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Introduction
Model Order Reduction

Here, we consider large-scale nonlinear control systems of the form

Σ :

{
ẋ(t) = f (x(t)) + g(x(t))u(t),

y(t) = Cx(t), x(0) = x0,

with f , g : Rn → Rn, C ∈ Rp×n, x ∈ Rn, u ∈ Rm, y ∈ Rp.

MOR

Σ̂ :

{
˙̂x(t) = f̂ (x̂(t)) + ĝ(x̂(t))u(t),

ŷ(t) = Ĉ x̂(t), x̂(0) = x̂0 ,

with f̂ , ĝ : Rn̂ → Rn̂, C ∈ Rp×n̂, x ∈ Rn̂, u ∈ Rm, ŷ ∈ Rp, n̂� n.

Goal
ŷ ≈ y for all admissible u.
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Introduction
Linear System Norms

Let us start with linear systems, i.e. f (x) = Ax and g(x) = B.

Two common system norms for measuring approximation quality:

H2-norm, ||Σ||H2 =
(

1
2π

∫ 2π

0
tr (H∗(−iω)H(iω)) dω

) 1
2

,

H∞-norm, ||Σ||H∞ = sup
ω∈R

σmax (H(iω)) ,

where
H(s) = C (sI − A)−1 B

denotes the corresponding transfer function of the linear system.

We focus on the first one  interpolation-based model reduction
approaches.
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Introduction
Error system and H2-Optimality

In order to find an H2-optimal reduced system, define the error system:

Aerr =

[
A 0

0 Â

]
, Berr =

[
B

B̂

]
, C err =

[
C −Ĉ

]
.
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In order to find an H2-optimal reduced system, define the error system:

Aerr =

[
A 0

0 Â

]
, Berr =

[
B

B̂

]
, C err =

[
C −Ĉ

]
.

 first-order necessary H2-optimality conditions (SISO)

H(−λi ) = Ĥ(−λi ),
H ′(−λi ) = Ĥ ′(−λi ),

where λi are the poles of the reduced system Σ̂.
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Error system and H2-Optimality

In order to find an H2-optimal reduced system, define the error system:

Aerr =

[
A 0

0 Â

]
, Berr =

[
B

B̂

]
, C err =

[
C −Ĉ

]
.

 first-order necessary H2-optimality conditions (MIMO)

H(−λi )B̃i = Ĥ(−λi )B̃i , for i = 1, . . . , n̂,

C̃T
i H(−λi ) = C̃T

i Ĥ(−λi ), for i = 1, . . . , n̂,

C̃T
i H ′(−λi )B̃i = C̃T

i Ĥ ′(−λi )B̃i for i = 1, . . . , n̂,

where Â = RΛR−T is the spectral decomposition of the reduced system
and B̃ = B̂TR−T , C̃ = Ĉ R.

Max Planck Institute Magdeburg P. Benner, Rational Krylov Subspaces for Nonlinear Model Reduction 5/23



Introduction H2-Model Reduction for Bilinear Systems Nonlinear Model Reduction Conclusions

Introduction
Error system and H2-Optimality

In order to find an H2-optimal reduced system, define the error system:

Aerr =

[
A 0

0 Â
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C̃T
i H(−λi ) = C̃T

i Ĥ(−λi ), for i = 1, . . . , n̂,

C̃T
i H ′(−λi )B̃i = C̃T

i Ĥ ′(−λi )B̃i for i = 1, . . . , n̂,

vec (Ip)T
(

eje
T
i ⊗ C

)
(−Λ⊗ In − In̂ ⊗ A)−1

(
B̃T ⊗ B

)
vec (Im)

= vec (Ip)T
(

eje
T
i ⊗ Ĉ

)(
−Λ⊗ In̂ − In̂ ⊗ Â

)−1 (
B̃T ⊗ B̂

)
vec (Im),

for i = 1, . . . , n̂ and j = 1, . . . , p.
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Introduction
Interpolation of the Transfer Function [Grimme ’97]

Construct reduced transfer function by Petrov-Galerkin projection
P = VW T , i.e.

Ĥ(s) = CV
(
sI −W TAV

)−1
W TB,

where V and W are given as

V =
[
(σ1I − A)−1B, . . . , (σr I − A)−1B

]
,

W =
[
(σ1I − AT )−1CT , . . . , (σr I − AT )−1CT

]
.

