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Parabolic Systems
Parabolic PDEs as distributed parameter systems

Given Hilbert spaces

X – state space,

U – control space,

Y – output space,

and linear operators

A : dom(A) ⊂ X → X ,
B : U → X ,
C : X → Y.

Linear Distributed Parameter System (DPS)

Σ :

{
ẋ = Ax + Bu,
y = Cx,

x(0) = x0 ∈ X ,

i.e., abstract evolution equation together with observation equation.
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Parabolic Systems
Examples

The state x = x(t, ξ) is a weak solution of a parabolic PDE with
(t, ξ) ∈ [0,T ]× Ω, Ω ⊂ Rd :

∂tx −∇(a(ξ).∇x) + b(ξ).∇x + c(ξ)x = Bpc(ξ)u(t), ξ ∈ Ω, t > 0

with initial and boundary conditions

α(ξ)x + β(ξ)∂ηx = Bbc(ξ)u(t), ξ ∈ ∂Ω, t ∈ [0,T ],
x(0, ξ) = x0(ξ) ∈ X , ξ ∈ Ω,

y(t) = C (ξ)x , ξ ∈ Ω, t ∈ [0,T ].

Bpc = 0 =⇒ boundary control problem
Bbc = 0 =⇒ point control problem
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Infinite-Dimensional Systems Theory

Assume

A generates C0-semigroup T(t) on X ;

(A,B) is exponentially stabilizable, i.e., there exists F : dom(A) 7→ U
such that A− BF generates an exponentially stable C0-semigroup;

(A,C) is exponentially detectable, i.e., there exists G : dom(A) 7→ U
such that A− GC generates an exponentially stable C0-semigroup;

B,C are finite-rank and bounded.

Then the system Σ(A,B,C ) has a transfer function

G = C(sI− A)−1B ∈ L∞.

If, in addition, A is exponentially stable, G is in the Hardy space H∞.

Weaker assumptions:
Σ(A,B,C) defines a nuclear Hankel operator

H : L2([0,∞),U)→ L2([0,∞),Y),

this allows for boundary control and observation!
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Robust Control
H∞ Control

Linear time-invariant systems (finite or infinite)

Σ :

 ẋ = Ax + B1w + B2u,
z = C1x + D11w + D12u,
y = C2x + D21w + D22u,

where A : dom(A) ⊂ X → X , etc.

x – states of the system,
w – exogenous inputs
u – control inputs,
z – performance outputs
y – measured outputs
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Robust Control
Transfer functions

Laplace transform =⇒ transfer function (in frequency domain)

G(s) =

[
G11(s) G12(s)

G21(s) G22(s)

]
≡

 A B1 B2

C1 D11 D12

C2 D21 D22

 .
where for x(0) = 0, Gij are the transfer functions

G11(s) = C1(sI− A)−1B1 + D11,
G12(s) = C1(sI− A)−1B2 + D12,
G21(s) = C2(sI− A)−1B1 + D21,
G22(s) = C2(sI− A)−1B2 + D22,

describing the transfer from inputs to outputs of Σ via

z(s) = G11(s)w(s) + G12(s)u(s),

y(s) = G21(s)w(s) + G22(s)u(s).
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Robust Control
The H∞-Optimization Problem

Consider closed-loop system,
where K(s) is an internally
stabilizing controller, i.e., K
stabilizes G for w ≡ 0.

G(s)
-

�

-

K(s)

-

u

w z

y
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Robust Control
The H∞-Optimization Problem

Consider closed-loop system,
where K(s) is an internally
stabilizing controller, i.e., K
stabilizes G for w ≡ 0.

G(s)
-

�

-

K(s)

-

u

w z

y

Goal:
find robust controller, i.e., K that minimizes error outputs

z =
(
G11 + G12K(I− G22K)−1G21

)
w =: F(G,K)w,

where F(G,K) is the linear fractional transformation of G, K.
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where F(G,K) is the linear fractional transformation of G, K.

H∞-optimal control problem:

min
K stabilizing

‖F(G,K)‖H∞ .
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u

w z

y

Goal:
find robust controller, i.e., K that minimizes error outputs

z =
(
G11 + G12K(I− G22K)−1G21

)
w =: F(G,K)w,

where F(G,K) is the linear fractional transformation of G, K.

