Solving Large-Scale Matrix Equations: Recent Progress and New Applications

Peter Benner

Max Planck Institute for Dynamics of Complex Technical Systems
Computational Methods in Systems and Control Theory
Magdeburg, Germany
http://www.mpi-magdeburg.mpg.de/benner
benner@mpi-magdeburg.mpg.de

Overview

(1) Introduction
(2) Applications
(3) Solving Large-Scale Sylvester and Lyapunov Equations

4 Solving Large-Scale Lyapunov-plus-Positive Equations
(5) References

Overview

(1) Introduction

- Classification of Linear Matrix Equations
- Existence and Uniqueness of Solutions
(2) Applications
(3) Solving Large-Scale Sylvester and Lyapunov Equations

4 Solving Large-Scale Lyapunov-plus-Positive Equations
(5) References

Introduction

Linear Matrix Equations/Men with Beards

Sylvester equation

Introduction

Linear Matrix Equations/Men with Beards

Sylvester equation

James Joseph Sylvester
(September 3, 1814 - March 15, 1897)

$$
A X+X B=C
$$

Lyapunov equation

Alexander Michailowitsch Ljapunow (June 6, 1857 - November 3, 1918)

$$
A X+X A^{T}=C, \quad C=C^{T} .
$$

Introduction

Generalizations of Sylvester $(A X+X B=C)$ and Lyapunov $\left(A X+X A^{T}=C\right)$ Equations
Generalized Sylvester equation:

$$
A X D+E X B=C .
$$

Introduction

Generalizations of Sylvester $(A X+X B=C)$ and Lyapunov $\left(A X+X A^{T}=C\right)$ Equations
Generalized Sylvester equation:

$$
A X D+E X B=C .
$$

Generalized Lyapunov equation:

$$
A X E^{T}+E X A^{T}=C, \quad C=C^{T} .
$$

Introduction

Generalizations of Sylvester $(A X+X B=C)$ and Lyapunov $\left(A X+X A^{T}=C\right)$ Equations
Generalized Sylvester equation:

$$
A X D+E X B=C .
$$

Generalized Lyapunov equation:

$$
A X E^{T}+E X A^{T}=C, \quad C=C^{T} .
$$

Stein equation:

$$
X-A X B=C .
$$

Introduction

Generalizations of Sylvester $(A X+X B=C)$ and Lyapunov $\left(A X+X A^{T}=C\right)$ Equations
Generalized Sylvester equation:

$$
A X D+E X B=C .
$$

Generalized Lyapunov equation:

$$
A X E^{T}+E X A^{T}=C, \quad C=C^{T} .
$$

Stein equation:

$$
X-A X B=C
$$

(Generalized) discrete Lyapunov/Stein equation:

$$
E X E^{T}-A X A^{T}=C, \quad C=C^{T} .
$$

Introduction

Generalizations of Sylvester $(A X+X B=C)$ and Lyapunov $\left(A X+X A^{T}=C\right)$ Equations
Generalized Sylvester equation:

$$
A X D+E X B=C .
$$

Generalized Lyapunov equation:

$$
A X E^{T}+E X A^{T}=C, \quad C=C^{T} .
$$

Stein equation:

$$
X-A X B=C .
$$

(Generalized) discrete Lyapunov/Stein equation:

$$
E X E^{T}-A X A^{T}=C, \quad C=C^{T} .
$$

Note:

- Consider only regular cases, having a unique solution!
- Solutions of symmetric cases are symmetric, $X=X^{T} \in \mathbb{R}^{n \times n}$; otherwise, $X \in \mathbb{R}^{n \times \ell}$ with $n \neq \ell$ in general.

Introduction

Generalizations of Sylvester $(A X+X B=C)$ and Lyapunov $\left(A X+X A^{T}=C\right)$ Equations
Bilinear Lyapunov equation/Lyapunov-plus-positive equation:

$$
A X+X A^{T}+\sum_{k=1}^{m} N_{k} X N_{k}^{T}=C, \quad C=C^{T}
$$

Introduction

Generalizations of Sylvester $(A X+X B=C)$ and Lyapunov $\left(A X+X A^{T}=C\right)$ Equations
Bilinear Lyapunov equation/Lyapunov-plus-positive equation:

$$
A X+X A^{T}+\sum_{k=1}^{m} N_{k} X N_{k}^{T}=C, \quad C=C^{T} .
$$

Bilinear Sylvester equation:

$$
A X+X B+\sum_{k=1}^{m} N_{k} X M_{k}=C
$$

Introduction

Generalizations of Sylvester $(A X+X B=C)$ and Lyapunov $\left(A X+X A^{T}=C\right)$ Equations Bilinear Lyapunov equation/Lyapunov-plus-positive equation:

$$
A X+X A^{T}+\sum_{k=1}^{m} N_{k} X N_{k}^{T}=C, \quad C=C^{T} .
$$

Bilinear Sylvester equation:

$$
A X+X B+\sum_{k=1}^{m} N_{k} X M_{k}=C
$$

(Generalized) discrete bilinear Lyapunov/Stein-minus-positive eq.:

$$
E X E^{T}-A X A^{T}-\sum_{k=1}^{m} N_{k} X N_{k}^{T}=C, \quad C=C^{T} .
$$

Note: Again consider only regular cases, symmetric equations have symmetric solutions.

Introduction

Existence of Solutions of Linear Matrix Equations I

Exemplarily, consider the generalized Sylvester equation

$$
\begin{equation*}
A X D+E X B=C \tag{1}
\end{equation*}
$$

Introduction

Existence of Solutions of Linear Matrix Equations I
Exemplarily, consider the generalized Sylvester equation

$$
\begin{equation*}
A X D+E X B=C . \tag{1}
\end{equation*}
$$

Vectorization (using Kronecker product) \rightsquigarrow representation as linear system:

$$
(\underbrace{D^{T} \otimes A+B^{T} \otimes E}_{=: \mathcal{A}}) \underbrace{\operatorname{vec}(X)}_{=: x}=\underbrace{\operatorname{vec}(C)}_{=: c} \Longleftrightarrow \mathcal{A} x=c .
$$

Introduction

Existence of Solutions of Linear Matrix Equations I
Exemplarily, consider the generalized Sylvester equation

$$
\begin{equation*}
A X D+E X B=C . \tag{1}
\end{equation*}
$$

Vectorization (using Kronecker product) \rightsquigarrow representation as linear system:

$$
(\underbrace{D^{T} \otimes A+B^{T} \otimes E}_{=: \mathcal{A}}) \underbrace{\operatorname{vec}(X)}_{=: x}=\underbrace{\operatorname{vec}(C)}_{=: c} \Longleftrightarrow \mathcal{A} x=c .
$$

\Longrightarrow "(1) has a unique solution $\Longleftrightarrow \mathcal{A}$ is nonsingular"

Introduction

Existence of Solutions of Linear Matrix Equations I

Exemplarily, consider the generalized Sylvester equation

$$
\begin{equation*}
A X D+E X B=C \tag{1}
\end{equation*}
$$

Vectorization (using Kronecker product) \rightsquigarrow representation as linear system:

$$
(\underbrace{D^{T} \otimes A+B^{T} \otimes E}_{=: \mathcal{A}}) \underbrace{\operatorname{vec}(X)}_{=: x}=\underbrace{\operatorname{vec}(C)}_{=: c} \Longleftrightarrow \mathcal{A} x=c .
$$

\Longrightarrow "(1) has a unique solution $\Longleftrightarrow \mathcal{A}$ is nonsingular"

Lemma

$$
\Lambda(\mathcal{A})=\left\{\alpha_{j}+\beta_{k} \mid \alpha_{j} \in \Lambda(A, E), \beta_{k} \in \Lambda(B, D)\right\}
$$

Hence, (1) has unique solution $\Longrightarrow \Lambda(A, E) \cap-\Lambda(B, D)=\emptyset$.

Introduction

Existence of Solutions of Linear Matrix Equations I

Exemplarily, consider the generalized Sylvester equation

$$
\begin{equation*}
A X D+E X B=C \tag{1}
\end{equation*}
$$

Vectorization (using Kronecker product) \rightsquigarrow representation as linear system:

$$
(\underbrace{D^{T} \otimes A+B^{T} \otimes E}_{=: \mathcal{A}}) \underbrace{\operatorname{vec}(X)}_{=: x}=\underbrace{\operatorname{vec}(C)}_{=: c} \Longleftrightarrow \mathcal{A} x=c .
$$

\Longrightarrow "(1) has a unique solution $\Longleftrightarrow \mathcal{A}$ is nonsingular"

Lemma

$$
\Lambda(\mathcal{A})=\left\{\alpha_{j}+\beta_{k} \mid \alpha_{j} \in \Lambda(A, E), \beta_{k} \in \Lambda(B, D)\right\}
$$

Hence, (1) has unique solution $\Longrightarrow \wedge(A, E) \cap-\Lambda(B, D)=\emptyset$.
Example: Lyapunov equation $A X+X A^{T}=C$ has unique solution $\Longleftrightarrow \nexists \mu \in \mathbb{C}: \pm \mu \in \Lambda(A)$.

Introduction

The Classical Lyapunov Theorem

Theorem (Lyapunov 1892)

Let $A \in \mathbb{R}^{n \times n}$ and consider the Lyapunov operator $\mathcal{L}: X \rightarrow A X+X A^{T}$. Then the following are equivalent:
(a) $\forall Y>0$: $\exists X>0$: $\mathcal{L}(X)=-Y$,
(b) $\exists Y>0$: $\exists X>0: \mathcal{L}(X)=-Y$,
(c) $\wedge(A) \subset \mathbb{C}^{-}:=\{z \in \mathbb{C} \mid \Re z<0\}$, i.e., A is (asymptotically) stable or Hurwitz.

[^0]暃

Introduction

The Classical Lyapunov Theorem

Theorem (Lyapunov 1892)

Let $A \in \mathbb{R}^{n \times n}$ and consider the Lyapunov operator $\mathcal{L}: X \rightarrow A X+X A^{T}$. Then the following are equivalent:
(a) $\forall Y>0$: $\exists X>0$: $\mathcal{L}(X)=-Y$,
(b) $\exists Y>0$: $\exists X>0: \mathcal{L}(X)=-Y$,
(c) $\wedge(A) \subset \mathbb{C}^{-}:=\{z \in \mathbb{C} \mid \Re z<0\}$, i.e., A is (asymptotically) stable or Hurwitz.

The proof $(c) \Rightarrow(a)$ is trivial from the necessary and sufficient condition for existence and uniqueness, apart from the positive definiteness. The latter is shown by studying $z^{H} Y z$ for all eigenvectors z of A.

[^1]
Introduction

The Classical Lyapunov Theorem

Theorem（Lyapunov 1892）

Let $A \in \mathbb{R}^{n \times n}$ and consider the Lyapunov operator $\mathcal{L}: X \rightarrow A X+X A^{T}$ ． Then the following are equivalent：
（a）$\forall Y>0$ ：$\exists X>0$ ： $\mathcal{L}(X)=-Y$ ，
（b）$\exists Y>0$ ：$\exists X>0: \mathcal{L}(X)=-Y$ ，
（c）$\wedge(A) \subset \mathbb{C}^{-}:=\{z \in \mathbb{C} \mid \Re z<0\}$ ，i．e．，A is（asymptotically）stable or Hurwitz．

Important in applications：the nonnegative case：

$$
\mathcal{L}(X)=A X+X A^{T}=-W W^{T}, \quad \text { where } \quad W \in \mathbb{R}^{n \times n w}, n_{w} \ll n .
$$

A Hurwitz $\Rightarrow \exists$ unique solution $X=Z Z^{\top}$ for $Z \in \mathbb{R}^{n \times n_{X}}$ with $1 \leq n_{X} \leq n$ ．
\square

[^2]\square

Introduction

Existence of Solutions of Linear Matrix Equations II

For Lyapunov-plus-positive-type equations, the solution theory is more involved.

Introduction

Existence of Solutions of Linear Matrix Equations II

For Lyapunov-plus-positive-type equations, the solution theory is more involved. Focus on the Lyapunov-plus-positive case:

$$
\underbrace{A X+X A^{T}}_{=: \mathcal{L}(X)}+\underbrace{\sum_{k=1}^{m} N_{k} X N_{k}^{T}}_{=: \mathcal{P}(X)}=C, \quad C=C^{T} \leq 0
$$

Note: The operator

$$
\mathcal{P}(X) \mapsto \sum_{j=1}^{m} N_{k} X N_{k}^{T}
$$

is nonnegative in the sense that $\mathcal{P}(X) \geq 0$, whenever $X \geq 0$.

Introduction

Existence of Solutions of Linear Matrix Equations II

For Lyapunov-plus-positive-type equations, the solution theory is more involved. Focus on the Lyapunov-plus-positive case:

$$
\underbrace{A X+X A^{T}}_{=: \mathcal{L}(X)}+\underbrace{\sum_{k=1}^{m} N_{k} X N_{k}^{T}}_{=: \mathcal{P}(X)}=C, \quad C=C^{T} \leq 0
$$

Note: The operator

$$
\mathcal{P}(X) \mapsto \sum_{j=1}^{m} N_{k} X N_{k}^{T}
$$

is nonnegative in the sense that $\mathcal{P}(X) \geq 0$, whenever $X \geq 0$.
This nonnegative Lyapunov-plus-positive equation is the one occurring in applications like model order reduction.

