19th Conference of the International Linear Algebra Society (ILAS) Seoul, August 6–9, 2014

Solving Large-Scale Matrix Equations: Recent Progress and New Applications

Peter Benner

Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Magdeburg, Germany

> http://www.mpi-magdeburg.mpg.de/benner benner@mpi-magdeburg.mpg.de

Overview

2 Applications

Solving Large-Scale Sylvester and Lyapunov Equations

Solving Large-Scale Lyapunov-plus-Positive Equations

5 References

Overview

Introduction

- Classification of Linear Matrix Equations
- Existence and Uniqueness of Solutions

2 Applications

- Solving Large-Scale Sylvester and Lyapunov Equations
- 4 Solving Large-Scale Lyapunov-plus-Positive Equations

References

Lyapunov-plus-Positive Eqns

Introduction

Linear Matrix Equations/Men with Beards

Sylvester equation

James Joseph Sylvester (September 3, 1814 – March 15, 1897)

AX + XB = C.

_yapunov-plus-Positive Eqns. 0000000000000000

Introduction

Linear Matrix Equations/Men with Beards

Sylvester equation

James Joseph Sylvester (September 3, 1814 – March 15, 1897)

AX + XB = C.

Lyapunov equation

Alexander Michailowitsch Ljapunow (June 6, 1857 – November 3, 1918)

$$AX + XA^T = C, \quad C = C^T.$$

00000		000000000000000000000000000000000000000

Generalizations of Sylvester (AX + XB = C) and Lyapunov $(AX + XA^T = C)$ Equations

Generalized Sylvester equation:

AXD + EXB = C.

Generalizations of Sylvester (AX + XB = C) and Lyapunov $(AX + XA^{T} = C)$ Equations

Generalized Sylvester equation:

AXD + EXB = C.

Generalized Lyapunov equation:

$$AXE^T + EXA^T = C, \quad C = C^T.$$

00000	0000	000000000000000000000000000000000000000	0000000000000	0

Generalizations of Sylvester (AX + XB = C) and Lyapunov $(AX + XA^{T} = C)$ Equations

Generalized Sylvester equation:

AXD + EXB = C.

Generalized Lyapunov equation:

$$AXE^T + EXA^T = C, \quad C = C^T.$$

Stein equation:

$$X - AXB = C.$$

Generalizations of Sylvester (AX + XB = C) and Lyapunov $(AX + XA^{T} = C)$ Equations

Generalized Sylvester equation:

AXD + EXB = C.

Generalized Lyapunov equation:

$$AXE^T + EXA^T = C, \quad C = C^T.$$

Stein equation:

$$X - AXB = C.$$

(Generalized) discrete Lyapunov/Stein equation:

$$EXE^T - AXA^T = C, \quad C = C^T.$$

		-
00000		

Generalizations of Sylvester (AX + XB = C) and Lyapunov $(AX + XA^{T} = C)$ Equations

Generalized Sylvester equation:

AXD + EXB = C.

Generalized Lyapunov equation:

$$AXE^T + EXA^T = C, \quad C = C^T.$$

Stein equation:

$$X - AXB = C.$$

(Generalized) discrete Lyapunov/Stein equation:

$$EXE^T - AXA^T = C, \quad C = C^T.$$

Note:

- Consider only regular cases, having a unique solution!
- Solutions of symmetric cases are symmetric, X = X^T ∈ ℝ^{n×n}; otherwise, X ∈ ℝ^{n×ℓ} with n ≠ ℓ in general.

Max Planck Institute Magdeburg

00000		0000000000000

Generalizations of Sylvester (AX + XB = C) and Lyapunov $(AX + XA^T = C)$ Equations

Bilinear Lyapunov equation/Lyapunov-plus-positive equation:

$$AX + XA^{\mathsf{T}} + \sum_{k=1}^{m} N_k X N_k^{\mathsf{T}} = C, \quad C = C^{\mathsf{T}}.$$

Generalizations of Sylvester (AX + XB = C) and Lyapunov $(AX + XA^T = C)$ Equations

Bilinear Lyapunov equation/Lyapunov-plus-positive equation:

$$AX + XA^{\mathsf{T}} + \sum_{k=1}^{m} N_k X N_k^{\mathsf{T}} = C, \quad C = C^{\mathsf{T}}.$$

Bilinear Sylvester equation:

$$AX + XB + \sum_{k=1}^{m} N_k X M_k = C.$$

Generalizations of Sylvester (AX + XB = C) and Lyapunov $(AX + XA^T = C)$ Equations