H∞-suboptimal control problem:

For given constant γ > 0, find all internally stabilizing controllers
satisfying

‖F(G,K)‖H∞ < γ.
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Robust Control
Solution of the H∞-(Sub-)Optimal Control Problem

Simplifying assumptions
1 D11 = 0;

2 D22 = 0;

3 (A,B1) stabilizable, (C1,A) detectable;

4 (A,B2) stabilizable, (C2,A) detectable (=⇒ Σ internally
stabilizable);

5 D∗12 [ C1 D12 ] = [ 0 I ];

6

[
B1

D21

]
D∗21 =

[
0
I

]
.

Remark. 1.,2.,5.,6. only for notational convenience, 3. can be relaxed, but deri-

vations get even more complicated.
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Robust Control
Solution of the H∞-(Sub-)Optimal Control Problem

Theorem [Doyle/Glover/Khargonekar/Francis ’89, Van Keulen ’93]

Given the Assumptions 1.–6., there exists an admissible controller K(s) solving
the H∞-suboptimal control problem ⇐⇒

(i) There exists a solution X∞ = X∗∞ ≥ 0 to the operator Riccati equation

C∗1 C1 + A∗X + XA + X(γ−2B1B∗1 − B2B∗2 )X = 0, (1)

such that AX generates an exponentially stable C0 semigroup, where
AX := A + (γ−2B1B∗1 − B2B∗2 )X∞.

(ii) There exists a solution Y∞ = Y∗∞ ≥ 0 to the operator Riccati equation

B1B∗1 + AY + YA∗ + Y(γ−2C∗1 C1 − C∗2 C2)Y = 0, (2)

such that AY generates an exponentially stable C0 semigroup, where
AY := A + Y∞(γ−2C∗1 C1 − C∗2 C2).

(iii) γ2 > ρ(X∞Y∞).
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(ii) There exists a solution Y∞ = Y∗∞ ≥ 0 to the operator Riccati equation

B1B∗1 + AY + YA∗ + Y(γ−2C∗1 C1 − C∗2 C2)Y = 0, (2)

such that AY generates an exponentially stable C0 semigroup.

(iii) γ2 > ρ(X∞Y∞).

H∞-optimal control

Find minimal γ for which (i)–(iii) are satisfied  γ-iteration based on solving
(1)–(2) repeatedly for different γ.
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Robust Control
Solution of the H∞-(Sub-)Optimal Control Problem

H∞-(sub-)optimal controller

If (i)–(iii) hold, a suboptimal controller is given by

K̂(s) =

[
Â B̂

Ĉ 0

]
= Ĉ(sI− Â)−1B̂,

where for
Z∞ := (I− γ−2Y∞X∞)−1,

Â := A + (γ−2B1B∗1 − B2B∗2)X∞ − Z∞Y∞C∗2C2,

B̂ := Z∞Y∞C∗2 ,

Ĉ := −B∗2X∞.

K̂(s) is the central or minimum entropy controller.
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Numerical Computation of a Robust Controller
Discretization and Approximation

Numerical solution of H∞ controller requires discretization by appropriate
approximation scheme (dual convergence, etc., like in discretization of LQR
problems [Banks/Kunisch ’84, Burns/Ito/Probst ’88]).

Theorem [Ito/Morris ’98]

Under suitable assumptions and for N large enough, the operator Riccati
equations and the resulting algebraic Riccati equations

(CN
1 )TCN

1 + (AN)∗XN + XNAN + XN(γ−2BN
1 (BN

1 )T − BN
2 (BN

2 )T )XN = 0,

BN
1 (BN

1 )T + ANY N + Y N(AN)∗ + Y N(γ−2(CN
1 )TCN

1 − (CN
2 )TCN

2 )Y N = 0

have positive semidefinite stabilizing solutions for the same γ-levels, and the
corresponding finite-dimensional controller KN(s) is a γ-sub-optimal (internally
stabilizing) controller for the N- and infinite dimensional problem.
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Numerical Computation of a Robust Controller
Solving Large-Scale AREs

Derive numerical algorithms for solving large-scale

(continuous-time) algebraic Riccati equation (ARE)

with indefinite Hessian,

R(X ) := CTC + ATX + XA + X (B1B
T
1 − B2B

T
2 )X = 0,

where

A ∈ Rn×n is large and sparse,

Bj ∈ Rn×mj (j = 1, 2),

C ∈ Rp×n,

n� mj , p.
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Derive numerical algorithms for solving large-scale

(continuous-time) algebraic Riccati equation (ARE)

with indefinite Hessian,

R(X ) := CTC + ATX + XA + X (B1B
T
1 − B2B

T
2 )︸ ︷︷ ︸

=:G

X = 0.