Then
H(σi ) = Ĥ(σi ) and H ′(σi ) = Ĥ ′(σi ),

for i = 1, . . . , r .
 iterative algorithms (IRKA/MIRIAm) that yield H2-optimal models.

[Gugercin et al. ’08], [Bunse-Gerstner et al. ’07],

[Van Dooren et al. ’08]
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Ĥ(s) = CV
(
sI −W TAV

)−1
W TB,

where V and W are given as

V =
[
(σ1I − A)−1B, . . . , (σr I − A)−1B

]
,

W =
[
(σ1I − AT )−1CT , . . . , (σr I − AT )−1CT

]
.

Then
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H2-Model Reduction for Bilinear Systems
Bilinear Control Systems

Let us now focus on the special case f (x) = A and

g(x) = B +
[
N1, . . . ,Nm

]
(Im ⊗ x) ,

i.e. bilinear control systems:

Σ :

 ẋ(t) = Ax(t) +
m∑
i=1

Nix(t)ui (t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

where A,Ni ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n.

Approximation of weakly nonlinear systems  Carleman
linearization.

A lot of linear concepts can be extended, e.g. transfer functions,
Gramians, Lyapunov equations, . . .

An equivalent structure arise for some stochastic control systems.
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H2-Model Reduction for Bilinear Systems
Some Basic Facts

Output Characterization (SISO): Volterra series

y(t) =
∞∑
k=1

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

K(t1, . . . , tk)u(t−t1−. . .−tk) · · · u(t−tk)dtk · · · dt1,

with kernels K (t1, . . . , tk) = CeAtk N1 · · · eAt2 N1eAt1 B.

Multivariate Laplace-transform (SISO):

Hk(s1, . . . , sk) = C (sk I − A)−1N1 · · · (s2I − A)−1N1(s1I − A)−1B.

Bilinear H2-norm (MIMO):

||Σ||H2
:=

(
tr

( ∞∑
k=1

∫ ∞
−∞

. . .

∫ ∞
−∞

1

(2π)k
Hk (iω1, . . . , iωk )HT

k (iω1, . . . , iωk )

)) 1
2

.

[Zhang/Lam. ’02]
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H2-Model Reduction for Bilinear Systems
H2-Norm Computation

Lemma [B./Breiten ’11]

Let Σ denote a bilinear system. Then, the H2-norm is given as:

||Σ||2H2
= (vec(Ip))T (C ⊗ C)

(
−A⊗ I − I ⊗ A−

m∑
i=1

Ni ⊗ Ni

)−1

(B ⊗ B) vec(Im).

Error System

In order to find an H2-optimal reduced system, define the error system
Σerr := Σ− Σ̂ as follows:

Aerr =

[
A 0

0 Â

]
, Nerr

i =

[
Ni 0

0 N̂i

]
, Berr =

[
B

B̂

]
, C err =

[
C −Ĉ

]
.
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H2-Model Reduction
H2-Optimality Conditions

Let us assume Σ̂ is given by its eigenvalue decomposition:

Â = RΛR−1, Ñi = R−1N̂iR, B̃ = R−1B̂, C̃ = ĈR.

Max Planck Institute Magdeburg P. Benner, Rational Krylov Subspaces for Nonlinear Model Reduction 10/23



Introduction H2-Model Reduction for Bilinear Systems Nonlinear Model Reduction Conclusions

H2-Model Reduction
H2-Optimality Conditions

Let us assume Σ̂ is given by its eigenvalue decomposition:

Â = RΛR−1, Ñi = R−1N̂iR, B̃ = R−1B̂, C̃ = ĈR.

