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Introduction

Introduction

Nonlinear Model Reduction

Given a large-scale control-affine nonlinear control system of the form

x(t) = f(x(¢)) + bu(t),
y(t) = cTx(t), x(0) =,

with f : R” — R” nonlinear and b,c € R", x e R", u,y € R.
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Nonlinear Model Reduction

Given a large-scale control-affine nonlinear control system of the form
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o Optimization, control and simulation cannot be done efficiently!

with f: R? — R? and b,é € R? x € R" u € R and
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Nonlinear Model Reduction

Given a large-scale control-affine nonlinear control system of the form

c. {)’((t) F(x(t)) + bu(t),
() = cTx(2), x(0) = xo,

with f : R” — R” nonlinear and b,c € R", x e R", u,y € R.

o Optimization, control and simulation cannot be done efficiently!

with f : R"” - R" and b, e R", xe R, ue Rand y~yecR, Ak n.
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Common Reduction Techniques

Proper Orthogonal Decomposition (POD)
o Take computed or experimental 'snapshots’ of full model:
[x(t1), x(t2), ..., x(tn)] =: X,
o perform SVD of snapshot matrix: X = VSWT ~ V,S,W,T.
o Reduction by POD-Galerkin projection: % = V. f(V4%) + V,] Bu.
@ Requires evaluation of f
~~ discrete empirical interpolation [Sorensen/Chaturantabut '09].
@ Input dependency due to 'snapshots’!
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Introduction

Common Reduction Techniques

Proper Orthogonal Decomposition (POD)

o Take computed or experimental 'snapshots’ of full model:
[x(t1), x(t2), ..., x(tn)] =: X,
perform SVD of snapshot matrix: X = VSWT ~ V;S; W,
Reduction by POD-Galerkin projection: % = VT f(V4%) + Vi Bu.
Requires evaluation of f
~~ discrete empirical interpolation [Sorensen/Chaturantabut '09].

(]

Input dependency due to 'snapshots’!

Trajectory Piecewise Linear (TPWL)
o Linearize f along trajectory,
@ reduce resulting linear systems,
@ construct reduced model by weighted sum of linear systems.

@ Requires simulation of original model and several linear reduction
steps, many heuristics.
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Linear System Norms

Let us start with linear systems, i.e. f(x) = Ax.

Two common system norms for measuring approximation quality:
1

o Hp-norm, ||X||y, = (% 027T tr (H*(—iw)H(iw)) dw)é,
0 Hoo-norm, ||X||x,, = sup omax (H(iw)),
w€ER

where
H(s)=C(sl —A)"'B

denotes the corresponding transfer function of the linear system.
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Introduction

Linear System Norms

Let us start with linear systems, i.e. f(x) = Ax.

Two common system norms for measuring approximation quality:
1

o Hp-norm, ||X||n, = (% 027T tr (H*(—iw)H(iw)) dw)z,
0 Hoo-norm, ||X||x,, = sup omax (H(iw)),
w€ER

where
H(s)=C(sl —A)"'B

denotes the corresponding transfer function of the linear system.

We focus on the first one ~ interpolation-based model reduction
approaches.
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Introduction
Error system and H>-Optimality [Meier/Luenberger '67]

In order to find an Hy-optimal reduced system, consider the error system
H(s) — H(s) which can be realized by

A 0

A:[OZ\

err B err A
| e[ et o
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Introduction
Error system and H>-Optimality [Meier/Luenberger '67]

In order to find an H,-optimal reduced system, consider the error system
H(s) — H(s) which can be realized by

err __ A0 err __ B err __ A
A _[o 2\]’ B _[é], cr=1[c -(].

~ first-order necessary H-optimality conditions (SISO)

H(=\i) = A(=X;),
H' (=) = H'(=)\),

where )\; are the poles of the reduced system 5.
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Introduction
Error system and H>-Optimality [Meier/Luenberger '67]

In order to find an H,-optimal reduced system, consider the error system
H(s) — H(s) which can be realized by

err __ A0 err __ B err __ A
A _[o 2\]’ B _[é], cr=1[c -(].

~~ first-order necessary Hp-optimality conditions (MIMO)

H(=X)Bi = A(=)))B;, fori=1,...,A,
CTH(=)) = CTH(=\), fori=1,...,A,
CTH (—\)Bi = CTH (-\)B; fori=1,...,A,

where A = RAR™ T~is the spectral decomposition of the reduced system
and B=BTR™T, C=CR.
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Introduction
Error system and H>-Optimality [Meier/Luenberger '67]

In order to find an H,-optimal reduced system, consider the error system
H(s) — H(s) which can be realized by

err __ A0 err __ B err __ A
A _[o 2\]’ B _[é], cr=1[c -(].

~~ first-order necessary Hp-optimality conditions (MIMO)

H(=X)Bi = A(=X))B;, fori=1,...,A,
CTH(=)) = CTH(=\), fori=1,...,A,
CTH (—\)Bi = CTH (-\)B; fori=1,...,A,

vec (1,)" (eje,-T ® C) (-A@ 1, — I ® A)! (BT ® B) vec (Im)

T T o A AN (BT o B
= vec(l,) (eje,- ® C) (—/\ Rl — 1 ® A) (B ® B) vec (Im),
fori=1,...,A4and j=1,...,p.
P. Benner, MOR for Nonlinear Systems 6/33
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Interpolation of the Transfer Function [GRIMME 97]

Construct reduced transfer function by Petrov-Galerkin projection
P=VWT ie.

