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1. Motivation
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?w&f@ Prelude — 20 years of working in low-rank methods

Model Reduction in Frequency Domain
Approximate the linear control system

x = Ax+ Bu, AeR™" BeR™",
y = Cx+ Du, CeRI*" D e RI*™,
by reduced-order system
X = AR+ Bu, AeR™ BeR™",
9y = Cx+Du, CeRI, DecRIXM

of order r < n, such that

ly =91 =11Gu—=Gu|| <|[G—=G|-[lu] < tolerance - || ul,
where R R o
G(s)=C(sl,— A 'B+D, G(s)=C(sl, —A)'B+D
are the associated transfer functions of the system.

(©Peter Benner
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@ Prelude — 20 years of working in low-rank methods

Balanced Truncation
<(t) = Ax(t) + Bu(t),
o System ¥ 4 X EAOFBUE) L able, fe. A(A) € C,
y(t) = Cx(t),

is balanced, if system Gramians = solutions P, Q of Lyapunov equations
AP+ PAT + BBT = 0, ATQ+QA+C'C = o,

satisfy: P = Q = diag(o1,...,0n) with 01 > 02 > ... > 0, > 0.

[Moore '81]
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@ Prelude — 20 years of working in low-rank methods

Balanced Truncation [Moore '81]
<(t) = Ax(t) + Bu(t),
o System ¥ 4 X EAOFBUE) L able, fe. A(A) € C,
y(t) = (1),

is balanced, if system Gramians = solutions P, Q of Lyapunov equations
AP+ PAT + BBT = 0, ATQ+QA+C'C = o,
satisfy: P = Q = diag(o1,...,0n) with 01 > 02 > ... > 0, > 0.
0 {o1,...,0n0} are the Hankel singular values (HSVs) of X.
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@ Prelude — 20 years of working in low-rank methods

Balanced Truncation [Moore '81]
<(t) = Ax(t) + Bu(t),
o System ¥ 4 X EAOFBUE) L able, fe. A(A) € C,
y(t) = (1),

is balanced, if system Gramians = solutions P, Q of Lyapunov equations
AP+PAT+BBT =0, A'Q+QA+C'C =0,
satisfy: P = Q = diag(o1,...,0n) with 01 > 02 > ... > 0, > 0.
0 {o1,...,0n} are the Hankel singular values (HSVs) of X.
@ Compute balanced realization of ¥ via state-space transformation
T:(AB,C) — (TAT L, TB,CTY)

- (& 2] [2]1a <)
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@ Prelude — 20 years of working in low-rank methods

Balanced Truncation [Moore '81]
<(t) = Ax(t) + Bu(t),
o System ¥ 4 X EAOFBUE) L able, fe. A(A) € C,
y(t) = (1),

is balanced, if system Gramians = solutions P, Q of Lyapunov equations
AP+ PAT + BBT = 0, ATQ+QA+C'C = o,
satisfy: P = Q = diag(o1,...,0n) with 01 > 02 > ... > 0, > 0.
0 {o1,...,0n} are the Hankel singular values (HSVs) of X.
@ Compute balanced realization of ¥ via state-space transformation

T:(AB,C) — (TAT ', TB,CT™1)
All A12 Bl
f— C C .

@ Truncation ~ (A, B, €) = (A1, Bi, Gi).
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@ Prelude — 20 years of working in low-rank methods

Balanced Truncation [Moore '81]

...is one of the greatest model reduction techniques for linear systems
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@ Prelude — 20 years of working in low-rank methods

Balanced Truncation [Moore '81]

...is one of the greatest model reduction techniques for linear systems since
@ the reduced-order model is stable with HSVs o1, ..., 0/;
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@ Prelude — 20 years of working in low-rank methods

Balanced Truncation [Moore '81]

...is one of the greatest model reduction techniques for linear systems since
@ the reduced-order model is stable with HSVs o1, ..., 0/;

@ it allows adaptive choice of r via computable error bound (there is a free lunch!):

A n
Iy =91l <16 = Gl llullz < (237 ac) lulle:
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@ Prelude — 20 years of working in low-rank methods

Balanced Truncation [Moore '81]

...is one of the greatest model reduction techniques for linear systems!

But: as suggested in [MOORE ’81], it is an O(n*) method!
(Bottleneck: solution of the Lyapunov equations, followed by SVD of their Cholesky factors to

determine necessary parts of T and T—1.)
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Prelude — 20 years of working in low-rank methods

uncation

...is one of the greatest model reduction techniques for linear systems!

But: as suggested in [MOORE '81], it is an O(n®) method!
(Bottleneck: solution of the Lyapunov equations, followed by SVD of their Cholesky factors to
determine necessary parts of T and T—1.)

In 1997, we derived a method to compute low-rank factors S, R € R"*‘, ¢ < n, such
that P~ SS”, Q ~ RR" [1] and then showed that the truncation could be obtained via
cheap £s x £g SVD of STR [2]!

(Some similar ideas: low-rank Lyapunov solver [SaaD '90, JAIMOUKHA/KASENALLY '94], small-scale
SVD in BT [PenzL '98, Li/WHITE '99].)

B P. Benner and E.S. Quintana-Orti. Solving stable generalized Lyapunov equations with the matrix sign function. NUMERICAL ALGORITHMS,
20(1):75-100, 1999. (Preprint SFB393 97-23)

B P. Benner, ESS. Quintana-Orti, and G. Quintana-Orti. Balanced truncation model reduction of large-scale dense systems on parallel computers.
MATHEMATICAL AND COMPUTER MODELING OF DYNAMICAL SYSTEMS, 6(4):383-405, 2000.
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2. Solving Large-Scale Sylvester and Lyapunov Equations
@ Some Basics
@ The Low-Rank Structure
o LR-ADI Method
@ The New LR-ADI Applied to Lyapunov Equations
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@ Solving Large-Scale Sylvester and Lyapunov Equations

Sylvester equation

James Joseph Sylvester
(September 3, 1814 — March 15, 1897)

AX +XB = C.
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w@ Solving Large-Scale Sylvester and Lyapunov Equations

Sylvester equation Lyapunov equation

James Joseph Sylvester ) Alexander Michailowitsch Ljapunow
(September 3, 1814 — March 15, 1897) (June 6, 1857 — November 3, 1918)
AX + XB = C. AX+XAT=c, c=cT.

Low-Rank Techniques



@ Solving Large-Scale Sylvester and Lyapunov Equations

Generalized Sylvester equation:
AXD + EXB = C.
Generalized Lyapunov equation:
AXET + EXAT=C, Cc=cC".

Stein equation:
X —AXB = C.

(Generalized) discrete Lyapunov/Stein equation:

EXET —AXAT =C, Cc=C".

