

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

Reduced Order Modeling and Optimization of CO₂ Methanation Reactors

XI. Workshop on Mathematical Modelling of Environmental and Life Sciences Problems

J<mark>ens Bremer, Pawan Goyal, Lihong Feng,</mark> Karsten Rätze, <u>Peter Benner</u>, Kai Sundmacher

Constanta (RO), October 12–16, 2016

Partners:

SSC PSE The Big Picture

Towards 100% Renewable Electricity

So and the Big Picture and the Big Picture and the second second

Towards 100% Renewable Electricity

🐼 🖙 PSE The Big Picture

Dynamics of Power Generation and Consumption in Germany (4.May - 12.May 2016)

🐼 \multimap PSE The Big Picture

Dynamics of Power Generation and Consumption in Germany (Possible Future Scenario)

Flexible storage processes to utilize volatile renewable electricity are crucial!

benner@mpi-magdeburg.mpg.dePeter Benner

Reduced Order Modeling and Optimization of CO₂ Methanation Reactors

\bigotimes **CSC PSE CO**₂-Methanation

- High energy density
- Use of available infrastructure
- Flexible

\bigotimes **CSC PSE CO**₂-Methanation

Modeling Approach

benner@mpi-magdeburg.mpg.dePeter Benner

So reactor Model

Modeling Approach

benner@mpi-magdeburg.mpg.dePeter Benner

Reduced Order Modeling and Optimization of CO₂ Methanation Reactors

So reactor Model

Governing Equations for 2D Pseudo-Homogenous Reactor Model

Mass Balance

$$\frac{\partial \rho_{\alpha}}{\partial t} = -\frac{v_z}{\varepsilon} \frac{\partial \rho_{\alpha}}{\partial z} + \frac{\mathcal{D}_{\mathsf{r},\mathsf{i}}^{\mathsf{eff}}}{\varepsilon} \left(\frac{\partial^2 \rho_{\alpha}}{\partial r^2} + \frac{1}{\mathsf{r}} \frac{\partial \rho_{\alpha}}{\partial r} \right) + \frac{1-\varepsilon}{\varepsilon} \tilde{M}_{\alpha} \sum_{\beta=1}^{3} \nu_{\alpha,\beta} \tilde{r}_{\beta}, \quad \alpha = 1 \dots 6$$

Energy Balance

$$\frac{\partial T}{\partial t} = \frac{1}{\left(\rho c_{\mathsf{p}}\right)_{\mathsf{eff}}} \left[-\rho c_{\mathsf{p}} v_{z} \frac{\partial T}{\partial z} + \lambda_{\mathsf{eff},\mathsf{r}} \left(\frac{\partial^{2} T}{\partial r^{2}} + \frac{1}{r} \frac{\partial T}{\partial r} \right) + (1 - \varepsilon) \sum_{\beta=1}^{3} \left(-\Delta_{\mathsf{R}} \tilde{H}_{\beta} \right) \tilde{r}_{j} \right]$$

Boundary Conditions (radial)

$$\frac{\partial \rho_{\alpha}}{\partial r} = 0, \quad \frac{\partial T}{\partial r} = 0 \quad \text{at } r = 0 \qquad \frac{\partial \rho_{\alpha}}{\partial r} = 0, \quad \frac{\partial T}{\partial r} = \frac{k_{\text{w}}}{\lambda_{\text{eff},\text{r}}} \left(T_{\text{c}} - T\right) \quad \text{at } r = r_{\text{T}}$$

benner@mpi-magdeburg.mpg.dePeter Benner

Reduced Order Modeling and Optimization of CO₂ Methanation Reactors

So reactor Model 😵 😵 😵

From PDAE to ODE/DAE via Finite Volume Method (FVM)

 $\mathbf{x}(t)$ - "diff. state vector" $\mathbf{w}(t)$ - "alg. state vector" $\mathbf{u}(t)$ - "control vector" \mathbf{f} - strongly nonlinear RHS