A(s) = CV (sl — WTAV) " WTB,
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where V' and W are given as
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Introduction

Introduction

Interpolation of the Transfer Function [GRIMME 97]

Construct reduced transfer function by Petrov-Galerkin projection
P=VWT ie.

A(s) = CV (sl — WTAV) " WTB,
where V and W are given as

V=[(o1/ —A)'B,....(c:] — A)7'B],
W = [(o1] = AT)ICT, ... (or] = AT)TICT].
Then ) )
H(O’,') = H(U,‘) and H/(O',') = H/(O','),
fori=1,...,r.

~~ iterative algorithms (IRKA/MIRIAm) that yield H,-optimal models.

[GUGERCIN ET AL. ’08], [BUNSE-GERSTNER ET AL. '07],
[VAN DOOREN ET AL. '08]
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‘H,>-Model Reduction for Bilinear Systems (

Bilinear Control Systems

Now consider X = Ax + g(x, u) with
g(x,u) = Bu+ [Nl, ceey Nm] (Im ® x) u,

i.e. bilinear control systems:

X(t) = Ax(t) + > Nix(t)ui(t) + Bu(t),

i=1

y(t) = Cx(1),  x(0) = o,

where A, N; e R™" B € R™™ C e RP*".

3
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H>-Model Reduction for Bilinear Systems

Bilinear Control Systems

Now consider X = Ax + g(x, u) with
g(x,u) = Bu+ [Nl, ceey Nm] (Im ® x) u,

i.e. bilinear control systems:

X(t) = Ax(t) + > Nix(t)ui(t) + Bu(t),

i=1

y(t) = Cx(1),  x(0) = o,

where A, N; e R™" B € R™™ C e RP*".

3

@ Approximation of weakly nonlinear systems ~» Carleman
linearization.

@ A lot of linear concepts can be extended, e.g. transfer functions,
Gramians, Lyapunov equations, ...

@ An equivalent structure arises for some stochastic control systems.

Max Planck Institute Magdeburg
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H,-Model Reduction for Bilinear Systems ‘

Some Basic Facts

Output Characterization (SISO): Volterra series

> t ety te—1
y(t):Z/O /O /O K(ti,...,t)u(t—ti—...—tx) - u(t—tx)dty - - - dt1,
k=1

with kernels K(t1, ..., tx) = Ce”™ Ny --- A2 N et B.
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> t ety te—1
y(t):Z/O /O /O K(ti,...,t)u(t—ti—...—tx) - u(t—tx)dty - - - dt1,
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with kernels K(t1, ..., tx) = Ce”™ Ny --- A2 N et B.

Multivariate Laplace-transform (SISO):
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H>-Model Reduction for Bilinear Systems (

Some Basic Facts

Output Characterization (SISO): Volterra series

> t ot th—1
:Z/ / / K(ti,. .., t)u(t—ti—. .. —ty) - u(t—t)dty - - - dty,
= Jo Jo 0

with kernels K(t1, ..., tx) = Ce”™ Ny --- A2 N et B.

Multivariate Laplace-transform (SISO):

Hy(s1, -, sx) = C(sk! — A) 7 Ny - -+ (s2] — A) "INy (1] — A)'B.

Bilinear Ha-norm (MIMO):

1

15 2, = <tr (Z/ / (27r)k Hi(ioon, - ,iwk)H[(iwl,...,;wk)>> .

[ZHANG /LAM. ’02]
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‘H,>-Model Reduction for Bilinear Systems

H>-Norm Computation

[B./BREITEN ’11]

Let X denote a bilinear system. Then, the H,-norm is given as:

m —il
||):||%_l2 = (vec(lp))T (C® () <—A® I—1®A-— Z N; ® N;) (B ® B) vec(Im).
i=1

In order to find an Hy-optimal reduced system, define the error system
Y =% — ) as follows:

Aerr — |:A 0:| ’ Nierr _ |:NI 9:| ) Berr — |:€:| , Cerr — [C _C-] .

0 A 0 N B
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‘H>-Model Reduction

‘H>-Optimality Conditions

~

Let us assume X is given by its eigenvalue decomposition:

A=RAR™Y, N,=R'WR, B=R'B, C=CR.
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‘H>-Optimality Conditions

~

Let us assume X is given by its eigenvalue decomposition:
A=RAR™Y, N,=R'WR, B=R'B, C=CR.

Using A, N;, B, C as optimization parameters, we can derive necessary condi-
tions for H»-optimality, e.g.:
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‘H>-Model Reduction

‘H>-Optimality Conditions

Let us assume 3 is given by its eigenvalue decomposition:
A=RAR™Y, N,=R'WR, B=R'B, C=CR.

Using A, N;, B, C as optimization parameters, we can derive necessary condi-
tions for H»-optimality, e.g.:

(vec(lg))T (eje[ ® c) <—/\ @h—lh®A- zm: N; @ N,-> B (é ® B) vec(Im)
i=1

= (vec(lq))T (eje[ ® @) <—/\ @I — @A — 2”’: N; ® N;) - (é ® é) vec(Im).
i=1
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H>-Model Reduction

‘H>-Optimality Conditions

Let us assume 3 is given by its eigenvalue decomposition:
A=RAR™Y, N,=R'WR, B=R'B, C=CR.