Introduction

Existence of Solutions of Linear Matrix Equations II

For Lyapunov-plus-positive-type equations, the solution theory is more involved. Focus on the Lyapunov-plus-positive case:

$$
\underbrace{A X+X A^{T}}_{=: \mathcal{L}(X)}+\underbrace{\sum_{k=1}^{m} N_{k} X N_{k}^{T}}_{=: \mathcal{P}(X)}=C, \quad C=C^{T} \leq 0
$$

Note: The operator

$$
\mathcal{P}(X) \mapsto \sum_{j=1}^{m} N_{k} X N_{k}^{T}
$$

is nonnegative in the sense that $\mathcal{P}(X) \geq 0$, whenever $X \geq 0$.
This nonnegative Lyapunov-plus-positive equation is the one occurring in applications like model order reduction.

If A is Hurwitz and the N_{k} are small enough, eigenvalue perturbation theory yields existence and uniqueness of solution.
This is related to the concept of bounded-input bounded-output (BIBO) stability of dynamical systems.

Introduction

Existence of Solutions of Linear Matrix Equations II

Theorem (Schneider 1965, Damm 2004)

Let $A \in \mathbb{R}^{n \times n}$ and consider the Lyapunov operator $\mathcal{L}: X \rightarrow A X+X A^{T}$ and a nonnegative operator \mathcal{P} (i.e., $\mathcal{P}(X) \geq 0$ if $X \geq 0$).
The following are equivalent:
(a) $\forall Y>0$: $\exists X>0$: $\mathcal{L}(X)+\mathcal{P}(X)=-Y$,
(b) $\exists Y>0$: $\exists X>0: \mathcal{L}(X)+\mathcal{P}(X)=-Y$,
(c) $\exists Y \geq 0$ with (A, Y) controllable: $\exists X>0: \mathcal{L}(X)+\mathcal{P}(X)=-Y$,
(d) $\wedge(\mathcal{L}+\mathcal{P}) \subset \mathbb{C}^{-}:=\{z \in \mathbb{C} \mid \Re z<0\}$,
(e) $\wedge(\mathcal{L}) \subset \mathbb{C}^{-}$and $\rho\left(\mathcal{L}^{-1} \mathcal{P}\right)<1$, where $\rho(\mathcal{T})=\max \{|\lambda| \mid \lambda \in \Lambda(\mathcal{T})\}=$ spectral radius of \mathcal{T}.
\square T. Damm. Rational Matrix Equations in Stochastic Control. Number 297 in Lecture Notes in Control and Information Sciences. Springer-Verlag, 2004.
H. Schneider. Positive operators and an inertia theorem. Numerische Mathematik, 7:11-17, 1965.

Overview

(1) Introduction
(2) Applications

- Stability Theory
- Biochemical Engineering
- Fractional Differential Equations
- Some Classical Applications
(3) Solving Large-Scale Sylvester and Lyapunov Equations
(4) Solving Large-Scale Lyapunov-plus-Positive Equations
(5) References

Applications

Stability Theory I - Classical

From Lyapunov's theorem, immediately obtain characterization of asymptotic stability of linear dynamical systems

$$
\begin{equation*}
\dot{x}(t)=A x(t) . \tag{2}
\end{equation*}
$$

Theorem (Lyapunov)

The following are equivalent:

- For (2), the zero state is asymptotically stable.
- The Lyapunov equation $A X+X A^{T}=Y$ has a unique solution $X=X^{\top}>0$ for all $Y=Y^{\top}<0$.
- A is Hurwitz.

[^3]
Applications

Stability Theory II - Detecting Hopf Bifurcations

Detecting instability in large-scale dynamical systems caused by Hopf bifurcations \rightsquigarrow identifying the rightmost pair of complex eigenvalues of large sparse generalized eigenvalue problems.
[Meerbergen/Spence 2010] suggest Lyapunov inverse iteration for the dynamical system with parameter $\mu \in \mathbb{R}$

$$
M x_{t}=f(x ; \mu)
$$

Task: Identify critical points $\left(x^{*}, \mu^{*}\right)$ where the steady-state solution (i.e., $x_{t} \equiv 0$) changes from being stable to unstable.

Their continuation algorithm involves solution of generalized Lyapunov equation

$$
A X_{j+1} M^{T}+M X_{j+1} A^{T}=-F_{j} \equiv F\left(X_{j}\right)
$$

where $A=D_{x} f(\bar{x} ; \bar{\mu})$ and $(\bar{x} ; \bar{\mu})$ is current estimate of critical point.
K. Meerbergen, A. Spence. Inverse iteration for purely imaginary eigenvalues with application to the detection of Hopf bifurcations in large-scale problems. SIAM Journal on Matrix Analysis and Applications, 31:1982-1999, 2010.
H.C. Elman, K. Meerbergen, A. Spence, M. Wu. Lyapunov inverse iteration for identifying Hopf bifurcations in models of incompressible flow. SIAM Journal on Scientific Computing, 34(3):A1584-A1606, 2012.

Applications

Stability Theory III - Metastable Equilibria of Stochastic Systems

Metastable states of stochastic processes

Figure: Metastable states (red dashed) and path of of a 1-dimensional stochastic ODE. This is Fig. 2.2(c) of [Kuehn 2012].

[^4]
Applications

Stability Theory III - Metastable Equilibria of Stochastic Systems

Tracking (w.r.t. a parameter $\mu \in \mathbb{R}$) metastable equilibrium points of stochastic differential equations (SDEs) via continuation methods:

Let $x \in \mathbb{R}^{n}$ and consider the SDE

$$
d x_{t}=f\left(x_{t} ; \mu\right) d t+\sigma F\left(x_{t} ; \mu\right) d W_{t}
$$

where $W_{t}=k$-dimensional Brownian motion, $\sigma>0$ controls the noise level and f, F sufficiently smooth.

For metastable equilibrium points $x^{*}:=x^{*}(\mu)$, stochastic paths with high probability stay in regions characterized by covariance matrix C of x_{t}, linearized at x^{*}, defined by Lyapunov equation

$$
A\left(x^{*} ; \mu\right) C+C A\left(x^{*} ; \mu\right)^{T}+\sigma^{2} F\left(x^{*} ; \mu\right) F\left(x^{*} ; \mu\right)^{T}=0 .
$$

where $A(x ; \mu):=\left(D_{x} f\right)(x ; \mu)$.
C. Kuehn. Deterministic continuation of stochastic metastable equilibria via Lyapunov equations and ellipsoids. SIAM Journal on Scientific Computing, 34(3):A1635-A1658, 2012.

Applications

Biochemical Engineering

Biochemical reaction networks under certain assumptions can be described by

$$
\begin{equation*}
\dot{c}(t)=S v(c(t), q) \tag{2}
\end{equation*}
$$

where $S \in \mathbb{R}^{n \times m}$ is the stoichiometric matrix, $c(t) \in \mathbb{R}^{n}$ denotes the species concentrations, $v(t) \in \mathbb{R}^{m}$ the reaction rates, and q the rate constants.

In order to take molecular fluctuations (or intrinsic noise) due the stochasticity of the biochemical reactions into account, need the covariance matrix $C \in \mathbb{R}^{n \times n}$ of the concentrations. With

- the diffusion matrix $D \in \mathbb{R}^{n \times n}$ reflecting the randomness of the reaction events, and
- the drift matrix $A=\frac{\partial v}{\partial c}\left(c^{0}\right) \in \mathbb{R}^{n \times n}$ denoting the Jacobian of (2) along the macroscopic state trajectory at the equilibrium state c^{0},
C is determined by the Lyapunov equation

$$
A C+C A^{T}+D=0
$$

[^5]
Applications

Fractional Differential Equations

Fractional partial differential equations have received recent interest in various fields, e.g.,

- viscoelasticity (e.g., Kelvin-Voigt fractional derivative model),
- image processing,
- electro-analytical chemistry,
- biomedical engineering.
T. Breiten, V. Simoncini, M. Stoll. Fast iterative solvers for fractional differential equations. Max Planck Institute Magdeburg Preprints MPIMD/14-02, January 2014.

Applications

Fractional Differential Equations

Fractional partial differential equations have received recent interest in various fields, e.g.,

- viscoelasticity (e.g., Kelvin-Voigt fractional derivative model),
- image processing,
- electro-analytical chemistry,
- biomedical engineering.

Definition (Caputo derivative)

Given $f \in C^{n}(a, b), \alpha \in[n-1, n)$, Caputo derivative of real order α is defined by:

$$
{ }_{a}^{C} D_{t}^{\alpha} f(t):=\frac{1}{\Gamma(n-\alpha)} \int_{a}^{t} \frac{f^{(n)}(s)}{(t-s)^{\alpha-n+1}} d s
$$

[^6]
Applications

Fractional Differential Equations

Fractional partial differential equations have received recent interest in various fields, e.g.,

- viscoelasticity (e.g., Kelvin-Voigt fractional derivative model),
- image processing,
- electro-analytical chemistry,
- biomedical engineering.

Definition (Riemann-Liouville derivative)

Given integrable $f(t)$ with $t \in[a, b], \beta \in[n-1, n)$, left sided Riemann-Liouville derivative of real order β is defined by:

$$
{ }_{a}^{R L} D_{t}^{\beta} f(t):=\frac{1}{\Gamma(n-\beta)}\left(\frac{d}{d t}\right)^{n} \int_{a}^{t} \frac{f(s)}{(t-s)^{\beta-n+1}} d s .
$$

[^7]
Applications

Fractional Differential Equations

Consider fractional "heat equation"

$$
{ }_{0}^{C} D_{t}^{\alpha} u(x, t)-{ }_{a}^{R L} D_{x}^{\beta} u(x, t)=f(x, t) .
$$

For discretization use Grünwald-Letnikov formula $(\beta \in(1,2))$

$$
{ }_{a}^{R L} D_{x}^{\beta} u(x, t)=\lim _{M \rightarrow \infty} \frac{1}{h^{\alpha}} \sum_{k=0}^{M} g_{\beta, k} u(x-(k-1) h, t)
$$

and as an approximation get

$$
{ }_{a}^{R L} D_{x}^{\beta} u_{i}^{n+1} \approx \frac{1}{h_{x}^{\beta}} \sum_{k=0}^{i+1} g_{\beta, k} u_{i-k+1}^{n+1} .
$$

T. Breiten, V. Simoncini, M. Stoll. Fast iterative solvers for fractional differential equations. Max Planck Institute Magdeburg Preprints MPIMD/14-02, January 2014.

Applications

Fractional Differential Equations

Consider fractional "heat equation"

$$
{ }_{0}^{C} D_{t}^{\alpha} u(x, t)-{ }_{a}^{R L} D_{x}^{\beta} u(x, t)=f(x, t) .
$$

For discretization use Grünwald-Letnikov formula $(\beta \in(1,2))$

$$
{ }_{a}^{R L} D_{x}^{\beta} u(x, t)=\lim _{M \rightarrow \infty} \frac{1}{h^{\alpha}} \sum_{k=0}^{M} g_{\beta, k} u(x-(k-1) h, t)
$$

and as an approximation get in (Toeplitz) matrix form

Applications

Fractional Differential Equations

For fractional heat equation equation

$$
{ }_{0}^{C} D_{t}^{\alpha} u(x, t)-{ }_{a}^{R L} D_{x}^{\beta} u(x, t)=f(x, t)
$$

get

$$
\left(\left(\mathbf{T}_{\alpha}^{n_{t}} \otimes \mathbf{I}^{n_{x}}\right)-\left(\mathbf{I}^{n_{t}} \otimes \mathbf{L}_{\beta}^{n_{x}}\right)\right) \mathbf{u}=\mathbf{f}
$$

where $\mathbf{T}_{\alpha}^{n_{t}}$ and $\mathbf{L}_{\beta}^{n_{x}}$ are Toeplitz matrices. With $\mathbf{u}=\operatorname{vec}(\mathbf{U})$ and dropping all superscripts this corresponds to the Sylvester equation

$$
\mathbf{U T}_{\alpha}^{T}-\mathbf{L}_{\beta} \mathbf{U}=\mathbf{F} .
$$

[^8]
Some Classical Applications

Algebraic Riccati Equations (ARE)

Solving AREs by Newtons's Method

Feedback control design often involves solution of

$$
A^{T} X+X A-X G X+H=0, \quad G=G^{T}, H=H^{T} .
$$

$\rightsquigarrow \operatorname{In}$ each Newton step, solve Lyapunov equation

$$
\left(A-G X_{j}\right)^{\top} X_{j+1}+X_{j+1}\left(A-G X_{j}\right)=-X_{j} G X_{j}-H
$$

Some Classical Applications

Algebraic Riccati Equations (ARE)