Hessian of R(X )

Frechét derivative of R( . ) at X :

R
′

X : Z → (A + GX )TZ + Z (A + GX ).

Hessian/2nd order Frechét derivative of R( . ) at X :

H : (Z ,Y )→ ZGY + YGZ

is indefinite in general unless B1 = 0 or B2 = 0.
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Solving Large-Scale Standard AREs

General form for A,G = GT ,W = W T ∈ Rn×n given and X ∈ Rn×n

unknown:

0 = R(X ) := ATX + XA− XGX + W .

Large-scale AREs from semi-discretized PDE control problems:

n = 103 – 106 (=⇒ 106 – 1012 unknowns!),

A has sparse representation (A = −M−1K for FEM),

G ,W low-rank with G ,W ∈ {BBT ,CTC}, where
B ∈ Rn×m, m� n, C ∈ Rp×n, p � n.

Standard (eigenproblem-based) O(n3) methods are not applicable!
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Low-Rank Approximation
ARE 0 = AT X + XA− XBBT X + CCT

Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:

Linear 1D heat equation with
point control,

Ω = [ 0, 1 ],

FEM discretization using linear
B-splines,

h = 1/100 =⇒ n = 101.

Idea: X = XT ≥ 0 =⇒

X = YY T =
n∑

k=1

λkyky
T
k ≈ Y (r)(Y (r))T =

r∑
k=1

λkyky
T
k .
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Newton’s Method for AREs
[Kleinman ’68, Mehrmann ’91, Lancaster/Rodman ’95, B./Byers ’94/’98, B. ’97,
Guo/Laub ’99]

Consider 0 = R(X ) = CTC + ATX + XA− XBBTX .

Frechét derivative of R(X ) at X :

R′X : Z → (A− BBTX )TZ + Z (A− BBTX ).

Newton-Kantorovich method:

Xj+1 = Xj −
(
R′Xj

)−1

R(Xj), j = 0, 1, 2, . . .

Newton’s method (with line search) for AREs

FOR j = 0, 1, . . .

1 Aj ← A− BBTXj =: A− BKj .

2 Solve the Lyapunov equation AT
j Nj + NjAj = −R(Xj).

3 Xj+1 ← Xj + tjNj .

END FOR j
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Frechét derivative of R(X ) at X :
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Newton’s Method for AREs
Properties and Implementation

Convergence for K0 stabilizing:

Aj = A− BKj = A− BBTXj is stable ∀ j ≥ 0.
limj→∞ ‖R(Xj)‖F = 0 (monotonically).
limj→∞ Xj = X∗ ≥ 0 (locally quadratic).

Need large-scale Lyapunov solver; here, ADI iteration:
linear systems with dense, but “sparse+low rank” coefficient matrix

Aj = A − B · Kj

= sparse − m ·

m� n =⇒ efficient “inversion” using Sherman-Morrison-Woodbury
formula:

(A− BKj)
−1 = (In + A−1B(Im − KjA

−1B)−1Kj)A
−1.

BUT: X = XT ∈ Rn×n =⇒ n(n + 1)/2 unknowns!
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ADI Method for Lyapunov Equations

For A ∈ Rn×n stable, B ∈ Rn×m (w � n), consider Lyapunov
equation

AX + XAT = −BBT .

ADI Iteration: [Wachspress 1988]

(A + pk I )X(k−1)/2 = −BBT − Xk−1(AT − pk I )

(A + pk I )Xk
T = −BBT − X(k−1)/2(AT − pk I )

with parameters pk ∈ C− and pk+1 = pk if pk 6∈ R.

For X0 = 0 and proper choice of pk : lim
k→∞

Xk = X superlinear.

Re-formulation using Xk = YkY
T
k yields iteration for Yk ...
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Factored ADI Iteration
Lyapunov equation 0 = AX + XAT = −BBT .