Using A, N;, B, C as optimization parameters, we can derive necessary condi-
tions for H»-optimality, e.g.:

(vec(lg))T (eje[ ® c) <—/\ @h—lh®A- Xm: N; @ N,-> B (é ® B) vec(Im)
i=1

= (vec(lg))T (eje[ ® @) <—/\ Qb — 1l ®A— 2”’: N; ® N;) - (é ® é) vec(Im).

Where is the connection to the interpolation of transfer functions?
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Let us assume 3 is given by its eigenvalue decomposition:
A=RAR™Y, N,=R'WR, B=R'B, C=CR.

Using A, N;, B, C as optimization parameters, we can derive necessary condi-
tions for H»-optimality, e.g.:
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&
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Max Planck Institute Magdeburg P. Benner, MOR for Nonlinear Systems 11/33



H>-Model Reduction

‘H>-Optimality Conditions

Let us assume 3 is given by its eigenvalue decomposition:
A=RAR™Y, N,=R'WR, B=R'B, C=CR.

Using A, N;, B, C as optimization parameters, we can derive necessary condi-
tions for H»-optimality, e.g.:

(vec(lg))T (eje[ ® c) <—/\ @h—lh®A- zm: N; @ N,-> B (é ® B) vec(Im)
i=1

= (vec(lg))T (eje[ ® C) <—/\ Qb — 1l ®A— 2”’: N; ® N;) - (é ® é) vec(Im).

(vec(ly))" (ejegT ® C) (-A® I, — I, ® A) ' vec(BBT)

= (vec(ly))" (ejegT ® (?) (—/\® Ih—15hL® A) - vec(BBT).
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H>-Model Reduction

‘H>-Optimality Conditions

Let us assume 3 is given by its eigenvalue decomposition:
A=RAR™Y, N,=R'WR, B=R'B, C=CR.

Using A, N;, B, C as optimization parameters, we can derive necessary condi-
tions for H»-optimality, e.g.:

(vec(lg))T (eje[ ® c) <—/\ @h—lh®A- zm: N; @ N,-> B (é ® B) vec(Im)
i=1

= (vec(lg))T (eje[ ® @) <—/\ Qb —lh®A- 2”’: N; ® N;) - (é ® A) vec(Im).

“Al— A ' /BB]
(vec(lq))T (ejez— ® C) :
—Xal — A BE],
“Ml— A - /BB]
T T o A
= (vec(l))" (e¢] @ €) :
il — A BB,
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H>-Model Reduction

‘H>-Optimality Conditions

Let us assume 3 is given by its eigenvalue decomposition:
A=RAR™Y, N,=R'WR, B=R'B, C=CR.

Using A, N;, B, C as optimization parameters, we can derive necessary condi-
tions for H»-optimality, e.g.:

(vec(lg))T (eje[ ® c) <—/\ @h—lh®A- zm: N; @ N,-> B (é ® B) vec(Im)
i=1

= (vec(lg))T (eje[ ® @) <—/\ Qb — 1l ®A— 2”’: N; ® N;) - (é ® é) vec(Im).

H(=X\)B] = A(-X)B/

~~ tangential interpolation at mirror images of reduced system poles
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H>-Model Reduction

‘H>-Optimality Conditions

Let us assume 3 is given by its eigenvalue decomposition:
A=RAR™Y, N,=R'WR, B=R'B, C=CR.

Using A, N;, B, C as optimization parameters, we can derive necessary condi-
tions for H»-optimality, e.g.:

(vec(lg))T (eje[ ® c) <—/\ @h—lh®A- Xm: N; @ N,-> B (é ® B) vec(Im)
i=1

= (vec(lg))T (eje[ ® @) <—/\ Qb — 1l ®A— 2”’: N; ® N;) - (é ® é) vec(Im).

H(=X\)B{ = A(=X0)B/
~~ tangential interpolation at mirror images of reduced system poles

Note: [FLaGG 2011] shows equivalence to interpolating the Volterra series!
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A First Iterative Approach (€5

Algorithm 1 Bilinear IRKA

Input: A, N;, B, C, A N;, B, C

Output: A%t NPf Bopt, Cort

1: while (change in A > ¢€) do L )

22 RAR'=A B=R'B,C=CR N;=R'W,R

-1
m
3 vec(V) = (—/\ R~ h®A=Y N N,-) (é ® B) vec(lm)

i=1
m -1

4 vee(W)=[-A@h-hoAT =Y N ® N,-T> (C‘T ® CT) vec(ly)
i=1

5.V =orth(V), W = orth(W)

6 A= (WTV)TWTAV, = (WTV) "WV,

B=(WTV)'wTB, ¢ =cVv
7: end while R
g APt = A NP =N, B¥ =B, C?t=C

Max Planck Institute Magdeburg P. Benner, MOR for Nonlinear Systems 12/33
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H>-Model Reduction for Bilinear Systems

