ADI-based Galerkin-Methods for Algebraic Lyapunov and Riccati Equations

Peter Benner

Max-Planck-Institute for Dynamics of

Complex Technical Systems
Computational Methods in Systems and
Control Theory Group
Magdeburg, Germany

Technische Universität Chemnitz
Fakultät für Mathematik
Mathematik in Industrie und Technik
Chemnitz, Germany

joint work with Jens Saak (TU Chemnitz)

Université du Littoral Côte d'Opale, Calais June 8, 2010

Overview

(1) Large-Scale Matrix Equations

- Motivation
(2) ADI Method for Lyapunov Equations
- Low-Rank ADI for Lyapunov equations
- Factored Galerkin-ADI Iteration
(3) Newton-ADI for AREs
- Low-Rank Newton-ADI for AREs
- Application to LQR Problem
- Galerkin-Newton-ADI
- Numerical Results
- Quadratic ADI for AREs
- AREs with High-Rank Constant Term
(4) Software
(5) Conclusions and Open Problems
(6) References

Large-Scale Matrix Equations

Large-Scale Algebraic Lyapunov and Riccati Equations

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale Matrix Equations Motivation

ADI for Lyapunov
Newton-ADI for AREs

Software
Conclusions and Open Problems References

Algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W .
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{\top} X+X A+W .
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

Large-Scale Matrix Equations

Large-Scale Algebraic Lyapunov and Riccati Equations

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale Matrix Equations Motivation

ADI for Lyapunov
Newton-ADI for AREs

Software
Conclusions and Open Problems References

Algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W .
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{T} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale Matrix Equations Motivation

ADI for Lyapuno
Newton-ADI for AREs

Software
Conctusions and Open Problems

References

Algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W .
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{T} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} S\right.$ for FEM),
- G, W low-rank with $G, W \in\left\{B B^{T}, C^{T} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Peter Benner

Large-Scale Matrix Equations Motivation

ADI for Lyapuno
Newton-ADI for AREs

Software
Conctusions and Open Problems References

Algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W .
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{\top} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} S\right.$ for FEM $)$,
- G, W low-rank with $G, W \in\left\{B B^{\top}, C^{\top} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Peter Benner

Large-Scale Matrix Equations

Algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{T} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} S\right.$ for FEM $)$,
- G, W low-rank with $G, W \in\left\{B B^{T}, C^{T} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Large-Scale Matrix Equations

Algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{T} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} S\right.$ for FEM $)$,
- G, W low-rank with $G, W \in\left\{B B^{T}, C^{T} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Large-Scale Matrix Equations

Low-Rank Approximation

Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:

- Linear 1D heat equation with point control,
- $\Omega=[0,1]$,
- FEM discretization using linear B-splines,
- $h=1 / 100 \Longrightarrow n=101$.

Idea: $X=X^{\top} \geq 0 \Longrightarrow$

$$
X=Z Z^{T}=\sum_{k=1}^{n} \lambda_{k} z_{k} z_{k}^{T} \approx Z^{(r)}\left(Z^{(r)}\right)^{T}=\sum_{k=1}^{r} \lambda_{k} z_{k} z_{k}^{T}
$$

Large-Scale Matrix Equations

Low-Rank Approximation

- $h=1 / 100 \Longrightarrow n=101$.

$$
X=Z Z^{T}=\sum_{k=1}^{n} \lambda_{k} z_{k} z_{k}^{T} \approx Z^{(r)}\left(Z^{(r)}\right)^{T}=\sum_{k=1}^{r} \lambda_{k} z_{k} z_{k}^{T}
$$

\Longrightarrow Goal: compute $Z^{(r)} \in \mathbb{R}^{n \times r}$ directly w/o ever forming X !

Motivation

Linear-quadratic Optimal Control

Peter Benner

Large-Scale Matrix Equations Motivation ADI for Lyapunov Newton-ADI for AREs

Software
Conclusions and Open Problems References

Numerical solution of linear-quadratic optimal control problem for parabolic PDEs via Galerkin approach, spatial FEM discretization \rightsquigarrow

LQR Problem (finite-dimensional)

$\operatorname{Min} \mathcal{J}(u)=\frac{1}{2} \int_{0}^{\infty}\left(y^{\top} Q y+u^{T} R u\right) d t \quad$ for $u \in \mathcal{L}_{2}\left(0, \infty ; \mathbb{R}^{m}\right)$,
subject to $M \dot{x}=-S x+B u, \quad x(0)=x_{0}, \quad y=C x$, with stiffness $S \in \mathbb{R}^{n \times n}$, mass $M \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$.

Solution of finite-dimensional LQR problem: feedback control

$$
u_{*}(t)=-B^{\top} X_{*} x(t)=:-K_{*} x(t),
$$

where $X_{*}=X_{*}^{\top} \geq 0$ is the unique stabilizing ${ }^{1}$ solution of the ARE

$$
0=\mathcal{R}(X):=C^{\top} C+A^{\top} X+X A-X B B^{\top} X,
$$

with $A:=-M^{-1} S, B:=M^{-1} B R^{-\frac{1}{2}}, C:=C Q^{-\frac{1}{2}}$

Motivation

Linear-quadratic Optimal Control

Peter Benner

Large-Scale Matrix Equations Motivation ADI for Lyapunov Newton-ADI for AREs

Software
Conclusions and Open Problems

References

Numerical solution of linear-quadratic optimal control problem for parabolic PDEs via Galerkin approach, spatial FEM discretization \rightsquigarrow

LQR Problem (finite-dimensional)

$\operatorname{Min} \mathcal{J}(u)=\frac{1}{2} \int_{0}^{\infty}\left(y^{\top} Q y+u^{T} R u\right) d t \quad$ for $u \in \mathcal{L}_{2}\left(0, \infty ; \mathbb{R}^{m}\right)$,
subject to $M \dot{x}=-S x+B u, \quad x(0)=x_{0}, \quad y=C x$, with stiffness $S \in \mathbb{R}^{n \times n}$, mass $M \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$.

Solution of finite-dimensional LQR problem: feedback control

$$
u_{*}(t)=-B^{\top} X_{*} x(t)=:-K_{*} x(t),
$$

where $X_{*}=X_{*}^{\top} \geq 0$ is the unique stabilizing ${ }^{1}$ solution of the ARE

$$
0=\mathcal{R}(X):=C^{T} C+A^{T} X+X A-X B B^{T} X,
$$

with $A:=-M^{-1} S, B:=M^{-1} B R^{-\frac{1}{2}}, C:=C Q^{-\frac{1}{2}}$.

Motivation

Model Reduction by Balanced Truncation

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale
Matrix Equations Motivation
ADI for Lyapunov
Newton-ADI for AREs

Software
Conclusions and Open Problems

References
$6 / 35$

Linear, Time-Invariant (LTI) Systems

$$
\Sigma:\left\{\begin{array}{rlrl}
\dot{x}(t) & =A x+B u, & & A \in \mathbb{R}^{n \times n}, \\
y(t) & =C x+D \in \mathbb{R}^{n \times m}, \\
y & & C \in \mathbb{R}^{p \times n}, & D \in \mathbb{R}^{p \times m} .
\end{array}\right.
$$

(A, B, C, D) is a realization of Σ (nonunique).

Motivation

Model Reduction by Balanced Truncation

Peter Benner

Large-Scale Matrix Equations Motivation ADI for Lyapunov Newton-ADI for AREs

Software
Conclusions and Open Problems References

Linear, Time-Invariant (LTI) Systems

(A, B, C, D) is a realization of Σ (nonunique).

Model Reduction Based on Balancing

Given $P, Q \in \mathbb{R}^{n \times n}$ symmetric positive definite (spd), and a contragredient transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$,

$$
T P T^{T}=T^{-T} Q T^{-1}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right), \quad \sigma_{1} \geq \ldots \geq \sigma_{n} \geq 0
$$

Balancing Σ w.r.t. P, Q :

$$
\Sigma \equiv(A, B, C, D) \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right) \equiv \Sigma
$$

Motivation

Model Reduction by Balanced Truncation

Model Reduction Based on Balancing

Given $P, Q \in \mathbb{R}^{n \times n}$ symmetric positive definite (spd), and a contragredient transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$,

$$
T P T^{T}=T^{-T} Q T^{-1}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right), \quad \sigma_{1} \geq \ldots \geq \sigma_{n} \geq 0
$$

Balancing Σ w.r.t. P, Q :

$$
\Sigma \equiv(A, B, C, D) \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right) \equiv \Sigma
$$

For Balanced Truncation: $P / Q=$ controllability/observability Gramian of Σ, i.e., for asymptotically stable systems, P, Q solve dual Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0 .
$$

Motivation

Model Reduction by Balanced Truncation

Peter Benner

Large-Scale Matrix Equations Motivation

ADI for Lyapuno Newton-ADI for AREs

Software
Conclusions and Open Problems References

Basic Model Reduction Procedure

(1) Given $\Sigma \equiv(A, B, C, D)$ and balancing (w.r.t. given P, Q spd) transformation $T \in \mathbb{R}^{n \times n}$ nonsingular, compute

$$
\begin{aligned}
(A, B, C, D) & \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right) \\
& =\left(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right],\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right], D\right)
\end{aligned}
$$