(©Peter Benner Low-Rank Techniques



@ Solving Large-Scale Sylvester and Lyapunov Equations

Generalized Sylvester equation:
AXD + EXB = C.

Generalized Lyapunov equation:

AXET + EXAT=C, Cc=cC".
Stein equation:

X —AXB = C.

(Generalized) discrete Lyapunov/Stein equation:

EXET —AXAT =C, Cc=C".
Note:

@ Consider only regular cases, having a unique solution!

@ Solutions of symmetric cases are symmetric, X = X' € R"*": otherwise, X € R"**
with n # £ in general.
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Gramian-based model order reduction

Linear stability analysis

Continuation algorithms for detecting Hopf bifurcations

Determining metastable equilibrium points of stochastic differential equations
Block-triangularization of matrices and matrix pencils

Computing covariance matrices, e.g., in biochemical reaction networks
Numerical solution of fractional partial differential equations

Solving algebraic Riccati equations via Newton's method

(©Peter Benner Low-Rank Techniques



@ Existence of Solutions of Linear Matrix Equations

Exemplarily, consider the generalized Sylvester equation

AXD + EXB = C. (1)

(©Peter Benner Low-Rank Techniques



@ Existence of Solutions of Linear Matrix Equations

Exemplarily, consider the generalized Sylvester equation
AXD + EXB = C. (1)
Vectorization (using Kronecker product) ~~ representation as linear system:

(DT ® A+ BT ® E)vec(X) =vec(C) =  Ax=c.
—— =

=A =:x =:ic
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@ Existence of Solutions of Linear Matrix Equations

Exemplarily, consider the generalized Sylvester equation
AXD + EXB = C. (1)
Vectorization (using Kronecker product) ~~ representation as linear system:

(DT ® A+ BT ® E)vec(X) =vec(C) =  Ax=c.
—— =

=A =:x =:ic

= "(1) has a unique solution <= A is nonsingular”

(©Peter Benner Low-Rank Techniques



@ Existence of Solutions of Linear Matrix Equations

Exemplarily, consider the generalized Sylvester equation
AXD + EXB = C. (1)
Vectorization (using Kronecker product) ~~ representation as linear system:

(DT ® A+ BT ® E)vec(X) =vec(C) =  Ax=c.
—— =

=A =:x =:ic

= "(1) has a unique solution <= A is nonsingular”

Lemma

A(A) = {aj + B | oj € N(A E), B € N(B, D)}
Hence, (1) has unique solution <= A (A, E) N —A(B,D) = 0.
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@ Existence of Solutions of Linear Matrix Equations

Exemplarily, consider the generalized Sylvester equation
AXD + EXB = C. (1)
Vectorization (using Kronecker product) ~~ representation as linear system:

(DT ® A+ BT ® E)vec(X) =vec(C) =  Ax=c.
—— =

=A =:x =:ic

= "(1) has a unique solution <= A is nonsingular”

Lemma

A(A) = {aj + B | oj € N(A E), B € N(B, D)}
Hence, (1) has unique solution <= A (A, E) N —A(B,D) = 0.

Example: Lyapunov equation AX + XA = C has unique solution
= PpeC: +ueh(A).

(©Peter Benner Low-Rank Techniques



@ Solving Large-Scale Sylvester and Lyapunov Equations

The Low-Rank Structure

Sylvester Equations

Find X € R™™ solving

AX —XB = FGT,
where A € R™" B € R™™ F e R™" G e R™ .

If n,m |arge, but r < n,m singular values of 1600 x 900 example
~» X has a small numerical rank. 01
[PENZL 1999, GRASEDYCK 2004,

ANTOULAS/SORENSEN/ZHOU 2002]

—10
rank(X, 7) = f < min(n, m) u

| |
300 600 900

~~ Compute low-rank solution factors Z € R<F Yy e RM*T
D € Rf*f, such that X ~ ZDYT with f < min(n, m).

(©Peter Benner Low-Rank Techniques



@ Solving Large-Scale Sylvester and Lyapunov Equations

The Low-Rank Structure

Lyapunov Equations

Find X € R"™" solving

AX+XAT = —FFT,
where A € R"™" F ¢ R,

If n |arge, but r < n singular values of 1600 x 900 example
~» X has a small numerical rank. 01
[PENZL 1999, GRASEDYCK 2004,

ANTOULAS/SORENSEN/ZHOU 2002]

rank(X,7) =f < n u

| |
300 600 900

~~ Compute low-rank solution factors Z € R*f,
D e RP™*f such that X ~ ZD7" with f < n.

(©Peter Benner Low-Rank Techniques



@ Solving Large-Scale Sylvester and Lyapunov Equations

Theoretical Foundation of the Low-rank Structure

Lyapunov case: [GRASEDYCK '04]

AX + XAT +BBT =0 <= (L, ® A+ A® I,)vec(X) = —vec(BB").
| ——

=A

eter Benner Low-Rank Techniques



@ Solving Large-Scale Sylvester and Lyapunov Equations

Theoretical Foundation of the Low-rank Structure

Lyapunov case: [GrASEDYCK '04]
AX + XAT +BBT =0 <= (L, ® A+ A® I,)vec(X) = —vec(BB").
\_::4_/
For stable M, i.e., A(M) C C~, apply
Mt =— /Ooo exp(tM)dt
to A and approximate the integral via (sinc) quadrature =
A~ — Xk: wi exp(teA),
i=—k

with error ~ exp(—v'k) (exp(—k) if A= AT), then an approximate Lyapunov solution is
given by

(©Peter Benner Low-Rank Techniques /



@ Solving Large-Scale Sylvester and Lyapunov Equations

Theoretical Foundation of the Low-rank Structure

Lyapunov case: [GrASEDYCK '04]
AX + XAT +BBT =0 <= (L, ® A+ A® I,)vec(X) = —vec(BB").
\_::4_/
For stable M, i.e., A(M) C C~, apply
Mt =— /Ooo exp(tM)dt
to A and approximate the integral via (sinc) quadrature =
A~ — Xk: wi exp(teA),
i=—k

with error ~ exp(—v'k) (exp(—k) if A= AT), then an approximate Lyapunov solution is
given by

K
vec(X) =~ vec(Xk) = Z wi exp(ti.A) vec(BBT).
i=—k

(©Peter Benner Low-Rank Techniques /



@ Solving Large-Scale Sylvester and Lyapunov Equations

Theoretical Foundation of the Low-rank Structure

Lyapunov case: [GRASEDYCK '04]
AX + XAT +BBT =0 <= (L, ® A+ A® I,)vec(X) = —vec(BB").
| S —
A
K
vec(X) =~ vec(Xx) = Z wi exp(ti.A) vec(BBT).

i=—k

Now observe that

exp(tid) = exp (ti(lh @ A+ A® 1)) = exp(tiA) @ exp(tiA).