A Heat Transfer Model

o 2-dimensional heat distribution
[B./SAAK '05] M

o Boundary control by spraying Xo1 X02 X03
intensities of a cooling fluid

Q _ (0’ 1) % (0, 1)7 X10 X11 X12 X13 X14
xy = Ax in Q,
! X20 X21 X22 X23 X24
n-Vx=c-ua3(x—1) only,MpM3 [ ¥
T on . x3  |xa 0 |x2 x| xu
o Spatial discretization k x k-grid
3 Xa1 X42 X43
=>>'<zA1x+ZN,-xu,-+Bu
i=1 [
= A, =0.
1
oOutput:y:ﬁ[l . 1]

Max Planck Institute Magdeburg P. Benner, MOR for Nonlinear Systems 13/33



‘H,>-Model Reduction for Bilinear Systems

A Heat Transfer Model

Comparison of relative Hy-error for n = 10.000

10° ]
5 i —— Balanced Truncation | |
5 107t E —o— Bilinear IRKA E
S ; —+ Linear IRKA ]
o - i
2 i i
< 1072F E
oz B ]

-3 \ \ \ | |

10 5 10 15 20 25 30
Reduced system dimension

Max Planck Institute Magdeburg P. Benner, MOR for Nonlinear Systems 13/33
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H>-Model Reduction for Bilinear Systems

Fokker-Planck Equation

As a second example, we consider a dragged Brownian particle whose
one-dimensional motion is given by

dX; = —VV(X,, t)dt + V2odW,,

with o =2 and V(x,u) = W(x,t) + ®(x, ur) = (x> — 1) — xu — x.
Alternatively, one can consider ([HARTMANN ET AL. ’10]) ,

p(x, t)dx = P [X; € [x,x + dx)]

which is described by the Fokker-Planck equation

W moBpt V(YY) (et e(-22) % (0.T],
0=0Vp+pVB, (x,t) € {-2,2} x [0, T],
po = p, (x,t) € (—2,2) x 0.

Output C discrete characteristic function of the interval [0.95,1.05].
P. Benner, MOR for Nonlinear Systems 14/33
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Fokker-Planck Equation

Comparison of relative Hy-error for n = 500

100 = T L E
?*_H\'_"\,\K —+— Balanced Truncation |
- —o— Bilinear IRKA :
| |
g 10
£ z
v
= i i
< 1072f
= B
10-3 \ \ \ \ \

5 10 15 20 25 30

Reduced system dimension

4
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Nonlinear Model Reduction
Quadratic-Bilinear Differential Algebraic Equations (QBDAEs)

Coming back to the more general case with nonlinear f(x), we consider
the class of quadratic-bilinear differential algebraic equations

Ex(t) = Aix(t) + Axx(t) @ x(t) + Nx(t)u(t) + Bu(t),

0= ). x(0) =,

where E, A;, N € R"™" A, € R’ (Hessian tensor), B, CT€ R" are
quite helpful.

o A large class of smooth nonlinear control-affine systems can be
transformed into the above type of control system.

@ The transformation is exact, but a slight increase of the state
dimension has to be accepted.

o Input-output behavior can be characterized by generalized transfer
functions ~» enables us to use Krylov-based reduction techniques.

Max Planck Institute Magdeburg P. Benner, MOR for Nonlinear Systems 15/33



Nonlinear Model Reduction

Nonlinear Model Reduction

Transformation via McCormick Relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = apx + a181(x) + ... + akgk(x) + Bu,

where g;(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, & can be transformed into a system of QBDAEs.
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Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = apx + a181(x) + ... + akgk(x) + Bu,

where g;(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, & can be transformed into a system of QBDAEs.

o xp =exp(—x2) - V/x2+1, xo=-x+u
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Nonlinear Model Reduction

Nonlinear Model Reduction

Transformation via McCormick Relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = apx + a181(x) + ... + akgk(x) + Bu,

where g;(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, & can be transformed into a system of QBDAEs.

o xp =exp(—x2) - V/x2+1, xo=-x+u

0 71 := exp(—x),
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Nonlinear Model Reduction

Nonlinear Model Reduction

Transformation via McCormick Relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = apx + a181(x) + ... + akgk(x) + Bu,

where g;(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, & can be transformed into a system of QBDAEs.

o xp =exp(—x2) - V/x2+1, xo=-x+u
o z1 :==exp(—x), 2z:=+/x}+1.
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Nonlinear Model Reduction

Nonlinear Model Reduction

Transformation via McCormick Relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = apx + a181(x) + ... + akgk(x) + Bu,

where g;(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, & can be transformed into a system of QBDAEs.

o xp =exp(—x2) - V/x2+1, xo=-x+u
o z1 :==exp(—x), 2z:=+/x}+1.