Bilinear Lyapunov equation/Lyapunov-plus-positive equation:

$$AX + XA^{T} + \sum_{k=1}^{m} N_k X N_k^{T} = C, \quad C = C^{T}.$$

Bilinear Sylvester equation:

$$AX + XB + \sum_{k=1}^{m} N_k X M_k = C.$$

(Generalized) discrete bilinear Lyapunov/Stein-minus-positive eq.:

$$EXE^{T} - AXA^{T} - \sum_{k=1}^{m} N_{k}XN_{k}^{T} = C, \quad C = C^{T}.$$

Note: Again consider only regular cases, symmetric equations have symmetric solutions.

Existence of Solutions of Linear Matrix Equations I

Exemplarily, consider the generalized Sylvester equation

$$AXD + EXB = C. \tag{1}$$

	_		6
00000		0000000000000	0

Existence of Solutions of Linear Matrix Equations I

Exemplarily, consider the generalized Sylvester equation

$$AXD + EXB = C. \tag{1}$$

Vectorization (using Kronecker product) \rightsquigarrow representation as linear system:

$$\left(\underbrace{D^T \otimes A + B^T \otimes E}_{=:\mathcal{A}}\right)\underbrace{\operatorname{vec}(X)}_{=:x} = \underbrace{\operatorname{vec}(C)}_{=:c} \quad \Longleftrightarrow \quad \mathcal{A}x = c$$

			6
00000		0000000000000	

Existence of Solutions of Linear Matrix Equations I

Exemplarily, consider the generalized Sylvester equation

$$AXD + EXB = C. \tag{1}$$

Vectorization (using Kronecker product) \rightsquigarrow representation as linear system:

$$\left(\underbrace{D^T \otimes A + B^T \otimes E}_{=:\mathcal{A}}\right)\underbrace{\operatorname{vec}(X)}_{=:x} = \underbrace{\operatorname{vec}(C)}_{=:c} \quad \Longleftrightarrow \quad \mathcal{A}x = c.$$

 \implies "(1) has a unique solution $\iff \mathcal{A}$ is nonsingular"

00000	000000000000000000000000000000000000000	00000000000000	

Existence of Solutions of Linear Matrix Equations I

Exemplarily, consider the generalized Sylvester equation

$$AXD + EXB = C. \tag{1}$$

Vectorization (using Kronecker product) \rightsquigarrow representation as linear system:

$$\left(\underbrace{D^T \otimes A + B^T \otimes E}_{=:\mathcal{A}}\right)\underbrace{\operatorname{vec}(X)}_{=:x} = \underbrace{\operatorname{vec}(C)}_{=:c} \quad \Longleftrightarrow \quad \mathcal{A}x = c.$$

 \Longrightarrow "(1) has a unique solution $\Longleftrightarrow \mathcal{A}$ is nonsingular"

Lemma

$$\Lambda(\mathcal{A}) = \{ \alpha_j + \beta_k \mid \alpha_j \in \Lambda(\mathcal{A}, \mathcal{E}), \beta_k \in \Lambda(\mathcal{B}, \mathcal{D}) \}.$$

Hence, (1) has unique solution $\implies \Lambda(A, E) \cap -\Lambda(B, D) = \emptyset$.

 _		

Existence of Solutions of Linear Matrix Equations I

Exemplarily, consider the generalized Sylvester equation

$$AXD + EXB = C. \tag{1}$$

Vectorization (using Kronecker product) \rightsquigarrow representation as linear system:

$$\left(\underbrace{D^T \otimes A + B^T \otimes E}_{=:\mathcal{A}}\right)\underbrace{\operatorname{vec}(X)}_{=:x} = \underbrace{\operatorname{vec}(C)}_{=:c} \quad \Longleftrightarrow \quad \mathcal{A}x = c.$$

 \Longrightarrow "(1) has a unique solution $\Longleftrightarrow \mathcal{A}$ is nonsingular"

Lemma

$$\Lambda(\mathcal{A}) = \{ \alpha_j + \beta_k \mid \alpha_j \in \Lambda(\mathcal{A}, \mathcal{E}), \beta_k \in \Lambda(\mathcal{B}, \mathcal{D}) \}.$$

Hence, (1) has unique solution $\Longrightarrow \Lambda(A, E) \cap -\Lambda(B, D) = \emptyset$.