(©Peter Benner Low-Rank Techniques /



@ Solving Large-Scale Sylvester and Lyapunov Equations

Theoretical Foundation of the Low-rank Structure

Lyapunov case: [GrASEDYCK '04]

AX + XAT +BBT =0 <= (L, ® A+ A® I,)vec(X) = —vec(BB").
| ——

=A

K
vec(X) =~ vec(Xx) = Z wi exp(ti.A) vec(BBT).
f—

Now observe that
exp(tid) = exp (ti(lh @ A+ A® 1)) = exp(tiA) @ exp(tiA).

Hence,

vec(Xx) = Z wj (exp(tiA) @ exp(t;A)) vec(BBT)

i=—k

(©Peter Benner Low-Rank Techniques



@ Solving Large-Scale Sylvester and Lyapunov Equations

Theoretical Foundation of the Low-rank Structure

Lyapunov case: [GrASEDYCK '04]

AX + XAT +BBT =0 <= (L, ® A+ A® I,)vec(X) = —vec(BB").
| ——

—A
Hence,
K
vec(Xx) = Z wi (exp(tiA) ® exp(t;A)) vec(BBT)
=k
K
= X = > wexp(tiA)BB exp(tiA Z wiBiB/',
i=—k i=—k

so that rank (Xx) < (2k + 1)m with
[1X = Xull, Sexp(—Vk)  (exp(—k) for A= AT )

Extended to AX + XAT + 37, ;XN + BB = 0. [B./BREITEN 2012]

(©Peter Benner Low-Rank Techniques /



@ Exploiting the Low-Rank Structure |

For simplicity, consider again the Lyapunov equation AX + XAT 4+ BBT = 0.

Definition

The matrix sign function of M € R"*" with no purely imaginary eigenvalues is

J- 0 1 -/ 0 L
T |=T7 T

0 Ji 0o I/

with Ji containing all Jordan blocks of M corresponding to eigenvalues with

positive/negative real parts.

sign (M) = sign <T

(©Peter Benner Low-Rank Techniques
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W@ Exploiting the Low-Rank Structure |

For simplicity, consider again the Lyapunov equation AX + XAT 4+ BBT = 0.

Definition

The matrix sign function of M € R"*" with no purely imaginary eigenvalues is

J- 0 L -/ 0 L
T |=T7 T

0 Ji 0o I/

with Ji containing all Jordan blocks of M corresponding to eigenvalues with

positive/negative real parts.

sign (M) = sign <T

Observations

()]

2. sign (M) = limk— 00 Mk with Mis1 = 3(Mi + M) if Mo = M.

(©Peter Benner ow-Rank Techniques



w@ Exploiting the Low-Rank Structure |

For simplicity, consider again the Lyapunov equation AX + XAT 4+ BBT = 0.

Observations

(5 5 D-[G T

2. sign (M) = limk_yo0 My with Miy = 2(Mk + M%) if My = M.

Sign function iteration for solving Lyapunov equations

Mo =

A BBT
D —A"

] , and inversion formula for block-triangular matrices:

1 _
Acrr E(Ak"‘Akl)

1 _ _
Bit1Bkt1 E(BkBlz—+AlekBkTAk )

(©Peter Benner ank Techniques



w@ Exploiting the Low-Rank Structure |

For simplicity, consider again the Lyapunov equation AX + XAT 4+ BBT = 0.

Observations

(5 5 D-[G T

2. sign (M) = limk_yo0 My with Miy = 2(Mk + M%) if My = M.

Sign function iteration for solving Lyapunov equations

[A BBT

r | and inversion formula for block-triangular matrices:
0 —-A

1 _
Ay E(Ak"’_Akl)

1 _ -~
BB+ S(BeBI + A Bu(A BT

(©Peter Benner nk Techniques



S @ Exploiting the Low-Rank Structure |

For simplicity, consider again the Lyapunov equation AX + XAT 4+ BBT = 0.

Observations

(5 5 D-[G T

2. sign (M) = limk_yo0 My with Miy = 2(Mk + M%) if My = M.

Sign function iteration for solving Lyapunov equations

A BB'
AT | and inversion formula for block-triangular matrices:
0 —
1 _
Akt1 E(Ak + A, 1)
1 _ .
BB+ S(BeBI + A Bu(A BT

so that By — %Z with X = zZ7.

(©Peter Benner Low-Rank Techniques



w@ Exploiting the Low-Rank Structure |

For simplicity, consider again the Lyapunov equation AX + XAT 4+ BBT = 0.

Observations

(5 5 D-[G T

2. sign (M) = limk_yo0 My with Miy = 2(Mk + M%) if My = M.

Factored sign function iteration for Lyapunov equations [B./QUINTANA-ORTI 1997/99]

1 N
Ars1 E(Ak—i—Akl)
1 N
E[BkyAlek]

Problem: number of columns in By doubles each iteration!

Bkt

(©Peter Benner nk Techniques



‘\ @ Exploiting the Low-Rank Structure |

For simplicity, consider again the Lyapunov equation AX + XAT 4+ BBT = 0.

Observations

(5 5 D-[G T

2. sign (M) = limk_yo0 My with Miy = 2(Mk + M%) if My = M.

Factored sign function iteration for Lyapunov equations [B./QuiNTANA-ORTI 1997/99]

1 _
Akyr E(Ak+Ak1)
1 _
E[BhAkIBk]

Problem: number of columns in By doubles each iteration!

Bk+1 =

Cure: truncation operator Byi1 <+ 7e (%[Bk7 Ak—lBk ]) with, e.g., 7z returning the
scaled left singular vectors of the truncated SVD w.r.t. the numerical rank tolerance ¢.

(©Peter Benner Low-Rank Techniques 14/40



@ Exploiting the Low-Rank Structure |l

Exploiting the Low-rank Structure for Large and Sparse Coefficients

Sylvester equation AX — XB = FG is equivalent to linear system of equations

(In®A— BT ®I,) vec(X) = vec(FG ).

(©Peter Benner Low-Rank Techniques /



@ Exploiting the Low-Rank Structure |l

Exploiting the Low-rank Structure for Large and Sparse Coefficients

Sylvester equation AX — XB = FG is equivalent to linear system of equations
(In®A— BT ®I,) vec(X) = vec(FG ).

This cannot be used for numerical solutions unless nm < 1,000 (or so), as

o it requires O(n*m?) of storage;
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@ Exploiting the Low-Rank Structure |l

Exploiting the Low-rank Structure for Large and Sparse Coefficients

Sylvester equation AX — XB = FG is equivalent to linear system of equations
(In®A— BT ®I,) vec(X) = vec(FG ).