Solving AREs by Newtons's Method

Feedback control design often involves solution of

$$
A^{T} X+X A-X G X+H=0, \quad G=G^{T}, H=H^{T} .
$$

$\rightsquigarrow \operatorname{In}$ each Newton step, solve Lyapunov equation

$$
\left(A-G X_{j}\right)^{T} X_{j+1}+X_{j+1}\left(A-G X_{j}\right)=-X_{j} G X_{j}-H
$$

Decoupling of dynamical systems, e.g., in slow/fast modes, requires solution of nonsymmetric ARE

$$
A X+X F-X G X+H=0 .
$$

\rightsquigarrow In each Newton step, solve Sylvester equation

$$
\left(A-X_{j} G\right) X_{j+1}+X_{j+1}\left(F-G X_{j}\right)=-X_{j} G X_{j}-H .
$$

Some Classical Applications

Model Reduction

Model Reduction via Balanced Truncation

For linear dynamical system

$$
\dot{x}(t)=A x(t)+B u(t), \quad y(t)=C x_{r}(t), \quad x(t) \in \mathbb{R}^{n}
$$

find reduced-order system

$$
\dot{x}_{r}(t)=A_{r} x_{r}(t)+B_{r} u(t), \quad y_{r}(t)=C_{r} x_{r}(t), \quad x(t) \in \mathbb{R}^{r}, \quad r \ll n
$$

such that $\left\|y(t)-y_{r}(t)\right\|<\delta$.
The popular method balanced truncation requires the solution of the dual Lyapunov equations

$$
A X+X A^{T}+B B^{T}=0, \quad A^{T} Y+Y A+C^{T} C=0
$$

Overview

This part: joint work with Patrick Kürschner and Jens Saak (MPI Magdeburg)
(1) Introduction
(2) Applications
(3) Solving Large-Scale Sylvester and Lyapunov Equations

- Some Basics
- LR-ADI Derivation
- Low-Rank Structure of the Residual
- Realification of LR-ADI
- Self-generating Shifts
- The New LR-ADI Applied to Lyapunov Equations

4 Solving Large-Scale Lyapunov-plus-Positive Equations
(5) References

Solving Large-Scale Sylvester and Lyapunov Equations

The Low-Rank Structure

Sylvester Equations

Find $X \in \mathbb{R}^{n \times m}$ solving

$$
A X-X B=F G^{T},
$$

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}, F \in \mathbb{R}^{n \times r}, G \in \mathbb{R}^{m \times r}$.
If n, m large, but $r \ll n, m$ $\rightsquigarrow X$ has a small numerical rank. [Penzl 1999, Grasedyck 2004, Antoulas/Sorensen/Zhou 2002]

$$
\operatorname{rank}(X, \tau)=f \ll \min (n, m)
$$

\rightsquigarrow Compute low-rank solution factors $Z \in \mathbb{R}^{n \times f}, Y \in \mathbb{R}^{m \times f}$,
$D \in \mathbb{R}^{f \times f}$, such that $X \approx Z D Y^{\top}$ with $f \ll \min (n, m)$.

Solving Large-Scale Sylvester and Lyapunov Equations

The Low-Rank Structure

Lyapunov Equations

Find $X \in \mathbb{R}^{n \times n}$ solving

$$
A X+X A^{T}=-F F^{T},
$$

where $A \in \mathbb{R}^{n \times n}, F \in \mathbb{R}^{n \times r}$.
If $n \quad$ large, but $r \ll n$
$\rightsquigarrow X$ has a small numerical rank.
[Penzl 1999, Grasedyck 2004,
Antoulas/Sorensen/Zhou 2002]

$$
\operatorname{rank}(X, \tau)=f \ll n
$$

singular values of 1600×900 example

\rightsquigarrow Compute low-rank solution factors $Z \in \mathbb{R}^{n \times f}$,
$D \in \mathbb{R}^{f \times f}$, such that $X \approx Z D Z^{\top}$ with $f \ll n$.

Solving Large-Scale Sylvester and Lyapunov Equations

Some Basics

Sylvester equation $A X-X B=F G^{T}$ is equivalent to linear system of equations

$$
\left(I_{m} \otimes A-B^{T} \otimes I_{n}\right) \operatorname{vec}(x)=\operatorname{vec}\left(F G^{T}\right)
$$

Solving Large-Scale Sylvester and Lyapunov Equations

Some Basics

Sylvester equation $A X-X B=F G^{T}$ is equivalent to linear system of equations

$$
\left(I_{m} \otimes A-B^{T} \otimes I_{n}\right) \operatorname{vec}(x)=\operatorname{vec}\left(F G^{T}\right)
$$

This cannot be used for numerical solutions unless $n m \leq 100$ (or so), as

- it requires $\mathcal{O}\left(n^{2} m^{2}\right)$ of storage;

Solving Large-Scale Sylvester and Lyapunov Equations

Some Basics

Sylvester equation $A X-X B=F G^{T}$ is equivalent to linear system of equations

$$
\left(I_{m} \otimes A-B^{T} \otimes I_{n}\right) \operatorname{vec}(x)=\operatorname{vec}\left(F G^{T}\right)
$$

This cannot be used for numerical solutions unless $n m \leq 100$ (or so), as

- it requires $\mathcal{O}\left(n^{2} m^{2}\right)$ of storage;
- direct solver needs $\mathcal{O}\left(n^{3} m^{3}\right)$ flops;

Solving Large-Scale Sylvester and Lyapunov Equations

Some Basics

Sylvester equation $A X-X B=F G^{T}$ is equivalent to linear system of equations

$$
\left(I_{m} \otimes A-B^{T} \otimes I_{n}\right) \operatorname{vec}(x)=\operatorname{vec}\left(F G^{T}\right)
$$

This cannot be used for numerical solutions unless $n m \leq 100$ (or so), as

- it requires $\mathcal{O}\left(n^{2} m^{2}\right)$ of storage;
- direct solver needs $\mathcal{O}\left(n^{3} m^{3}\right)$ flops;
- low (tensor-)rank of right-hand side is ignored;

Solving Large-Scale Sylvester and Lyapunov Equations

Some Basics

Sylvester equation $A X-X B=F G^{T}$ is equivalent to linear system of equations

$$
\left(I_{m} \otimes A-B^{T} \otimes I_{n}\right) \operatorname{vec}(x)=\operatorname{vec}\left(F G^{T}\right)
$$

This cannot be used for numerical solutions unless $n m \leq 100$ (or so), as

- it requires $\mathcal{O}\left(n^{2} m^{2}\right)$ of storage;
- direct solver needs $\mathcal{O}\left(n^{3} m^{3}\right)$ flops;
- low (tensor-)rank of right-hand side is ignored;
- in Lyapunov case, symmetry and possible definiteness are not respected.

Solving Large-Scale Sylvester and Lyapunov Equations

Some Basics

Sylvester equation $A X-X B=F G^{T}$ is equivalent to linear system of equations

$$
\left(I_{m} \otimes A-B^{T} \otimes I_{n}\right) \operatorname{vec}(x)=\operatorname{vec}\left(F G^{T}\right)
$$

This cannot be used for numerical solutions unless $n m \leq 100$ (or so), as

- it requires $\mathcal{O}\left(n^{2} m^{2}\right)$ of storage;
- direct solver needs $\mathcal{O}\left(n^{3} m^{3}\right)$ flops;
- low (tensor-)rank of right-hand side is ignored;
- in Lyapunov case, symmetry and possible definiteness are not respected.

Possible solvers:

- Standard Krylov subspace solvers in operator from [Hochbruck, Starke, Reichel, Bao, ...].
- Block-Tensor-Krylov subspace methods with truncation [Kressner/Tobler, Bollhöfer/Eppler, B./Breiten, ...].
- Galerkin-type methods based on (extended, rational) Krylov subspace methods [Jaimoukha, Kasenally, Jbilou, Simoncini, Druskin, Knizhermann,...]
- Doubling-type methods [Smith, Chu et al., B./Sadkane/El Khoury, ...].
- ADI methods [Wachspress, Reichel et al., Li, Penzl, B., Saak, Kürschner, ...].

Solving Large-Scale Sylvester and Lyapunov Equations

LR-ADI Derivation

Sylvester and Stein equations

Let $\alpha \neq \beta$ with $\alpha \notin \Lambda(B), \beta \notin \Lambda(A)$, then

$$
\underbrace{A X-X B=F G^{\top}}_{\text {Sylvester equation }} \Leftrightarrow \underbrace{X=\mathcal{A} X \mathcal{B}+(\beta-\alpha) \mathcal{F} \mathcal{G}^{H}}_{\text {Stein equation }}
$$

with the Cayley like transformations

$$
\begin{array}{ll}
\mathcal{A}:=\left(A-\beta I_{n}\right)^{-1}\left(A-\alpha I_{n}\right), & \mathcal{B}:=\left(B-\alpha I_{m}\right)^{-1}\left(B-\beta I_{m}\right), \\
\mathcal{F}:=\left(A-\beta I_{n}\right)^{-1} F, & \mathcal{G}:=\left(B-\alpha I_{m}\right)^{-H} G .
\end{array}
$$

\rightsquigarrow fix point iteration

$$
X_{k}=\mathcal{A} X_{k-1} \mathcal{B}+(\beta-\alpha) \mathcal{F} \mathcal{G}^{H}
$$

for $k \geq 1, X_{0} \in \mathbb{R}^{n \times m}$.

Solving Large-Scale Sylvester and Lyapunov Equations

LR-ADI Derivation

Sylvester and Stein equations

Let $\alpha_{\mathbf{k}} \neq \beta_{\mathbf{k}}$ with $\alpha_{\mathbf{k}} \notin \Lambda(B), \beta_{\mathbf{k}} \notin \Lambda(A)$, then

$$
\underbrace{A X-X B=F G^{T}}_{\text {Sylvester equation }} \Leftrightarrow \underbrace{X=\mathcal{A}_{\mathbf{k}} X \mathcal{B}_{\mathbf{k}}+\left(\beta_{\mathbf{k}}-\alpha_{\mathbf{k}}\right) \mathcal{F}_{\mathbf{k}} \mathcal{G}_{\mathbf{k}}{ }^{H}}_{\text {Stein equation }}
$$

with the Cayley like transformations

$$
\begin{array}{ll}
\mathcal{A}:=\left(A-\beta_{\mathbf{k}} I_{n}\right)^{-1}\left(A-\alpha_{\mathbf{k}} I_{n}\right), & \mathcal{B}:=\left(B-\alpha_{\mathbf{k}} I_{m}\right)^{-1}\left(B-\beta_{\mathbf{k}} I_{m}\right), \\
\mathcal{F}:=\left(A-\beta_{\mathbf{k}} I_{n}\right)^{-1} F, & \mathcal{G}:=\left(B-\alpha_{\mathbf{k}} I_{m}\right)^{-H} G .
\end{array}
$$

\rightsquigarrow alternating directions implicit (ADI) iteration

$$
X_{k}=\mathcal{A}_{\mathbf{k}} X_{k-1} \mathcal{B}_{\mathbf{k}}+\left(\beta_{\mathbf{k}}-\alpha_{\mathbf{k}}\right) \mathcal{F}_{\mathbf{k}} \mathcal{G}_{\mathbf{k}}^{H_{\mathbf{k}}}
$$

for $k \geq 1, X_{0} \in \mathbb{R}^{n \times m}$.
[WAChSPRESS 1988]

Solving Large-Scale Sylvester and Lyapunov Equations

LR-ADI Derivation

Sylvester ADI iteration

$$
\begin{aligned}
& X_{k}=\mathcal{A}_{k} X_{k-1} \mathcal{B}_{k}+\left(\beta_{k}-\alpha_{k}\right) \mathcal{F}_{k} \mathcal{G}_{k}^{H} \\
& \mathcal{A}_{k}:=\left(A-\beta_{k} I_{n}\right)^{-1}\left(A-\alpha_{k} I_{n}\right), \quad \mathcal{B}_{k}:=\left(B-\alpha_{k} I_{m}\right)^{-1}\left(B-\beta_{k} I_{m}\right) \\
& \mathcal{F}_{k}:=\left(A-\beta_{k} I_{n}\right)^{-1} F \in \mathbb{R}^{n \times r}, \quad \mathcal{G}_{k}:=\left(B-\alpha_{k} I_{m}\right)^{-H} G \in \mathbb{C}^{m \times r}
\end{aligned}
$$

Now set $X_{0}=0$ and find factorization $X_{k}=Z_{k} D_{k} Y_{k}^{H}$

$$
X_{1}=\mathcal{A}_{1} X_{0} \mathcal{B}_{1}+\left(\beta_{1}-\alpha_{1}\right) \mathcal{F}_{1} \mathcal{G}_{1}^{H}
$$

