} + v \frac{\partial C_A(x,t)}{\partial x} = -kC_A(x,t)^n, \ x \in [0,L]$$
$$C_A(0,t) = C_{A_0}(t) - \text{control}$$

Optimal control problem for PFR model

$$\frac{\partial C_A(x,t)}{\partial t} + v \frac{\partial C_A(x,t)}{\partial x} = -kC_A(x,t)^n, \ x \in [0,L]$$
$$C_A(0,t) = C_{A_0}(t) - \text{control}$$

Class of admissible controls \mathcal{U}_{τ}

Let $\tau > 0$, $C_{\max} > C_{\min} > 0$, and $\overline{C} \in [C_{\min}, C_{\max}]$ be given. The class of admissible controls \mathcal{U}_{τ} consists of all locally measurable functions $C_{A_0} : \mathbb{R} \to [C_{\min}, C_{\max}]$ such that $C_{A_0}(t)$ is τ -periodic and

$$\frac{1}{\tau} \int_0^\tau C_{A_0}(t) dt = \overline{C}.$$

Optimal control problem for PFR model

$$\frac{\partial C_A(x,t)}{\partial t} + v \frac{\partial C_A(x,t)}{\partial x} = -kC_A(x,t)^n, \ x \in [0,L]$$
$$C_A(0,t) = C_{A_0}(t) - \text{control}$$

Class of admissible controls \mathcal{U}_{τ}

Let $\tau > 0$, $C_{\max} > C_{\min} > 0$, and $\overline{C} \in [C_{\min}, C_{\max}]$ be given. The class of admissible controls \mathcal{U}_{τ} consists of all locally measurable functions $C_{A_0} : \mathbb{R} \to [C_{\min}, C_{\max}]$ such that $C_{A_0}(t)$ is τ -periodic and

$$\frac{1}{\tau} \int_0^\tau C_{A_0}(t) dt = \overline{C}.$$

Cost:
$$\frac{1}{\tau} \int_0^{\tau} C_A(L,t) v \, dt \to \min$$

The boundary value problem is solved by method of characteristics³:

$$C_A(x,t) = \left(C_{A_0}\left(t - \frac{x}{v}\right)^{-(n-1)} + \frac{k(n-1)}{v}x\right)^{-\frac{1}{n-1}}, \quad n \neq 1.$$

³H. Grabmüller, U. Hoffmann, K. Schädlich (1985)

The boundary value problem is solved by method of characteristics³:

$$C_A(x,t) = \left(C_{A_0}\left(t - \frac{x}{v}\right)^{-(n-1)} + \frac{k(n-1)}{v}x\right)^{-\frac{1}{n-1}}, \quad n \neq 1.$$

The explicit expression of the cost functional:

$$J = \frac{v}{\tau} \int_0^\tau \left(C_{A_0}(t)^{-(n-1)} + \frac{kL(n-1)}{v} \right)^{-\frac{1}{n-1}} dt =: \frac{v}{\tau} \int_0^\tau \Phi(C_{A_0}(t)) dt.$$

³H. Grabmüller, U. Hoffmann, K. Schädlich (1985)

The boundary value problem is solved by method of characteristics³:

$$C_A(x,t) = \left(C_{A_0}\left(t - \frac{x}{v}\right)^{-(n-1)} + \frac{k(n-1)}{v}x\right)^{-\frac{1}{n-1}}, \quad n \neq 1.$$

The explicit expression of the cost functional:

$$J = \frac{v}{\tau} \int_0^\tau \left(C_{A_0}(t)^{-(n-1)} + \frac{kL(n-1)}{v} \right)^{-\frac{1}{n-1}} dt =: \frac{v}{\tau} \int_0^\tau \Phi(C_{A_0}(t)) dt.$$

The function Φ is concave if n > 1 and convex if n < 1.

³H. Grabmüller, U. Hoffmann, K. Schädlich (1985)

Theorem 1⁴

3) If n > 1, then the bang-bang strategy is optimal:

$$C_{A_0}(t) = \begin{cases} C_{\min}, & \text{if } t \in A^-, \\ C_{\max}, & \text{if } t \in A^+ = [0, \tau) \setminus A^-, \end{cases}$$
(1)

and $A^- \subset [0, \tau)$ is any Lebesgue-measurable set such that $\mu(A^-) = \frac{C_{\max} - \overline{C}}{C_{\max} - C_{\min}} \tau$.