This cannot be used for numerical solutions unless nm < 1,000 (or so), as
o it requires O(n*m?) of storage;

o direct solver needs O(n*m?) flops;
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@ Exploiting the Low-Rank Structure |l

Exploiting the Low-rank Structure for Large and Sparse Coefficients

Sylvester equation AX — XB = FG is equivalent to linear system of equations
(In®A— BT ®I,) vec(X) = vec(FG ).

This cannot be used for numerical solutions unless nm < 1,000 (or so), as
o it requires O(n*m?) of storage;
o direct solver needs O(n*m?) flops;

@ low (tensor-)rank of right-hand side is ignored;
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@ Exploiting the Low-Rank Structure |l

Exploiting the Low-rank Structure for Large and Sparse Coefficients

Sylvester equation AX — XB = FG is equivalent to linear system of equations
(In®A— BT ®I,) vec(X) = vec(FG ).

This cannot be used for numerical solutions unless nm < 1,000 (or so), as
o it requires O(n*m?) of storage;
o direct solver needs O(n*m?) flops;
@ low (tensor-)rank of right-hand side is ignored;

@ in Lyapunov case, symmetry and possible definiteness are not respected.
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@ Exploiting the Low-Rank Structure |l

Exploiting the Low-rank Structure for Large and Sparse Coefficients

Sylvester equation AX — XB = FG is equivalent to linear system of equations
(In®A— BT ®1,) vec(X) = vec(FG).

This cannot be used for numerical solutions unless nm < 1,000 (or so), as
o it requires O(n*m?) of storage;
o direct solver needs O(n*m?) flops;
@ low (tensor-)rank of right-hand side is ignored;
@ in Lyapunov case, symmetry and possible definiteness are not respected.
Possible solvers:
@ Standard Krylov subspace solvers in operator from [HocHBRUCK, STARKE, REICHEL, .. .]
@ Block-Tensor-Krylov subspace methods with truncation [KressNer/TOBLER,
BoOLLHOFER/EPPLER, B./BREITEN, .. .|
@ Galerkin-type methods based on (extended, rational) Krylov subspace methods
[JAIMOUKHA, KASENALLY, JBILOU, SIMONCINI, DRUSKIN, KNIZHERMANN,. . .|
@ Doubling-type methods [Swmith, Chu ET AL., B./SADKANE/EL KHOURY, ...]
@ ADI methods [WacHspPrEss, REICHEL, Li, PENZL, B., SAAK, KURSCHNER, OPMEER/REIS, .. .|

(©Peter Ben Loy k Techniques



@ Solving Large-Scale Sylvester and Lyapunov Equations

LR-ADI Method

Sylvester and Stein equations

Let « #0 witha ¢ A(B), B ¢ A(A), then

AX-XB=FGT & X=AXB +(8 —a)FgG*"
N—_————

Sylvester equation Stein equation

with the Cayley-like (M&bius) transformations

A =(A-B L) A-al,), B :=B-al) YB-2 ),
F =(A-=38 1) F, G =(B-aly, "G

~ fix point iteration
Xe=A X 1B +(8 —a)F G H
for k > 1, Xo € R"™m,

(©Peter Benner Low-Rank Techniques



Sylvester and Stein equations

Let ay 7é Bk with oy ¢ /\(B), Bk ¢ /\(A), then

AX —XB=FGT & X=AXB+ Bk — ou)FkGi"
|y ———

Sylvester equation Stein equation

with the Cayley-like (M&bius) transformations

.Ak = (A - ﬂkln)_l(A - ak’n)? Bk = (B - akl"’)_l(B _ ﬂklm)’
Fi:= (A= Bel)'F, G = (B — awlm) "G

~- alternating directions implicit (ADI) iteration
Xic = AxXie—1Bi + (B — au) FiGi !

for k> 1, Xq € R™m, [WAcHSPRESS 1988]

(©Peter Benner Low-Rank Techniques 16/40



@ Solving Large-Scale Sylvester and Lyapunov Equations

LR-ADI Method

Sylvester ADI iteration [WAcCHSPRESS 1988]

Xi = Ak Xx—1Bi + (Bk — ) FGY,

Ak = (A= Bil) YA = akly), Bi:=(B — axln) X(B = Blm),

Fi:=(A=Bl) TF ER™", Gy = (B — aulpm) "G e C™*".
Now set Xy = 0 and find factorization Xy = Zx Dy Y}

X1 = A XoBy + (By — a1) FiGY

(©Peter Benner Low-Rank Techniques



@ Solving Large-Scale Sylvester and Lyapunov Equations

LR-ADI Method

Sylvester ADI iteration [WAcCHSPRESS 1988]

Xi = Ak Xx—1Bi + (Bk — ) FGY,
Ak = (A= Bil) YA = akly), Bi:=(B — axln) X(B = Blm),
Fi:=(A=Bel) tFeR™" Gy :=(B—axly) "G eCm™".

Now set Xy = 0 and find factorization Xy = Zx Dy Y}

X1 = (B —a1)(A=Bul) 'FGT(B — aily) ™t
= Vi = Z1= (A— Bil,)"tF e R™,
Di= (B1 — aq)l, € R™,
Wi =Y =(B—aln) "GeCmr,

(©Peter Benner Low-Rank Techniques



@ Solving Large-Scale Sylvester and Lyapunov Equations

LR-ADI Method

Sylvester ADI iteration

[WacHSPRESS 1988]
Xi = Ak Xx—1Bi + (Bk — ) FGY,
Ak = (A= Bil) YA = akly), Bi:=(B — axln) X(B = Blm),
Fi:=(A=Bel) tFeR™" Gy :=(B—axly) "G eCm™".

Now set Xy = 0 and find factorization Xy = Zx Dy Y}
Xo = A2 X1Ba + (B2 — a2) F2GY
Vo = Vi + (B2 — a1)(A+ Bal) "tV e R™
Wo = Wi + (a2 — B1)(B + axl) "Wy € R™,

Zy = [Z1, Va),
D, = diag (D1, (B2 — a2)ly),
Y, = [Yl, WQ].
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@ Solving Large-Scale Sylvester and Lyapunov Equations

LR-ADI Algorithm [B. 2005, Li/TRUHAR 2008, B./L1/TRUHAR 2009]

Algorithm 1: Low-rank Sylvester ADI / factored ADI (fADI)

Input : Matrices defining AX — XB = FG' and shift parameters {a, ..., ., },

{Bh e 7ﬂkmax}'
Output: Z, D, Y such that ZDY" ~ X.