(2) Truncation \rightsquigarrow reduced-order model:

$$
(\hat{A}, \hat{B}, \hat{C}, \hat{D})=\left(A_{11}, B_{1}, C_{1}, D\right) .
$$

Motivation

Model Reduction by Balanced Truncation

Basic Model Reduction Procedure

(1) Given $\Sigma \equiv(A, B, C, D)$ and balancing (w.r.t. given P, Q spd) transformation $T \in \mathbb{R}^{n \times n}$ nonsingular, compute

$$
\begin{aligned}
(A, B, C, D) & \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right) \\
& =\left(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],\left[\begin{array}{c}
B_{1} \\
B_{2}
\end{array}\right],\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right], D\right)
\end{aligned}
$$

(2) Truncation \rightsquigarrow reduced-order model:

$$
(\hat{A}, \hat{B}, \hat{C}, \hat{D})=\left(A_{11}, B_{1}, C_{1}, D\right) .
$$

Motivation

Model Reduction by Balanced Truncation

Peter Benner

Large-Scale Matrix Equations Motivation

ADI for Lyapunov
Newton-ADI for AREs

Software
Conclusions and Open Problems References

Implementation: SR Method

(1) Given Cholesky (square) or (low-rank approximation to) full-rank (maybe rectangular, "thin") factors of P, Q

$$
P=S^{T} S, \quad Q=R^{T} R
$$

(2) Compute SVD

$$
S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{cc}
\Sigma_{1} & \\
& \Sigma_{2}
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T} \\
V_{2}^{T}
\end{array}\right]
$$

(3) Set

$$
W=R^{T} V_{1} \Sigma_{1}^{-1 / 2}, \quad V=S^{T} U_{1} \Sigma_{1}^{-1 / 2}
$$

(4) Reduced-order model is

$$
(\hat{A}, \hat{B}, \hat{C}, \hat{D}):=\left(W^{T} A V, W^{T} B, C V, D\right) \quad\left(\equiv\left(A_{11}, B_{1}, C_{1}, D\right) .\right)
$$

ADI Method for Lyapunov Equations

Background

ADI Iteration

$$
\text { If } H, V \text { spd } \Rightarrow \exists p_{k}, k=1,2, \ldots \text { such that }
$$

$$
\begin{aligned}
u_{0} & =0 \\
\left(H+p_{k} I\right) u_{k-\frac{1}{2}} & =\left(p_{k} I-V\right) u_{k-1}+s \\
\left(V+p_{k} I\right) u_{k} & =\left(p_{k} I-H\right) u_{k-\frac{1}{2}}+s
\end{aligned}
$$

converges to $u \in \mathbb{R}^{n}$ solving $A u=s$.

ADI Method for Lyapunov Equations

Background

$$
\begin{aligned}
u_{0} & =0 \\
\left(H+p_{k} I\right) u_{k-\frac{1}{2}} & =\left(p_{k} I-V\right) u_{k-1}+s \\
\left(V+p_{k} I\right) u_{k} & =\left(p_{k} I-H\right) u_{k-\frac{1}{2}}+s
\end{aligned}
$$

converges to $u \in \mathbb{R}^{n}$ solving $A u=s$.

ADI Method for Lyapunov Equations

Motivation

ADI iteration for the Lyapunov equation

$$
\begin{aligned}
P_{0} & =0 \\
\left(A+p_{k} I\right) X_{k-\frac{1}{2}} & =-W-P_{k-1}\left(A^{T}-p_{k} I\right) \\
\left(A+p_{k} I\right) X_{k}^{\top} & =-W-X_{k-\frac{1}{2}}^{T}\left(A^{T}-p_{k} I\right)
\end{aligned}
$$

Low-Rank ADI for Lyapunov equations

- For $A \in \mathbb{R}^{n \times n}$ stable, $B \in \mathbb{R}^{n \times m}(w \ll n)$, consider Lyapunov equation

$$
A X+X A^{T}=-B B^{T} .
$$

- ADI Iteration:
[Wachspress 1988]

$$
\begin{aligned}
\left(A+p_{k} I\right) X_{k-\frac{1}{2}} & =-B B^{T}-X_{k-1}\left(A^{T}-p_{k} I\right) \\
\left(A+\overline{p_{k}} I\right) X_{k}{ }^{T} & =-B B^{T}-X_{k-\frac{1}{2}}\left(A^{T}-\overline{p_{k}} I\right)
\end{aligned}
$$

with parameters $p_{k} \in \mathbb{C}^{-}$and $p_{k+1}=\overline{p_{k}}$ if $p_{k} \notin \mathbb{R}$.

- For $X_{0}=0$ and proper choice of $p_{k}: \lim _{k \rightarrow \infty} X_{k}=X$ superlinear.
- Re-formulation using $X_{k}=Y_{k} Y_{k}^{T}$ yields iteration for $Y_{k} \ldots$

Low-Rank ADI for Lyapunov equations

- For $A \in \mathbb{R}^{n \times n}$ stable, $B \in \mathbb{R}^{n \times m}(w \ll n)$, consider Lyapunov equation

$$
A X+X A^{T}=-B B^{T}
$$

- ADI Iteration:
[WACHSPRESS 1988]

$$
\begin{aligned}
\left(A+p_{k} I\right) X_{k-\frac{1}{2}} & =-B B^{T}-X_{k-1}\left(A^{T}-p_{k} I\right) \\
\left(A+\overline{p_{k}} I\right) X_{k}^{T} & =-B B^{T}-X_{k-\frac{1}{2}}\left(A^{T}-\overline{p_{k}} I\right)
\end{aligned}
$$

with parameters $p_{k} \in \mathbb{C}^{-}$and $p_{k+1}=\overline{p_{k}}$ if $p_{k} \notin \mathbb{R}$.

- For $X_{0}=0$ and proper choice of $p_{k}: \lim _{k \rightarrow \infty} X_{k}=X$ superlinear.
- Re-formulation using $X_{k}=Y_{k} Y_{k}^{T}$ yields iteration for $Y_{k} \ldots$

Low-Rank ADI for Lyapunov equations

Lyapunov equation $0=A X+X A^{T}+B B^{T}$.

$$
\text { FOR } k=2,3, \ldots
$$

Setting $X_{k}=Y_{k} Y_{k}^{\top}$, some algebraic manipulations \Longrightarrow
Algorithm [Penzl '97/'00, Li/White '99/'02, B. 04, B./Li/Penzl '99/'08]

$$
V_{1} \leftarrow \sqrt{-2 \operatorname{Re}\left(p_{1}\right)}\left(A+p_{1} /\right)^{-1} B, \quad Y_{1} \leftarrow V_{1}
$$

$$
\begin{aligned}
& V_{k} \leftarrow \sqrt{\frac{\operatorname{Re}\left(p_{k}\right)}{\operatorname{Re}\left(P_{k-1}\right)}}\left(V_{k-1}-\left(p_{k}+\overline{p_{k-1}}\right)\left(A+p_{k} l\right)^{-1} V_{k-1}\right) \\
& Y_{k} \leftarrow\left[Y_{k-1} \quad V_{k}\right] \\
& Y_{k} \leftarrow \operatorname{rrlq}\left(Y_{k}, \tau\right) \quad \% \text { column compression }
\end{aligned}
$$

At convergence, $Y_{k_{\text {max }}} Y_{k_{\max }}^{\top} \approx X$, where (without column compression)

$$
Y_{k_{\max }}=\left[\begin{array}{lll}
V_{1} & \ldots & V_{k_{\max }}
\end{array}\right], \quad V_{k}=\square \in \mathbb{C}^{n \times m} .
$$

Note: Implementation in real arithmetic possible by combining two steps.

Low-Rank ADI for Lyapunov equations

Lyapunov equation $0=A X+X A^{T}+B B^{T}$.

$$
\text { FOR } k=2,3, \ldots
$$

Setting $X_{k}=Y_{k} Y_{k}^{\top}$, some algebraic manipulations \Longrightarrow
Algorithm [Penzl '97/'00, Li/White '99/'02, B. 04, B./Li/Penzl '99/'08]

$$
V_{1} \leftarrow \sqrt{-2 \operatorname{Re}\left(p_{1}\right)}\left(A+p_{1} I\right)^{-1} B, \quad Y_{1} \leftarrow V_{1}
$$

$$
\begin{aligned}
& V_{k} \leftarrow \sqrt{\frac{\operatorname{Re}\left(p_{k}\right)}{\operatorname{Re}\left(p_{k-1}\right)}}\left(V_{k-1}-\left(p_{k}+\overline{p_{k-1}}\right)\left(A+p_{k} I\right)^{-1} V_{k-1}\right) \\
& Y_{k} \leftarrow\left[\begin{array}{ll}
& Y_{k-1} \\
V_{k}
\end{array}\right] \\
& Y_{k} \leftarrow \operatorname{rrlq}\left(Y_{k}, \tau\right) \quad \% \text { column compression }
\end{aligned}
$$

At convergence, $Y_{k_{\text {max }}} Y_{k_{\max }}^{T} \approx X$, where (without column compression)

$$
Y_{k_{\max }}=\left[\begin{array}{lll}
V_{1} & \ldots & V_{k_{\max }}
\end{array}\right], \quad V_{k}=\rrbracket \in \mathbb{C}^{n \times m}
$$

Note: Implementation in real arithmetic possible by combining two steps.