 $dim(\mathbf{x}) = 350 - 4000$ (depending on grid density)

Start-up Simulation

Start-Up Scenario - Temperature Distribution

CPU Time:

Start-up Simulation

Start-Up Scenario - Temperature Distribution

CPU Time:

Exemplary Illustration of Jacket Cooling Approach

Sc CSC PSE Optimal Control

Formulation

Start-Up Optimal Control Problem (OCP)

$$\begin{array}{ll} \max_{\mathbf{u}(t)} & \int_{t_0}^{t_f} X_{CO_2}(\mathbf{x}(t),\mathbf{u}(t)) \ dt \ + \ R(\mathbf{u}(t)), \ \Rightarrow \mbox{time optimal start-up} \\ {\rm s.t.} & \dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t),\mathbf{u}(t)), \quad \forall t \in [t_0 \ t_f], \ \Rightarrow \mbox{reactor model} \\ & \mathbf{x}(t_0) = \mathbf{x}_0, \\ & \mathbf{x}_{ub} \geq \mathbf{x} \geq \mathbf{x}_{lb}, \ \Rightarrow \mbox{reactor temperature bounds} \\ & \mathbf{u}_{ub} \geq \mathbf{u} \geq \mathbf{u}_{lb}, \ \Rightarrow \mbox{cooling at reactor jacket} \end{array}$$

Simultaneous optimization approach [Biegler et al.]: orthogonal collocation on finite elements \Rightarrow **large scale NLP** (above 100'000 variables)

Sc PSE Optimal Control

Computational Implementation of OCP

CasADi

A minimalistic Computer Algebra System (CAS) written in self-contained C++.

- MATLAB-like syntax "everything is a matrix".
- Use from C++, Python and **MATLAB**.
- C-code generation from all interfaces just-in-time compilation.
- "Smart interfaces" to numerical codes.

Sc PSE Optimal Control

Computational Implementation of OCP

CasADi

A minimalistic Computer Algebra System (CAS) written in self-contained C++.

- MATLAB-like syntax "everything is a matrix".
- Use from C++, Python and **MATLAB**.
- C-code generation from all interfaces just-in-time compilation.
- "Smart interfaces" to numerical codes.
 - NLP solvers: IPOPT, sIPOPT, KNITRO, ...
 - ~ Automatic generation of exact, sparse Hessians and Jacobians.
 - Integrators: CVODES, IDAS
 - ~ Access to **shooting methods** with automatic formulation of sensitivities.
 - Symbolic reformulation of DAE's.
 - \rightsquigarrow Sorting/scaling of variables and equations.
 - \rightsquigarrow Elimination of some or all algebraic states symbolically.

1D Results - One-Step Optimization with Insufficient Initialization

1D Results - Multi-Step Optimization

Sc PSE Optimal Control

2D Results - Objective and Control

benner@mpi-magdeburg.mpg.dePeter Benner

2D Results - Spatial Temperature Distribution

Background

• Need a fine spatial discretization to capture all important system dynamics.

 \rightsquigarrow a large number of ODE equations, e.g., $\mathcal{O}(10^3 {-} 10^5).$

Background

• Need a fine spatial discretization to capture all important system dynamics.

 \rightsquigarrow a large number of ODE equations, e.g., $\mathcal{O}(10^3-10^5)$.

But with such large-scale systems, these studies are **numerical inefficient**.

Background

• Need a fine spatial discretization to capture all important system dynamics.

 \rightsquigarrow a large number of ODE equations, e.g., $\mathcal{O}(10^3-10^5)$.

But with such large-scale systems, these studies are numerical inefficient.

• For example, practical controllers often require small number of equations (say, N = 10) due to

- real-time constraints,
- increasing fragility for larger N.

Background

Thus, we need surrogate models, having

- less number of equations, and
- desirable accuracy.