⁴Ye.Ye., A. Zuyev, P. Benner, A. Seidel-Morgenstern (2024), JOTA

Step 1. New class $\mathcal{A}_{\widetilde{C}}$ ($\mathcal{A}_{\widetilde{C}} \subset \mathcal{U}_{\tau}$)

The function $c: \mathbb{R} \to [C_{\min}, C_{\max}]$ belongs to the class $\mathcal{A}_{\widetilde{C}}$, $\widetilde{C} \in [C_{\min}, C_{\max}]$, if $c(\cdot) \in \mathcal{U}_{\tau}$ and $\exists A^+ \subset [0, \tau), A^- \subset [0, \tau)$ such that: • ess $\inf_{t \in \mathbb{A}^+} c(t) \ge \widetilde{C}$, ess $\sup_{t \in \mathbb{A}^-} c(t) \le \widetilde{C}$;

• $\mu(A^+ \cap A^-) = 0, \ \mu(A^+ \cup A^-) = \tau, \ \mu(A^-) = \frac{C_{\max} - \overline{C}}{C_{\max} - C_{\min}} \tau.$

Step 1. New class
$$\mathcal{A}_{\widetilde{C}}$$
 ($\mathcal{A}_{\widetilde{C}} \subset \mathcal{U}_{\tau}$)

The function $c: \mathbb{R} \to [C_{\min}, C_{\max}]$ belongs to the class $\mathcal{A}_{\widetilde{C}}, \widetilde{C} \in [C_{\min}, C_{\max}]$, if $c(\cdot) \in \mathcal{U}_{\tau}$ and $\exists A^+ \subset [0, \tau), A^- \subset [0, \tau)$ such that: • ess $\inf_{t \in \mathbb{A}^+} c(t) \ge \widetilde{C}$, ess $\sup_{t \in \mathbb{A}^-} c(t) \le \widetilde{C}$;

• $\mu(A^+ \cap A^-) = 0, \ \mu(A^+ \cup A^-) = \tau, \ \mu(A^-) = \frac{C_{\max} - \overline{C}}{C_{\max} - C_{\min}} \tau.$

Step 2. Bang-bang strategy is better than any control from $\mathcal{A}_{\widetilde{C}}$:

$$\forall C_{\mathcal{A}}(\cdot) \in \mathcal{A}_{\widetilde{C}} \quad \exists C_{bang-bang}(\cdot) \in \mathcal{U}_{\tau}: \quad J[C_{bang-bang}] \leqslant J[C_{\mathcal{A}}],$$

Step 1. New class
$$\mathcal{A}_{\widetilde{C}}$$
 ($\mathcal{A}_{\widetilde{C}} \subset \mathcal{U}_{\tau}$)

The function $c : \mathbb{R} \to [C_{\min}, C_{\max}]$ belongs to the class $\mathcal{A}_{\widetilde{C}}$, $\widetilde{C} \in [C_{\min}, C_{\max}]$, if $c(\cdot) \in \mathcal{U}_{\tau}$ and $\exists A^+ \subset [0, \tau), A^- \subset [0, \tau)$ such that: • ess $\inf_{t \in \mathbb{A}^+} c(t) \ge \widetilde{C}$, ess $\sup_{t \in \mathbb{A}^-} c(t) \le \widetilde{C}$; • $\mu(A^+ \cap A^-) = 0, \ \mu(A^+ \cup A^-) = \tau, \ \mu(A^-) = \frac{C_{\max} - \overline{C}}{C - C} \tau$.