Numerical Results

Optimal Cooling of Steel Profiles

- Mathematical model: boundary control for linearized 2D heat equation.

$$
\begin{aligned}
c \cdot \rho \frac{\partial}{\partial t} x & =\lambda \Delta x, \quad \xi \in \Omega \\
\lambda \frac{\partial}{\partial n} x & =\kappa\left(u_{k}-x\right), \quad \xi \in \Gamma_{k}, 1 \leq k \leq 7, \\
\frac{\partial}{\partial n} x & =0, \quad \xi \in \Gamma_{7} . \\
\Longrightarrow m=7, p & =6 .
\end{aligned}
$$

- FEM Discretization, different models for initial mesh ($n=371$), $1,2,3,4$ steps of mesh refinement \Rightarrow $n=1357,5177,20209,79841$.

Source: Physical model: courtesy of Mannesmann/Demag.
Math. model: Tröltzsch/Unger 1999/2001, Penzl 1999, Saak 2003.

Numerical Results

Optimal Cooling of Steel Profiles

- Solve dual Lyapunov equations needed for balanced truncation, i.e.,

$$
A P M^{T}+M P A^{T}+B B^{T}=0, \quad A^{T} Q M+M^{T} Q A+C^{T} C=0
$$

for 79, 841. Note: $m=7, p=6$.

- 25 shifts chosen by Penzl's heuristic from 50/25 Ritz values of A of largest/smallest magnitude, no column compression performed.
- New version in MESS (Matrix Equations Sparse Solvers) requires no factorization of mass matrix!
- Computations done on Core2Duo at 2.8 GHz with 3GB RAM and 32Bit-MATLAB®R.

Recent Numerical Results
Scaling / Mesh Independence
Computations by Martin Köhler

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale
Matrix Equations
ADI for Lyapunov
LR-ADI
Factored
Galerkin-ADI Iteration

Newton-ADI for AREs

Software

- $A \in \mathbb{R}^{n \times n} \equiv \mathrm{FDM}$ matrix for 2D heat equation on $[0,1]^{2}$ (LyAPACK benchmark demo_11, $m=1$).
- 16 shifts chosen by Penzl's heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
- Computations using 2 dual core Intel Xeon 5160 with 16 GB RAM.

Recent Numerical Results

Recent Numerical Results

Scaling / Mesh Independence

Computations by Martin Köhler

Note: for $\mathrm{n}=1,000,000$, first sparse LU needs $\sim 1,100$ sec., using UMFPACK this reduces to 30 sec .

- $A \in \mathbb{R}^{n \times n} \equiv F D M$ matrix for 2D heat equation on $[0,1]^{2}$ (LyAPACK benchmark demo_l1, $m=1$).
- 16 shifts chosen by Penzl's heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
- Computations using 2 dual core Intel Xeon 5160 with 16 GB RAM.

Factored Galerkin-ADI Iteration

Lyapunov equation $0=A X+X A^{T}+B B^{T}$

Projection-based methods for Lyapunov equations with $A+A^{T}<0$:
(1) Compute orthonormal basis range $(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^{n}, \operatorname{dim} \mathcal{Z}=r$.
(2) Set $\hat{A}:=Z^{T} A Z, \hat{B}:=Z^{T} B$.
(3) Solve small-size Lyapunov equation $\hat{A} \hat{X}+\hat{X} \hat{A}^{T}+\hat{B} \hat{B}^{T}=0$.
(9) Use $X \approx Z \hat{X} Z^{T}$.

Examples:

- Krylov subspace methods, i.e., for $m=1$:

$$
\mathcal{Z}=\mathcal{K}(A, B, r)=\operatorname{span}\left\{B, A B, A^{2} B, \ldots, A^{r-1} B\right\}
$$

[SaAd '90, Jaimoukha/Kasenally '94, Jbilou '02-'08].

- K-PIK [Simoncini '07],

$$
\mathcal{Z}=\mathcal{K}(A, B, r) \cup \mathcal{K}\left(A^{-1}, B, r\right)
$$

Factored Galerkin-ADI Iteration

Lyapunov equation $0=A X+X A^{T}+B B^{T}$

Projection-based methods for Lyapunov equations with $A+A^{T}<0$:
(1) Compute orthonormal basis range $(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^{n}, \operatorname{dim} \mathcal{Z}=r$.
(2) Set $\hat{A}:=Z^{T} A Z, \hat{B}:=Z^{T} B$.
(3) Solve small-size Lyapunov equation $\hat{A} \hat{X}+\hat{X} \hat{A}^{T}+\hat{B} \hat{B}^{T}=0$.
(9) Use $X \approx Z \hat{X} Z^{T}$.

Examples:

- Krylov subspace methods, i.e., for $m=1$:

$$
\mathcal{Z}=\mathcal{K}(A, B, r)=\operatorname{span}\left\{B, A B, A^{2} B, \ldots, A^{r-1} B\right\}
$$

[SaAd '90, Jaimoukha/Kasenally '94, Jbilou '02-'08].

- K-PIK [Simoncini '07],

$$
\mathcal{Z}=\mathcal{K}(A, B, r) \cup \mathcal{K}\left(A^{-1}, B, r\right)
$$

Factored Galerkin-ADI Iteration

Lyapunov equation $0=A X+X A^{T}+B B^{T}$

Projection-based methods for Lyapunov equations with $A+A^{T}<0$:
(1) Compute orthonormal basis range $(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^{n}, \operatorname{dim} \mathcal{Z}=r$.
(2) Set $\hat{A}:=Z^{T} A Z, \hat{B}:=Z^{T} B$.
(3) Solve small-size Lyapunov equation $\hat{A} \hat{X}+\hat{X} \hat{A}^{T}+\hat{B} \hat{B}^{T}=0$.
(9) Use $X \approx Z \hat{X} Z^{T}$.

Examples:

- ADI subspace [B./R.-C. Li/Truhar '08]:

$$
\mathcal{Z}=\operatorname{colspan}\left[\begin{array}{lll}
V_{1}, & \ldots, & V_{r}
\end{array}\right]
$$

Note:
(1) ADI subspace is rational Krylov subspace [J.-R. Li/White '02].

2 Similar approach: ADI-preconditioned global Arnoldi method [JBilou '08].

Factored Galerkin-ADI Iteration

Numerical examples

Peter Benner

Large-Scale Matrix Equations

FEM semi-discretized control problem for parabolic PDE:

- optimal cooling of rail profiles,
- $n=20,209, m=7, p=6$.

Good ADI shifts

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).

Computations by Jens Saak.

Factored Galerkin-ADI Iteration

Numerical examples

Peter Benner

Large-Scale Matrix Equations

ADI for Lyapunov
LR-ADI
Factored
Galerkin-ADI
Iteration
Newton-ADI for AREs

Software
Conclusions and Open Problems

References

FEM semi-discretized control problem for parabolic PDE:

- optimal cooling of rail profiles,
- $n=20,209, m=7, p=6$.

Bad ADI shifts

CPU times: 368 s (projection every 5th ADI step) vs. 1207 s (no projection).

Factored Galerkin-ADI Iteration

Numerical examples: optimal cooling of rail profiles, $n=79,841, m=7, p=6$.

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale Matrix Equations

ADI for Lyapuno
LR-ADI
Factored
Galerkin-ADI
Iteration
Newton-ADI for AREs

Software
Conclusions and Open Problems References
$16 / 35$

MESS w/o Galerkin projection and column compression

Rank of solution factors: 532 / 426
MESS with Galerkin projection and column compression

Rank of solution factors: 269 / 205

Newton-ADI for AREs
Newton's Method for AREs [Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale Matrix Equations ADI for Lyapuno Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to LQR Problem
Galerkin-
Newton-ADI
Numerical
Results
Quadratic ADI for AREs
High-Rank W

Software

Conclusions and Open Problems References

- Consider $0=\mathcal{R}(X)=C^{T} C+A^{T} X+X A-X B B^{T} X$.
- Frechét derivative of $\mathcal{R}(X)$ at X :

$$
\mathcal{R}_{X}^{\prime}: Z \rightarrow\left(A-B B^{T} X\right)^{T} Z+Z\left(A-B B^{T} X\right) .
$$

- Newton-Kantorovich method:

$$
X_{j+1}=X_{j}-\left(\mathcal{R}_{X_{j}}^{\prime}\right)^{-1} \mathcal{R}\left(X_{j}\right), \quad j=0,1,2, \ldots
$$

Newton's method (with line search) for AREs

$$
\text { FOR } j=0,1, \ldots
$$

(1) $A_{j} \leftarrow A-B B^{\top} X_{j}=: A-B K_{j}$.
(2) Solve the Lyapunov equation

$$
A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(X_{j}\right)
$$

(3) $X_{j+1} \leftarrow X_{j}+t_{j} N_{j}$.