Setting Xk = YkY
T
k , some algebraic manipulations =⇒

Algorithm [Penzl ’97, Li/White ’02, B./Li/Penzl ’99/’08]

V1 ←
√
−2<p1(A + p1I )−1B, Y1 ← V1

FOR j = 2, 3, . . .

Vk ←
q
<pk
<pk−1

`
Vk−1 − (pk + pk−1)(A + pk I )−1Vk−1

´
,

Yk ←
ˆ

Yk−1 Vk

˜
Yk ← rrqr(Yk , τ) % column compression

At convergence, YkmaxY
T
kmax
≈ X , where

range (Ykmax ) = range
([

V1 . . . Vkmax

])
, Vk = ∈ Cn×m.

Note: Implementation in real arithmetic possible, saves even one solve for

complex conjugate pair of shifts [B./Kürschner/Saak ’11].
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Low-Rank Newton-ADI for AREs

Re-write Newton’s method for AREs

AT
j Nj + NjAj = −R(Xj)

⇐⇒

AT
j (Xj + Nj)︸ ︷︷ ︸

=Xj+1

+ (Xj + Nj)︸ ︷︷ ︸
=Xj+1

Aj = −CTC − XjBBTXj︸ ︷︷ ︸
=:−WjW T

j

Set Xj = ZjZ
T
j for rank (Zj)� n =⇒

AT
j

(
Zj+1Z

T
j+1

)
+
(
Zj+1Z

T
j+1

)
Aj = −WjW

T
j

Factored Newton Iteration [B./Li/Penzl ’99/’08]

Solve Lyapunov equations for Zj+1 directly by factored ADI iteration and
use ‘sparse + low-rank’ structure of Aj .
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AREs with Indefinite Hessian
Back to

R(X ) := CTC + ATX + XA + X (B1B
T
1 − B2B

T
2 )X = 0.
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AREs with Indefinite Hessian
Back to

R(X ) := CTC + ATX + XA + X (B1B
T
1 − B2B

T
2 )X = 0.

Problems
For large-scale problems, resulting, e.g., from H∞ control, standard
methods based on Hamiltonian/even eigenvalue problem can not be
used due to O(n3) complexity/dense matrix algebra.

Krylov subspace methods might be employed, but so far no
convergence results, and in case of convergence, no guarantee that
stabilizing solution is computed.

Newton/Newton-ADI method will in general diverge/converge to a
non-stabilizing solution.
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AREs with Indefinite Hessian
Back to

R(X ) := CTC + ATX + XA + X (B1B
T
1 − B2B

T
2 )X = 0.

Problems

Quick-and-dirty solution: consider X−1R(X )X−1 = 0 [Damm ’02]

 standard ARE for X̃ ≡ X−1

R̃(X̃ ) := (B1B
T
1 − B2B

T
2 ) + X̃AT + AX̃ + X̃CTCX̃ = 0.

Newton’s method will converge to stabilizing solution, Newton-ADI can
be employed (with modification for indefinite constant term).

But: low-rank approximation of X̃ will not yield good approximation of X
⇒ not feasible for large-scale problems!
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Lyapunov Iterations/Perturbed Hessian Approach
[Cherfi/Abou-Kandil/Bourles ’05 (Proc. ACSE 2005)]

Idea
Perturb Hessian to enforce semi-definiteness: write

0 = ATX + XA + Q − XGX = ATX + XA + Q − XDX + X (D − G )X ,

where D = G + αI ≥ 0 with α ≥ min{0,−λmax(G )}.
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Lyapunov Iterations/Perturbed Hessian Approach
[Cherfi/Abou-Kandil/Bourles ’05 (Proc. ACSE 2005)]

Idea
Perturb Hessian to enforce semi-definiteness: write

0 = ATX + XA + Q − XGX = ATX + XA + Q − XDX + X (D − G )X ,

where D = G + αI ≥ 0 with α ≥ min{0,−λmax(G )}.

Here: G = B2B
T
2 − B1B

T
1

⇒ use α = ‖B1‖2 for spectral/Frobenius norm or

α = ‖B1‖1 · ‖B1‖∞.

Remark

W ≥ −G can be used instead of αI , e.g., W = βB1B
T
1 with β ≥ 1.
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Lyapunov Iterations/Perturbed Hessian Approach
[Cherfi/Abou-Kandil/Bourles ’05 (Proc. ACSE 2005)]

Idea
Perturb Hessian to enforce semi-definiteness: write

0 = ATX + XA + Q − XGX = ATX + XA + Q − XDX + X (D − G )X ,

where D = G + αI ≥ 0 with α ≥ min{0,−λmax(G )}.