Step 2. Bang-bang strategy is better than any control from $\mathcal{A}_{\widetilde{C}}$:

$$\forall C_{\mathcal{A}}(\cdot) \in \mathcal{A}_{\widetilde{C}} \quad \exists C_{bang-bang}(\cdot) \in \mathcal{U}_{\tau} : \quad J[C_{bang-bang}] \leqslant J[C_{\mathcal{A}}],$$

Step 3. $\mathcal{U}_{\tau} \subset \mathcal{A}_{\widetilde{C}}$: $\forall u(\cdot) \in \mathcal{U}_{\tau} \quad \exists \widetilde{C} \in (C_{\min}, C_{\max}) : \quad u(\cdot) \in \mathcal{A}_{\widetilde{C}}$

1 Motivation

2 Plug flow reactor model

③ Plug flow reactor model with two controls

- 4 Numerical simulations
- **5** Conclusion and future research

Plug flow reactor model with two controls

$$\frac{\partial C_A(x,t)}{\partial t} + \boldsymbol{v}(t) \frac{\partial C_A(x,t)}{\partial x} + kC_A(x,t)^n = 0, \qquad x \in [0,L],$$
$$C_A(0,t) = \boldsymbol{C}_{\boldsymbol{A}_0}(t).$$

Plug flow reactor model with two controls

$$\frac{\partial C_A(x,t)}{\partial t} + \boldsymbol{v}(t) \frac{\partial C_A(x,t)}{\partial x} + kC_A(x,t)^n = 0, \qquad x \in [0,L],$$
$$C_A(0,t) = \boldsymbol{C}_{\boldsymbol{A}_0}(t).$$

Class of admissible controls ${\cal V}_\tau$

The class \mathcal{V}_{τ} consists of all locally measurable vector-functions $(c, v) : \mathbb{R} \to [C_{\min}, C_{\max}] \times [v_{\min}, v_{\max}]$ such that (c(t), v(t)) is τ -periodic and the isoperimetric condition holds:

$$\frac{1}{\tau} \int_0^\tau C_{A_0}(t) v(t) dt = \overline{C} \,\overline{\iota}$$

Plug flow reactor model with two controls

$$\frac{\partial C_A(x,t)}{\partial t} + \boldsymbol{v}(t) \frac{\partial C_A(x,t)}{\partial x} + kC_A(x,t)^n = 0, \qquad x \in [0,L],$$
$$C_A(0,t) = \boldsymbol{C}_{\boldsymbol{A}_0}(t).$$

Class of admissible controls ${\cal V}_\tau$

The class \mathcal{V}_{τ} consists of all locally measurable vector-functions $(c, v) : \mathbb{R} \to [C_{\min}, C_{\max}] \times [v_{\min}, v_{\max}]$ such that (c(t), v(t)) is τ -periodic and the isoperimetric condition holds:

$$\frac{1}{\tau} \int_0^\tau C_{A_0}(t) v(t) dt = \overline{C} \,\overline{v}$$

Cost:
$$J = \frac{1}{\tau} \int_0^{\tau} C_A(L,t) v(t) dt \to \min$$

The solution is obtained by the method of characteristics $(n \neq 1)$:

$$C_A(x,t) = \left[C_{A_0} \left(V^{-1}(V(t) - x) \right)^{-(n-1)} + k(n-1) \left(t - V^{-1}(V(t) - x) \right) \right]^{-\frac{1}{n-1}},$$

where $V(t) := \int_0^t v(\xi) d\xi$ and V^{-1} denotes the inverse to V.

The solution is obtained by the method of characteristics $(n \neq 1)$:

$$C_A(x,t) = \left[C_{A_0} \left(V^{-1}(V(t) - x) \right)^{-(n-1)} + k(n-1) \left(t - V^{-1}(V(t) - x) \right) \right]^{-\frac{1}{n-1}},$$

where $V(t) := \int_0^t v(\xi) d\xi$ and V^{-1} denotes the inverse to V.

Consider the additional assumption, that the residence time of the reaction is equal to τ , i.e.

$$\int_0^\tau v(t)dt = L \tag{A1}$$

The solution is obtained by the method of characteristics $(n \neq 1)$:

$$C_A(x,t) = \left[C_{A_0} \left(V^{-1} (V(t) - x) \right)^{-(n-1)} + k(n-1) \left(t - V^{-1} (V(t) - x) \right) \right]^{-\frac{1}{n-1}},$$

where $V(t) := \int_0^t v(\xi) d\xi$ and V^{-1} denotes the inverse to V.