Solving Large-Scale Sylvester and Lyapunov Equations

LR-ADI Derivation

Sylvester ADI iteration

$$
\begin{aligned}
& X_{k}=\mathcal{A}_{k} X_{k-1} \mathcal{B}_{k}+\left(\beta_{k}-\alpha_{k}\right) \mathcal{F}_{k} \mathcal{G}_{k}^{H}, \\
& \mathcal{A}_{k}:=\left(A-\beta_{k} I_{n}\right)^{-1}\left(A-\alpha_{k} I_{n}\right), \quad \mathcal{B}_{k}:=\left(B-\alpha_{k} I_{m}\right)^{-1}\left(B-\beta_{k} I_{m}\right), \\
& \mathcal{F}_{k}:=\left(A-\beta_{k} I_{n}\right)^{-1} F \in \mathbb{R}^{n \times r}, \quad \mathcal{G}_{k}:=\left(B-\alpha_{k} I_{m}\right)^{-H} G \in \mathbb{C}^{m \times r} .
\end{aligned}
$$

Now set $X_{0}=0$ and find factorization $X_{k}=Z_{k} D_{k} Y_{k}^{H}$

$$
\begin{aligned}
& X_{1}=\left(\beta_{1}-\alpha_{1}\right)\left(A-\beta_{1} I_{n}\right)^{-1} F G^{T}\left(B-\alpha_{1} I_{m}\right)^{-1} \\
\Rightarrow V_{1}:= & Z_{1}=\left(A-\beta_{1} I_{n}\right)^{-1} F \in \mathbb{R}^{n \times r}, \\
& D_{1}=\left(\beta_{1}-\alpha_{1}\right) I_{r} \in \mathbb{R}^{r \times r}, \\
W_{1}:= & Y_{1}=\left(B-\alpha_{1} I_{m}\right)^{-H} G \in \mathbb{C}^{m \times r} .
\end{aligned}
$$

Solving Large-Scale Sylvester and Lyapunov Equations

LR-ADI Derivation

Sylvester ADI iteration

$$
\begin{aligned}
& X_{k}=\mathcal{A}_{k} X_{k-1} \mathcal{B}_{k}+\left(\beta_{k}-\alpha_{k}\right) \mathcal{F}_{k} \mathcal{G}_{k}^{H}, \\
& \mathcal{A}_{k}:=\left(A-\beta_{k} I_{n}\right)^{-1}\left(A-\alpha_{k} I_{n}\right), \quad \mathcal{B}_{k}:=\left(B-\alpha_{k} I_{m}\right)^{-1}\left(B-\beta_{k} I_{m}\right), \\
& \mathcal{F}_{k}:=\left(A-\beta_{k} I_{n}\right)^{-1} F \in \mathbb{R}^{n \times r}, \quad \mathcal{G}_{k}:=\left(B-\alpha_{k} I_{m}\right)^{-H} G \in \mathbb{C}^{m \times r} .
\end{aligned}
$$

Now set $X_{0}=0$ and find factorization $X_{k}=Z_{k} D_{k} Y_{k}^{H}$

$$
\begin{aligned}
X_{2} & =\mathcal{A}_{2} X_{1} \mathcal{B}_{2}+\left(\beta_{2}-\alpha_{2}\right) \mathcal{F}_{2} \mathcal{G}_{2}^{H}=\ldots= \\
V_{2} & =V_{1}+\left(\beta_{2}-\alpha_{1}\right)\left(A+\beta_{2} I\right)^{-1} V_{1} \in \mathbb{R}^{n \times r}, \\
W_{2} & =W_{1}+\overline{\left(\alpha_{2}-\beta_{1}\right)}\left(B+\alpha_{2} I\right)^{-H} W_{1} \in \mathbb{R}^{m \times r}, \\
Z_{2} & =\left[Z_{1}, V_{2}\right], \\
D_{2} & =\operatorname{diag}\left(D_{1},\left(\beta_{2}-\alpha_{2}\right) I_{r}\right), \\
Y_{2} & =\left[Y_{1}, W_{2}\right] .
\end{aligned}
$$

Solving Large-Scale Sylvester and Lyapunov Equations

Algorithm 1: Low-rank Sylvester ADI / factored ADI (fADI)
Input : Matrices defining $A X-X B=F G^{T}$ and shift parameters $\left\{\alpha_{1}, \ldots, \alpha_{k_{\max }}\right\},\left\{\beta_{1}, \ldots, \beta_{k_{\max }}\right\}$.
Output: Z, D, Y such that $Z D Y^{H} \approx X$.
$1 Z_{1}=V_{1}=\left(A-\beta_{1} I_{n}\right)^{-1} F$,
$2 Y_{1}=W_{1}=\left(B-\alpha_{1} I_{m}\right)^{-H} G$.
$3 D_{1}=\left(\beta_{1}-\alpha_{1}\right) I_{r}$
4 for $k=2, \ldots, k_{\text {max }}$ do

$$
\begin{aligned}
& V_{k}=V_{k-1}+\left(\beta_{k}-\alpha_{k-1}\right)\left(A-\beta_{k} I_{n}\right)^{-1} V_{k-1} . \\
& W_{k}=W_{k-1}+\overline{\left(\alpha_{k}-\beta_{k-1}\right)\left(B-\alpha_{k} I_{n}\right)^{-H} W_{k-1} .} .
\end{aligned}
$$

Update solution factors

$$
Z_{k}=\left[Z_{k-1}, V_{k}\right], \quad Y_{k}=\left[Y_{k-1}, W_{k}\right], \quad D_{k}=\operatorname{diag}\left(D_{k-1},\left(\beta_{k}-\alpha_{k}\right) I_{r}\right) .
$$

Solving Large-Scale Sylvester and Lyapunov Equations

ADI Shifts

Optimal Shifts

Solution of rational optimization problem

$$
\left.\min _{\substack{\alpha_{j} \in \mathbb{C} \\ \beta_{j} \in \mathbb{C}}} \max _{\lambda \in \Lambda(A)}^{\mu \in \Lambda(B)}\right\} \prod_{j=1}^{k}\left|\frac{\left(\lambda-\alpha_{j}\right)\left(\mu-\beta_{j}\right)}{\left(\lambda-\beta_{j}\right)\left(\mu-\alpha_{j}\right)}\right|
$$

for which no analytic solution is known in general.

Some shift generation approaches:

- generalized Bagby points,
[Levenberg/Reichel 1993]
- adaption of Penzl's cheap heuristic approach available [Penzl 1999, Li/Truhar 2008] \rightsquigarrow approximate $\Lambda(A), \Lambda(B)$ by small number of Ritz values w.r.t. A, A^{-1}, B, B^{-1} via Arnoldi,
- just taking these Ritz values alone also works well quite often.

Solving Large-Scale Sylvester and Lyapunov Equations

LR-ADI Derivation

Disadvantages of Low-Rank ADI as of 2012:

(1) No efficient stopping criteria:

- Difference in iterates \rightsquigarrow norm of added columns/step: not reliable, stops often too late.
- Residual is a full dense matrix, can not be calculated as such.
(2) Requires complex arithmetic for real coefficients when complex shifts are used.
- Expensive (only semi-automatic) set-up phase to precompute ADI shifts.

Solving Large-Scale Sylvester and Lyapunov Equations

LR-ADI Derivation

Disadvantages of Low-Rank ADI as of 2012:

(1) No efficient stopping criteria:

- Difference in iterates \rightsquigarrow norm of added columns/step: not reliable, stops often too late.
- Residual is a full dense matrix, can not be calculated as such.
(2) Requires complex arithmetic for real coefficients when complex shifts are used.
(3) Expensive (only semi-automatic) set-up phase to precompute ADI shifts.

Will show: none of these disadvantages exists as of today \Longrightarrow speed-ups old vs. new LR-ADI can be up to 20!

Solving Large-Scale Sylvester and Lyapunov Equations

Low-Rank Structure of the Residual

Low-rank Structure of \mathcal{S}_{k} in LR-ADI

$$
\begin{aligned}
\mathcal{S}_{k} & :=\underbrace{A\left(Z_{k} D_{k} Y_{k}^{H}\right)-\left(Z_{k} D_{k} Y_{k}^{H}\right) B-F G^{T}}_{\text {large, dense } n \times m \text { matrix }}=-Q_{k} U_{k}^{H} \in \mathbb{C}^{n \times m} \\
Q_{k} & =Q_{k-1}+\left(\beta_{k}-\alpha_{k}\right) V_{k} \in \mathbb{C}^{n \times r} \\
U_{k} & =U_{k-1}-\overline{\left(\beta_{k}-\alpha_{k}\right)} W_{k} \in \mathbb{C}^{m \times r}
\end{aligned}
$$

$\Rightarrow \operatorname{rank}\left(\mathcal{S}_{k}\right) \leq r$.
Moreover, with $Q_{0}=F, U_{0}=G$ it holds for the LR-ADI iterations

$$
\begin{aligned}
V_{k} & =\left(A-\alpha_{k} I_{n}\right)^{-1} Q_{k-1} \\
W_{k} & =\left(B-\beta_{k} I_{m}\right)^{-H} U_{k-1}, \quad \forall k \geq 1
\end{aligned}
$$

\rightsquigarrow Holds also similarly in LR-ADI for Lyapunov equations.
[B./Kürschner/SaAK 2013]

Solving Large-Scale Sylvester and Lyapunov Equations

\rightsquigarrow Low-rank Sylvester ADI reloaded
[B./KüRSCHNER 2013]

Algorithm 2: Reformulated Factored ADI iteration (fADI 2.0)
Input : Matrices defining $A X-X B=F G^{T}$ and shift parameters $\left\{\alpha_{1}, \ldots, \alpha_{k_{\max }}\right\},\left\{\beta_{1}, \ldots, \beta_{k_{\max }}\right\}$, tolerance τ.
Output: Z, Y, D such that $Z D Y^{H} \approx X$.
$1 Q_{0}=F, U_{0}=G, k=1$.
2 while $\left\|Q_{k-1} U_{k-1}^{H}\right\| \geq \tau\left\|F G^{T}\right\|$ do
$3 \quad \gamma_{k}=\beta_{k}-\alpha_{k}$.
$4 \quad V_{k}=\left(A-\beta_{k} I_{n}\right)^{-1} Q_{k-1}, \quad W_{k}=\left(B-\alpha_{k} I_{m}\right)^{-H} U_{k-1}$,
5

$$
Q_{k}=Q_{k-1}+\gamma_{k} V_{k}, \quad U_{k}=U_{k-1}-\overline{\gamma_{k}} W_{k}
$$

Update solution factors

$$
Z_{k}=\left[Z_{k-1}, V_{k}\right], \quad Y_{k}=\left[Y_{k-1}, W_{k}\right], \quad D_{k}=\operatorname{diag}\left(D_{k-1}, \gamma_{k} I_{r}\right)
$$

7

$$
k++
$$

Solving Large-Scale Sylvester and Lyapunov Equations

Computing the Residual Norm

Low-rank factors Q_{k}, U_{k} of the residual \mathcal{S}_{k} now integral part of the iteration.
Allows a cheap computation of $\left\|\mathcal{S}_{k}\right\|_{2}$ via, e.g.,

$$
\left\|\mathcal{S}_{k}\right\|_{2}=\left\|Q_{k} U_{k}^{H}\right\|_{2}=\left\|U_{k} R_{k}^{H}\right\|_{2}, \quad Q_{k}=H_{k} R_{k}, \quad H_{k}^{H} H_{k}=I_{r}
$$

\rightsquigarrow requires thin QR factorization of an $n \times r$ matrix and $\|\cdot\|_{2}$ computation of an $r \times r$ matrix.

Much cheaper than the traditional approach: apply Lanczos to $\mathcal{S}_{k}^{H} \mathcal{S}_{k}$ to get $\left\|\mathcal{S}_{k}\right\|_{2}=\sqrt{\lambda_{\max }\left(\mathcal{S}_{k}^{H} \mathcal{S}_{k}\right)}$
\rightsquigarrow requires several matrix vector products with A, B (and A^{T}, B^{T}) and additional scalar products.

Note: In Lyapunov case, residual evaluation is almost "free" as no QR factorization is required.

Solving Large-Scale Sylvester and Lyapunov Equations

Low-Rank Structure of the Residual

Example I: 5-point discretizations of the operator

$$
L(x):=\Delta x-v . \nabla x-f\left(\xi_{1}, \xi_{2}\right) x
$$

on $\Omega=(0,1)^{2}$ for $x=x\left(\xi_{1}, \xi_{2}\right)$, homogeneous Dirichlet BC.
A: 150 grid points, $v=\left[e^{\xi_{1}+\xi_{2}}, 1000 \xi_{2}\right], f\left(\xi_{1}, \xi_{2}\right)=\xi_{1}$,
B: 120 grid points, $v=\left[\sin \left(\xi_{1}+2 \xi_{2}\right), 20 e^{\xi_{1}+\xi_{2}}\right], f\left(\xi_{1}, \xi_{2}\right)=\xi_{1} \xi_{2}$.
$\Rightarrow n=22500, m=14400, F, G$ random with $r=4$ columns.
Shifts: 10 Ritz values w.r.t. A, A^{-1}, B, B^{-1} yield 20α-shifts, 20β - shifts

Solving Large-Scale Sylvester and Lyapunov Equations

Low-Rank Structure of the Residual

Example I: 5-point discretizations of the operator

$$
L(x):=\Delta x-v . \nabla x-f\left(\xi_{1}, \xi_{2}\right) x
$$

on $\Omega=(0,1)^{2}$ for $x=x\left(\xi_{1}, \xi_{2}\right)$, homogeneous Dirichlet BC.