Using Λ, Ñi , B̃, C̃ as optimization parameters, we can derive necessary condi-
tions for H2-optimality, e.g.:
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Â = RΛR−1, Ñi = R−1N̂iR, B̃ = R−1B̂, C̃ = ĈR.
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(vec(Iq))T
(
eje

T
` ⊗ C

)(
−Λ⊗ In − In̂ ⊗ A−

m∑
i=1

Ñi ⊗ Ni

)−1 (
B̃ ⊗ B

)
vec(Im)

= (vec(Iq))T
(
eje

T
` ⊗ Ĉ

)(
−Λ⊗ In − In̂ ⊗ Â−

m∑
i=1

Ñi ⊗ N̂i

)−1 (
B̃ ⊗ B̂

)
vec(Im).
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(
eje

T
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)(
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i=1

Ñi ⊗ Ni

)−1 (
B̃ ⊗ B

)
vec(Im)

= (vec(Iq))T
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eje

T
` ⊗ Ĉ

)(
−Λ⊗ In − In̂ ⊗ Â−

m∑
i=1

Ñi ⊗ N̂i

)−1 (
B̃ ⊗ B̂

)
vec(Im).

Where is the connection to the interpolation of transfer functions?
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Â = RΛR−1, Ñi = R−1N̂iR, B̃ = R−1B̂, C̃ = ĈR.
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(
eje

T
` ⊗ C

)
−λ1I − A

. . .

−λn̂I − A


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BB̃T
1

.

.

.

BB̃T
n̂



= (vec(Iq))T
(
eje

T
` ⊗ Ĉ

)
−λ1I − Â

. . .

−λn̂I − Â


−1

B̂B̃T
1

.

.

.

B̂B̃T
n̂

 .
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H2-Model Reduction
H2-Optimality Conditions

Let us assume Σ̂ is given by its eigenvalue decomposition:

Â = RΛR−1, Ñi = R−1N̂iR, B̃ = R−1B̂, C̃ = ĈR.

Using Λ, Ñi , B̃, C̃ as optimization parameters, we can derive necessary condi-
tions for H2-optimality, e.g.:

(vec(Iq))T
(
eje

T
` ⊗ C

)(
−Λ⊗ In − In̂ ⊗ A−

m∑
i=1

Ñi ⊗ Ni

)−1 (
B̃ ⊗ B

)
vec(Im)

= (vec(Iq))T
(
eje

T
` ⊗ Ĉ

)(
−Λ⊗ In − In̂ ⊗ Â−

m∑
i=1

Ñi ⊗ N̂i

)−1 (
B̃ ⊗ B̂

)
vec(Im).

H(−λ`)B̃T
` = Ĥ(−λ`)B̃T

`

 tangential interpolation at mirror images of reduced system poles
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A First Iterative Approach

Algorithm 1 Bilinear IRKA

Input: A, Ni , B, C , Â, N̂i , B̂, Ĉ
Output: Aopt , Nopt

i , Bopt , C opt

1: while (change in Λ > ε) do
2: RΛR−1 = Â, B̃ = R−1B̂, C̃ = Ĉ R, Ñi = R−1N̂iR

3: vec(V ) =

(
−Λ⊗ In − In̂ ⊗ A−

m∑
i=1

Ñi ⊗ Ni

)−1 (
B̃ ⊗ B

)
vec(Im)

4: vec(W ) =

(
−Λ⊗ In − In̂ ⊗ AT −

m∑
i=1

ÃT
i ⊗ NT

i

)−1 (
C̃T ⊗ CT

)
vec(Iq)

5: V = orth(V ), W = orth(W )

6: Â =
(
W TV

)−1
W TAV , N̂i =

(
W TV

)−1
W TNiV ,

B̂ =
(
W TV

)−1
W TB, Ĉ = CV

7: end while
8: Aopt = Â, Nopt

i = N̂i , Bopt = B̂, C opt = Ĉ
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H2-Model Reduction for Bilinear Systems
A Heat Transfer Model

2-dimensional heat distribution
[Benner, Saak ’05]

Boundary control by spraying
intensities of a cooling fluid

Ω = (0, 1)× (0, 1),

xt = ∆x in Ω,

n · ∇x = c · u1,2,3(x − 1) on Γ1, Γ2, Γ3,

x = u4 on Γ4.

Spatial discretization k × k-grid

⇒ ẋ ≈ A1x +
3∑

i=1

Nixui + Bu

⇒ A2 = 0.

Output: y =
1

k2

[
1 . . . 1

]
.