Consider the additional assumption, that the residence time of the reaction is equal to τ , i.e.

$$\int_0^\tau v(t)dt = L \tag{A1}$$

The cost functional can be rewritten as follows:

$$J[C_{A_0}, v] = \frac{1}{\tau} \int_0^\tau \left(C_{A_0}(t)^{-(n-1)} + k(n-1)\tau \right)^{-\frac{1}{n-1}} v(t) dt$$

Solution of Optimal control problem

Theorem 2

* If
$$n = 1$$
, then $J[C_{A_0}, v] = \overline{C} \overline{v} e^{-k\tau} \qquad \forall (C_{A_0}, v) \in \mathcal{V}_{\tau}.$

* If n > 1, then bang-bang is the optimal strategy:

$$c(t) = \begin{cases} C_{\max}, & \text{if } t \in A^+, \\ C_{\min}, & \text{if } t \in A^-, \end{cases} \qquad v(t) = \begin{cases} v_{\min}, & \text{if } t \in B^-, \\ v_{\max}, & \text{if } t \in B^+, \end{cases}$$

with the sets

$$\begin{aligned} A^+, A^- &\subset [0, \tau), \ \mu(A^+ \cap A^-) = 0, \ \mu(A^+ \cup A^-) = \tau, \\ B^+, B^- &\subset [0, \tau), \ \mu(B^+ \cap B^-) = 0, \ \mu(B^+ \cup B^-) = \tau. \end{aligned}$$

Their measures are defined by the isoperimetric constraint and (A1). Moreover,

$$\mu(A^+ \cap B^-) \to \max$$
.

Step 1. New class $\mathcal{A}_{\widetilde{C}, \nu}$ ($\mathcal{A}_{\widetilde{C}, \nu} \subset \mathcal{V}_{\tau}$)

The vector-valued function

$$(c, v) : \mathbb{R} \to [C_{\min}, C_{\max}] \times [v_{\min}, v_{\max}]$$

belongs to the class $\mathcal{A}_{\tilde{C},\nu}$, $\tilde{C} \in [C_{\min}, C_{\max}]$, $\nu \in [0,\tau]$, if $(c,v) \in \mathcal{V}_{\tau}$ and $\exists A^+ \subset [0,\tau)$, $A^- \subset [0,\tau)$ such that:

- $\operatorname{ess\,inf}_{t\in\mathbb{A}^+} c(t) \ge \widetilde{C},$
- $\operatorname{ess\,sup}_{t\in\mathbb{A}^-} c(t) \leqslant \widetilde{C};$

•
$$\mu(A^+ \cap A^-) = 0;$$

$$\bullet \ \mu(A^+ \cup A^-) = \tau;$$

$$\bullet \ \mu(A^+) = \nu$$

Sketch of the Proof

Step 2. Class \mathcal{B}_{τ} with given $\tau > 0$ is a class of control functions $(c, v) \in \mathcal{V}_{\tau}$ defining the bang-bang strategy with respect to the constraints of the optimal control problem.

Two cases are possible:

Step 3. The bang-bang strategy \mathcal{B}_{τ} has better performance than any control from the class $\mathcal{A}_{\widetilde{C},\mu(A^+)}$:

$$J[\mathcal{B}_{\tau}] \leqslant J[\mathcal{A}_{\widetilde{C},\,\mu(A^+)}],$$

Step 3. The bang-bang strategy \mathcal{B}_{τ} has better performance than any control from the class $\mathcal{A}_{\widetilde{C},\mu(A^+)}$:

$$J[\mathcal{B}_{\tau}] \leqslant J[\mathcal{A}_{\widetilde{C},\,\mu(A^+)}],$$

Step 4.
$$\mathcal{V}_{\tau} \subset \mathcal{A}_{\widetilde{C},\,\mu(A^+)}$$
:
 $\forall (u,v) \in \mathcal{V}_{\tau} \quad \exists \widetilde{C} \in (C_{\min}, C_{\max}) : \quad (u,v) \in \mathcal{A}_{\widetilde{C},\,\mu(A^+)}$

1 Motivation

- 2 Plug flow reactor model
- 3 Plug flow reactor model with two controls
- **4** Numerical simulations
- **5** Conclusion and future research

Dimensionless form of the problem

Dimensionless variables:

$$x' = \frac{x}{L}, \quad t' = v\frac{t}{L}, \qquad y(x',t') = \frac{C_A(x,t) - \overline{C}}{\overline{C}},$$