0X1221‘22,
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Nonlinear Model Reduction

Transformation via McCormick Relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = apx + a181(x) + ... + akgk(x) + Bu,

where g;(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, & can be transformed into a system of QBDAEs.

o xp =exp(—x2) - V/x2+1, xo=-x+u
o z1 :==exp(—x), 2z:=+/x}+1.
0X1221‘22, XQZ—X2+U,
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Nonlinear Model Reduction

Transformation via McCormick Relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = apx + a181(x) + ... + akgk(x) + Bu,

where g;(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, & can be transformed into a system of QBDAEs.

o xp =exp(—x2) - V/x2+1, xo=-x+u
o z1 :==exp(—x), 2z:=+/x}+1.
o X1 =2z - 2o, Xo = —Xo + U, z1 = —21-(—X2+U),
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Nonlinear Model Reduction

Transformation via McCormick Relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = apx + a181(x) + ... + akgk(x) + Bu,

where g;(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, & can be transformed into a system of QBDAEs.

o xp =exp(—x2) - V/x2+1, xo=-x+u
A R 2
0 z1 == exp(—x2), 2z :=+/x{+1.
o X1 =2z - 2o, Xo = —Xo + U, z1 = —21-(—X2+U),
Lo 2X1Z1°20 .
Zy = B X1°21.
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Analysis of nonlinear systems by variational equation approach:
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Nonlinear Model Reduction

Variational Analysis and Linear Subsystems

Analysis of nonlinear systems by variational equation approach:
o consider input of the form au(t),
@ nonlinear system is assumed to be a series of homogeneous nonlinear
subsystems, i.e. response should be of the form

x(t) = axi(t) + aPxo(t) + x3(t) + .. ..
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Nonlinear Model Reduction

Variational Analysis and Linear Subsystems

Analysis of nonlinear systems by variational equation approach:
o consider input of the form au(t),
@ nonlinear system is assumed to be a series of homogeneous nonlinear
subsystems, i.e. response should be of the form

x(t) = axi(t) + aPxo(t) + x3(t) + .. ..

@ comparison of terms o/,i = 1,2, ... leads to series of systems
Exy = Aixy + Bu,
Exo = Aixo + Aoxy ® x1 + Nxqu,
Exs = Aixs + Ax (x1 ® x2 + x2 ® x1) + Nxou
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Nonlinear Model Reduction

Variational Analysis and Linear Subsystems

Analysis of nonlinear systems by variational equation approach:
o consider input of the form au(t),
@ nonlinear system is assumed to be a series of homogeneous nonlinear
subsystems, i.e. response should be of the form

x(t) = axi(t) + aPxo(t) + x3(t) + .. ..

@ comparison of terms o/,i = 1,2, ... leads to series of systems
Exy = Aixy + Bu,
Exo = A1xo + Aox1 ® x1 + Nxqu,
Exs = Aixs + Ax (x1 ® x2 + x2 ® x1) + Nxou

@ although i-th subsystem is coupled nonlinearly to preceding systems,
linear systems are obtained if terms x;, j < i, are interpreted as
pseudo-inputs.
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Generalized Transfer Functions

In a similar way, a series of generalized symmetric transfer functions can
be obtained via the growing exponential approach:
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Generalized Transfer Functions

In a similar way, a series of generalized symmetric transfer functions can
be obtained via the growing exponential approach:

H]_(Sl) = C(S]_E — Al)_lB,
N A——

G1(51)
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Nonlinear Model Reduction

Generalized Transfer Functions

In a similar way, a series of generalized symmetric transfer functions can
be obtained via the growing exponential approach:

Hy(s1) = C (siE — Ay)"'B,
T
Ha(s1, %) = %C ((s1 4 2)E — A1) H [N (Gy(s1) + Gi(s2))
+A2 (G1(s1) ® Gi(s2) + Gi(s2) @ Gi(s1))],
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Nonlinear Model Reduction

Nonlinear Model Reduction

Generalized Transfer Functions

In a similar way, a series of generalized symmetric transfer functions can
be obtained via the growing exponential approach:

Hi(s1) = C(siE — A) 1B,
Gi(s)
Hols1,%2) = 5 C (51 + 2)E — A1) [N (Gils1) + Go(2)
+A2 (Gi(51) ® Gi(s2) + Gi(s2) ® Gi(s1))],s
Hs(s1,52,83) = %C ((s1+s+s3)E— Al)_1
[N(Gg(sl, %) + Ga(52,53) + Ga(s1,53))

+ Az (Gi(s1) ® Ga(s2,83) + Gi(s2) @ Go(st, 53)
+ G1(53) ® G2(S17 53) + G2(52753) ® G1(51)

+ Go(s1,83) ® Gi(52) + Go(51,%2) ® 51(53))}-
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Nonlinear Model Reduction

Characterization via Multimoments

For simplicity, focus on the first two transfer functions. For Hi(s1),
choosing o and making use of the Neumann lemma leads to

Hy(s1) = Z C (A —0E)E) (AL —0E) "B (s1— o).

i
Mg o
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Nonlinear Model Reduction

Nonlinear Model Reduction

Characterization via Multimoments

For simplicity, focus on the first two transfer functions. For Hi(s1),
choosing o and making use of the Neumann lemma leads to

Hy(s1) = Z C (AL — 0E)E) (AL — 0E) 1B (s; — o)’

i
Mg o

Similarly, specifying an expansion point (7, &) yields

h(s1,92) 2ZC(A1 T+§)E)—15)i(A1—(T+£)E)—1 (sl—|—52—7_§)i.

(z ERE SERED SIS oL )+N(zm51, +Zm;2,g)]
p=0

Max Planck Institute Magdeburg P. Benner, MOR for Nonlinear Systems 19/33



Nonlinear Model Reduction

Nonlinear Model Reduction

Constructing the Projection Matrix

Goal: — q :

1
Construct the following sequence of nested Krylov subspaces

Hi(0) = 52 Fi(0), BImHZ(UJ) 8lmH2(UU) I+m<q-1.
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Constructing the Projection Matrix

Goal:

Construct the foIIowmg sequence of nested Krylov subspaces

Fi (). a/mf"z(UU) 8lmH2(UU) I+m<q-1.