Z=Vi=(A=pBil)'F,

Yi=W=(B—ailn) "G,

D1 = (81— aa)l;

for k =2,..., kmax do
Vie = Vie1 + (Bc — cu—1)(A = Biln) " Vies.
Wi = Wi1 + (o — Bi—1)(B — o) ™" Wi
Update solution factors

N s W N =

Zic = [Zi—1, Vi], Yie = [Yi—1, W], Dic = diag (Di—1, (Bk—ou)lr).
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@ Solving Large-Scale Sylvester and Lyapunov Equations

LR-ADI Method

Disadvantages of Low-Rank ADI as of 2012:

1. No efficient stopping criteria:

o Difference in iterates ~» norm of added columns/step: not reliable, stops often
too late.

o Residual is a full dense matrix, can not be calculated as such.

2. Requires complex arithmetic for real coefficients when complex shifts are

used.
3. Expensive (only semi-automatic) set-up phase to precompute ADI shifts.
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@ Solving Large-Scale Sylvester and Lyapunov Equations

LR-ADI Method

Disadvantages of Low-Rank ADI as of 2012:

1. No efficient stopping criteria:
o Difference in iterates ~» norm of added columns/step: not reliable, stops often
too late.
o Residual is a full dense matrix, can not be calculated as such.
2. Requires complex arithmetic for real coefficients when complex shifts are
used.
3. Expensive (only semi-automatic) set-up phase to precompute ADI shifts.

None of these disadvantages exists as of today
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@ Solving Large-Scale Sylvester and Lyapunov Equations

LR-ADI Method

Disadvantages of Low-Rank ADI as of 2012:

1. No efficient stopping criteria:
o Difference in iterates ~» norm of added columns/step: not reliable, stops often
too late.
o Residual is a full dense matrix, can not be calculated as such.

2. Requires complex arithmetic for real coefficients when complex shifts are
used.
3. Expensive (only semi-automatic) set-up phase to precompute ADI shifts.

None of these disadvantages exists as of today

Key observation: residual is low-rank matrix, with rank less than or equal
to that of right-hand side!

— speed-ups old vs. new LR-ADI can be up to 20!
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@ Other Low-rank Lyapunov Solvers. ..

... for Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A+ AT < 0:
1. Compute orthonormal basis range (Z), Z € R"*", for subspace Z C R”, dm Z = r.
2. Set A:=ZTAZ, B:=Z"B.
3. Solve small-size Lyapunov equation AX + XAT + BBT = 0.
4. Use X ~ ZXZT.
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@ Other Low-rank Lyapunov Solvers. ..

... for Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A+ AT < 0:
1. Compute orthonormal basis range (Z), Z € R"*", for subspace Z C R”, dm Z = r.
2. Set A:=ZTAZ, B:=Z"B.
3. Solve small-size Lyapunov equation AX + XAT + BBT = 0.
4. Use X ~ ZXZT.

Examples:
@ Krylov subspace methods, i.e., for m = 1:

Z =K(A,B,r) =span{B,AB,A’B,... A" 1B}

[Saap 1990, JAIMOUKHA/KASENALLY 1994, JBILOU 2002-2008].
o Extended Krylov subspace method (EKSM) [Stioncint 2007],

Z=K(A B, r)UK(A™,B,r).

o Rational Krylov subspace methods (RKSM) [Druskin/Smmoncint 2011].
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@ The New LR-ADI Applied to Lyapunov Equations

Example: an ocean circulation problem [VAN GLIZEN ET AL. 1998]

o FEM discretization of a simple 3D ocean circulation model (barotropic,
constant depth) ~ stiffness matrix —A with n = 42,249, choose artificial
constant term B = rand(n,5).

(©Peter Benner Low-Rank Techniques /



@ The New LR-ADI Applied to Lyapunov Equations

Example: an ocean circulation problem

o FEM discretization of a simple 3D ocean circulation model (barotropic,
constant depth) ~ stiffness matrix —A with n = 42,249, choose artificial
constant term B = rand(n,5).

o Convergence history:

IRII/1BT B

10°

1073

TOL
10—10

LR-ADI with adaptive shifts vs. EKSM

--+-LR-ADI
—=— EKSM

| |
0 100 200 300 400 500
coldim(Z)

(©Peter Benner

Low-Rank Techniques



@ The New LR-ADI Applied to Lyapunov Equations

Example: an ocean circulation problem

o FEM discretization of a simple 3D ocean circulation model (barotropic,
constant depth) ~ stiffness matrix —A with n = 42,249, choose artificial
constant term B = rand(n,5).

o Convergence history:

IRII/1BT B

10°

1073

TOL
10—10

LR-ADI with adaptive shifts vs. EKSM

--e-LR-ADI
—=— EKSM

| |
0 100 200 300 400 500
coldim(Z)

@ CPU times: LR-ADI ~ 110 sec, EKSM =~ 135 sec.
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@ Solving Large-Scale Sylvester and Lyapunov Equations

o Numerical enhancements of low-rank ADI for large Sylvester/Lyapunov
equations:
1. low-rank residuals, reformulated implementation,
2. compute real low-rank factors in the presence of complex shifts,
3. self-generating shift strategies (quantification in progress).

For diffusion-convection-reaction example:
332.02 sec. down to 17.24 sec. ~~ acceleration by factor almost 20.

o Generalized version enables derivation of low-rank solvers for various
generalized Sylvester equations.
@ Ongoing work:
o Apply LR-ADI in Newton methods for algebraic Riccati equations

R(X) = AX + XAT + GGT — XSS"X =0,
D(X)=AXAT —EXET + GGT + ATXF(I, + FTXF)'FT XA =0.
For nonlinear AREs see

B P. Benner, P. Kiirschner, J. Saak. Low-rank Newton-ADI hods for large ric algebraic Riccati equations. J. Franklin
Inst., 2015.
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3. From Matrix Equations to PDEs in d Dimensions
@ The Curse of Dimensionality
@ Tensor Techniques
@ Numerical Examples
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@ From Matrix Equations to PDEs in d Dimensions

The Curse of Dimensionality [BELLMAN 19¢

Increase matrix size of discretized differential operator for h — g by factor 2¢.
~> Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).
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@ From Matrix Equations to PDEs in d Dimensions

The Curse of Dimensionality [BELLMAN 1¢

Increase matrix size of discretized differential operator for h — ’E’ by factor 2¢.
~> Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Consider —Au = f in [0, 1] x [0, 1] C R?, uniformly discretized as
(l@A+AR)x=1Ax=b — AX + XAT =B
with x = vec (X) and b = vec (B) with low-rank right hand side B ~ by b] .
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@ From Matrix Equations to PDEs in d Dimensions

The Curse of Dimensionality [BELLMAN 1¢

Increase matrix size of discretized differential operator for h — ’E’ by factor 2¢.
~> Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Consider —Au = f in [0, 1] x [0, 1] C R?, uniformly discretized as
(l@A+AR)x=1Ax=b — AX + XAT =B
with x = vec (X) and b = vec (B) with low-rank right hand side B ~ by b] .