Example: Lyapunov equation $AX + XA^T = C$ has unique solution $\iff \nexists \ \mu \in \mathbb{C} : \pm \mu \in \Lambda(A).$

The Classical Lyapunov Theorem

Theorem (Lyapunov 1892)

Let $A \in \mathbb{R}^{n \times n}$ and consider the Lyapunov operator $\mathcal{L} : X \to AX + XA^T$. Then the following are equivalent:

(a)
$$\forall Y > 0$$
: $\exists X > 0$: $\mathcal{L}(X) = -Y$,

(b)
$$\exists Y > 0: \exists X > 0: \mathcal{L}(X) = -Y$$
,

(c)
$$\Lambda(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} \mid \Re z < 0\}$$
, i.e., A is (asymptotically) stable or Hurwitz.

A. M. Lyapunov. *The General Problem of the Stability of Motion* (in Russian). Doctoral dissertation, Univ. Kharkov 1892. English translation: Stability of Motion, Academic Press, New-York & London, 1966.

P. Lancaster, M. Tismenetsky. The Theory of Matrices (2nd edition). Academic Press, Orlando, FL, 1985. [Chapter 13]

The Classical Lyapunov Theorem

Theorem (LYAPUNOV 1892)

Let $A \in \mathbb{R}^{n \times n}$ and consider the Lyapunov operator $\mathcal{L} : X \to AX + XA^T$. Then the following are equivalent:

(a)
$$\forall Y > 0$$
: $\exists X > 0$: $\mathcal{L}(X) = -Y$,

(b)
$$\exists Y > 0: \exists X > 0: \mathcal{L}(X) = -Y$$
,

(c)
$$\Lambda(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} \mid \Re z < 0\}$$
, i.e., A is (asymptotically) stable or Hurwitz.

The proof (c) \Rightarrow (a) is trivial from the necessary and sufficient condition for existence and uniqueness, apart from the positive definiteness. The latter is shown by studying $z^H Yz$ for all eigenvectors z of A.

A. M. Lyapunov. The General Problem of the Stability of Motion (in Russian). Doctoral dissertation, Univ. Kharkov 1892. English translation: Stability of Motion, Academic Press, New-York & London, 1966.

P. Lancaster, M. Tismenetsky. The Theory of Matrices (2nd edition). Academic Press, Orlando, FL, 1985. [Chapter 13]

The Classical Lyapunov Theorem

Theorem (LYAPUNOV 1892)

Let $A \in \mathbb{R}^{n \times n}$ and consider the Lyapunov operator $\mathcal{L} : X \to AX + XA^T$. Then the following are equivalent:

(a)
$$\forall Y > 0$$
: $\exists X > 0$: $\mathcal{L}(X) = -Y$,

(b)
$$\exists Y > 0$$
: $\exists X > 0$: $\mathcal{L}(X) = -Y$,

(c) $\Lambda(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} \mid \Re z < 0\}$, i.e., A is (asymptotically) stable or Hurwitz.

Important in applications: the nonnegative case:

$$\mathcal{L}(X) = AX + XA^T = -WW^T$$
, where $W \in \mathbb{R}^{n \times n_W}$, $n_W \ll n$.

A Hurwitz $\Rightarrow \exists$ unique solution $X = ZZ^T$ for $Z \in \mathbb{R}^{n \times n_X}$ with $1 \le n_X \le n$.

P. Lancaster, M. Tismenetsky. The Theory of Matrices (2nd edition). Academic Press, Orlando, FL, 1985. [Chapter 13]

00000 00		000000000000

Existence of Solutions of Linear Matrix Equations II

For Lyapunov-plus-positive-type equations, the solution theory is more involved.

Existence of Solutions of Linear Matrix Equations II

For Lyapunov-plus-positive-type equations, the solution theory is more involved. Focus on the Lyapunov-plus-positive case:

$$\underbrace{AX + XA^{T}}_{=:\mathcal{L}(X)} + \underbrace{\sum_{k=1}^{m} N_{k} X N_{k}^{T}}_{=:\mathcal{P}(X)} = C, \quad C = C^{T} \leq 0.$$

Note: The operator

$$\mathcal{P}(X)\mapsto \sum_{j=1}^m N_k X N_k^T$$

is nonnegative in the sense that $\mathcal{P}(X) \geq 0$, whenever $X \geq 0$.