END FOR j
$17 / 35$

Newton-ADI for AREs

Newton's Method for AREs [Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

Large-Scale
Matrix Equations
ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-AD
Application to LQR Problem
Gaterkin= Newton-ADI
Numerical Results Quadratic ADI for AREs High-Rank W Software

Conclusions and Open Problems References

- Consider $0=\mathcal{R}(X)=C^{T} C+A^{T} X+X A-X B B^{T} X$.
- Frechét derivative of $\mathcal{R}(X)$ at X :

$$
\mathcal{R}_{X}^{\prime}: Z \rightarrow\left(A-B B^{T} X\right)^{T} Z+Z\left(A-B B^{T} X\right)
$$

- Newton-Kantorovich method:

$$
X_{j+1}=X_{j}-\left(\mathcal{R}_{X_{j}}^{\prime}\right)^{-1} \mathcal{R}\left(X_{j}\right), \quad j=0,1,2, \ldots
$$

Newton's method (with line search) for AREs

$$
\text { FOR } j=0,1, \ldots
$$

(1) $A_{j} \leftarrow A-B B^{\top} X_{j}=: A-B K_{j}$.
(2) Solve the Lyapunov equation $\quad A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(X_{j}\right)$.
(3) $X_{j+1} \leftarrow X_{j}+t_{j} N_{j}$.

END FOR j

Newton-ADI for AREs

Newton's Method for AREs [Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

Large-Scale
Matrix Equations
ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to LQR Problem
Galerkin-Newton-ADI
Numerical
Results
Quadratic ADI for AREs
High-Rank W Software

Conclusions and Open Problems References

- Consider $0=\mathcal{R}(X)=C^{T} C+A^{T} X+X A-X B B^{T} X$.
- Frechét derivative of $\mathcal{R}(X)$ at X :

$$
\mathcal{R}_{X}^{\prime}: Z \rightarrow\left(A-B B^{T} X\right)^{T} Z+Z\left(A-B B^{T} X\right)
$$

- Newton-Kantorovich method:

$$
X_{j+1}=X_{j}-\left(\mathcal{R}_{X_{j}}^{\prime}\right)^{-1} \mathcal{R}\left(X_{j}\right), \quad j=0,1,2, \ldots
$$

Newton's method (with line search) for AREs

$$
\text { FOR } j=0,1, \ldots
$$

(1) $A_{j} \leftarrow A-B B^{T} X_{j}=: A-B K_{j}$.
(2) Solve the Lyapunov equation $A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(X_{j}\right)$.

- $X_{j+1} \leftarrow X_{j}+t_{j} N_{j}$.

END FOR j

Newton-ADI for AREs

Newton's Method for AREs [Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

- Consider $0=\mathcal{R}(X)=C^{T} C+A^{T} X+X A-X B B^{T} X$.
- Frechét derivative of $\mathcal{R}(X)$ at X :

$$
\mathcal{R}_{X}^{\prime}: Z \rightarrow\left(A-B B^{T} X\right)^{T} Z+Z\left(A-B B^{T} X\right)
$$

- Newton-Kantorovich method:

$$
X_{j+1}=X_{j}-\left(\mathcal{R}_{X_{j}}^{\prime}\right)^{-1} \mathcal{R}\left(X_{j}\right), \quad j=0,1,2, \ldots
$$

Newton's method (with line search) for AREs
FOR $j=0,1, \ldots$
(1) $A_{j} \leftarrow A-B B^{T} X_{j}=: A-B K_{j}$.
(c) Solve the Lyapunov equation $A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(X_{j}\right)$.
($X_{j+1} \leftarrow X_{j}+t_{j} N_{j}$.
END FOR j

Factored Galerkin-ADI Iteration

Properties and Implementation

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale
Matrix Equations
ADI for Lyapunov
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to LQR Problem
Galerkin-Newton-ADI
Numerical Results
Quadratic ADI for AREs
High-Rank W
Software
Conclusions and Open Problems References

- Convergence for K_{0} stabilizing:
- $A_{j}=A-B K_{j}=A-B B^{\top} X_{j}$ is stable $\forall j \geq 0$.
- $\lim _{j \rightarrow \infty}\left\|\mathcal{R}\left(X_{j}\right)\right\|_{F}=0$ (monotonically).
- $\lim _{j \rightarrow \infty} X_{j}=X_{*} \geq 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration:
linear systems with dense, but "sparse+low rank" coefficient matrix A_{j} :

- $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$
\left(A-B K_{j}+p_{k}^{(j)} I\right)^{-1}=\left(I_{n}+\left(A+p_{k}^{(j)} I\right)^{-1} B\left(I_{m}-K_{j}\left(A+p_{k}^{(j)} I\right)^{-1} B\right)^{-1} K_{j}\right)\left(A+p_{k}^{(j)} I\right)^{-1} .
$$

- BUT: $X=X^{T} \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1) / 2$ unknowns!

Factored Galerkin-ADI Iteration

Properties and Implementation

- Convergence for K_{0} stabilizing:
- $A_{j}=A-B K_{j}=A-B B^{T} X_{j}$ is stable $\forall j \geq 0$.
- $\lim _{j \rightarrow \infty}\left\|\mathcal{R}\left(X_{j}\right)\right\|_{F}=0$ (monotonically).
- $\lim _{j \rightarrow \infty} X_{j}=X_{*} \geq 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_{j} :

- $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:
$\left(A-B K_{j}+p_{k}^{(j)} \mid\right)^{-1}=\left(I_{n}+\left(A+p_{k}^{(j)} \mid\right)^{-1} B\left(I_{m}-K_{j}\left(A+p_{k}^{(j)} \mid\right)^{-1} B\right)^{-1} K_{j}\right)\left(A+p_{k}^{(j)} \mid\right)^{-1}$
- BUT: $X=X^{T} \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1) / 2$ unknowns!

Factored Galerkin-ADI Iteration

Properties and Implementation

- Convergence for K_{0} stabilizing:
- $A_{j}=A-B K_{j}=A-B B^{T} X_{j}$ is stable $\forall j \geq 0$.
- $\lim _{j \rightarrow \infty}\left\|\mathcal{R}\left(X_{j}\right)\right\|_{F}=0$ (monotonically).
- $\lim _{j \rightarrow \infty} X_{j}=X_{*} \geq 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_{j} :

- $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$
\left(A-B K_{j}+p_{k}^{(j)} I\right)^{-1}=\left(I_{n}+\left(A+p_{k}^{(j)} I\right)^{-1} B\left(I_{m}-K_{j}\left(A+p_{k}^{(j)} I\right)^{-1} B\right)^{-1} K_{j}\right)\left(A+p_{k}^{(j)} I\right)^{-1} .
$$

- BUT: $X=X^{T} \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1) / 2$ unknowns!

Factored Galerkin-ADI Iteration

Properties and Implementation

- Convergence for K_{0} stabilizing:
- $A_{j}=A-B K_{j}=A-B B^{T} X_{j}$ is stable $\forall j \geq 0$.
- $\lim _{j \rightarrow \infty}\left\|\mathcal{R}\left(X_{j}\right)\right\|_{F}=0$ (monotonically).
- $\lim _{j \rightarrow \infty} X_{j}=X_{*} \geq 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_{j} :

- $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$
\left(A-B K_{j}+p_{k}^{(j)} I\right)^{-1}=\left(I_{n}+\left(A+p_{k}^{(j)} I\right)^{-1} B\left(I_{m}-K_{j}\left(A+p_{k}^{(j)} I\right)^{-1} B\right)^{-1} K_{j}\right)\left(A+p_{k}^{(j)} I\right)^{-1} .
$$

- BUT: $X=X^{T} \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1) / 2$ unknowns!

Low-Rank Newton-ADI for AREs

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale Matrix Equations ADI for Lyapuno

Newton-ADI for

 AREsLow-Rank
Newton-ADI

$$
A_{j}^{T} \underbrace{\left(X_{j}+N_{j}\right)}_{=X_{j+1}}+\underbrace{\left(X_{j}+N_{j}\right)}_{=X_{j+1}} A_{j}=\underbrace{-C^{T} C-X_{j} B B^{T} X_{j}}_{=:-W_{j} W_{j}^{T}}
$$

Application to LQR Problem
Galerkin-
Newton-ADI
Numerical
Results
Quadratic ADI for AREs
Highi-Rank W

Software

Conclusions and Open Problems

References

Re-write Newton's method for AREs

$$
\begin{gathered}
A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(X_{j}\right) \\
\Longleftrightarrow
\end{gathered}
$$

Set $X_{j}=Z_{j} Z_{j}^{T}$ for $\operatorname{rank}\left(Z_{j}\right) \ll n \Longrightarrow$

$$
A_{j}^{T}\left(Z_{j+1} Z_{j+1}^{T}\right)+\left(Z_{j+1} Z_{j+1}^{T}\right) A_{j}=-W_{j} W_{j}^{T}
$$

Factored Newton Iteration [B./Li/Penzl 1999/2008]

Solve Lyapunov equations for Z_{j+1} directly by factored ADI iteration and use 'sparse + low-rank' structure of A_{j}.