Vi =Kq (AL — 0E)'E, (AL — 0E)7'b)
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Nonlinear Model Reduction

Constructing the Projection Matrix

Goal:

Construct the foIIowmg sequence of nested Krylov subspaces

—Hi(0) = Fi (). a/mf"z(UU) 8lmH2(UU) I+m<q-1.

Vi =Kq (AL — 0E)'E, (AL — 0E)7'b)

fori=1:¢q
Vs = Kg—is1 (AL — 20E) 1E, (A1 — 20E) "INVA(:, 1)),
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Nonlinear Model Reduction

Constructing the Projection Matrix

Goal: ' Hi(o) = =25 Fhi(0), 6’ 0 oals mH2(0' o), l+m<gq-—1.
Construct the foIIowmg sequence of nested Krylov subspaces
Vi =Kq (AL — 0E)'E, (AL — 0E)7'b)
fori=1:¢q
Vs = Kg—is1 (AL — 20E) 1E, (A1 — 20E) "INVA(:, 1)),
for j=1:min(g—i+1,i)
Vil = Kqoicjia (A1 = 20E)1E, (AL — 20E) T A VA (s, 1) @ VA(4)))

Hy(o,0) =

Vi(:, i) denoting the i-th column of V.
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Constructing the Projection Matrix

Goal: —tHi(o) = =1 1(0') Bs / e al o
Construct the foIIowmg sequence of nested Krylov subspaces
Vi =Kq (AL — 0E)'E, (AL — 0E)7'b)
fori=1:¢q
Vs = Kg—is1 (AL — 20E) 1E, (A1 — 20E) "INVA(:, 1)),
for j=1:min(g—i+1,i)
V37 = Kgoizjia (AL — 20E)7LE, (A1 — 20E) Ao VA (s, 1) @ VA(:,J))

Hy(o,0) = Ay(o,0), I+m<q—1.

Vi(:, i) denotlng the i-th column of V;. Set V = orth [V4, Vi, V3’J] and
construct - by the Galerkin-Projection P = VY-

Ap =VTAY e R A, = VT A(V @ V) € R
N=VINYeR™ b=yTpeR" &7 =cTyeR"
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Nonlinear Model Reduction

Tensors and Matricizations: A Short Excursion [KoLpa/BADER 09, GRASEDYCK '10]

A tensor is a vector
(A)ier € RT

indexed by a product index set

I:le---xl'd, #Ij:nj.
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Tensors and Matricizations: A Short Excursion [KoLpa/BADER 09, GRASEDYCK '10]

A tensor is a vector
(A)ier € RT

indexed by a product index set
I:le---xl'd, #Ij:nj.
For a given tensor A, the t-matricization A(*) is defined as

T XLy (t) — .
AW e RFXT AL e = A E = (L AN
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Nonlinear Model Reduction

Tensors and Matricizations: A Short Excursion [KoLpa/BADER 09, GRASEDYCK '10]

A tensor is a vector
(A)ier € RT

indexed by a product index set
I:le---xl'd, #Ij:nj.
For a given tensor A, the t-matricization A(*) is defined as

T X Ty (1) =
AQ RN Al et et = Alenia)

t={1,...,d}\t.
Example: For a given 3-tensor A(;, j, iy with i1, i2, i3 € {1,2}, we have:

A(1):[A(1,1,1) Aaz1) Ao A(1,2,2):|
Az Ae21 Ael2) Aee2)]’

A(2):|:A(1,1,1) Aciy A A(2,1,2)]
Aazy Ae2y Az Ar22
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Nonlinear Model Reduction

Nonlinear Model Reduction
Tensors and Matricizations: A Short Excursion [KoLpa/BADER 09, GRASEDYCK '10]
For a given tensor A, the t-matricization A(*) is defined as

T XLy (t) — —
A ¢ REx T A et Gner = Alnis £ = {1 d)\t.

(a) Horizontal slices (b) Lateral slices (c) Frontal slices

Figure: Slices of a 3rd-order tensor. [Courtesy of Tammy Kolda]
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Nonlinear Model Reduction

Nonlinear Model Reduction
Tensors and Matricizations: A Short Excursion [KoLpa/BADER 09, GRASEDYCK '10]
For a given tensor A, the t-matricization A(*) is defined as

T XLy (t) — —
A ¢ REx T A et Gner = Alnis £ = {1 d)\t.

(a) Horizontal slices (b) Lateral slices (c) Frontal slices

Figure: Slices of a 3rd-order tensor. [Courtesy of Tammy Kolda]

~> Allows to compute matrix products more efficiently.
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Nonlinear Model Reduction

Nonlinear Model Reduction @
Two-Sided Projection Methods

Similarly to the linear case, one can exploit duality concepts, in order to
construct two-sided projection methods.
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Nonlinear Model Reduction

Nonlinear Model Reduction
Two-Sided Projection Methods

Similarly to the linear case, one can exploit duality concepts, in order to
construct two-sided projection methods.