Lyapunov iteration

Based on

(A− DX )TX + X (A− DX ) = −Q − XDX − αX 2,

iterate

FOR k = 0, 1, . . ., solve Lyapunov equation

(A− DXk)TXk+1 + Xk+1(A− DXk) = −Q − XkDXk − αX 2
k .
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Lyapunov Iterations/Perturbed Hessian Approach
[Cherfi/Abou-Kandil/Bourles ’05 (Proc. ACSE 2005)]

Lyapunov iteration

FOR k = 0, 1, . . ., solve Lyapunov equation

(A− DXk)TXk+1 + Xk+1(A− DXk) = −Q − XkDXk − αX 2
k .

Easy to convert to low-rank iteration employing low-rank ADI for Lyapunov
equations, e.g. with W = B1B

T
1 instead of αI : the Lyapunov equation

becomes

(A− B2B
T
2 YkYk)TYk+1Y

T
k+1 + Yk+1Y

T
k+1(A− B2B

T
2 YkYk)

= −CCT − YkY
T
k B1B

T
1 YkY

T
k − YkY

T
k B2B

T
2 YkY

T
k

= −[ C , YkY
T
k B1, YkY

T
k B2 ]

 CT

BT
1 YkY

T
k

BT
2 YkY

T
k

 .
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Lyapunov Iterations/Perturbed Hessian Approach
Convergence

Theorem [Cherfi/Abou-Kandil/Bourles ’05]

If

∃ X̂ such that R(X̂ ) ≥ 0,

∃ X0 = XT
0 ≥ X̂ such that R(X0) ≤ 0 and A− DX0 is Hurwitz,

then

a) X0 ≥ . . . ≥ Xk ≥ Xk+1 ≥ . . . ≥ X̂ ,

b) R(Xk) ≤ 0 for all k = 0, 1, . . .,

c) A− DXk is Hurwitz for all k = 0, 1, . . .,

d) ∃ limk→∞ Xk =: X ≥ X̂ ,

e) X is semi-stabilizing.

Main problems

Conditions for initial guess make its computation difficult.

Observed convergence is linear.
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Riccati Iterations
[Lanzon/Feng/B.D.O. Anderson ’07 (Proc. ECC 2007)]

Idea
Consider

ATX + XA + CTC + X (B1B
T
1 − B2B

T
2 )X =: R(X ).

Then

R(X + Z ) = R(X ) + (A + (B1B
T
1 − B2B

T
2 )X︸ ︷︷ ︸

=:bA
)TZ + ZÂ

+Z (B1B
T
1 − B2B

T
2 )Z .

Furthermore, if X = XT , Z = ZT solve the standard ARE

0 = R(X ) + ÂTZ + ZÂ− ZB2B
T
2 Z ,

then

R(X + Z ) = ZB1B
T
1 Z ,

‖R(X )‖2 = ‖BT
1 Z‖2.
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Riccati Iterations
[Lanzon/Feng/B.D.O. Anderson ’07 (Proc. ECC 2007)]

Riccati iteration
1 Set X0 = 0.
2 FOR k = 1, 2, . . .,

(i) Set Ak := A + B1(BT
1 Xk)− B2(BT

2 Xk).

(ii) Solve the ARE

R(Xk) + AT
k Zk + ZkAk − ZkB2B

T
2 Zk = 0.

(iii) Set Xk+1 := Xk + Zk .

(iv) IF ‖BT
1 Zk‖2 < tol THEN Stop.