Low-Rank Newton-ADI for AREs

$$
\text { Set } X_{j}=Z_{j} Z_{j}^{\top} \text { for } \operatorname{rank}\left(Z_{j}\right) \ll n \Longrightarrow
$$

$$
A_{j}^{T}\left(Z_{j+1} Z_{j+1}^{T}\right)+\left(Z_{j+1} Z_{j+1}^{T}\right) A_{j}=-W_{j} W_{j}^{T}
$$

Re-write Newton's method for AREs

$$
\begin{gathered}
A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(X_{j}\right) \\
\Longleftrightarrow \\
A_{j}^{T} \underbrace{\left(X_{j}+N_{j}\right)}_{=X_{j+1}}+\underbrace{\left(X_{j}+N_{j}\right)}_{=X_{j+1}} A_{j}=\underbrace{-C^{\top} C-X_{j} B B^{\top} X_{j}}_{=--W_{j} W_{j}^{\top}}
\end{gathered}
$$

Factored Newton Iteration [B./Li/Penzl 1999/2008]

Solve Lyapunov equations for Z_{j+1} directly by factored ADI iteration and use 'sparse + low-rank' structure of A_{j}.

Application to LQR Problem

Feedback Iteration

Optimal feedback

$$
K_{*}=B^{T} X_{*}=B^{T} Z_{*} Z_{*}^{T}
$$

can be computed by direct feedback iteration:

- jth Newton iteration:

$$
K_{j}=B^{T} Z_{j} Z_{j}^{T}=\sum_{k=1}^{k_{\max }}\left(B^{T} V_{j, k}\right) V_{j, k}^{T} \xrightarrow{j \rightarrow \infty} \quad K_{*}=B^{T} Z_{*} Z_{*}^{T}
$$

- K_{j} can be updated in ADI iteration, no need to even form Z_{j}, need only fixed workspace for $K_{j} \in \mathbb{R}^{m \times n}$!

Basic ideas

- Hybrid method of Galerkin projection methods for AREs [Jaimoukha/Kasenally '94, Jbilou '06, Heyouni/Jbilou '09] and Newton-ADI, i.e., use column space of current Newton iterate for projection, solve projected ARE, and prolongate. - Independence of good parameters observed for Galerkin-ADI applied to Lyapunov equations \rightsquigarrow fix ADI parameters for all Newton iterations.

Newton-ADI for AREs

Galerkin-Newton-ADI

Basic ideas

- Hybrid method of Galerkin projection methods for AREs [Jaimoukha/Kasenally '94, Jbilou '06, Heyouni/Jbilou '09] and Newton-ADI, i.e., use column space of current Newton iterate for projection, solve projected ARE, and prolongate.
- Independence of good parameters observed for Galerkin-ADI applied to Lyapunov equations \rightsquigarrow fix ADI parameters for all Newton iterations.

Numerical Results

LQR Problem for 2D Geometry

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale Matrix Equations

ADI for Lyapunov
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to
LQR Probtem
Galerkin-
Newton-ADI
Numerical
Results
Quadratic ADI for AREs
High-Rank W
Software
Conclusions and Open Problems

References

- Linear 2D heat equation with homogeneous Dirichlet boundary and point control/observation.
- FD discretization on uniform 150×150 grid.
- $n=22.500, m=p=1,10$ shifts for ADI iterations.
- Convergence of large-scale matrix equation solvers:

Numerical Results
 LQR Problem for 2D Geometry

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale Matrix Equations

ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to
LQR Problem
Galerkin-
Newton-ADI
Numerical
Results
Quadratic ADI for AREs
High-Rank W
Software
Conclusions and Open Problems

References
$23 / 35$

- FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (LyAPACK benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and 64 Bit-MATLAB.

Peter Benner

Large-Scale Matrix Equations

ADI for Lyapuno
Newton-ADI for AREs
Low-Rank Newton-ADI
Application to LQR Probitem
Galerkin-
Newton-ADI
Numerical Results Quadratic ADI for AREs High-Rank W Software

Conclusions and Open Problems

References
$23 / 35$

- FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (LyAPACK benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and $64 \mathrm{Bit-MATLAB}$.

Newton-ADI

step	rel. change	rel. residual	ADI
1	1	$9.99 \mathrm{e}-01$	200
2	$9.99 \mathrm{e}-01$	$3.41 \mathrm{e}+01$	23
3	$5.25 \mathrm{e}-01$	$6.37 \mathrm{e}+00$	20
4	$5.37 \mathrm{e}-01$	$1.52 \mathrm{e}+00$	20
5	$7.03 \mathrm{e}-01$	$2.64 \mathrm{e}-01$	23
6	$5.57 \mathrm{e}-01$	$1.56 \mathrm{e}-02$	23
7	$6.59 \mathrm{e}-02$	$6.30 \mathrm{e}-05$	23
8	$4.02 \mathrm{e}-04$	$9.68 \mathrm{e}-10$	23
9	$8.45 \mathrm{e}-09$	$1.09 \mathrm{e}-11$	23
10	$1.52 \mathrm{e}-14$	$1.09 \mathrm{e}-11$	23

CPU time: 76.9 sec .

Peter Benner

Large-Scale Matrix Equations

ADI for Lyapunov
Newton-ADI for AREs
Low-Rank Newton-AD
Application to LQR Problem
Gaterkin-Newton-AD
Numerical Results
Quadratic ADI for AREs High-Rank W Software

Conclusions and Open Problems

References
$23 / 35$

- FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (Lyapack benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and $64 \mathrm{Bit-MATLAB}$.

Newton-ADI

step	rel. change	rel. residual	ADI
1	1	$9.99 \mathrm{e}-01$	200
2	$9.99 \mathrm{e}-01$	$3.41 \mathrm{e}+01$	23
3	$5.25 \mathrm{e}-01$	$6.37 \mathrm{e}+00$	20
4	$5.37 \mathrm{e}-01$	$1.52 \mathrm{e}+00$	20
5	$7.03 \mathrm{e}-01$	$2.64 \mathrm{e}-01$	23
6	$5.57 \mathrm{e}-01$	$1.56 \mathrm{e}-02$	23
7	$6.59 \mathrm{e}-02$	$6.30 \mathrm{e}-05$	23
8	$4.02 \mathrm{e}-04$	$9.68 \mathrm{e}-10$	23
9	$8.45 \mathrm{e}-09$	$1.09 \mathrm{e}-11$	23
10	$1.52 \mathrm{e}-14$	$1.09 \mathrm{e}-11$	23

Newton-Galerkin-ADI

step	rel. change	rel. residual	ADI
1	1	$3.56 \mathrm{e}-04$	20
2	$5.25 \mathrm{e}-01$	$6.37 \mathrm{e}+00$	10
3	$5.37 \mathrm{e}-01$	$1.52 \mathrm{e}+00$	6
4	$7.03 \mathrm{e}-01$	$2.64 \mathrm{e}-01$	10
5	$5.57 \mathrm{e}-01$	$1.57 \mathrm{e}-02$	10
6	$6.59 \mathrm{e}-02$	$6.30 \mathrm{e}-05$	10
7	$4.03 \mathrm{e}-04$	$9.79 \mathrm{e}-10$	10
8	$8.45 \mathrm{e}-09$	$1.43 \mathrm{e}-15$	10

Peter Benner

Large-Scale Matrix Equations ADI for Lyapunov

Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to
LQR Probtem
Galerkin-
Newton-ADI
Numerical
Results
Quadratic ADI
for AREs
High-Rank W
Software
Conclusions and Open Problems

References

- FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (LyAPACK benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and 64Bit-MATLAB.

Peter Benner

Large-Scale Matrix Equations

ADI for Lyapuno
Newton-ADI for AREs
Low-Rank Newton-ADI
Application to LQR Probtem
Galerkin-
Newton-ADI
Numerical
Results
Quadratic ADI for AREs High-Rank W Software

Conclusions and Open Problems

References

- FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (LyAPACK benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and $64 \mathrm{Bit-MATLAB}$.

Newton-ADI

step	rel. change	rel. residual	ADI
1	1	$9.99 \mathrm{e}-01$	200
2	$9.99 \mathrm{e}-01$	$3.56 \mathrm{e}+01$	60
3	$3.11 \mathrm{e}-01$	$3.72 \mathrm{e}+00$	39
4	$2.88 \mathrm{e}-01$	$9.62 \mathrm{e}-01$	40
5	$3.41 \mathrm{e}-01$	$1.68 \mathrm{e}-01$	45
6	$1.22 \mathrm{e}-01$	$5.25 \mathrm{e}-03$	42
7	$3.88 \mathrm{e}-03$	$2.96 \mathrm{e}-06$	47
8	$2.30 \mathrm{e}-06$	$6.09 \mathrm{e}-13$	47

CPU time: 185.9 sec.

Peter Benner

Large-Scale Matrix Equations

ADI for Lyapunov
Newton-ADI for AREs
Low-Rank Newton-AD
Application to LQR Probtam
Galerkin-
Newton-AD
Numerical Results
Quadratic ADI for AREs High-Rank W Software

Conclusions and Open Problems

References

- FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (LyAPACK benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and $64 \mathrm{Bit}-\mathrm{MATLAB}$.

Newton-ADI

step	rel. change	rel. residual	ADI
1	1	$9.99 \mathrm{e}-01$	200
2	$9.99 \mathrm{e}-01$	$3.56 \mathrm{e}+01$	60
3	$3.11 \mathrm{e}-01$	$3.72 \mathrm{e}+00$	39
4	$2.88 \mathrm{e}-01$	$9.62 \mathrm{e}-01$	40
5	$3.41 \mathrm{e}-01$	$1.68 \mathrm{e}-01$	45
6	$1.22 \mathrm{e}-01$	$5.25 \mathrm{e}-03$	42
7	$3.88 \mathrm{e}-03$	$2.96 \mathrm{e}-06$	47
8	$2.30 \mathrm{e}-06$	$6.09 \mathrm{e}-13$	47

CPU time: 185.9 sec .