@ Low-rankness of X := VWT ~ X follows from properties of A and B, e.g.,
[PENZL °00, GRASEDYCK '04].
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@ From Matrix Equations to PDEs in d Dimensions

The Curse of Dimensionality [BELLMAN 1¢

Increase matrix size of discretized differential operator for h — ’E’ by factor 2¢.

~> Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Consider —Au = f in [0, 1] x [0, 1] C R?, uniformly discretized as
(l@A+AR)x=1Ax=b — AX + XAT =B

with x = vec (X) and b = vec (B) with low-rank right hand side B ~ by b] .

@ Low-rankness of X := VWT ~ X follows from properties of A and B, e.g.,
[PENZL °00, GRASEDYCK '04].

@ We solve this using low-rank Krylov subspace solvers. These essentially require
matrix-vector multiplication and vector computations.
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@ From Matrix Equations to PDEs in d Dimensions

The Curse of Dimensionality [BELLMAN 1¢

Increase matrix size of discretized differential operator for h — ’E’ by factor 2¢.

~> Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Consider —Au = f in [0, 1] x [0, 1] C R?, uniformly discretized as
(l@A+AR)x=1Ax=b — AX + XAT =B

with x = vec (X) and b = vec (B) with low-rank right hand side B ~ by b] .

@ Low-rankness of X := VWT ~ X follows from properties of A and B, e.g.,
[PENZL °00, GRASEDYCK '04].

@ We solve this using low-rank Krylov subspace solvers. These essentially require
matrix-vector multiplication and vector computations.

@ Hence, Avec (Xi) = Avec (Vi W,T) = vec ([AVk, Vi ][ Wi, AW ]T>
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@ From Matrix Equations to PDEs in d Dimensions

urse of Dimensi i [BELLMAN 1957

Increase matrix size of discretized differential operator for h — ’E’ by factor 2¢.
~> Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Consider —Au = f in [0, 1] x [0, 1] C R?, uniformly discretized as
(l@A+AR)x=1Ax=b — AX + XAT =B
with x = vec (X) and b = vec (B) with low-rank right hand side B ~ by b] .

@ Low-rankness of X := VWT ~ X follows from properties of A and B, e.g.,
[PENZL °00, GRASEDYCK '04].

@ We solve this using low-rank Krylov subspace solvers. These essentially require
matrix-vector multiplication and vector computations.

@ Hence, Avec (Xi) = Avec (Vi W,T) = vec ([AV;(, Vi ][ Wi, AW ]T>

@ The rank of [AV, V4] € R™?", [W) AW,] € R":?" increases but can be controlled using
truncation operator 7z (like in sign function solver for Lyapunov equations). ~» Low-rank
Krylov subspace solvers. [KrESSNER/TOBLER, B/BREITEN, SAVOSTYANOV/DOLGOV, ... ].
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[BELLMAN 1957

Increase matrix size of discretized differential operator for h — ’E’ by factor 2¢.

~> Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Consider —Au = f in [0, 1] x [0, 1] C R?, uniformly discretized as
(l@A+AR)x=1Ax=b — AX + XAT =B

with x = vec (X) and b = vec (B) with low-rank right hand side B ~ by b] .

@ Low-rankness of X := VWT ~ X follows from properties of A and B, e.g.,
[PENZL °00, GRASEDYCK '04].

@ We solve this using low-rank Krylov subspace solvers. These essentially require
matrix-vector multiplication and vector computations.

@ Hence, Avec (Xg) = Avec (Vk WkT) = vec ([AV;(, Vi 1 [ Wy, AW ]T>

@ The rank of [AV, V4] € R™?", [W) AW,] € R":?" increases but can be controlled using
truncation operator 7z (like in sign function solver for Lyapunov equations). ~» Low-rank
Krylov subspace solvers. [KrESSNER/TOBLER, B/BREITEN, SAVOSTYANOV/DOLGOV, ... ].

@ lIdeas correspond to separation of variables in continuous-time: b(x,y) & bi(x)b2(y).
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@ From Matrix Equations to PDEs in d Dimensions

Ideas extend to d > 3: let A; € R"*%, j=1,...,d, be 1d-discretization matrices
(1) (2 (

. I o nj) . .
corresponding to "grid points” x; . x;”, ..., x; ", then under certain assumptions, the

Laplace operator (w/ homogeneous boundary conditions) can be discretized as
A=ARI® - @1+10ARIQ - Ql+...+1Q---®1® Aqg.

Note: if nj=nVj, then A€ R %y
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@ From Matrix Equations to PDEs in d Dimensions

Ideas extend to d > 3: let A; € R"*%, j=1,...,d, be 1d-discretization matrices

corresponding to " grid points” XJ_(l)’XJ_(2)’ S ,xj("f), then under certain assumptions, the

Laplace operator (w/ homogeneous boundary conditions) can be discretized as
A=ARI® - @1+10ARIQ - Ql+...+1Q---®1® Aqg.
Note: if nj = nVj, then A € R"*""|

If source term can be written as f(xi, X2, ...,xd) = fi(x1)f(x2) - - - fy(xq), discretized
right-hand side becomes

b=bi@b @ @by €R™ with b= [H(xY),...,(x")].
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@ From Matrix Equations to PDEs in d Dimensions

Ideas extend to d > 3: let A; € R"*%, j=1,...,d, be 1d-discretization matrices

corresponding to " grid points” xj(l)., Xj(z)’ S ,xj("f), then under certain assumptions, the

Laplace operator (w/ homogeneous boundary conditions) can be discretized as
A=A R1+13ARIQ - @I+..+1® -1 Aj.
Note: if nj=nVj, then A€ R %y
If source term can be written as f(xi, X2, ...,xd) = fi(x1)f(x2) - - - fy(xq), discretized
right-hand side becomes
b=bi@b @ @by €R™ with b= [H(xY),...,(x")].

Now if the solution x of Ax = b

1. could be written as x = x1 ® x2 ® - - - ® xg with x; € R",

2. and could be computed without forming A, b, but working only with A;, b;,

then we could hope to reduce the storage and computational complexity from n? to dn!
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@ From Matrix Equations to PDEs in d Dimensions

Ideas extend to d > 3: let A; € R"*%, j=1,...,d, be 1d-discretization matrices

corresponding to " grid points” xj(l)., xj(z), S ,xj(nf), then under certain assumptions, the

Laplace operator (w/ homogeneous boundary conditions) can be discretized as
A=A R1+13ARIQ - @I+..+1® -1 Aj.
Note: if nj=nVj, then A€ R %y
If source term can be written as f(xi, X2, ...,xd) = fi(x1)f(x2) - - - fy(xq), discretized
right-hand side becomes
b=bi@b @ @by €R™ with b= [H(xY),...,(x")].