Solving Large-Scale Sylvester and Lyapunov Equations

Realification of LR-ADI

We have real matrices A, B, F, G defining the Sylvester equation. If $\Lambda(A), \Lambda(B) \subset \mathbb{C} \rightsquigarrow$ some α_{k}, β_{k} might be complex $\rightsquigarrow \quad$ complex operations in LR-ADI $\rightsquigarrow \quad Z, D, Y$ complex.
To generate real solution factors we need that $\left\{\alpha_{k}\right\},\left\{\beta_{k}\right\}$ form

Proper and suitably ordered sets of shifts

- If $\alpha_{k} \in \mathbb{C}$ then $\alpha_{k+1}=\overline{\alpha_{k}}$ and either $\beta_{k}, \beta_{k+1}=\overline{\beta_{k}} \in \mathbb{C}$ or $\beta_{k}, \beta_{k+1} \in \mathbb{R}$.
- If $\beta_{k} \in \mathbb{C}$ then $\beta_{k+1}=\overline{\beta_{k}}$ and either $\alpha_{k}, \alpha_{k+1}=\overline{\alpha_{k}} \in \mathbb{C}$ or $\alpha_{k}, \alpha_{k+1} \in \mathbb{R}$.

No restriction, since ADI is independent of the order of shifts. Can be achieved by simple permutation of the sets of shifts.

Solving Large-Scale Sylvester and Lyapunov Equations

Realification of LR-ADI

Relation of Iterates

If $\alpha_{k}, \alpha_{k+1}=\overline{\alpha_{k}} \in \mathbb{C}$ and $\beta_{k}, \beta_{k+1}=\overline{\beta_{k}} \in \mathbb{C}$ then

$$
V_{k+1}=\overline{V_{k}}+\frac{\beta_{k}-\gamma_{k}}{\operatorname{Im}\left(\beta_{k}\right)} \operatorname{Im}\left(V_{k}\right), \quad W_{k+1}=\overline{W_{k}}+\frac{\overline{\beta_{k}-\gamma_{k}}}{\operatorname{Im}\left(\alpha_{k}\right)} \operatorname{Im}\left(W_{k}\right)
$$

- Linear systems with $A-\overline{\alpha_{k}} I_{n}, B-\overline{\beta_{k}} I_{m}$ not required,
- low-rank factors always augmented by real data:

$$
\begin{aligned}
Z_{k+1} & =\left[Z_{k-1},\left[\operatorname{Re}\left(V_{k}\right), \operatorname{Im}\left(V_{k}\right)\right] \in \mathbb{R}^{n \times 2 r}\right], \\
Y_{k+1} & =\left[Y_{k-1},\left[\operatorname{Re}\left(W_{k}\right), \operatorname{Im}\left(W_{k}\right)\right] \in \mathbb{R}^{m \times 2 r}\right], \\
D_{k+1} & =\operatorname{diag}\left(D_{k-1},\left[\begin{array}{c}
* * * \\
* *
\end{array}\right] \in \mathbb{R}^{2 r \times 2 r}\right),
\end{aligned}
$$

- similar relations for residual factors $Q_{k+1} \in \mathbb{R}^{n \times r}, U_{k+1} \in \mathbb{R}^{m \times r}$ and for the other shift sequences.
(Generalization of Lyapunov case as in [B./Kürschner/Saak 2012/13].)

Solving Large-Scale Sylvester and Lyapunov Equations

Realification of LR-ADI

Example I, cont.:
Shifts: 10 Ritz values w.r.t. A, A^{-1}, B, B^{-1} yield 20α - shifts (4 real, 8 complex), 20β - shifts (12 real, 4 complex).

Solving Large-Scale Sylvester and Lyapunov Equations

Self-generating Shifts
Problems with heuristic shifts:

- low-rank structure of solution not embraced,
- no known rules for the numbers
- $\mathbf{k}_{\max }$ of $\boldsymbol{\alpha} / \boldsymbol{\beta}$ shifts,
- Ritz values (i.e., Arnoldi steps)

$$
\mathbf{k}_{+}^{A}, \mathbf{k}_{-}^{A}, \mathbf{k}_{+}^{B}, \mathbf{k}_{-}^{B} \quad \text { w.r.t. } A, A^{-1}, B, B^{-1}
$$

- Arnoldi process brings additional costs.

Solving Large-Scale Sylvester and Lyapunov Equations

Self-generating Shifts
Problems with heuristic shifts:

- low-rank structure of solution not embraced,
- no known rules for the numbers
- $k_{\max }$ of $\boldsymbol{\alpha} / \boldsymbol{\beta}$ shifts,
- Ritz values (i.e., Arnoldi steps)

$$
\mathbf{k}_{+}^{A}, \mathbf{k}_{-}^{A}, \mathbf{k}_{+}^{B}, \mathbf{k}_{-}^{B} \quad \text { w.r.t. } A, A^{-1}, B, B^{-1},
$$

- Arnoldi process brings additional costs.

Observation:

Even small changes in these numbers can lead to significantly different convergence results.

Solving Large-Scale Sylvester and Lyapunov Equations

Self-generating Shifts
A cheap but powerful way out [Hund 2012, B./Kürschner/Saak 2013]
(1) Choose initial shifts, e.g,

$$
\begin{aligned}
\tilde{Q} & =\operatorname{orth}(F), \quad \tilde{U}=\operatorname{orth}(G), \\
\{\alpha\} & =\Lambda\left(\tilde{Q}^{T} A \tilde{Q}\right), \quad\{\beta\}=\Lambda\left(\tilde{U}^{T} B \tilde{U}\right) .
\end{aligned}
$$

(2) If these are depleted during ADI compute new shifts via

$$
\left\{\alpha_{\text {new }}\right\}=\Lambda\left(\tilde{Q}^{T} A \tilde{Q}\right), \quad\left\{\beta_{\text {new }}\right\}=\Lambda\left(\tilde{U}^{T} B \tilde{U}\right),
$$

where

$$
\begin{aligned}
& \text { Variant 1: } \tilde{Q}=\operatorname{orth}(\operatorname{Re}(V), \operatorname{Im}(V)), \\
& \tilde{U}=\operatorname{orth}(\operatorname{Re}(W), \operatorname{Im}(W)) \text { (iterates), } \\
& \text { Variant 2: } \tilde{Q}=\operatorname{orth}(Q), \tilde{U}=\operatorname{orth}(U) \text { (residual factors). }
\end{aligned}
$$

\rightsquigarrow Works surprisingly well although no setup parameters are needed.
\rightsquigarrow Theoretical foundation is current research.

Solving Large-Scale Sylvester and Lyapunov Equations

Self-generating Shifts

Example I, cont.:

Projection-Based Lyapunov Solvers. . .

... for Lyapunov equation $0=A X+X A^{T}+B B^{T}$
Projection-based methods for Lyapunov equations with $A+A^{T}<0$:
(1) Compute orthonormal basis range $(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^{n}$, $\operatorname{dim} \mathcal{Z}=r$.
(2) Set $\hat{A}:=Z^{T} A Z, \hat{B}:=Z^{T} B$.
(3) Solve small-size Lyapunov equation $\hat{A} \hat{X}+\hat{X} \hat{A}^{T}+\hat{B} \hat{B}^{T}=0$.
(9) Use $X \approx Z \hat{X} Z^{T}$.

Projection-Based Lyapunov Solvers. . .

...for Lyapunov equation $0=A X+X A^{T}+B B^{T}$
Projection-based methods for Lyapunov equations with $A+A^{T}<0$:
(1) Compute orthonormal basis range $(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^{n}$, $\operatorname{dim} \mathcal{Z}=r$.
(2) Set $\hat{A}:=Z^{T} A Z, \hat{B}:=Z^{T} B$.
(3) Solve small-size Lyapunov equation $\hat{A} \hat{X}+\hat{X} \hat{A}^{T}+\hat{B} \hat{B}^{T}=0$.
(9) Use $X \approx Z \hat{X} Z^{T}$.

Examples:

- Krylov subspace methods, i.e., for $m=1$:

$$
\mathcal{Z}=\mathcal{K}(A, B, r)=\operatorname{span}\left\{B, A B, A^{2} B, \ldots, A^{r-1} B\right\}
$$

[Saad 1990, Jaimoukha/Kasenally 1994, Jbilou 2002-2008].

- Extended Krylov subspace method (EKSM) [Simoncini 2007],

$$
\mathcal{Z}=\mathcal{K}(A, B, r) \cup \mathcal{K}\left(A^{-1}, B, r\right)
$$

- Rational Krylov subspace methods (RKSM) [Druskin/Simoncini 2011].

Solving Large-Scale Sylvester and Lyapunov Equations

The New LR-ADI Applied to Lyapunov Equations

Comparison of the new LR-ADI and EKSM

- Both methods require a system solve and several matvecs per iteration.

Solving Large-Scale Sylvester and Lyapunov Equations

The New LR-ADI Applied to Lyapunov Equations

Comparison of the new LR-ADI and EKSM

- Both methods require a system solve and several matvecs per iteration.
- EKSM requires only one (or two in the presence of a mass matrix) factorizations in total, LR-ADI needs a new factorization for each new shift.

Solving Large-Scale Sylvester and Lyapunov Equations

The New LR-ADI Applied to Lyapunov Equations

Comparison of the new LR-ADI and EKSM

- Both methods require a system solve and several matvecs per iteration.
- EKSM requires only one (or two in the presence of a mass matrix) factorizations in total, LR-ADI needs a new factorization for each new shift.
- EKSM requires deflation strategy for MIMO systems - MIMO case requires no extra treatment in LR-ADI.

Solving Large-Scale Sylvester and Lyapunov Equations

The New LR-ADI Applied to Lyapunov Equations

Comparison of the new LR-ADI and EKSM

- Both methods require a system solve and several matvecs per iteration.
- EKSM requires only one (or two in the presence of a mass matrix) factorizations in total, LR-ADI needs a new factorization for each new shift.
- EKSM requires deflation strategy for MIMO systems - MIMO case requires no extra treatment in LR-ADI.
- Both methods have low-rank expressions for the residual, enabling residual-based stopping criteria.

Solving Large-Scale Sylvester and Lyapunov Equations

The New LR-ADI Applied to Lyapunov Equations

Comparison of the new LR-ADI and EKSM

- Both methods require a system solve and several matvecs per iteration.
- EKSM requires only one (or two in the presence of a mass matrix) factorizations in total, LR-ADI needs a new factorization for each new shift.
- EKSM requires deflation strategy for MIMO systems - MIMO case requires no extra treatment in LR-ADI.
- Both methods have low-rank expressions for the residual, enabling residual-based stopping criteria.
- Both methods can be run fully automatic (LR ADI requires self-generating shifts for this).

Solving Large-Scale Sylvester and Lyapunov Equations

The New LR-ADI Applied to Lyapunov Equations

Comparison of the new LR-ADI and EKSM

- Both methods require a system solve and several matvecs per iteration.
- EKSM requires only one (or two in the presence of a mass matrix) factorizations in total, LR-ADI needs a new factorization for each new shift.
- EKSM requires deflation strategy for MIMO systems - MIMO case requires no extra treatment in LR-ADI.
- Both methods have low-rank expressions for the residual, enabling residual-based stopping criteria.
- Both methods can be run fully automatic (LR ADI requires self-generating shifts for this).
- EKSM requires dissipativity of A, i.e., $A+A^{T}<0$, to guarantee convergence, ADI only needs $\Lambda(A) \subset \mathbb{C}^{-}$.

Solving Large-Scale Sylvester and Lyapunov Equations

The New LR-ADI Applied to Lyapunov Equations

Comparison of the new LR-ADI and EKSM

- Both methods require a system solve and several matvecs per iteration.
- EKSM requires only one (or two in the presence of a mass matrix) factorizations in total, LR-ADI needs a new factorization for each new shift.
- EKSM requires deflation strategy for MIMO systems - MIMO case requires no extra treatment in LR-ADI.
- Both methods have low-rank expressions for the residual, enabling residual-based stopping criteria.
- Both methods can be run fully automatic (LR ADI requires self-generating shifts for this).
- EKSM requires dissipativity of A, i.e., $A+A^{T}<0$, to guarantee convergence, ADI only needs $\Lambda(A) \subset \mathbb{C}^{-}$.
- If it converges, EKSM is usually faster for SISO systems with $A=A^{T}<0$.

The New LR-ADI Applied to Lyapunov Equations

- FEM discretization of a simple 3D ocean circulation model (barotropic, constant depth) \rightsquigarrow stiffness matrix $-A$ with $n=42,249$, choose artificial constant term $B=\operatorname{rand}(n, 5)$.