Newton-Galerkin-ADI

step	rel. change	rel. residual	ADI it.
1	1	$1.78 \mathrm{e}-02$	35
2	$3.11 \mathrm{e}-01$	$3.72 \mathrm{e}+00$	15
3	$2.88 \mathrm{e}-01$	$9.62 \mathrm{e}-01$	20
4	$3.41 \mathrm{e}-01$	$1.68 \mathrm{e}-01$	15
5	$1.22 \mathrm{e}-01$	$5.25 \mathrm{e}-03$	20
6	$3.89 \mathrm{e}-03$	$2.96 \mathrm{e}-06$	15
7	$2.30 \mathrm{e}-06$	$6.14 \mathrm{e}-13$	20

Peter Benner

Large-Scale Matrix Equations ADI for Lyapunov

Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to
LQR Probtem
Galerkin-
Newton-ADI
Numerical
Results
Quadratic ADI
for AREs
High-Rank W
Software
Conclusions and Open Problems

References

- FDM for 2D heat/convection-diffusion equations on $[0,1]^{2}$ (LyAPACK benchmarks, $m=p=1) \rightsquigarrow$ symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, $n=10,000$.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66 GHz with 4 GB RAM and $64 \mathrm{Bit-MATLAB}$.

Test system:
INTEL Xeon 5160 3.00GHz ; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS; stopping tolerance: 10^{-10}

Numerical Results

LQR Problem for 3D Geometry

ADI for
Lyapunov and Riccati Equations

Peter Benner

Large-Scale Matrix Equations ADI for Lyapunov

Newton-ADI for

 AREsLow-Rank
Newton-ADI
Application to LQR Problem Galerkin-Newton-ADI
Numerical Results Quadratic ADI for AREs High-Rank W Software

Conclusions and Open Problems References

Newton-ADI

NWT	rel. change	rel. residual	ADI
1	$1.0 \cdot 10^{0}$	$9.3 \cdot 10^{-01}$	100
2	$3.7 \cdot 10^{-02}$	$9.6 \cdot 10^{-02}$	94
3	$1.4 \cdot 10^{-02}$	$1.1 \cdot 10^{-03}$	98
4	$3.5 \cdot 10^{-04}$	$1.0 \cdot 10^{-07}$	97
5	$6.4 \cdot 10^{-08}$	$1.3 \cdot 10^{-10}$	97
6	$7.5 \cdot 10^{-16}$	$1.3 \cdot 10^{-10}$	97

CPU time: 4805.8 sec .

NG-ADI	inner $=5$, outer $=1$		
NWT	rel. change	rel. residual	ADI
1	$1.0 \cdot 10^{0}$	$5.0 \cdot 10^{-11}$	80
	CPU time:	497.6 sec.	

NG-ADI inner=1, outer=1

NWT	rel. change	rel. residual	ADI
1	$1.0 \cdot 10^{0}$	$7.4 \cdot 10^{-11}$	71

CPU time: 856.6 sec .
NG-ADI inner= 0 , outer $=1$

NWT	rel. change	rel. residual	ADI
1	$1.0 \cdot 10^{0}$	$6.5 \cdot 10^{-13}$	100
	CPU time:	506.6 sec.	

INTEL Xeon 5160 3.00GHz ; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS; stopping tolerance: 10^{-10}

Scaling of CPU times / Mesh Independence

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale
Matrix Equations
ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to LQR Problem
Galerkin-
Newton-AD
Numerical
Results
Quadratic ADI for AREs
High-Rank W
Software
Conclusions and Open Problems References

$$
\begin{aligned}
\partial_{t} x(\xi, t) & =\Delta x(\xi, t) & & \text { in } \Omega \\
\partial_{\nu} x & =b(\xi) \cdot u(t)-x & & \text { on } \Gamma_{c} \\
\partial_{\nu} x & =-x & & \text { on } \partial \Omega \backslash \Gamma_{c}
\end{aligned}
$$

$$
x(\xi, 0)=1
$$

$(1,1)$

Note:
Here $b(\xi)=4\left(1-\xi_{2}\right) \xi_{2}$ for $\xi \in \Gamma_{c}$ and 0 otherwise, thus $\forall t \in \mathbb{R}_{>0}$, we have $u(t) \in \mathbb{R}$.

Scaling of CPU times / Mesh Independence

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale
Matrix Equations
ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to
LQR Problem
Galerkin-
Numerical
Results
Quadratic ADI for AREs
High-Rank W
Software
Conclusions and Open Problems References

$$
\begin{aligned}
\partial_{t} x(\xi, t) & =\Delta x(\xi, t) & & \text { in } \Omega \\
\partial_{\nu} x & =b(\xi) \cdot u(t)-x & & \text { on } \Gamma_{c} \\
\partial_{\nu} x & =-x & & \text { on } \partial \Omega
\end{aligned}
$$

$$
x(\xi, 0)=1
$$

Note:

Here $b(\xi)=4\left(1-\xi_{2}\right) \xi_{2}$ for $\xi \in \Gamma_{c}$ and 0 otherwise, thus $\forall t \in \mathbb{R}_{>0}$, we have $u(t) \in \mathbb{R}$.

$$
\Rightarrow B_{h}=M_{\Gamma, h} \cdot b
$$

Scaling of CPU times / Mesh Independence

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale
Matrix Equations
ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to LQR Problem
Galerkin-Newton-AD
Numerical
Results
Quadratic ADI for AREs
High-Rank W
Software
Conclusions and Open Problems References

$$
\begin{aligned}
\partial_{t} x(\xi, t) & =\Delta x(\xi, t) & & \text { in } \Omega \\
\partial_{\nu} x & =b(\xi) \cdot u(t)-x & & \text { on } \Gamma_{c} \\
\partial_{\nu} x & =-x & & \text { on } \partial \Omega \backslash \Gamma_{c}
\end{aligned}
$$

Consider: output equation $y=C x$, where

$$
\begin{aligned}
C: \mathcal{L}^{2}(\Omega) & \rightarrow \mathbb{R} \\
x(\xi, t) & \mapsto y(t)=\int_{\Omega} x(\xi, t) d \xi .
\end{aligned}
$$

Scaling of CPU times / Mesh Independence

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale
Matrix Equations
ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to LQR Problem
Galerkin-Newton-AD
Numerical
Results
Quadratic ADI for AREs
High-Rank W
Software
Conclusions and Open Problems

References

$$
\begin{aligned}
\partial_{t} x(\xi, t) & =\Delta x(\xi, t) & & \text { in } \Omega \\
\partial_{\nu} x & =b(\xi) \cdot u(t)-x & & \text { on } \Gamma_{c} \\
\partial_{\nu} x & =-x & & \text { on } \partial \Omega
\end{aligned}
$$

$$
x(\xi, 0)=1
$$

Consider: output equation $y=C x$, where

$$
\begin{aligned}
C: \begin{array}{ll}
\mathcal{L}^{2}(\Omega) & \rightarrow \mathbb{R} \\
x(\xi, t) & \mapsto y(t)=\int_{\Omega} x(\xi, t) d \xi,
\end{array} \Rightarrow C_{h}=\underline{1} \cdot M_{h} .
\end{aligned}
$$

Scaling of CPU times / Mesh Independence

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale
Matrix Equations
ADI for Lyapuno
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to
LQR Problem
Galerkin-
Numerical
Results
Quadratic ADI for AREs
High-Rank W

Software

Conclusions and Open Problems References

$$
\mathcal{J}(u)=\int_{0}^{\infty} y^{2}(t)+u^{2}(t) d t
$$

Numerical Results

Scaling of CPU times / Mesh Independence

Simplified Low Rank Newton-Galerkin ADI

- generalized state space form implementation
- Penzl shifts $(16 / 50 / 25)$ with respect to initial matrices
- projection acceleration in every outer iteration step
- projection acceleration in every 5-th inner iteration step

Test system:

INTEL Xeon 5160 @ 3.00 GHz; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS (romulus) stopping criterion tolerances: 10^{-10}

Numerical Results

Scaling of CPU times / Mesh Independence

Computation Times

discretization level	problem size	time in seconds
3	81	$4.87 \cdot 10^{-2}$
4	289	$2.81 \cdot 10^{-1}$
5	1089	$5.87 \cdot 10^{-1}$
6	4225	2.63
7	16641	$2.03 \cdot 10^{+1}$
8	66049	$1.22 \cdot 10^{+2}$
9	263169	$1.05 \cdot 10^{+3}$
10	1050625	$1.65 \cdot 10^{+4}$
11	4198401	$1.35 \cdot 10^{+5}$

Test system:
INTEL Xeon 5160 @ 3.00 GHz; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS (romulus) stopping criterion tolerances: 10^{-10}

Numerical Results

Scaling of CPU times / Mesh Independence

Test system:

INTEL Xeon 5160 @ 3.00 GHz; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS (romulus) stopping criterion tolerances: 10^{-10}

Quadratic ADI for AREs

$0=\mathcal{R}(X)=A^{T} X+X A-X B B^{T} X+W$

Peter Benner

Large-Scale Matrix Equations ADI for Lyapuno

Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to
LQR Problem
Gaterkin-
Newton-AD
Numerical
Results
Quadratic ADI
for AREs
High-Rank W
Software
Conctusions and Open Problems

References

Basic QADI iteration
[WONG/BALAKRISHNAN ET AL. '05-'08]

$$
\begin{aligned}
\left(\left(A-B B^{T} X_{k}\right)^{T}+p_{k} I\right) X_{k+\frac{1}{2}} & =-W-X_{k}\left(\left(A-p_{k} I\right)\right. \\
\left(\left(A-B B^{T} X_{k+\frac{1}{2}}^{T}\right)^{T}+p_{k} I\right) X_{k+1} & =-W-X_{k+\frac{1}{2}}^{T}\left(A-p_{k} I\right)
\end{aligned}
$$

Derivation of complicated Cholesky factor version, but requires square and invertible Cholesky factors.