Γ1

Γ3

Γ4

Γ2

x10

x20

x30

x01 x02 x03

x14

x24

x34

x41 x42 x43

x11

x21

x31

x12

x22

x32

x13

x23

x33
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H2-Model Reduction for Bilinear Systems
A Heat Transfer Model

Comparison of relative H2-error for n = 10.000
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H2-Model Reduction for Bilinear Systems
Fokker-Planck Equation

As a second example, we consider a dragged Brownian particle whose
one-dimensional motion is given by

dXt = −∇V (Xt , t)dt +
√

2σdWt ,

with σ = 2
3 and V (x , u) = W (x , t) + Φ(x , ut) = (x2 − 1)2 − xu − x .

Alternatively, one can consider ([Hartmann et al. ’10]) ,

ρ(x , t)dx = P [Xt ∈ [x , x + dx )]

which is described by the Fokker-Planck equation

∂ρ

∂t
= σ∆ρ+∇ · (ρ∇V ), (x , t) ∈ (−2, 2)× (0,T ],

0 = σ∇ρ+ ρ∇B, (x , t) ∈ {−2, 2} × [0,T ],

ρ0 = ρ, (x , t) ∈ (−2, 2)× 0.

Output C discrete characteristic function of the interval [0.95, 1.05].
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H2-Model Reduction for Bilinear Systems
Fokker-Planck Equation

Comparison of relative H2-error for n = 500
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Nonlinear Model Reduction
Quadratic-Bilinear Differential Algebraic Equations (QBDAEs)

Finally, we come back to the more general case with f (x) nonlinear and
g(x) = B. Here, the class of quadratic-bilinear differential algebraic
equations

Σ :

{
E ẋ(t) = A1x(t) + A2x(t)⊗ x(t) + Nx(t)u(t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

where E ,A1,N ∈ Rn×n,A2 ∈ Rn×n2

(Hessian tensor),B,CT∈ Rn are
quite helpful.

A large class of smooth nonlinear control-affine systems can be
transformed into the above type of control system.

The transformation is exact, but a slight increase of the state
dimension has to be accepted.

Input-output behavior can be characterized by generalized transfer
functions  enables us to use Krylov-based reduction techniques.

Max Planck Institute Magdeburg P. Benner, Rational Krylov Subspaces for Nonlinear Model Reduction 14/23



Introduction H2-Model Reduction for Bilinear Systems Nonlinear Model Reduction Conclusions

Nonlinear Model Reduction
Transformation via McCormick Relaxation

Theorem [Gu’09]

Assume that the state equation of a nonlinear system Σ is given by

ẋ = a0x + a1g1(x) + . . .+ akgk(x) + Bu,

where gi (x) : Rn → Rn are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, Σ can be transformed into a system of QBDAEs.

Example

ẋ1 = exp(−x2) ·
√

x2
1 + 1, ẋ2 = −x2 + u.

z1 := exp(−x2), z2 :=
√

x2
1 + 1.

ẋ1 = z1 · z2, ẋ2 = −x2 + u, ż1 = −z1 · (−x2 + u),
ż2 = 2·x1·z1·z2

2·z2
= x1 · z1.
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ẋ2 = −x2 + u, ż1 = −z1 · (−x2 + u),
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Nonlinear Model Reduction
Variational Analysis and Linear Subsystems

Analysis of nonlinear systems by variational equation approach:

consider input of the form αu(t),
nonlinear system is assumed to be a series of homogeneous nonlinear
subsystems, i.e. response should be of the form

x(t) = αx1(t) + α2x2(t) + α3x3(t) + . . . .

comparison of terms αi , i = 1, 2, . . . leads to series of systems

E ẋ1 = A1x1 + Bu,

E ẋ2 = A1x2 + A2x1 ⊗ x1 + Nx1u,

E ẋ3 = A1x3 + A2 (x1 ⊗ x2 + x2 ⊗ x1) + Nx2u

...

although i-th subsystem is coupled nonlinearly to preceding systems,
linear systems are obtained if terms xj , j < i , are interpreted as
pseudo-inputs.
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Nonlinear Model Reduction
Generalized Transfer Functions

In a similar way, a series of generalized symmetric transfer functions can
be obtained via the growing exponential approach:

H1(s1) = C (s1E − A1)−1B︸ ︷︷ ︸
G1(s1)

,

H2(s1, s2) =
1

2!
C ((s1 + s2)E − A1)−1 [N (G1(s1) + G1(s2))