The New LR-ADI Applied to Lyapunov Equations

Example II: an ocean circulation problem

- FEM discretization of a simple 3D ocean circulation model (barotropic, constant depth) \rightsquigarrow stiffness matrix $-A$ with $n=42,249$, choose artificial constant term $B=\operatorname{rand}(n, 5)$.
- Convergence history:

LR-ADI with adaptive shifts vs. EKSM

The New LR-ADI Applied to Lyapunov Equations

Example II: an ocean circulation problem

- FEM discretization of a simple 3D ocean circulation model (barotropic, constant depth) \rightsquigarrow stiffness matrix $-A$ with $n=42,249$, choose artificial constant term $B=\operatorname{rand}(n, 5)$.
- Convergence history:

LR-ADI with adaptive shifts vs. EKSM

- CPU times: LR-ADI $\approx 110 \mathrm{sec}, \mathrm{EKSM} \approx 135 \mathrm{sec}$.

The New LR-ADI Applied to Lyapunov Equations

Example III: the triple-chain-ocillator

- Standard vibrational system

\rightsquigarrow second-order system with $n=21,001$, linearization $\rightsquigarrow n=42,002$,

The New LR-ADI Applied to Lyapunov Equations

Example III: the triple-chain-ocillator

- Standard vibrational system

\rightsquigarrow second-order system with $n=21,001$, linearization $\rightsquigarrow n=42,002$,
- Again, artificial constant term: $B=\operatorname{rand}(n, 5)$.

The New LR-ADI Applied to Lyapunov Equations

Example III: the triple-chain-ocillator

- Standard vibrational system \rightsquigarrow second-order system with $n=21,001$, linearization $\rightsquigarrow n=42,002$,
- Again, artificial constant term: $B=\operatorname{rand}(n, 5)$.
- Convergence history:

LR-ADI with adaptive shifts vs. EKSM

Solving Large-Scale Sylvester and Lyapunov Equations

Summary \& Outlook

- Numerical enhancements of low-rank ADI for large Sylvester/Lyapunov equations:
(1) low-rank residuals, reformulated implementation,
(2) compute real low-rank factors in the presence of complex shifts,
(3) self-generating shift strategies (quantification in progress).

Recall the example:

332.02 sec . down to $17.24 \mathrm{sec} . \rightsquigarrow$ acceleration by factor almost 20.

- Generalized version enables derivation of low-rank solvers for various generalized Sylvester equations.
- Ongoing work:
- Apply LR-ADI in Newton methods for algebraic Riccati equations

$$
\begin{aligned}
& \mathcal{N}(X)=A X+X B+F G^{T}-X S T^{T} X=0 \\
& \mathcal{D}(X)=A X A^{T}-E X E^{T}+S S^{T}+A^{T} X F\left(I_{r}+F^{T} X F\right)^{-1} F^{T} X A=0
\end{aligned}
$$

Overview

This part: joint work with Tobias Breiten (KFU Graz, Austria)
(1) Introduction
(2) Applications
(3) Solving Large-Scale Sylvester and Lyapunov Equations

4 Solving Large-Scale Lyapunov-plus-Positive Equations

- Application: Balanced Truncation for Bilinear Systems
- Existence of Low-Rank Approximations
- Generalized ADI Iteration
- Bilinear EKSM
- Tensorized Krylov Subspace Methods
- Comparison of Methods
(5) References

Solving Large-Scale Lyapunov-plus-Positive Equations

Application: Balanced Truncation for Bilinear Systems

Bilinear control systems:

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+\sum_{i=1}^{m} N_{i} x(t) u_{i}(t)+B u(t) \\
y(t)=C x(t), \quad x(0)=x_{0}
\end{array}\right.
$$

where $A, N_{i} \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}$.

Properties:

- Approximation of (weakly) nonlinear systems by Carleman linearization yields bilinear systems.
- Appear naturally in boundary control problems, control via coefficients of PDEs, Fokker-Planck equations, ...
- Due to the close relation to linear systems, a lot of successful concepts can be extended, e.g. transfer functions, Gramians, Lyapunov equations, ...
- Linear stochastic control systems possess an equivalent structure and can be treated alike [B./Damm '11].

Solving Large-Scale Lyapunov-plus-Positive Equations

Application: Balanced Truncation for Bilinear Systems

The concept of balanced truncation can be generalized to the case of bilinear systems, where we need the solutions of the Lyapunov-plus-positive equations:

$$
\begin{aligned}
A P+P A^{T}+\sum_{i=1}^{m} N_{i} P A_{i}^{T}+B B^{T} & =0 \\
A^{T} Q+Q A^{T}+\sum_{i=1}^{m} N_{i}^{T} Q A_{i}+C^{T} C & =0
\end{aligned}
$$

- Due to its approximation quality, balanced truncation is method of choice for model reduction of medium-size biliner systems.
- For stationary iterative solvers, see [Damm 2008], extended to low-rank solutions recently by [Szyld/Shank/Simoncini 2014].

Solving Large-Scale Lyapunov-plus-Positive Equations

Application: Balanced Truncation for Bilinear Systems

The concept of balanced truncation can be generalized to the case of bilinear systems, where we need the solutions of the Lyapunov-plus-positive equations:

$$
\begin{aligned}
A P+P A^{T}+\sum_{i=1}^{m} N_{i} P A_{i}^{T}+B B^{T} & =0 \\
A^{T} Q+Q A^{T}+\sum_{i=1}^{m} N_{i}^{T} Q A_{i}+C^{T} C & =0
\end{aligned}
$$

Further applications:

- Analysis and model reduction for linear stochastic control systems driven by Wiener noise [B./Damm 2011], Lévy processes [B./Redmann 2011].
- Model reduction of linear parameter-varying (LPV) systems using bilinearization approach [B./Breiten 2011].
- Model reduction for Fokker-Planck equations [Hartmann et al. 2013].

Solving Large-Scale Lyapunov-plus-Positive Equations

Some basic facts and assumptions

$$
\begin{equation*}
A X+X A^{T}+\sum_{i=1}^{m} N_{i} X N_{i}^{T}+B B^{T}=0 \tag{3}
\end{equation*}
$$

- Need a positive semi-definite symmetric solution X.

Solving Large-Scale Lyapunov-plus-Positive Equations

Some basic facts and assumptions

$$
\begin{equation*}
A X+X A^{T}+\sum_{i=1}^{m} N_{i} X N_{i}^{T}+B B^{T}=0 \tag{3}
\end{equation*}
$$

- Need a positive semi-definite symmetric solution X.
- As discussed before, solution theory for Lyapuonv-plus-positive equation is more involved then in standard Lyapuonv case. Here, existence and uniqueness of positive semi-definite solution $X=X^{\top}$ is assumed.

Solving Large-Scale Lyapunov-plus-Positive Equations

Some basic facts and assumptions

$$
\begin{equation*}
A X+X A^{T}+\sum_{i=1}^{m} N_{i} X N_{i}^{T}+B B^{T}=0 \tag{3}
\end{equation*}
$$

- Need a positive semi-definite symmetric solution X.
- As discussed before, solution theory for Lyapuonv-plus-positive equation is more involved then in standard Lyapuonv case. Here, existence and uniqueness of positive semi-definite solution $X=X^{\top}$ is assumed.
- Want: solution methods for large scale problems, i.e., only matrix-matrix multiplication with A, N_{j}, solves with (shifted) A allowed!

Solving Large-Scale Lyapunov-plus-Positive Equations

Some basic facts and assumptions

$$
\begin{equation*}
A X+X A^{T}+\sum_{i=1}^{m} N_{i} X N_{i}^{T}+B B^{T}=0 \tag{3}
\end{equation*}
$$

- Need a positive semi-definite symmetric solution X.
- As discussed before, solution theory for Lyapuonv-plus-positive equation is more involved then in standard Lyapuonv case. Here, existence and uniqueness of positive semi-definite solution $X=X^{T}$ is assumed.
- Want: solution methods for large scale problems, i.e., only matrix-matrix multiplication with A, N_{j}, solves with (shifted) A allowed!
- Requires to compute data-sparse approximation to generally dense X; here: $X \approx Z Z^{T}$ with $Z \in \mathbb{R}^{n \times n_{Z}}, n_{Z} \ll n$!

Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Can we expect low-rank approximations $Z Z^{T} \approx X$ to the solution of

$$
A X+X A^{T}+\sum_{j=1}^{m} N_{j} X N_{j}^{T}+B B^{T}=0 ?
$$

Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Can we expect low-rank approximations $Z Z^{T} \approx X$ to the solution of

$$
A X+X A^{T}+\sum_{j=1}^{m} N_{j} X N_{j}^{T}+B B^{T}=0 ?
$$

Standard Lyapunov case:

$$
A X+X A^{T}+B B^{T}=0 \Longleftrightarrow \underbrace{\left(I_{n} \otimes A+A \otimes I_{n}\right)}_{=: \mathcal{A}} \operatorname{vec}(X)=-\operatorname{vec}\left(B B^{T}\right)
$$

Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Standard Lyapunov case:

$$
A X+X A^{T}+B B^{T}=0 \Longleftrightarrow \underbrace{\left(I_{n} \otimes A+A \otimes I_{n}\right)}_{=: \mathcal{A}} \operatorname{vec}(X)=-\operatorname{vec}\left(B B^{T}\right) .
$$

Apply

$$
M^{-1}=-\int_{0}^{\infty} \exp (t M) \mathrm{d} t
$$

to \mathcal{A} and approximate the integral via (sinc) quadrature \Rightarrow

$$
\mathcal{A}^{-1} \approx-\sum_{i=-k}^{k} \omega_{i} \exp \left(t_{k} \mathcal{A}\right)
$$

with error $\sim \exp (-\sqrt{k})\left(\exp (-k)\right.$ if $\left.A=A^{T}\right)$, then an approximate Lyapunov solution is given by

$$
\operatorname{vec}(X) \approx \operatorname{vec}\left(X_{k}\right)=\sum_{i=-k}^{k} \omega_{i} \exp \left(t_{i} \mathcal{A}\right) \operatorname{vec}\left(B B^{T}\right)
$$

Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Standard Lyapunov case:

$$
\begin{aligned}
A X+X A^{T}+B B^{T} & =0 \Longleftrightarrow \underbrace{\left(I_{n} \otimes A+A \otimes I_{n}\right)}_{=: \mathcal{A}} \operatorname{vec}(X)=-\operatorname{vec}\left(B B^{T}\right) \\
\operatorname{vec}(X) & \approx \operatorname{vec}\left(X_{k}\right)=\sum_{i=-k}^{k} \omega_{i} \exp \left(t_{i} \mathcal{A}\right) \operatorname{vec}\left(B B^{T}\right)
\end{aligned}
$$

Now observe that

$$
\exp \left(t_{i} \mathcal{A}\right)=\exp \left(t_{i}\left(I_{n} \otimes A+A \otimes I_{n}\right)\right) \equiv \exp \left(t_{i} A\right) \otimes \exp \left(t_{i} A\right)
$$

Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Standard Lyapunov case:

$$
\begin{gathered}
A X+X A^{T}+B B^{T}=0 \Longleftrightarrow \underbrace{\left(I_{n} \otimes A+A \otimes I_{n}\right)}_{=: \mathcal{A}} \operatorname{vec}(X)=-\operatorname{vec}\left(B B^{T}\right) . \\
\operatorname{vec}(X) \approx \operatorname{vec}\left(X_{k}\right)=\sum_{i=-k}^{k} \omega_{i} \exp \left(t_{i} \mathcal{A}\right) \operatorname{vec}\left(B B^{T}\right) .
\end{gathered}
$$

Now observe that

$$
\exp \left(t_{i} \mathcal{A}\right)=\exp \left(t_{i}\left(I_{n} \otimes A+A \otimes I_{n}\right)\right) \equiv \exp \left(t_{i} A\right) \otimes \exp \left(t_{i} A\right)
$$

Hence,

$$
\operatorname{vec}\left(X_{k}\right)=\sum_{i=-k}^{k} \omega_{i}\left(\exp \left(t_{i} A\right) \otimes \exp \left(t_{i} A\right)\right) \operatorname{vec}\left(B B^{T}\right)
$$

Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Standard Lyapunov case:

$$
A X+X A^{T}+B B^{T}=0 \Longleftrightarrow \underbrace{\left(I_{n} \otimes A+A \otimes I_{n}\right)}_{=: \mathcal{A}} \operatorname{vec}(X)=-\operatorname{vec}\left(B B^{T}\right) .
$$

Hence,

$$
\begin{aligned}
\operatorname{vec}\left(X_{k}\right) & =\sum_{i=-k}^{k} \omega_{i}\left(\exp \left(t_{i} A\right) \otimes \exp \left(t_{i} A\right)\right) \operatorname{vec}\left(B B^{T}\right) \\
\Longrightarrow X_{k} & =\sum_{i=-k}^{k} \omega_{i} \exp \left(t_{i} A\right) B B^{T} \exp \left(t_{i} A^{T}\right) \equiv \sum_{i=-k}^{k} \omega_{i} B_{i} B_{i}^{T}
\end{aligned}
$$

so that $\operatorname{rank}\left(X_{k}\right) \leq(2 k+1) m$ with

$$
\left\|X-X_{k}\right\|_{2} \lesssim \exp (-\sqrt{k}) \quad\left(\exp (-k) \text { for } A=A^{T}\right)!
$$

Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Can we expect low-rank approximations $Z Z^{T} \approx X$ to the solution of

$$
A X+X A^{T}+\sum_{j=1}^{m} N_{j} X N_{j}^{T}+B B^{T}=0 ?
$$

Problem: in general,

$$
\exp \left(t_{i}\left(I \otimes A+A \otimes+\sum_{j=1}^{m} N_{j} \otimes N_{j}\right)\right) \neq\left(\exp \left(t_{i} A\right) \otimes \exp \left(t_{i} A\right)\right) \exp \left(t_{i}\left(\sum_{j=1}^{m} N_{j} \otimes N_{j}\right)\right) .
$$

Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Can we expect low-rank approximations $Z Z^{T} \approx X$ to the solution of

$$
A X+X A^{T}+\sum_{j=1}^{m} N_{j} X N_{j}^{T}+B B^{T}=0 ?
$$

Assume that $m=1$ and $N_{1}=U V^{\top}$ with $U, V \in \mathbb{R}^{n \times r}$ and consider

$$
(\underbrace{I_{n} \otimes A+A \otimes I_{n}}_{=\mathcal{A}}+N_{1} \otimes N_{1}) \operatorname{vec}(X)=\underbrace{-\operatorname{vec}\left(B B^{T}\right)}_{=: y} .
$$

Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Can we expect low-rank approximations $Z Z^{T} \approx X$ to the solution of

$$
A X+X A^{T}+\sum_{j=1}^{m} N_{j} X N_{j}^{T}+B B^{T}=0 ?
$$

Assume that $m=1$ and $N_{1}=U V^{T}$ with $U, V \in \mathbb{R}^{n \times r}$ and consider

$$
(\underbrace{I_{n} \otimes A+A \otimes I_{n}}_{=\mathcal{A}}+N_{1} \otimes N_{1}) \operatorname{vec}(X)=\underbrace{-\operatorname{vec}\left(B B^{T}\right)}_{=: y} .
$$

Sherman-Morrison-Woodbury \Longrightarrow

$$
\begin{aligned}
\left(I_{r} \otimes I_{r}+\left(V^{\top} \otimes V^{T}\right) \mathcal{A}^{-1}(U \otimes U)\right) w & =\left(V^{T} \otimes V^{\top}\right) \mathcal{A}^{-1} y, \\
\mathcal{A} \operatorname{vec}(X) & =y-(U \otimes U) w .
\end{aligned}
$$

Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Can we expect low-rank approximations $Z Z^{T} \approx X$ to the solution of

$$
A X+X A^{T}+\sum_{j=1}^{m} N_{j} X N_{j}^{T}+B B^{T}=0 ?
$$

Assume that $m=1$ and $N_{1}=U V^{T}$ with $U, V \in \mathbb{R}^{n \times r}$ and consider

$$
(\underbrace{I_{n} \otimes A+A \otimes I_{n}}_{=\mathcal{A}}+N_{1} \otimes N_{1}) \operatorname{vec}(X)=\underbrace{-\operatorname{vec}\left(B B^{T}\right)}_{=: y} .
$$

Sherman-Morrison-Woodbury \Longrightarrow

$$
\begin{aligned}
\left(I_{r} \otimes I_{r}+\left(V^{\top} \otimes V^{T}\right) \mathcal{A}^{-1}(U \otimes U)\right) w & =\left(V^{\top} \otimes V^{\top}\right) \mathcal{A}^{-1} y, \\
\mathcal{A} \operatorname{vec}(X) & =y-(U \otimes U) w .
\end{aligned}
$$

Rank of matrix representation of r.h.s. $-B B^{T}-U \mathrm{vec}^{-1}(w) U^{T}$ is $\leq r+1$!
\rightsquigarrow Apply results for linear Lyapunov equations with r.h.s of rank $r+1$.

Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Theorem

Assume existence and uniqueness assumption with stable A and $N_{j}=U_{j} V_{j}^{T}$, with $U_{j}, V_{j} \in \mathbb{R}^{n \times r_{j}}$. Set $r=\sum_{j=1}^{m} r_{j}$.
Then the solution X of

$$
A X+X A^{T}+\sum_{j=1}^{m} N_{j} X N_{j}^{T}+B B^{T}=0
$$

can be approximated by X_{k} of rank $(2 k+1)(m+r)$, with an error satisfying

$$
\left\|X-X_{k}\right\|_{2} \lesssim \exp (-\sqrt{k})
$$

Solving Large-Scale Lyapunov-plus-Positive Equations

Generalized ADI Iteration

Let us again consider the Lyapunov-plus-positive equation

$$
A P+P A^{T}+N P N^{T}+B B^{T}=0
$$

Solving Large-Scale Lyapunov-plus-Positive Equations

Generalized ADI Iteration

Let us again consider the Lyapunov-plus-positive equation

$$
A P+P A^{T}+N P N^{T}+B B^{T}=0
$$

For a fixed parameter p, we can rewrite the linear Lyapunov operator as

$$
A P+P A^{T}=\frac{1}{2 p}\left((A+p l) P(A+p l)^{T}-(A-p l) P(A-p l)^{T}\right)
$$

Solving Large-Scale Lyapunov-plus-Positive Equations

Generalized ADI Iteration

Let us again consider the Lyapunov-plus-positive equation

$$
A P+P A^{T}+N P N^{T}+B B^{T}=0
$$

For a fixed parameter p, we can rewrite the linear Lyapunov operator as

$$
A P+P A^{T}=\frac{1}{2 p}\left((A+p l) P(A+p l)^{T}-(A-p l) P(A-p l)^{T}\right)
$$

leading to the fix point iteration
[DAMM 2008]

$$
\begin{aligned}
P_{j}= & (A-p l)^{-1}(A+p l) P_{j-1}(A+p l)^{T}(A-p l)^{-T} \\
& +2 p(A-p l)^{-1}\left(N P_{j-1} N^{T}+B B^{T}\right)(A-p l)^{-T} .
\end{aligned}
$$

Solving Large-Scale Lyapunov-plus-Positive Equations

Generalized ADI Iteration

Let us again consider the Lyapunov-plus-positive equation

$$
A P+P A^{T}+N P N^{T}+B B^{T}=0 .
$$

For a fixed parameter p, we can rewrite the linear Lyapunov operator as

$$
A P+P A^{T}=\frac{1}{2 p}\left((A+p l) P(A+p l)^{T}-(A-p l) P(A-p l)^{T}\right)
$$

leading to the fix point iteration

$$
\begin{aligned}
P_{j}= & (A-p l)^{-1}(A+p l) P_{j-1}(A+p l)^{T}(A-p l)^{-T} \\
& +2 p(A-p l)^{-1}\left(N P_{j-1} N^{T}+B B^{T}\right)(A-p l)^{-T} .
\end{aligned}
$$

$P_{j} \approx Z_{j} Z_{j}^{T}\left(\operatorname{rank}\left(Z_{j}\right) \ll n\right) \rightsquigarrow$ factored iteration

$$
\begin{aligned}
Z_{j} Z_{j}^{T}= & (A-p l)^{-1}(A+p l) Z_{j-1} Z_{j-1}^{T}(A+p l)^{T}(A-p l)^{-T} \\
& +2 p(A-p l)^{-1}\left(N Z_{j-1} Z_{j-1}^{T} N^{T}+B B^{T}\right)(A-p l)^{-T} .
\end{aligned}
$$

Solving Large-Scale Lyapunov-plus-Positive Equations

Generalized ADI Iteration

Hence, for a given sequence of shift parameters $\left\{p_{1}, \ldots, p_{q}\right\}$, we can extend the linear ADI iteration as follows:

$$
\begin{aligned}
Z_{1} & =\sqrt{2 p_{1}}\left(A-p_{1} I\right)^{-1} B \\
Z_{j} & =\left(A-p_{j} I\right)^{-1}\left[\begin{array}{lll}
\left(A+p_{j} I\right) Z_{j-1} & \sqrt{2 p_{j}} B & \sqrt{2 p_{j}} N Z_{j-1}
\end{array}\right], \quad j \leq q
\end{aligned}
$$

Solving Large-Scale Lyapunov-plus-Positive Equations

Generalized ADI Iteration

Hence, for a given sequence of shift parameters $\left\{p_{1}, \ldots, p_{q}\right\}$, we can extend the linear ADI iteration as follows:

$$
\begin{aligned}
Z_{1} & =\sqrt{2 p_{1}}\left(A-p_{1} I\right)^{-1} B \\
Z_{j} & =\left(A-p_{j} I\right)^{-1}\left[\begin{array}{lll}
\left(A+p_{j} I\right) Z_{j-1} & \sqrt{2 p_{j}} B & \sqrt{2 p_{j}} N Z_{j-1}
\end{array}\right], \quad j \leq q
\end{aligned}
$$

Problems:

- A and N in general do not commute \rightsquigarrow we have to operate on full preceding subspace Z_{j-1} in each step.
- Rapid increase of $\operatorname{rank}\left(Z_{j}\right) \rightsquigarrow$ perform some kind of column compression.
- Choice of shift parameters? \rightsquigarrow No obvious generalization of minimax problem.
Here, we will use shifts minimizing a certain \mathcal{H}_{2}-optimization problem, see [B./Breiten 2011/14].

Generalized ADI Iteration

Numerical Example: A Heat Transfer Model with Uncertainty

- 2-dimensional heat distribution motivated by [BEnner/SaAK '05]

- spatial discretization $k \times k$-grid
$\Gamma 3$
$\Rightarrow d x \approx A x d t+N x d \omega_{i}+B u d t$
- output: $C=\frac{1}{k^{2}}\left[\begin{array}{lll}1 & \ldots & 1\end{array}\right]$

Generalized ADI Iteration

Numerical Example: A Heat Transfer Model with Uncertainty
Conv. history for bilinear low-rank ADI method ($n=40,000$)

Solving Large-Scale Lyapunov-plus-Positive Equations

Generalizing the Extended Krylov Subspace Method (EKSM) [Simoncini '07]

Low-rank solutions of the Lyapunov-plus-positive equation may be obtained by projecting the original equation onto a suitable smaller subspace $\mathcal{V}=\operatorname{span}(V), \quad V \in \mathbb{R}^{n \times k}$, with $V^{T} V=l$.

In more detail, solve
$\left(V^{T} A V\right) \hat{X}+\hat{X}\left(V^{T} A^{T} V\right)+\left(V^{T} N V\right) \hat{X}\left(V^{T} N^{T} V\right)+\left(V^{T} B\right)\left(V^{T} B\right)^{T}=0$ and prolongate $X \approx V \hat{X} V^{T}$.

Solving Large-Scale Lyapunov-plus-Positive Equations

Generalizing the Extended Krylov Subspace Method (EKSM) [Simoncini '07]

Low-rank solutions of the Lyapunov-plus-positive equation may be obtained by projecting the original equation onto a suitable smaller subspace $\mathcal{V}=\operatorname{span}(V), \quad V \in \mathbb{R}^{n \times k}$, with $V^{\top} V=I$.

In more detail, solve
$\left(V^{T} A V\right) \hat{X}+\hat{X}\left(V^{T} A^{T} V\right)+\left(V^{T} N V\right) \hat{X}\left(V^{T} N^{T} V\right)+\left(V^{T} B\right)\left(V^{T} B\right)^{T}=0$
and prolongate $X \approx V \hat{X} V^{\top}$.
For this, one might use the extended Krylov subspace method (EKSM) algorithm in the following way:

Solving Large-Scale Lyapunov-plus-Positive Equations

Generalizing the Extended Krylov Subspace Method (EKSM) [Simoncini '07]

Low-rank solutions of the Lyapunov-plus-positive equation may be obtained by projecting the original equation onto a suitable smaller subspace $\mathcal{V}=\operatorname{span}(V), \quad V \in \mathbb{R}^{n \times k}$, with $V^{T} V=I$.

In more detail, solve
$\left(V^{T} A V\right) \hat{X}+\hat{X}\left(V^{T} A^{T} V\right)+\left(V^{T} N V\right) \hat{X}\left(V^{T} N^{T} V\right)+\left(V^{T} B\right)\left(V^{T} B\right)^{T}=0$ and prolongate $X \approx V \hat{X} V^{T}$.

For this, one might use the extended Krylov subspace method (EKSM) algorithm in the following way:

$$
\begin{aligned}
& V_{1}=\left[\begin{array}{ll}
B & A^{-1} B
\end{array}\right] \\
& V_{r}=\left[\begin{array}{lll}
A V_{r-1} & A^{-1} V_{r-1} & N V_{r-1}
\end{array}\right], \quad r=2,3, \ldots
\end{aligned}
$$

Solving Large-Scale Lyapunov-plus-Positive Equations

Generalizing the Extended Krylov Subspace Method (EKSM) [Simoncini '07]

Low-rank solutions of the Lyapunov-plus-positive equation may be obtained by projecting the original equation onto a suitable smaller subspace $\mathcal{V}=\operatorname{span}(V), \quad V \in \mathbb{R}^{n \times k}$, with $V^{T} V=I$.