Idea of low-rank Galerkin-QADI [B./SAAK '09]

$$
\begin{aligned}
& V_{1} \leftarrow \sqrt{-2 \operatorname{Re}\left(p_{1}\right)}\left(A-B\left(B^{T} Y_{0}\right) Y_{0}^{T}+p_{1} I\right)^{-T} B, \quad Y_{1} \leftarrow V_{1} \\
& \text { FOR } k=2,3, \ldots \\
& \\
& \quad V_{k} \leftarrow V_{k-1}-\left(p_{k}+\overline{p_{k-1}}\right)\left(A-B\left(B^{T} Y_{k-1}\right) Y_{k-1}^{\top}+p_{k} l\right)^{-T} V_{k-1} \\
& \\
& \quad Y_{k} \leftarrow\left[\begin{array}{cc}
Y_{k-1} & \sqrt{\frac{\operatorname{Re}\left(p_{k}\right)}{\operatorname{Re}\left(p_{k-1}\right)}} V_{k}
\end{array}\right] \\
& \quad Y_{k} \leftarrow \operatorname{rrlq}\left(Y_{k}, \tau\right) \quad \% \text { column compression } \\
& \\
& \text { If desired, project ARE onto range }\left(Y_{k}\right) \text {, solve and prolongate. }
\end{aligned}
$$

Quadratic ADI for AREs

$0=\mathcal{R}(X)=A^{T} X+X A-X B B^{T} X+W$

$$
\begin{aligned}
\left(\left(A-B B^{T} X_{k}\right)^{T}+p_{k} I\right) X_{k+\frac{1}{2}} & =-W-X_{k}\left(\left(A-p_{k} I\right)\right. \\
\left(\left(A-B B^{T} X_{k+\frac{1}{2}}^{T}\right)^{T}+p_{k} I\right) X_{k+1} & =-W-X_{k+\frac{1}{2}}^{T}\left(A-p_{k} I\right)
\end{aligned}
$$

Derivation of complicated Cholesky factor version, but requires square and invertible Cholesky factors.

Idea of low-rank Galerkin-QADI

$$
V_{1} \leftarrow \sqrt{-2 \operatorname{Re}\left(p_{1}\right)}\left(A-B\left(B^{T} Y_{0}\right) Y_{0}^{T}+p_{1} I\right)^{-T} B, \quad Y_{1} \leftarrow V_{1}
$$

FOR $k=2,3, \ldots$

$$
\begin{aligned}
& V_{k} \leftarrow V_{k-1}-\left(p_{k}+\overline{p_{k-1}}\right)\left(A-B\left(B^{T} Y_{k-1}\right) Y_{k-1}^{T}+p_{k} I\right)^{-T} V_{k-1} \\
& Y_{k} \leftarrow\left[\begin{array}{cc}
Y_{k-1} & \sqrt{\frac{\operatorname{Re}\left(p_{k}\right)}{\operatorname{Re}\left(p_{k-1}\right)}} V_{k}
\end{array}\right] \\
& Y_{k} \leftarrow \operatorname{rrlq}\left(Y_{k}, \tau\right) \quad \% \text { column compression }
\end{aligned}
$$

$$
\text { If desired, project ARE onto range }\left(Y_{k}\right) \text {, solve and prolongate. }
$$

AREs with High-Rank Constant Term

Peter Benner

Large-Scale Matrix Equations ADI for Lyapunov

Low-Rank
Newton-AD
Application to LQR Problem
Galerkin-
Newton-ADI
Numerical
Results
Quadratic ADI for AREs
High-Rank W Software

Conclusions and Open Problems

References

28/35

Consider ARE

$$
0=\mathcal{R}(X)=W+A^{T} X+X A-X B B^{T} X
$$

with $\operatorname{rank}(W) \nless n$, e.g., stabilization of flow problems described by Navier-Stokes eqns. requires solution of

$$
0=\mathcal{R}(X)=M_{h}-S_{h}^{T} X M_{h}-M_{h} X S_{h}-M_{h} X B_{h} B_{h}^{T} X M_{h},
$$

where $M_{h}=$ mass matrix of FE velocity test functions.
Example: von Kármán vortex street, $\mathrm{Re}=500$
uncontrolled:

controlled using ARE:

AREs with High-Rank Constant Term

Solution: remove W from r.h.s. of Lyapunov eqns. in Newton-ADI

One step of Newton-Kleinman iteration for ARE:

$$
A_{j}^{T} \underbrace{\left(X_{j}+N_{j}\right)}_{=X_{j+1}}+X_{j+1} A_{j}=-W-\underbrace{\left(X_{j} B\right)}_{=K_{j}^{T}} \underbrace{B^{T} X_{j}}_{=K_{j}} \quad \text { for } j=1,2, \ldots
$$

Subtract two consecutive equations \Longrightarrow

$$
A_{j}^{T} N_{j}+N_{j} A_{j}=-N_{j-1}^{T} B B^{T} N_{j-1} \quad \text { for } j=1,2, \ldots
$$

See [Banks/Ito '91, B./Hernández/Pastor '03, Morris/Navasca '05] for details and applications of this variant.

But: need $B^{T} N_{0}=K_{1}-K_{0}$!

Assuming K_{0} is known, need to compute K_{1}.

AREs with High-Rank Constant Term

Solution: remove W from r.h.s. of Lyapunov eqns. in Newton-ADI

Large-Scale
Matrix Equations
ADI for Lyapunov
Newton-ADI for AREs
Low-Rank
Newton-ADI
Application to LQR Probtem
Galerkin-
Newton-ADI
Numerical
Resuits
Quadratic ADI for AREs
High-Rank W Software

Conclusions and Open Problems References

Solution idea:

$$
\begin{aligned}
K_{1} & =B^{T} X_{1} \\
& =B^{T} \int_{0}^{\infty} e^{\left(A-B K_{0}\right)^{T} t}\left(W+K_{0}^{T} K_{0}\right) e^{\left(A-B K_{0}\right) t} d t \\
& =\int_{0}^{\infty} g(t) d t \approx \sum_{\ell=0}^{N} \gamma_{\ell} g\left(t_{\ell}\right),
\end{aligned}
$$

where $g(t)=\left(\left(e^{\left(A-B K_{0}\right) t} B\right)^{T}\left(W+K_{0}^{T} K_{0}\right)\right) e^{\left(A-B K_{0}\right) t}$.
[BorgGgatrd/Stoyanov '08]:
evaluate $g\left(t_{\ell}\right)$ using ODE solver applied to $\dot{x}=\left(A-B K_{0}\right) x+$ adjoint eqn.

AREs with High-Rank Constant Term

Solution: remove W from r.h.s. of Lyapunov eqns. in Newton-ADI

Better solution idea:
(related to frequency domain POD [Willcox/Peraire '02])

$$
\begin{aligned}
K_{1} & =B^{T} X_{1} \\
& =B^{T} \cdot \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\jmath \omega I_{n}-A_{0}\right)^{-H}\left(W+K_{0}^{T} K_{0}\right)\left(\jmath \omega I_{n}-A_{0}\right)^{-1} d \omega \\
& =\int_{-\infty}^{\infty} f(\omega) d \omega \approx \sum_{\ell=0}^{N} \gamma_{\ell} f\left(\omega_{\ell}\right)
\end{aligned}
$$

where $\quad f(\omega)=\left(-\left(\left(\jmath \omega I_{n}+A_{0}\right)^{-1} B\right)^{T}\left(W+K_{0}^{T} K_{0}\right)\right)\left(\jmath \omega I_{n}-A_{0}\right)^{-1}$.
Evaluation of $f\left(\omega_{\ell}\right)$ requires

- 1 sparse LU decmposition (complex!),
- $2 m$ forward/backward solves,
- m sparse and $2 m$ low-rank matrix-vector products.

Use adaptive quadrature with high accuracy, e.g. Gauß-Kronrod (MATLAB's quadgk).

Software

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale Matrix Equations ADI for Lyapuno

Newton-ADI for AREs

Software
Conclusions and Open Problems

References

Lyapack

MATLAB toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

Software

Lyapack

[Penzl 2000]
MATLAB toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

MESS - Matrix Equations Sparse Solvers [Saak/Mena/B. 2008]

- Extended and revised version of LyAPaCK.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods).
- Many algorithmic improvements:
- new ADI parameter selection,
- column compression based on RRQR,
- more efficient use of direct solvers,
- treatment of generalized systems without factorization of the mass matrix.
- C version CMESS under development (Martin Köhler).