+A2 (G1(s1)⊗ G1(s2) + G1(s2)⊗ G1(s1))] ,

H3(s1, s2, s3) =
1

3!
C ((s1 + s2 + s3)E − A1)−1[

N(G2(s1, s2) + G2(s2, s3) + G2(s1, s3))

+ A2

(
G1(s1)⊗ G2(s2, s3) + G1(s2)⊗ G2(s1, s3)

+ G1(s3)⊗ G2(s1, s3) + G2(s2, s3)⊗ G1(s1)

+ G2(s1, s3)⊗ G1(s2) + G2(s1, s2)⊗ G1(s3)
)]
.
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Nonlinear Model Reduction
Characterization via Multimoments

For simplicity, focus on the first two transfer functions. For H1(s1),
choosing σ and making use of the Neumann lemma leads to

H1(s1) =
∞∑
i=0

C
(
(A1 − σE )−1E

)i
(A1 − σE )−1B (s1 − σ)i︸ ︷︷ ︸
mi

s1,σ

.

Similarly, specifying an expansion point (τ, ξ) yields

H2(s1, s2) =
1

2

∞∑
i=0

C
(

(A1 − (τ + ξ)E)−1E
)i

(A1 − (τ + ξ)E)−1 (s1 + s2 − τ − ξ)i ·[
A2

(
∞∑
j=0

mj
s1,τ ⊗

∞∑
k=0

mk
s2,ξ +

∞∑
k=0

mk
s2,ξ ⊗

∞∑
j=0

mj
s1,τ

)
+ N

(
∞∑
p=0

mp
s1,τ +

∞∑
p=0

mq
s2,ξ

)]
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Nonlinear Model Reduction
Constructing the Projection Matrix

For derivatives around σ = τ = ξ up to order q − 1, construct the Krylov
spaces:

U =Kq

(
(A1 − σE )−1E , (A1 − σE )−1B

)
for i = 1 : q

Wi = Kq−i+1

(
(A1 − 2σE )−1E , (A1 − 2σE )−1NUi

)
,

for j = 1 : min(q − i + 1, i)

Zi = Kq−i−j+2

(
(A1 − 2σE )−1E , (A1 − 2σE )−1A2Ui ⊗ Uj

)
,

Ui denoting the i-th column of U. Set V = orth([U,W ,Z ]) and
construct Σ̂ by the Galerkin-Projection P = VV T :

Â1 = V TA1V ∈ Rn̂×n̂, Â2 = V TA2V ⊗ V ∈ Rn̂×n̂2

,

N̂ = V TNV ∈ Rn̂×n̂, B̂ = V TB ∈ Rn̂, ĈT = V TC ∈ Rn̂.
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Nonlinear Model Reduction
Two-Sided Projection Methods

Similarly to the linear case, one can exploit duality concepts, in order to
construct two-sided projection methods.

Interpreting A2 as the matricization of a 3-tensor from Rn×n×n. one can
show that the dual Krylov spaces have to be constructed as follows

Ũ =Kq

(
(A1 − σE )−TET , (A1 − σE )−TCT

)
for i = 1 : q

W̃i = Kq−i+1

(
(A1 − 2σE )−TET , (A1 − 2σE )−TNT Ũi

)
,

for j = 1 : min(q − i + 1, i)

Z̃i = Kq−i−j+2

(
(A1 − 2σE )−TET , (A1 − 2σE )−T Ã2Ui ⊗ Ũj

)
,

where Ã2 now is another matricization of the Hessian tensor.
Note: If one uses the third matricization, then Ui ⊗ Ũj has to be replaced

by Ũ i ⊗ Uj . For matricizations, see e.g. [Kressner/Tobler ’10].
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Nonlinear Model Reduction
The FitzHugh-Nagumo System

FitzHugh-Nagumo system modeling a neuron
[Chaturantabut, Sorensen ’09]

εvt(x , t) = ε2vxx(x , t) + f (v(x , t))− w(x , t) + g ,

wt(x , t) = hv(x , t)− γw(x , t) + g ,

with f (v) = v(v − 0.1)(1− v) and initial and boundary conditions

v(x , 0) = 0, w(x , 0) = 0, x ∈ [0, 1],

vx(0, t) = −i0(t), vx(1, t) = 0, t ≥ 0,

where ε = 0.015, h = 0.5, γ = 2, g = 0.05, i0(t) = 5 · 104t3 exp(−15t)

original state dimension n = 2 · 400, reduced state dimension
n̂ = 26, chosen interpolation point σ = 1