Dimensionless form of the problem

Dimensionless variables:

$$x' = \frac{x}{L}, \quad t' = v\frac{t}{L}, \qquad y(x',t') = \frac{C_A(x,t) - \overline{C}}{\overline{C}},$$

The PFR model with one control in a dimensionless form:

$$\frac{\partial y(x',t')}{\partial t'} + \frac{\partial y(x',t')}{\partial x'} = -\mathbf{D}\boldsymbol{a} \cdot (1+y(x',t'))^n, \qquad (x',t') \in [0,1] \times \mathbb{R},$$
$$y(0,t') = \boldsymbol{y_0}(t') := \frac{C_{A_0}(Lv^{-1}t') - \overline{C}}{\overline{C}},$$

Dimensionless form of the problem

Dimensionless variables:

$$x' = \frac{x}{L}, \quad t' = v\frac{t}{L}, \qquad y(x',t') = \frac{C_A(x,t) - \overline{C}}{\overline{C}},$$

The PFR model with one control in a dimensionless form:

$$\frac{\partial y(x',t')}{\partial t'} + \frac{\partial y(x',t')}{\partial x'} = -\mathbf{D}\boldsymbol{a} \cdot (1+y(x',t'))^n, \qquad (x',t') \in [0,1] \times \mathbb{R},$$
$$y(0,t') = \boldsymbol{y_0}(t') := \frac{C_{A_0}(Lv^{-1}t') - \overline{C}}{\overline{C}},$$

where $Da = k \tau \overline{C}^{n-1}$ is the Damköhler number:

$$Da := rac{ ext{reaction time}}{ ext{flow time}}$$

Damköhler number impact

 $y_0 = 0$ is a steady-state control, $y_{max} = 0.5$, $y_{min} = -0.5$.

 $\mathsf{Performance\ improvement} = J[\mathsf{steady-state}] - J[\mathsf{bang-bang}]$

Da, Damköhler number

1 Motivation

- 2 Plug flow reactor model
- **3** Plug flow reactor model with two controls
- 4 Numerical simulations
- **6** Conclusion and future research

• The periodic optimal control problem for a single input isothermal PFR.

- The periodic optimal control problem for a single input isothermal PFR.
- The periodic bang-bang strategies in a PFR with controlled flow-rate.

- The periodic optimal control problem for a single input isothermal PFR.
- The periodic bang-bang strategies in a PFR with controlled flow-rate.

Open problems

Non-isothermal PFR model:

$$\frac{\partial T}{\partial t} = -v \frac{\partial T}{\partial x} + \frac{(-\Delta H)k_0}{\rho_p C_p} \exp\left(-\frac{E}{RT}\right) + \frac{4h}{\rho_p C_p d} (T_j - T),$$
$$\frac{\partial C_A}{\partial t} = -v \frac{\partial C_A}{\partial x} - k_0 C_A \exp\left(-\frac{E}{RT}\right), \quad T(0,t) = \mathbf{T_{in}}(t), \ C_A(0,t) = \mathbf{C_{A,in}}(t)$$

- The periodic optimal control problem for a single input isothermal PFR.
- The periodic bang-bang strategies in a PFR with controlled flow-rate.

Open problems

Non-isothermal PFR model:

$$\frac{\partial T}{\partial t} = -v \frac{\partial T}{\partial x} + \frac{(-\Delta H)k_0}{\rho_p C_p} \exp\left(-\frac{E}{RT}\right) + \frac{4h}{\rho_p C_p d} (T_j - T),$$
$$\frac{\partial C_A}{\partial t} = -v \frac{\partial C_A}{\partial x} - k_0 C_A \exp\left(-\frac{E}{RT}\right), \quad T(0,t) = \mathbf{T_{in}}(t), \ C_A(0,t) = \mathbf{C_{A,in}}(t)$$

Dispersed Flow Tubular Reactor model:

$$\frac{\partial C_A}{\partial t} = D_{ax} \frac{\partial^2 C_A}{\partial^2 x} - v \frac{\partial C_A}{\partial x} - kC_A^n,$$

$$C_A(0,t) = C_{A_0}(t) + \frac{D_{ax}}{v} \frac{\partial C_A}{\partial x}\Big|_{x=0}, \qquad \frac{\partial C_A}{\partial x}\Big|_{x=L} = 0.$$