Now if the solution x of Ax = b

1. could be written as x = x1 ® x2 ® - - - ® xg with x; € R",

2. and could be computed without forming A, b, but working only with A;, b;,

then we could hope to reduce the storage and computational complexity from n? to dn!
This requires low-rank tensor techniques.

(Note: for x we will need a more complex representation as 1. does not hold in general!)
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o Approximate: x(i,...,iq) ~ ng)(il)xg)(iz) —x9D(iy).
N———— o
tensor

tensor product decomposition

Goals:
@ Store and manipulate x O(dn) cost instead of O(n?).
@ Solve equations Ax = b O(dn?) cost instead of O(n*?).
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@ Data Compression in 2D: Low-Rank Matrices

o Discrete separation of variables:

X111 e X . [Via
= Z D [War 0 Wan] +O(e).
Xn,1 0 Xnyn | a=t Vn,a
o Diagrams:
«
X ~ v w
—— - i
ik ‘ I ‘ I ‘
@ Rank r < n.

o mem(v) + mem(w) = 2nr < n? = mem(x).
o Singular Value Decomposition (SVD)
= ¢(r) optimal w.r.t. spectral /Frobenius norm.
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@ Data Compression in Higher Dimensions

Tensor Trains

@ Matrix Product States/Tensor Train (TT) format
[WiLsoN ’75, WHITE 93, VERSTRAETE '04, OSELEDETS '09/°11]:

For indices
ip-wwiqg=(ip = 1)nps1-+-ng+ (ip1 = 1)npi2---ng+ -+ (ig-1 — 1)ng + i,

the TT format can be expressed as

X(I]- Zx(l ’1 al az(l2) az,a3(l3) ad 1,ad(ld)

or
x(i - ig) =xP(@i) - xD(ig),  xF(i) € R,
or
o) o1 NE) 2 ey | w Sl ey @
i ‘ i ‘ k-1 ‘ ik ‘ i1 ‘ iy ‘

@ Storage: O(dnr?).
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@ Overloading Tensor Operations

Always work with factors x(k) € Rf~1XmX" instead of full tensors.

@ Sumz=x+y ~» increase of tensor rank r, =r +r,.
o TT format for a high-dimensional operator

A(ir - igji - Jd) = AW (i, 1) - AD iy, ja)

o Matrix-vector multiplication y = Ax;  ~ tensor rank r, = ra - ry.

o Additions and multiplications increase TT ranks.

o Decrease ranks quasi-optimally via truncation operator 7: using SVD (or
QR).

o lterative linear solvers (and preconditioners) can be implemented in TT
format; we use, e.g., TT-GMRES.
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”@ Numerical Examples

Our work

Apply low-rank iterative solvers in TT format to discrete optimality systems resulting
from

PDE-constrained optimization problems under uncertainty,
discretized by stochastic Galerkin method, i.e., applying Galerkin projection to weak
formulation using

o implicit Euler (discontinuous Galerkin, dG(0)) in time,
o classical finite element methods (FEM) in physical space,

@ generalized polynomial chaos in N-dimensional parameter space (resulting from
parameterizing uncertain parameters).

This yields naturally a (1 + 2(3) + N)-way tensor representation of solution, which we
approximate in low-rank TT format.
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& @ Numerical Examples

Our work

Apply low-rank iterative solvers in TT format to discrete optimality systems resulting
from

PDE-constrained optimization problems under uncertainty,

discretized by stochastic Galerkin method.
This yields naturally a (1 4+ 2(3) + N)-way tensor representation of solution, which we
approximate in low-rank TT format.

Take home message

Biggest problem solved so far has n = 1.29 - 10> unknowns (optimality system for
unsteady incompressible Navier-Stokes control problem with uncertain viscosity).
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@&‘@ Numerical Examples

Our work

Apply low-rank iterative solvers in TT format to discrete optimality systems resulting
from

PDE-constrained optimization problems under uncertainty,
discretized by stochastic Galerkin method

This yields naturally a (1 4+ 2(3) + N)-way tensor representation of solution, which we
approximate in low-rank TT format.

Take home message

Biggest problem solved so far has n = 1.29 - 10> unknowns (optimality system for
unsteady incompressible Navier-Stokes control problem with uncertain viscosity).

Would require ~ 10 petabytes (PB) = 10,000 TB to store the solution vector!
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@&‘@ Numerical Examples

Our work

Apply low-rank iterative solvers in TT format to discrete optimality systems resulting
from

PDE-constrained optimization problems under uncertainty,
discretized by stochastic Galerkin method

This yields naturally a (1 4+ 2(3) + N)-way tensor representation of solution, which we
approximate in low-rank TT format.

Take home message

Biggest problem solved so far has n = 1.29 - 10> unknowns (optimality system for
unsteady incompressible Navier-Stokes control problem with uncertain viscosity).
Would require ~ 10 petabytes (PB) = 10,000 TB to store the solution vector!

Using low-rank tensor techniques, we need ~ 7 - 107 bytes = 70 GB to solve the
optimality system in MATLAB in less than one hour!
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<

w@ Optimal Control of Unsteady Heat Equation

Consider the optimization problem

2 ﬂ 2
J(t,y,u) = ||y y||L2(0 T D)®L2(Q ||5td( Mo,y + EHUHL?(O,T;D)@)LZ(Q)
subject, P-almost surely, to

Ay (t,x,w)

ot — V- (a(x,w)Vy(t,x,w)) = u(t,x,w), in (0, T] xD xQ,

y(t,x,w) =0, on (0, T] x 9D x Q,
y(O,X,W) = Yo, in D x Q,
where

@ forany z: D x Q — R, z(x,-) is a random variable defined on the complete
probability space (2, F,P) for each x € D,

0 30 < amin < amax < 00 s.t. P(w € Q: a(x,w) € [amin, amax] VX € D) = 1.
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@ Stochastic Galerkin Finite Element Method

Weak formulation of the random PDE

Seek y € H' (0, T; Hy(D) ® L*(R)) such that, P-almost surely,
(ye, v) + B(y,v) = l(u,v) Vv e Hy(D)® L*(Q),
with the coercive! bilinear form
Bly,v) = /Q/D a(x, ) Vy(x,w) - Vv(x,w)dx dP(w), v,y € Hi(D)@ L2(Q),
and
Uu,v) = (u(x,w), v(x,w))

- /Q/Du(x,w)v(x,w)ddeP(w), u,v € Hi(D) @ L2(Q).