Remark. ARE for k = 1 is the standard LQR/H2 ARE.
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Riccati Iterations
[Lanzon/Feng/B.D.O. Anderson ’07 (Proc. ECC 2007)]

Theorem [Lanzon/Feng/B.D.O. Anderson 2007]

If

(A,B2) stabilizable,

(A,C ) has no unobservable purely imaginary modes, and

∃ stabilizing solution X−,

then

a) (A + B1B
T
1 Xk ,B2) stabilizable for all k = 0, 1, . . .,

b) Zk ≥ 0 for all k = 0, 1, . . .,

c) A + B1B
T
1 Xk − B2B

T
2 Xk+1 is Hurwitz for all k = 0, 1, . . .,

d) R(Xk+1) = ZkB1B
T
1 Zk for all k = 0, 1, . . .,

e) X− ≥ . . . ≥ Xk+1 ≥ Xk ≥ . . . ≥ 0.

f) If ∃ limk→∞ Xk =: X , then X = X−, and

g) convergence is locally quadratic.
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Riccati Iterations
[Lanzon/Feng/B.D.O. Anderson ’07 (Proc. ECC 2007)]

Riccati iteration – low-rank version [B. ’08/’12]

1 Solve the ARE

CTC + ATZ0 + Z0A− Z0B2B
T
2 Z0 = 0

using Newton-ADI, yielding Y0 with Z0 ≈ Y0Y
T
0 .

2 Set R1 := Y0. {% R1R
T
1 ≈ X1.}

3 FOR k = 1, 2, . . .,

(i) Set Ak := A + B1(BT
1 Rk)RT

k − B2(BT
2 Rk)RT

k .

(ii) Solve the ARE

Yk−1(Y T
k−1B1)(BT

1 Yk−1)Y T
k−1 + AT

k Zk + ZkAk − ZkB2B
T
2 Zk = 0

using Newton-ADI, yielding Yk with Zk ≈ YkY
T
k .

(iii) Set Rk+1 := rrqr ([ Rk , Yk ], τ). {% Rk+1R
T
k+1 ≈ Xk+1}

(iv) IF ‖(BT
1 Yk)Y T

k ‖2 < tol THEN Stop.
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Numerical Examples
Artificial Example

Trivial example (n = 2) from [Cherfi/Abou-Kandil/Bourles ’05].
Compare convergence of Lyapunov and Riccati iterations.
Solution of standard AREs with Newton’s method.
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Numerical Examples
Heat Equation

Heat equation on [0, 1]2, heating/cooling in a vertical strip, random noise
injection operator, temperature measurement in a strip at other side of
the region ( single-input, single-output system).
FDM discretization, n = 900.
Numerical ranks of Riccati iterates: 15 (for all iterations).
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Conclusions and Open Problems

Numerical computation of robust (H∞-) controller for parabolic systems
requires the solution of large scale AREs with indefinite Hessian.

Low-rank Riccati iteration yields (hopefully) a reliable and efficient
method for large-scale AREs with indefinite Hessian.

Low-rank Lyapunov iteration is an extremely simple variant for large-scale
problems, but exhibits slower convergence and requires
difficult-to-compute initial value.

To-Do list:

– Implement Riccati iteration in LyaPack/M.E.S.S. style.
– Practically relevant numerical tests.
– Re-write Riccati iteration as feedback iteration.
– Apply to practical robust control problem of parabolic systems (and

to robust stabilization of flow problems, cf.
[Dharmatti/Raymond/Thevenet SICON 49:2318–2348, 2011]).

– Efficient computation of initial value for Lyapunov iterations?
– ∃ perturbed Hessian so that Lyapunov iteration quadratically

convergent?
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Conclusions and Open Problems
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requires the solution of large scale AREs with indefinite Hessian.
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Fin.
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Assumptions for Approximation Schemes

Let PN be the canonical orthogonal projection

PN : H → HN ,

(i) For all ϕ ∈ H it holds that TN(t)PNϕ→ T(t)ϕ uniformly
on any bounded t-interval.

(ii) For all φ ∈ H it holds that TN(t)∗PNφ→ T(t)∗φ uniformly
on any bounded t-interval.

(iii) For all v ∈ U , w ∈ W it holds BN
2 v → B2v , BN

1 w → B1w and for all
ϕ ∈ H it holds that (BN

j )∗PNϕ→ B∗j ϕ, j = 1, 2.

(iv) The family of pairs (AN ,BN) is uniformly exponentially stabilizable, i.e.,
there exists a uniformly bounded sequence FN : HN 7→ U such that
AN − BNFN generates an exponentially stable C0-semigroup.

(v) The family of pairs (AN ,CN) is uniformly exponentially detectable, i.e.,
there exists a uniformly bounded sequence GN : HN 7→ U such that
AN − GNCN generates an exponentially stable C0 -semigroup.

(vi) Bj are compact, j = 1, 2.

Discretization
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