In more detail, solve
$\left(V^{T} A V\right) \hat{X}+\hat{X}\left(V^{T} A^{T} V\right)+\left(V^{T} N V\right) \hat{X}\left(V^{T} N^{T} V\right)+\left(V^{T} B\right)\left(V^{T} B\right)^{T}=0$ and prolongate $X \approx V \hat{X} V^{T}$.

For this, one might use the extended Krylov subspace method (EKSM) algorithm in the following way:

$$
\left.\begin{array}{l}
V_{1}=\left[\begin{array}{ll}
B & A^{-1} B
\end{array}\right], \\
V_{r}=\left[\begin{array}{ll}
A V_{r-1} & A^{-1} V_{r-1}
\end{array} \quad N V_{r-1}\right.
\end{array}\right], \quad r=2,3, \ldots .
$$

However, criteria like dissipativity of A for the linear case which ensure solvability of the projected equation have to be further investigated.

Bilinear EKSM

Residual Computation in $\mathcal{O}\left(k^{3}\right)$

Theorem (B./Breiten 2012)

Let $V_{i} \in \mathbb{R}^{n \times k_{i}}$ be the extendend Krylov matrix after i generalized EKSM steps. Denote the residual associated with the approximate solution $X_{i}=V_{i} \hat{X}_{i} V_{i}^{T}$ by

$$
R_{i}:=A X_{i}+X_{i} A^{T}+N X_{i} N^{T}+B B^{T}
$$

where \hat{X}_{i} is the solution of the reduced Lyapunov-plus-positive equation

$$
V_{i}^{\top} A V_{i} \hat{X}_{i}+\hat{X}_{i} V_{i}^{\top} A^{T} V_{i}+V_{i}^{T} N V_{i} \hat{X}_{i} V_{i}^{T} N^{\top} V_{i}+V_{i}^{T} B B^{T} V_{i}=0
$$

Then:

- $\operatorname{range}\left(R_{i}\right) \subset \operatorname{range}\left(V_{i+1}\right)$,
- $\left\|R_{i}\right\|=\left\|V_{i+1}^{T} R_{i} V_{i+1}\right\|$ for the Frobenius and spectral norms.

Bilinear EKSM

Residual Computation in $\mathcal{O}\left(k^{3}\right)$

Theorem (B./Breiten 2012)

Let $V_{i} \in \mathbb{R}^{n \times k_{i}}$ be the extendend Krylov matrix after i generalized EKSM steps. Denote the residual associated with the approximate solution $X_{i}=V_{i} \hat{X}_{i} V_{i}^{T}$ by

$$
R_{i}:=A X_{i}+X_{i} A^{T}+N X_{i} N^{T}+B B^{T}
$$

where \hat{X}_{i} is the solution of the reduced Lyapunov-plus-positive equation

$$
V_{i}^{\top} A V_{i} \hat{X}_{i}+\hat{X}_{i} V_{i}^{\top} A^{T} V_{i}+V_{i}^{T} N V_{i} \hat{X}_{i} V_{i}^{T} N^{\top} V_{i}+V_{i}^{T} B B^{T} V_{i}=0
$$

Then:

- $\operatorname{range}\left(R_{i}\right) \subset$ range $\left(V_{i+1}\right)$,
- $\left\|R_{i}\right\|=\left\|V_{i+1}^{T} R_{i} V_{i+1}\right\|$ for the Frobenius and spectral norms.

Remarks:

- Residual evaluation only requires quantities needed in $i+1$ st projection step plus $\mathcal{O}\left(k_{i+1}^{3}\right)$ operations.
- No Hessenberg structure of reduced system matrix that allows to simplify residual expression as in standard Lyapunov case!

Bilinear EKSM

Numerical Example: A Heat Transfer Model with Uncertainty
Convergence history for bilinear EKSM variant ($n=6,400$)

Solving Large-Scale Lyapunov-plus-Positive Equations

Tensorized Krylov Subspace Methods

Another possibility is to iteratively solve the linear system

$$
\left(I_{n} \otimes A+A \otimes I_{n}+N \otimes N\right) \operatorname{vec}(X)=-\operatorname{vec}\left(B B^{T}\right),
$$

with a fixed number of ADI iteration steps used as a preconditioner \mathcal{M}

$$
\mathcal{M}^{-1}\left(I_{n} \otimes A+A \otimes I_{n}+N \otimes N\right) \operatorname{vec}(X)=-\mathcal{M}^{-1} \operatorname{vec}\left(B B^{T}\right)
$$

We implemented this approach for PCG and BiCGstab.
Updates like $X_{k+1} \leftarrow X_{k}+\omega_{k} P_{k}$ require truncation operator to preserve low-order structure.
Note, that the low-rank factorization $X \approx Z Z^{\top}$ has to be replaced by $X \approx Z D Z^{T}, D$ possibly indefinite.

Similar to more general tensorized Krylov solvers, see [Kressner/Tobler 2010/12].

Tensorized Krylov Subspace Methods

Vanilla Implementation of Tensor-PCG for Matrix Equations
Algorithm 3: Preconditioned CG method for $\mathcal{A}(X)=\mathcal{B}$
Input : Matrix functions $\mathcal{A}, \mathcal{M}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$, low rank factor B of right-hand side $\mathcal{B}=-B B^{T}$. Truncation operator \mathcal{T} w.r.t. relative accuracy $\epsilon_{\text {rel }}$.
Output: Low rank approximation $X=L D L^{T}$ with $\|\mathcal{A}(X)-\mathcal{B}\|_{F} \leq$ tol.

```
\(X_{0}=0, R_{0}=\mathcal{B}, Z_{0}=\mathcal{M}^{-1}\left(R_{0}\right), P_{0}=Z_{0}, Q_{0}=\mathcal{A}\left(P_{0}\right), \xi_{0}=\left\langle P_{0}, Q_{0}\right\rangle, k=0\)
while \(\left\|R_{k}\right\|_{F}>\) tol do
    \(\omega_{k}=\frac{\left\langle R_{k}, P_{k}\right\rangle}{\xi_{k}}\)
    \(X_{k+1}=X_{k}+\omega_{k} P_{k}, \quad X_{k+1} \leftarrow \mathcal{T}\left(X_{k+1}\right)\)
        \(R_{k+1}=\mathcal{B}-\mathcal{A}\left(X_{k+1}\right), \quad\) Optionally: \(R_{k+1} \leftarrow \mathcal{T}\left(R_{k+1}\right)\)
        \(Z_{k+1}=\mathcal{M}^{-1}\left(R_{k+1}\right)\)
        \(\beta_{k}=-\frac{\left\langle Z_{k+1}, Q_{k}\right\rangle}{\xi_{k}}\)
        \(P_{k+1}=Z_{k+1}+\beta_{k} P_{k}, \quad P_{k+1} \leftarrow \mathcal{T}\left(P_{k+1}\right)\)
        \(Q_{k+1}=\mathcal{A}\left(P_{k+1}\right), \quad\) Optionally: \(Q_{k+1} \leftarrow \mathcal{T}\left(Q_{k+1}\right)\)
        \(\xi_{k+1}=\left\langle P_{k+1}, Q_{k+1}\right\rangle\)
        \(k=k+1\)
    \(X=X_{k}\)
```

Here, $\mathcal{A}: X \rightarrow A X+X A^{T}+N X N^{T}, \mathcal{M}: \ell$ steps of (bilinear) ADI, both in low-rank (" $Z D Z^{T "}$ format).

Comparison of Methods

Heat Equation with Boundary Control

Comparison of low rank solution methods for $n=562,500$.

Comparison of Methods

Fokker-Planck Equation

Comparison of low rank solution methods for $n=10,000$.

Comparison of Methods

RC Circuit Simulation

Comparison of low rank solution methods for $n=250,000$.

Comparison of Methods

Comparison of CPU times

	Heat equation	RC circuit	Fokker-Planck
Bilin. ADI $2 \mathcal{H}_{2}$ shifts	-	-	1.733 (1.578)
Bilin. ADI $6 \mathcal{H}_{2}$ shifts	144,065 (2,274)	20,900 (3091)	-
Bilin. ADI $8 \mathcal{H}_{2}$ shifts	135,711 (3,177)	-	-
Bilin. ADI $10 \mathcal{H}_{2}$ shifts	33,051 (4,652)	-	-
Bilin. ADI 2 Wachspress shifts	-	-	6.617 (4.562)
Bilin. ADI 4 Wachspress shifts	41,883 (2,500)	18,046 (308)	-
CG (Bilin. ADI precond.)	15,640	-	-
BiCG (Bilin. ADI precond.)	-	16,131	11.581
BiCG (Linear ADI precond.)	-	12,652	9.680
EKSM	7,093	19,778	8.555

Numbers in brackets: computation of shift parameters.

Solving Large-Scale Lyapunov-plus-Positive Equations

Summary \& Outlook

- Under certain assumptions, we can expect the existence of low-rank approximations to the solution of Lyapunov-plus-positive equations.
- Solutions strategies via extending the ADI iteration to bilinear systems and EKSM as well as using preconditioned iterative solvers like CG or BiCGstab up to dimensions $n \sim 500,000$ in MATLAB ${ }^{\circledR}$.
- Optimal choice of shift parameters for ADI is a nontrivial task.
- Other "tricks" (realification, low-rank residuals) not adapted from standard case so far.
- What about the singular value decay in case of N being full rank?
- Need efficient implementation!

Further Reading


```
P. Benner and T. Breiten.
```

On \mathcal{H}_{2} model reduction of linear parameter-varying systems.
Proceedings in Applied Mathematics and Mechanics 11:805-806, 2011.
P. Benner and T. Breiten.
Low rank methods for a class of generalized Lyapunov equations and related issues.
Numerische Mathematik 124(3):441-470, 2013.
P. Benner and T. Damm
Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems.
SIAM Journal on Control and Optimization 49(2):686-711, 2011.
P. Benner and P. Kürschner.
Computing real low-rank solutions of Sylvester equations by the factored ADI method.
Computers and Mathematics with Applications 67:1656-1672, 2014.
P. Benner, P. Kürschner, and J. Saak.
Efficient handling of complex shift parameters in the low-rank Cholesky factor ADI method.
Numerical Algorithms 62(2):225-251, 2013.
P. Benner, P. Kürschner, and J. Saak.
Self-generating and efficient shift parameters in ADI methods for large Lyapunov and Sylvester equations.
MPI Magdeburg Preprint MPIMD/13-18, October 2013, http://www.mpi-magdeburg.mpg.de/preprints/2013/18/
P. Benner and J. Saak.

Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM Mitteilungen 36(1):32-52, 2013

(Upcoming) preprints available at

http://www.mpi-magdeburg.mpg.de/preprints/index.php

[^0]: A. M. Lyapunov. The General Problem of the Stability of Motion (in Russian). Doctoral dissertation, Univ. Kharkov 1892. English translation: Stability of Motion, Academic Press, New-York \& London, 1966.
 P. Lancaster, M. Tismenetsky. The Theory of Matrices (2nd edition). Academic Press, Orlando, FL, 1985. [Chapter 13]

[^1]: A. M. Lyapunov. The General Problem of the Stability of Motion (in Russian). Doctoral dissertation, Univ. Kharkov 1892. English translation: Stability of Motion, Academic Press, New-York \& London, 1966.
 P. Lancaster, M. Tismenetsky. The Theory of Matrices (2nd edition). Academic Press, Orlando, FL, 1985. [Chapter 13]

[^2]: A．M．Lyapunov．The General Problem of the Stability of Motion（in Russian）．Doctoral dissertation，Univ．Kharkov 1892．English translation：Stability of Motion，Academic Press，New－York \＆London， 1966.

 P．Lancaster，M．Tismenetsky．The Theory of Matrices（2nd edition）．Academic Press，Orlando，FL，1985．［Chapter 13］

[^3]: A. M. Lyapunov. The General Problem of the Stability of Motion (In Russian). Doctoral dissertation, Univ. Kharkov 1892. English translation: Stability of Motion, Academic Press, New-York \& London, 1966.

[^4]: C. Kuehn. Deterministic continuation of stochastic metastable equilibria via Lyapunov equations and ellipsoids. SIAM Journal on Scientific Computing, 34(3):A1635-A1658, 2012.

[^5]: P. Kügler, W. Yang. Identification of alterations in the Jacobian of biochemical reaction networks from steady state covariance data at two conditions. Journal of Mathematical Biology, 68:1757-1783, 2013

[^6]: T. Breiten, V. Simoncini, M. Stoll. Fast iterative solvers for fractional differential equations. Max Planck Institute Magdeburg Preprints MPIMD/14-02, January 2014.

[^7]: T. Breiten, V. Simoncini, M. Stoll. Fast iterative solvers for fractional differential equations. Max Planck Institute Magdeburg Preprints MPIMD/14-02, January 2014.

[^8]: T. Breiten, V. Simoncini, M. Stoll. Fast iterative solvers for fractional differential equations. Max Planck Institute Magdeburg Preprints MPIMD/14-02, January 2014.