Background

Thus, we need surrogate models, having

- less number of equations, and
- desirable accuracy.

• Our approach is **Model Order Reduction** (MOR).

MOR Concept

• Consider the following ODE:

 $\dot{x}(t) = Ax(t) + f(x),$ $y(t) = L^{T}x(t).$

MOR Concept

• Consider the following ODE:

 $\dot{x}(t) = Ax(t) + f(x),$ $y(t) = L^T x(t).$

where

- $x \in \mathbb{R}^n$ are the system variables;
- y are the system output;
- *A*, *L*^T are constant matrices;
- *f* is a nonlinear function.

MOR Concept

• Consider the following ODE:

 $\dot{x}(t) = Ax(t) + f(x),$ $y(t) = L^{T}x(t).$

Reduced system (ROM)

$$\hat{\underline{\hat{x}}} = \hat{\underline{A}} \hat{\underline{x}} + \hat{f}$$

$$\hat{y} = \hat{\underline{\Gamma}} \hat{\underline{x}}$$

• such that
$$y \approx \hat{y}$$
.

• Construct the projection matrix V, such that $V^{T} \rightarrow \left\{ \begin{array}{c} V \\ \vdots \end{array} \right\} \approx \left[\begin{array}{c} A \\ \end{array} \right] V$ • The reduced-order system: \approx $\hat{\hat{\mathbf{x}}} = \hat{\mathbf{A}} \hat{\mathbf{x}} +$ $\hat{\mathbf{y}} = \hat{\mathbf{L}}^T \hat{\mathbf{x}}$ \hat{f}

• The quality of ROM depends on the choice of V.

- The quality of ROM depends on the choice of V.
- A common technique for nonlinear systems is proper orthogonal decomposition.

- The quality of ROM depends on the choice of V.
- A common technique for nonlinear systems is proper orthogonal decomposition.

Proper Orthogonal Decomposition (POD)

Take computed or experimental 'snapshots' of full model: $[x(t_1), x(t_2), \ldots, x(t_N)] := X$.

- The quality of ROM depends on the choice of V.
- A common technique for nonlinear systems is proper orthogonal decomposition.

Proper Orthogonal Decomposition (POD)

- Take computed or experimental 'snapshots' of full model: $[x(t_1), x(t_2), \ldots, x(t_N)] := X$.
- Perform SVD of snapshot matrix: $X = U \Sigma W^T$.

- The quality of ROM depends on the choice of V.
- A common technique for nonlinear systems is proper orthogonal decomposition.

Proper Orthogonal Decomposition (POD)

- Take computed or experimental 'snapshots' of full model: $[x(t_1), x(t_2), \ldots, x(t_N)] := X$.
- Perform SVD of snapshot matrix: $X = U\Sigma W^T$.
- Then, the projection matrix V = U(:, 1:r).

Computational Issue

• Observe the nonlinear term:

$$\hat{f} = V^T f = V^T f$$

■ Still, we need computations of the nonlinear function on the full grid. → no reduction in computations.

■ Therefore, we require (Discrete) Empirical Interpolation Method ((D)EIM).

So the Model Order Reduction

Discrete Empirical Interpolation Method (DEIM)

The idea is:

where

- '*T*' is a rectangular matrix, and
- the vector 'c' contains the nonlinear function evaluations at specific grid points.

A graphical representation

A graphical representation

A greedy algorithm to select the grid points (DEIM points) for the nonlinear function.

∞ ∞ ∞ № ■ Model Order Reduction

DEIM - Example

Consider a nonlinear function:

$$f(x,\mu) = (1-x) \cdot \sin(2\pi\mu(x+1)) \cdot e^{-(1+x)\mu}, \quad x \in [-1,1], \ \mu \in [1,2\pi].$$

DEIM - Example

Consider a nonlinear function:

$$f(x,\mu) = (1-x) \cdot \sin(2\pi\mu(x+1)) \cdot e^{-(1+x)\mu}, \quad x \in [-1,1], \ \mu \in [1,2\pi].$$

• We take 100 points on the grid and training sample: $\mu = 1: 0.2: 6.8$.