Coercivity and boundedness of B + Lax-Milgram = unique solution exists.

Idue to the positivity assumption on a(x,w)
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?w&f@ Stochastic Galerkin Finite Element Method

Weak formulation of the optimality system

Theorem [CHEN/QUARTERONI 2014, B./ONWUNTA/STOLL 2016]

Under appropriate regularity assumptions, there exists a unique adjoint state p and
optimal solution (y, u, p) to the optimal control problem for the random unsteady heat
equation, satisfying the stochastic optimality conditions (KKT system) for t € (0, T]
P-almost surely

(ye, v) + By, v) = £(u, v), Vv € Hy(D) ® L*(Q),
(pow) =B (pw) =L ((y =7+ 580 w),  ¥Ywe H(D) & (@),
U(Bu — p,w) =0, Vw e (D) ® LX(Q),

where
@ S(y) is the Fréchet derivative of ||std(y)||f2(0,T;D);
@ 3" is the adjoint operator of B.
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@ Stochastic Galerkin Finite Element Method

Discretization of the random PDE

@ y,p,u are approximated using standard Galerkin ansatz, yielding
approximations of the form

T
|

1

J
7(t,x,w) = ZZJk(t)@(X)W(ﬁ) = zic(t, x)Yi(§).

0

==
Il
o
.
[
A
=
Il

o Here,
o {¢;}/-1 are linear finite elements;

° {wk}f;()l are the P = (NNT’;'!)! multivariate Legendre polynomials of degree < n.

o Implicit Euler/dG(0) used for temporal discretization w/ constant time step 7.
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@ The Fully Discretized Optimal Control Problem

where
O M =DRGCGaOM=DRIMs, Mo=D® G M,
0 Ki=h ® [T G @K]+(C2GaM)
O N =1I,®G®M,

and
© Go=diag ((u3), (¥3),. .. (v3 1)), Gli,k) = (&t} i=1,..0,N,
@ G, = Gp + adiag (07 <¢%> Sy <1j),2,71>) (with first moments (.) w.r.t. P),

@ Ko=M+71Ky, Ki=7K;, i=1,...,N,
@ M, K; € R/*/ are the mass and stiffness matrices w.r.t. the spatial discretization, where K;
corresponds to the contributions of the ith KLE term to the stiffness,

@ C = —diag(ones, —1), D = diag (%, 1,...,1, %) € RMeXne,
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Linear system with 3JPn; unknowns!
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@ Solving the Optimality System

Optimality system leads to saddle point problem
A BT
B 0 |°

@ Very large scale setting, (block-)structured sparsity ~ iterative solution.
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@ Solving the Optimality System

Optimality system leads to saddle point problem
A BT
B 0 |°
@ Very large scale setting, (block-)structured sparsity ~ iterative solution.

@ Krylov subspace methods for indefinite symmetric systems: MINRES, . ...
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@ Solving the Optimality System

Optimality system leads to saddle point problem
A BT
B 0 |°
@ Very large scale setting, (block-)structured sparsity ~ iterative solution.

@ Krylov subspace methods for indefinite symmetric systems: MINRES, . ...

@ Requires good preconditioner.
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@ Solving the Optimality System

Optimality system leads to saddle point problem
5 %]
B 0 |°
@ Very large scale setting, (block-)structured sparsity ~ iterative solution.
@ Krylov subspace methods for indefinite symmetric systems: MINRES, . ...
@ Requires good preconditioner.
@ Famous three-iterations-convergence result [MURPHY/GOLUB/WATHEN 2000]: using

ideal preconditioner

P = [ /3 _05 } with the Schur complement S := —BA !B’

MINRES finds the exact solution in at most three steps.
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@ Solving the Optimality System

Optimality system leads to saddle point problem
A BT
B 0 |°
Very large scale setting, (block-)structured sparsity ~ iterative solution.

Krylov subspace methods for indefinite symmetric systems: MINRES, . ...

Requires good preconditioner.

Famous three-iterations-convergence result [MUrPHY/GOLUB/WATHEN 2000]: using
ideal preconditioner

0 -S
MINRES finds the exact solution in at most three steps.

P = [ A0 } with the Schur complement S := —BA !B’

@ Motivates to use mean-based approximate Schur complement preconditioner

A 0
o § |
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@ Solving the Optimality System

Optimality system leads to saddle point problem
A BT
B 0 |°
Very large scale setting, (block-)structured sparsity ~ iterative solution.

Krylov subspace methods for indefinite symmetric systems: MINRES, . ...

Requires good preconditioner.

Famous three-iterations-convergence result [MUrPHY/GOLUB/WATHEN 2000]: using
ideal preconditioner

P = [ /3 _05 } with the Schur complement S := —BA !B’

MINRES finds the exact solution in at most three steps.
@ Motivates to use mean-based approximate Schur complement preconditioner
A 0
0o S|
@ Implemented in TT format ~~ TT-MINRES.
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TT-MINRES | #iter (1)  #iter (1)  # iter ()
ne 25 26 28
dim(A) = 3JPn, | 10,671,360 21,342,720 85,370,880
a=1, tol = 1073

B=10"° 6 (285.5)  6(300.0) 8 (372.2)
B=10"° 4 (77.6) 4(130.9) 4 (126.7)
B=10"% 4 (56.7) 4 (59.4) 4 (64.9)
a=0, tol=1073

B=10"° 4(207.3) 6 (366.5) 6 (229.5)
B=10"° 4 (153.9) 4 (158.3) 4 (172.0)

B=10"8 2(352) 2(37.8)  2(40.0)
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Control

mem(TT)
mem(full)

o Full size: nyngny ~ 3-10°.  Reduction: = 0.002.
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@ conclusions (High-dimensional PDEs)

@ Low-rank tensor solver for unsteady heat and Navier-Stokes equations with
uncertain viscosity.

o Similar techniques used for Stokes(-Brinkman) optimal control problems.
o Adapted AMEn (TT) solver to saddle point systems.

@ To consider next:
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@ conclusions (High-dimensional PDEs)

@ Low-rank tensor solver for unsteady heat and Navier-Stokes equations with
uncertain viscosity.

o Similar techniques used for Stokes(-Brinkman) optimal control problems.
o Adapted AMEn (TT) solver to saddle point systems.

@ To consider next:
o Navier-Stokes: many parameters coming from uncertain geometry or
Karhunen-Loéve expansion of random fields;
Initial results: the more parameters, the more significant is the complexity
reduction w.r.t. memory — up to a factor of 10° for the control problem for a
backward facing step.
o exploit multicore technology (need efficient parallelization of AMEn).
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