Software

Lyapack

[Penzl 2000]
MATLAB toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

MESS - Matrix Equations Sparse Solvers [Saak/Mena/B. 2008]

- Extended and revised version of LyAPACK.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods).
- Many algorithmic improvements:
- new ADI parameter selection,
- column compression based on RRQR ,
- more efficient use of direct solvers,
- treatment of generalized systems without factorization of the mass matrix.
- C version CMESS under development (Martin Köhler).

Software

Lyapack

MATLAB toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

MESS - Matrix Equations Sparse Solvers [Saak/Mena/B. 2008]

- Extended and revised version of LyAPACK.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods).
- Many algorithmic improvements:
- new ADI parameter selection,
- column compression based on RRQR,
- more efficient use of direct solvers,
- treatment of generalized systems without factorization of the mass matrix.
- C version CMESS under development (Martin Köhler).

Conclusions and Open Problems

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale Matrix Equations ADI for Lyapunor

Newton-ADI for AREs

Software
Conclusions and Open Problems

- Galerkin projection can significantly accelerate ADI iteration for Lyapunov equations.
- Low-rank Galerkin-QADI may become a viable alternative to Newton-ADI.
- High-rank constant terms in ARE can be handled using quadrature rules.
- Software is available in MATLAB toolbox Lyapack and its successor MESS.

Conclusions and Open Problems

- Galerkin projection can significantly accelerate ADI iteration for Lyapunov equations.
- Low-rank Galerkin-QADI may become a viable alternative to Newton-ADI.
- High-rank constant terms in ARE can be handled using quadrature rules.
- Software is available in MATLAB toolbox Lyapack and its successor MESS.
- To-Do list:
- computation of stabilizing initial guess. (If hierarchical grid structure is available, a multigrid approach is possible, other approaches based on "cheaper" matrix equations under development.)
- Implementation of coupled Riccati solvers for LQG controller design and balancing-related model reduction.

References

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale Matrix Equations ADI for Lyapunov

Newton-ADI for AREs

Software
Conclusions and Open Problems

References
(1) H.T. Banks and K. Ito.

A numerical algorithm for optimal feedback gains in high dimensional linear quadratic regulator problems. SIAM J. Cont. Optim., 29(3):499-515, 1991.
(2) U. Baur and P. Benner.

Factorized solution of Lyapunov equations based on hierarchical matrix arithmetic.
Computing, 78(3):211-234, 2006.
(3) P. Benner.

Solving large-scale control problems.
IEEE Control Systems Magazine, 14(1):44-59, 2004.
4) P. Benner.

Contributions to the Numerical Solution of Algebraic Riccati Equations and Related Eigenvalue Problems.
Logos-Verlag, Berlin, Germany, 1997.
Also: Dissertation, Fakultät für Mathematik, TU Chemnitz-Zwickau, 1997.
5 P. Benner.
Editorial of special issue on "Large-Scale Matrix Equations of Special Type". Numer. Lin. Alg. Appl., 15(9):747-754, 2008.

6 P. Benner and R. Byers.
Step size control for Newton's method applied to algebraic Riccati equations.
In J.G. Lewis, editor, Proc. Fifth SIAM Conf. Appl. Lin. Alg., Snowbird, UT, pages 177-181. SIAM, Philadelphia, PA, 1994.
(7) P. Benner and R. Byers.

An exact line search method for solving generalized continuous-time algebraic Riccati equations.
IEEE Trans. Automat. Control, 43(1):101-107, 1998.
8 P. Benner, J.-R. Li, and T. Penzl.
Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems.
Numer. Lin. Alg. Appl., 15(9):755-777, 2008.
Reprint of unpublished manuscript, December 1999.

References

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale Matrix Equations

ADI for Lyapunov
Newton-ADI for AREs

Software
Conclusions and Open Problems

References
(9) P. Benner and J. Saak.

A Galerkin-Newton-ADI method for solving large-scale algebraic Riccati equations.
Preprint SPP1253-090, DFG Priority Programme 1253 " Optimization with Partial Differential Equations", January 2010.
Available at http://www.am.uni-erlangen.de/home/spp1253/wiki/images/2/28/Preprint-SPP1253-090.pdf
(10) P. Benner, R.-C. Li, and N. Truhar.

On the ADI method for Sylvester equations.
J. Comput. Appl. Math., 233:1035-1045, 2009.
(11) J. Borggaard and M. Stoyanov.

A reduced order solver for Lyapunov equations with high rank matrices
Proc. 18th Intl. Symp. Mathematical Theory of Network and Systems, MTNS 2008, 11 pages, 2008.
12 J. Burns, E. Sachs, and L. Zietsman.
Mesh independence of Kleinman-Newton iterations for Riccati equations on Hilbert space.
SIAM J. Control Optim., 47(5):2663-2692, 2008.
(13) L. Grasedyck

Nonlinear multigrid for the solution of large-scale Riccati equations in low-rank and \mathcal{H}-matrix format.
Numer. Lin. Alg. Appl., 15(9):779-807, 2008.
(14) L. Grasedyck, W. Hackbusch, and B.N. Khoromskij.

Solution of large scale algebraic matrix Riccati equations by use of hierarchical matrices.
Computing, 70:121-165, 2003.
(15) C.-H. Guo and A.J. Laub.

On a Newton-like method for solving algebraic Riccati equations.
SIAM J. Matrix Anal. Appl., 21(2):694-698, 2000.
(16) M. Heyouni and K. Jbilou.

An extended block Arnoldi algorithm for large-scale solutions of the continuous-time algebraic Riccati equation.
ETNA, 33:53-62, 2009.
17 I.M. Jaimoukha and E.M. Kasenally.
Krylov subspace methods for solving large Lyapunov equations. SIAM J. Numer. Anal., 31:227-251, 1994.

References

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale Matrix Equations ADI for Lyapunov Newton-ADI for AREs

Software
Conclusions and Open Problems

References

18 K. Jbilou
Block Krylov subspace methods for large continuous-time algebraic Riccati equations. Numer. Algorithms, 34:339-353, 2003.
(19) K. Jbilou.

An Arnoldi based algorithm for large algebraic Riccati equations.
Appl. Math. Lett., 19(5):437-444, 2006.
20 K. Jbilou
ADI preconditioned Krylov methods for large Lyapunov matrix equations.
Lin. Alg. Appl., 432(10):2473-2485, 2010.
21 D.L. Kleinman.
On an iterative technique for Riccati equation computations.
IEEE Trans. Automat. Control, AC-13:114-115, 1968.
22 P. Lancaster and L. Rodman,
The Algebraic Riccati Equation.
Oxford University Press, Oxford, 1995.
23 J.-R. Li and J. White.
Low rank solution of Lyapunov equations.
SIAM J. Matrix Anal. Appl., 24(1):260-280, 2002.
V. Mehrmann.

The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution.
Number 163 in Lecture Notes in Control and Information Sciences. Springer-Verlag, Heidelberg, July 1991.
25
T. Penzl.

A cyclic low rank Smith method for large sparse Lyapunov equations.
SIAM J. Sci. Comput., 21(4):1401-1418, 2000.

References

ADI for Lyapunov and Riccati Equations

Peter Benner

Large-Scale
Matrix Equations
ADI for Lyapunov
Newton-ADI for AREs

Software
Conclusions and Open Problems

References

26 T. Penzl.
Lyapack Users Guide.
Technical Report SFB393/00-33, Sonderforschungsbereich 393 Numerische Simulation auf massiv parallelen Rechnern, TU Chemnitz, 09107 Chemnitz, FRG, 2000.
Available from http://www.tu-chemnitz.de/sfb393/sfb00pr.html.
27 Y. Saad.
Numerical Solution of Large Lyapunov Equation.
In M.A. Kaashoek, J.H. van Schuppen, and A.C.M. Ran, editors, Signal Processing, Scattering, Operator Theory and Numerical Methods, pages 503-511. Birkhäuser, Basel, 1990.

28 J. Saak, H. Mena, and P. Benner.
Matrix Equation Sparse Solvers (MESS): a MATLAB Toolbox for the Solution of Sparse Large-Scale Matrix Equations.
In preparation.
29 V. Simoncini.
A new iterative method for solving large-scale Lyapunov matrix equations.
SIAM J. Sci. Comput., 29:1268-1288, 2007.
30 E.L. Wachspress.
Iterative solution of the Lyapunov matrix equation.
Appl. Math. Letters, 107:87-90, 1988.
(31) K. Willcox and J. Peraire.

Balanced model reduction via the proper orthogonal decomposition.
AIAA J., 40(11):2323, 2002.
(32)
N. Wong, V. Balakrishnan, C.-K. Koh, and T.S. Ng.

Two algorithms for fast and accurate passivity-preserving model order reduction.
IEEE Trans. CAD Integr. Circuits Syst., 25(10):2062-2075, 2006.
33
N. Wong and V. Balakrishnan.

Fast positive-real balanced truncation via quadratic alternating direction implicit iteration.
IEEE Trans. CAD Integr. Circuits Syst., 26(9):1725-1731, 2007.