DEIM - Example

Consider a nonlinear function:

$$f(x,\mu) = (1-x) \cdot \sin(2\pi\mu(x+1)) \cdot e^{-(1+x)\mu}, \quad x \in [-1,1], \ \mu \in [1,2\pi].$$

 \blacksquare We take 100 points on the grid and training sample: $\mu=1:$ 0.2 : 6.8.

benner@mpi-magdeburg.mpg.dePeter Benner

Secure Reduced Reactor Model

Reactor Model State-Space Representaion

• Original system (FOM):

Sec PSE Reduced Reactor Model

POD-DEIM applied to the reactor model

POD-DEIM leads to the following system:

$$\begin{split} \dot{\mathbf{x}}_r &= \mathbf{Q}_A \mathbf{P}_A \mathbf{A}_1(\mathbf{x}^*) \, \mathbf{x}^* + \mathbf{V}^T \mathbf{A}_2 \, \mathbf{V} \mathbf{x}_r + \mathbf{Q}_B \mathbf{P}_B \mathbf{B}_1(\mathbf{x}^*) \, \mathbf{u}_1 + \mathbf{V}^T \mathbf{B}_2 \, \mathbf{u}_2 + \mathbf{Q}_f \mathbf{P}_f \mathbf{f}(\mathbf{x}^*) \\ \mathbf{y} &= \mathbf{L}^T \, \mathbf{x}^*. \qquad \text{with: } \mathbf{x}^* = \mathbf{V} \mathbf{x}_r \\ dim(\mathbf{x}_r) &<< dim(\mathbf{x}) \end{split}$$

- V from SVD of x snapshots (POD)
- **Q**_A from SVD of $A_1(x)x$ snapshots (DEIM)
- **Q**_B from SVD of $\mathbf{B}_1(\mathbf{x}) \mathbf{x}$ snapshots (DEIM)
- **Q**_f from SVD of f(x) snapshots (DEIM)

e.g., for
$$f(x)$$

SVD	$f_1(\mathbf{x}(t_1))$	$f_1(\mathbf{x}(t_2))$	$f_1(\mathbf{x}(t_3))$	···]
	$f_2(\mathbf{x}(t_1))$	$f_1(\mathbf{x}(t_2))$	$f_3(\mathbf{x}(t_3))$	
	$f_3(\mathbf{x}(t_1))$	$f_1(\mathbf{x}(t_2))$	$f_1(\mathbf{x}(t_3))$	
	:	:	:	·

Sec es Reduced Reactor Model

POD-DEIM applied to the reactor model

- The range of $x_{CO2} \in [0.7, 0.9]$.
- The range of $x_{H2} \in [0.1, 0.3]$.
- The range of $T_{cool} \in [500K, 700K]$.