Interpreting A now as the 2-matricization of the Hessian 3-tensor
corresponding to A,, one can show that the dual Krylov spaces have to
be constructed as follows

Wy =K, ((A1 —20E)"TET (A — 2aE)*Tc)
fori=1:q
Wi = Kq_in1 ((A1 —0E)"TET (A — 0E)"TNTWA(, i)) ,
for j=1:min(qg—i+1,i)
WY = Kq—imji2 ((Al —oE) TET, (AL —0E) TAP V(i) ® Wl(zvj)) ;
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Nonlinear Model Reduction
Two-Sided Projection Methods

Similarly to the linear case, one can exploit duality concepts, in order to
construct two-sided projection methods.

Interpreting A now as the 2-matricization of the Hessian 3-tensor
corresponding to A,, one can show that the dual Krylov spaces have to
be constructed as follows

Wy =K, ((A1 —20E)"TET (A — 2aE)*Tc)
fori=1:q
Wi = Kq_in1 ((A1 —0E)"TET (A — 0E)"TNTWA(, i)) ,
for j=1:min(qg—i+1,i)
WY = Kq—imji2 ((Al —oE) TET, (AL —0E) TAP V(i) ® Wl(zvj)) ;

Note: Due to the symmetry of the Hessian tensor, the 3-matricization
A®) coincides with A®?).
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Nonlinear Model Reduction

Multimoment matching

@ Y = (E, A1, A N, b,c) original QBDAE system.
@ Reduced system by Petrov-Galerkin projection P = VW7 with
Vi = Kq (E, A1, b,0), Wi=Kq (ET,A{,C, 20')

fori=1:q
Vo = Kq,— i1 (E, A1, NVA(, i), 20)
W = Kq,_is1 (ET,AlT, NT WA, i),cr)
for j=1:min(q2 —i+1,i)
Vs = Kgy_i_js2 (E, AL, A VA(:, 1) @ VA (s, ), 20)
Wi = Kgp—i—ji2 (ET,AlT,.A(z) Vi(, i) ® Wl(:,j),cr) .

Then, it holds:
8"H1 8 H1 o' H1 o' H1 .
6'() ()7 ( )7 (O’), 1=0,...,q1 =1,
S
9iti ai+j
o,0 Ay (o, 0 i+j<2q—1.
8515’ He(:0) = les’ (2, ), :
v
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Numerical Examples

Numerical Examples

Two-Dimensional Burgers Equation

o 2D-Burgers equation on (0,1) x (0,1) x[0, T]
| —

=Q
up=—(u-V)u+vAu

with u(x,y,t) € R? describing the motion of a compressible fluid.
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Numerical Examples

Numerical Examples

Two-Dimensional Burgers Equation

o 2D-Burgers equation on (0,1) x (0,1) x[0, T]
| —

=Q
up=—(u-V)u+vAu

with u(x,y,t) € R? describing the motion of a compressible fluid.

o Consider initial and boundary conditions
V2 V2
uX(X’.y?O):T? uy(XLyaO):Ta

ux(x,y,0) =0, uy(x,y,0) =0, for (x,y) € Q\Qy,
u, =0, u, =0, for (x,y) € 09.

for (x,y) € @ :=(0,0.5],
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Numerical Examples

Numerical Examples

Two-Dimensional Burgers Equation

o 2D-Burgers equation on (0,1) x (0,1) x[0, T]
| —

=Q
up=—(u-V)u+vAu

with u(x,y,t) € R? describing the motion of a compressible fluid.

o Consider initial and boundary conditions

V2 V2

uX(Xa.y’O):Tv uy(XJ/ao):Ta for (X7y)€Ql = (0705]7
ux(x,y,0) =0, uy(x,y,0) =0, for (x,y) € Q\Qy,
u, =0, u, =0, for (x,y) € 09.

@ Spatial discretization ~~ QBDAE system with nonzero I.C. and
N = 0 ~ reformulate as system with zero I.C. and constant input.
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Numerical Examples

Numerical Examples

Two-Dimensional Burgers Equation

o 2D-Burgers equation on (0,1) x (0,1) x[0, T]
| —

=Q
up=—(u-V)u+vAu

with u(x,y,t) € R? describing the motion of a compressible fluid.

o Consider initial and boundary conditions

V2 V2

uX(Xa.y’O):Tv uy(XJ/ao):Ta for (X7y)€Ql = (0705]7
ux(x,y,0) =0, uy(x,y,0) =0, for (x,y) € Q\Qy,
u, =0, u, =0, for (x,y) € 09.

@ Spatial discretization ~~ QBDAE system with nonzero I.C. and
N = 0 ~ reformulate as system with zero I.C. and constant input.

@ Output C chosen to be average x-velocity.
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Numerical Examples

Numerical Examples

Two-Dimensional Burgers Equation

Comparison of relative time-domain error for n = 1600

s 1073 - E
o i §
2 104 /
[y B -
qu) 10_5 3 l_Sidedr q = 47 Q2 = 23 h=256 E
——2-sided, g1 =4,00 =2,1=6 | |
106 F ---1l-sided, g1 =6,90 =0,A =6 | 4
§ - -~ 2-sided, g1 =6,q0 =0, =6 | |
10~ : ‘ : :
0 0.1 0.2 0.3 0.4 0.5
Time t
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Numerical Examples

Numerical Examples

Two-Dimensional Burgers Equation

o 2D-Burgers equation on (0,1) x (0,1) x[0, T]
| —

=Q
up=—(u-V)u+vAu

with u(x,y,t) € R? describing the motion of a compressible fluid.