3D phase space
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Nonlinear Model Reduction
Two-Dimensional Burgers Equation

2D-Burgers Equation on (0, 1)× (0, 1)︸ ︷︷ ︸
:=Ω

×[0,T ]

ut = − (u · ∇) u + ν∆u

with u(x , y , t) ∈ R2 describing the motion of a compressible fluid.
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:=Ω

×[0,T ]

ut = − (u · ∇) u + ν∆u

with u(x , y , t) ∈ R2 describing the motion of a compressible fluid.

Consider initial and boundary conditions

ux(x , y , 0) =

√
2

2
, uy (x , y , 0) =

√
2

2
, for x , y ∈ Ω1 := (0, 0.5],

ux(x , y , 0) = 0, uy (x , y , 0) = 0, for x , y ,∈ Ω\Ω1,

ux = 0, uy = 0, for x , y ,∈ ∂Ω.
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ux(x , y , 0) = 0, uy (x , y , 0) = 0, for x , y ,∈ Ω\Ω1,

ux = 0, uy = 0, for x , y ,∈ ∂Ω.

Spatial discretization  QBDAE system with nonzero i.c. and
N = 0.  reformulate as system with zero i.c. and constant input.
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:=Ω

×[0,T ]

ut = − (u · ∇) u + ν∆u

with u(x , y , t) ∈ R2 describing the motion of a compressible fluid.

Consider initial and boundary conditions

ux(x , y , 0) =

√
2

2
, uy (x , y , 0) =

√
2

2
, for x , y ∈ Ω1 := (0, 0.5],

ux(x , y , 0) = 0, uy (x , y , 0) = 0, for x , y ,∈ Ω\Ω1,

ux = 0, uy = 0, for x , y ,∈ ∂Ω.

Spatial discretization  QBDAE system with nonzero i.c. and
N = 0.  reformulate as system with zero i.c. and constant input.

Output C chosen to be average x-velocity.
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Nonlinear Model Reduction
Two-Dimensional Burgers Equation

Comparison of relative time-domain error for n = 1600
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Nonlinear Model Reduction
Two-Dimensional Burgers Equation

2D-Burgers Equation on (0, 1)× (0, 1)︸ ︷︷ ︸
:=Ω

×[0,T ]

ut = − (u · ∇) u + ν∆u

with u(x , y , t) ∈ R2 describing the motion of a compressible fluid.

Now consider initial and boundary conditions

ux(x , y , 0) = 0, uy (x , y , 0) = 0, for x , y ∈ Ω,

ux = cos(πt), uy = cos(2πt), for (x , y) ∈ {0, 1} × (0, 1),

ux = sin(πt), uy = sin(2πt), for (x , y) ∈ (0, 1)× {0, 1}.
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ux = cos(πt), uy = cos(2πt), for (x , y) ∈ {0, 1} × (0, 1),

ux = sin(πt), uy = sin(2πt), for (x , y) ∈ (0, 1)× {0, 1}.

Spatial discretization  QBDAE system with zero i.c. and 4 inputs
B ∈ Rn×4, N1,N2,N3,N4, ROM with q1 = 5, q2 = 2, σ = 0, n̂ = 52 .
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ux = cos(πt), uy = cos(2πt), for (x , y) ∈ {0, 1} × (0, 1),

ux = sin(πt), uy = sin(2πt), for (x , y) ∈ (0, 1)× {0, 1}.

Spatial discretization  QBDAE system with zero i.c. and 4 inputs
B ∈ Rn×4, N1,N2,N3,N4, ROM with q1 = 5, q2 = 2, σ = 0, n̂ = 52 .

State reconstruction by reduced model x ≈ V x̂ , max. rel. err < 3%.
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Conclusions

A lot of linear reduction techniques can be transferred to the
nonlinear case.

We have shown a generalized interpolation theory for bilinear control
systems  H2-optimal model reduction.

Many nonlinear dynamics can be expressed by a system of
quadratic-bilinear differential algebraic equations.

There exist Krylov subspace methods that extend the concept of
moment-matching  using basic tools from tensor theory allow for
better approximations.

Thank you for your attention. . .
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