- No. Training cases: 50
- No. Test cases: 20

Singular Value Decay

Secure Reduced Reactor Model

ROM vs. FOM - Continuous Operation Best Case

Security Reduced Reactor Model

ROM vs. FOM - Continuous Operation Best Case

Secure Reduced Reactor Model

ROM vs. FOM - Continuous Operation Worst Case

Seduced Reactor Model

ROM vs. FOM - Continuous Operation Worst Case

∞ ^{CSC} **PSE** Reduced Reactor Model

ROM vs. FOM - Start-Up Best Case

∞ CSC PSE Reduced Reactor Model

ROM vs. FOM - Start-Up Best Case

∞ CSC PSE Reduced Reactor Model

ROM vs. FOM - Start-Up Worst Case

Sec PSE Reduced Reactor Model

ROM vs. FOM - Start-Up Worst Case

∞ ^{CSC} **PSE** Reduced Reactor Model

ROM vs. FOM - Summary

model	no.	avg.	median of $arepsilon$ / %						
	states	CPU-time	$\bar{\varepsilon}_{\mathrm{CH4}}$	$\bar{\varepsilon}_{\mathrm{CO}}$	$\bar{\varepsilon}_{\mathrm{CO2}}$	$\bar{\varepsilon}_{\mathrm{H2O}}$	$\bar{\varepsilon}_{\mathrm{H2}}$	$\bar{\varepsilon}_{\mathrm{N2}}$	$\bar{\varepsilon}_{\mathrm{T}}$
FOM-S1	4375	19.5 s	-	-	-	-	-	-	-
ROM-S1	34	1.3s	1.16	2.06	0.84	1.12	0.88	0.22	0.02
FOM-S2	4375	39.8 s	-	-	-	-	-	-	-
ROM-S2	36	2.4 s	1.77	3.27	1.13	1.74	1.29	0.56	0.18

🚳 🚥 📭 Reduced Reactor Model

Potential of MOR in Dynamic Optimization

$$\begin{array}{ll} \max_{\mathbf{u}(t)} & \ldots, \\ \text{s.t.} & \dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \\ & \mathbf{x}(t_0) = \mathbf{x}_0, \\ & \vdots \end{array}$$

POD DEIM

Order of FOM: dim(x) = 350 - 5000Order of NLP: dim(x) = 35'000 - 500'000CPU time / memory usage: hours! / ---

 $\mathbf{u}(t)$ s.t. $\dot{\mathbf{x}}_r(t) = \mathbf{f}_r(\mathbf{x}_r(t), \mathbf{u}(t))$ $\mathbf{x}_r(t_0) = \mathbf{x}_{r,0}$ Order of ROM: $dim(\mathbf{x}_r) \approx 34 - 36$ Order of NLP: $dim(\mathbf{x}_r) \approx 3'400 - 3'600$ CPU time / memory usage: ??? / +++

max

. . . .

Summary and Outlook

• Optimal start-up control of a packed-bed methanation reactor is **feasible**.

• Optimal start-up control of a packed-bed methanation reactor is **feasible**.

POD-DEIM has been successfully applied to construct reduced systems.

Summary and Outlook

• Optimal start-up control of a packed-bed methanation reactor is **feasible**.

- **POD-DEIM** has been successfully applied to construct reduced systems.
- POD-DEIM can be seen as a **multi-purpose tool** for nonlinear-MOR.

- Optimal start-up control of a packed-bed methanation reactor is **feasible**.
- **POD-DEIM** has been successfully applied to construct reduced systems.
- POD-DEIM can be seen as a **multi-purpose tool** for nonlinear-MOR.
- Apply ROM to optimization studies and controller design (NMPC???).

- Optimal start-up control of a packed-bed methanation reactor is **feasible**.
- **POD-DEIM** has been successfully applied to construct reduced systems.
- POD-DEIM can be seen as a **multi-purpose tool** for nonlinear-MOR.
- Apply ROM to optimization studies and controller design (NMPC???).
- Adaptive ROM update within the **optimization** (**POD trust region concept???)**.

- Optimal start-up control of a packed-bed methanation reactor is **feasible**.
- **POD-DEIM** has been successfully applied to construct reduced systems.
- POD-DEIM can be seen as a **multi-purpose tool** for nonlinear-MOR.
- Apply ROM to optimization studies and controller design (NMPC???).
- Adaptive ROM update within the **optimization** (**POD trust region concept???**).
- Experimental validation of the reactor model.

- Optimal start-up control of a packed-bed methanation reactor is **feasible**.
- **POD-DEIM** has been successfully applied to construct reduced systems.
- POD-DEIM can be seen as a **multi-purpose tool** for nonlinear-MOR.
- Apply ROM to optimization studies and controller design (NMPC???).
- Adaptive ROM update within the **optimization** (**POD trust region concept???**).

Experimental validation of the reactor model. Thank you for your attention !!!