@ Now consider initial and boundary conditions

Ux(va’O):Ov uy(Xa.yaO):07 for X)YEQ»
uy = cos(wt),  u, = cos(27t), for (x,y) € {0,1} x (0,1),
uy =sin(mt),  u, = sin(27t), for (x,y) €(0,1) x {0,1}.
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Numerical Examples

Numerical Examples

Two-Dimensional Burgers Equation

o 2D-Burgers equation on (0,1) x (0,1) x[0, T]
| —

=Q
up=—(u-V)u+vAu

with u(x,y,t) € R? describing the motion of a compressible fluid.

@ Now consider initial and boundary conditions

Ux(va’O):Ov uy(Xa}/aO):Q for X)YEQ»
uy, = cos(rt),  u, = cos(2mt), for (x,y) € {0,1} x (0,1),
uy = sin(wt),  u, =sin(27t), for (x,y) €(0,1) x {0,1}.

@ Spatial discretization ~» QBDAE system with zero I.C. and 4 inputs
B e RnX4, Nl, N2, N3, N4, ROM with q1 = 57 gr = 2,0‘ = 07 n=52.
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Numerical Examples

Numerical Examples

Two-Dimensional Burgers Equation

o 2D-Burgers equation on (0,1) x (0,1) x[0, T]
———
=Q
up=—(u-V)u+vAu
with u(x,y,t) € R? describing the motion of a compressible fluid.

@ Now consider initial and boundary conditions

UX(X?.y’O):()? uy(Xa}/aO):Q for X)YEQ»
uy, = cos(rt),  u, = cos(2mt), for (x,y) € {0,1} x (0,1),
uy = sin(wt),  u, =sin(27t), for (x,y) €(0,1) x {0,1}.
@ Spatial discretization ~» QBDAE system with zero I.C. and 4 inputs
B e RnX4, Nl, N2, N3, N4, ROM with q1 = 57 gr = 2,0‘ = 07 n=52.

o State reconstruction by reduced model x ~ VX, max. rel. err < 3%.
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Numerical Examples

Numerical Examples
The Chafee-Infante equation

o Consider PDE with a cubic nonlinearity:

Ve +v3 = v + v, in (0,1) x (0, T),
v(0,-) = u(t), in (0, T),

vi(1,:) =0, in (0, T),

v(x,0) = w(x), in (0,1)

@ original state dimension n = 500, QBDAE dimension N = 2 - 500,
reduced QBDAE dimension r = 9
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Numerical Examples

The Chafee-Infante equation

Comparison between moment-matching and POD (u(t) = 5 cos (t))

v
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Numerical Examples

Numerical Examples

The Chafee-Infante equation

Comparison between moment-matching and POD (u(t) = 50sin (t))

—— FOM, n =500
POD, n =9

1-si =9 ||
2-sided MM, n

0 2 4 6 8 10

v
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Numerical Examples

Numerical Examples
The FitzHugh-Nagumo System

o FitzHugh-Nagumo system modeling a neuron
[CHATURANTABUT, SORENSEN ’09]

evi(x, t) = Eviu(x, t) + F(v(x, 1)) — w(x, t) + g,
we(x, t) = hv(x, t) — yw(x, t) + g,
with f(v) = v(v — 0.1)(1 — v) and initial and boundary conditions
v(x,0) =0, w(x,0) =0, x €10,1],
v (0, t) = —io(t), v(1,t) =0, t>0,

where
€=0.015, h=05, y =2, g = 0.05, ig(t) = 5- 10*t3 exp(—15t)

@ original state dimension n = 2 - 1000, QBDAE dimension
N = 3-1000, reduced QBDAE dimension r = 20
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Numerical Examples
The FitzHugh-Nagumo System

y
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Numerical Examples

Numerical Examples
The FitzHugh-Nagumo System

POD via moment-matching (training input)

0.2
0.15 | ﬁ = 22 |
< 01l f
5.1072 8
0 | | \ | |
-04 -02 0 02 04 06 08 1 12 14
v(t)

—
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Numerical Examples

Numerical Examples
The FitzHugh-Nagumo System

POD via moment-matching (varying input)

(6]

V.
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Conclusions and Outlook

Conclusions and Outlook

@ Many nonlinear dynamics can be expressed by a system of
quadratic-bilinear differential algebraic equations.

o For this type of systems, a frequency domain analysis leads to
certain generalized transfer functions.

o There exist Krylov subspace methods that extend the concept of
moment-matching ~ using basic tools from tensor theory allows for
better approximations.

@ |n contrast to other methods like TPWL and POD, the reduction
process is independent of the control input.
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@ Many nonlinear dynamics can be expressed by a system of
quadratic-bilinear differential algebraic equations.

o For this type of systems, a frequency domain analysis leads to
certain generalized transfer functions.

o There exist Krylov subspace methods that extend the concept of
moment-matching ~ using basic tools from tensor theory allows for
better approximations.

@ |n contrast to other methods like TPWL and POD, the reduction
process is independent of the control input.

Optimal choice of interpolation points?

Stability /index-preserving reduction possible?
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