Existence of Solutions of Linear Matrix Equations II

For Lyapunov-plus-positive-type equations, the solution theory is more involved. Focus on the Lyapunov-plus-positive case:

$$\underbrace{AX + XA^{T}}_{=:\mathcal{L}(X)} + \underbrace{\sum_{k=1}^{m} N_{k} X N_{k}^{T}}_{=:\mathcal{P}(X)} = C, \quad C = C^{T} \leq 0.$$

Note: The operator

$$\mathcal{P}(X)\mapsto \sum_{j=1}^m N_k X N_k^T$$

is nonnegative in the sense that $\mathcal{P}(X) \geq 0$, whenever $X \geq 0$.

This nonnegative Lyapunov-plus-positive equation is the one occurring in applications like model order reduction.

Existence of Solutions of Linear Matrix Equations II

For Lyapunov-plus-positive-type equations, the solution theory is more involved. Focus on the Lyapunov-plus-positive case:

$$\underbrace{AX + XA^{T}}_{=:\mathcal{L}(X)} + \underbrace{\sum_{k=1}^{m} N_{k} X N_{k}^{T}}_{=:\mathcal{P}(X)} = C, \quad C = C^{T} \leq 0.$$

Note: The operator

$$\mathcal{P}(X)\mapsto \sum_{j=1}^m N_k X N_k^T$$

is nonnegative in the sense that $\mathcal{P}(X) \geq 0$, whenever $X \geq 0$.

This nonnegative Lyapunov-plus-positive equation is the one occurring in applications like model order reduction.

If A is Hurwitz and the N_k are small enough, eigenvalue perturbation theory yields existence and uniqueness of solution.

This is related to the concept of bounded-input bounded-output (BIBO) stability of dynamical systems.

Introduc	
In	troduction
Exis	tence of Solutions of Linear Matrix Equations II
	Theorem (Schneider 1965, Damm 2004)
	Let $A \in \mathbb{R}^{n \times n}$ and consider the Lyapunov operator $\mathcal{L} : X \to AX + XA^T$ and a nonnegative operator \mathcal{P} (i.e., $\mathcal{P}(X) \ge 0$ if $X \ge 0$). The following are equivalent:
	(a) $\forall Y > 0$: $\exists X > 0$: $\mathcal{L}(X) + \mathcal{P}(X) = -Y$,
	(b) $\exists Y > 0: \exists X > 0: \mathcal{L}(X) + \mathcal{P}(X) = -Y$,
	(c) $\exists Y \geq 0$ with (A, Y) controllable: $\exists X > 0$: $\mathcal{L}(X) + \mathcal{P}(X) = -Y$,
	(d) $\Lambda(\mathcal{L} + \mathcal{P}) \subset \mathbb{C}^- := \{z \in \mathbb{C} \mid \Re z < 0\},$
	(e) $\Lambda(\mathcal{L}) \subset \mathbb{C}^-$ and $ ho(\mathcal{L}^{-1}\mathcal{P}) < 1$,
	where $ ho(\mathcal{T}) = \max\{ \lambda \mid \lambda \in \Lambda(\mathcal{T})\} = spectral radius of \mathcal{T}.$

.

T. Damm. Rational Matrix Equations in Stochastic Control. Number 297 in Lecture Notes in Control and Information Sciences. Springer-Verlag, 2004.

H. Schneider. Positive operators and an inertia theorem. Numerische Mathematik, 7:11-17, 1965.

Overview

Applications

- Stability Theory
- Biochemical Engineering
- Fractional Differential Equations
- Some Classical Applications

Solving Large-Scale Sylvester and Lyapunov Equations

Solving Large-Scale Lyapunov-plus-Positive Equations

5 References

Stability Theory I — Classical

From Lyapunov's theorem, immediately obtain characterization of asymptotic stability of linear dynamical systems

$$\dot{x}(t) = Ax(t). \tag{2}$$

Theorem (Lyapunov)

The following are equivalent:

- For (2), the zero state is asymptotically stable.
- The Lyapunov equation $AX + XA^T = Y$ has a unique solution $X = X^T > 0$ for all $Y = Y^T < 0$.
- A is Hurwitz.

A. M. Lyapunov. The General Problem of the Stability of Motion (In Russian). Doctoral dissertation, Univ. Kharkov 1892. English translation: Stability of Motion, Academic Press, New-York & London, 1966.

0000	0000000000000	0

Stability Theory II — Detecting Hopf Bifurcations

Detecting instability in large-scale dynamical systems caused by Hopf bifurcations \rightsquigarrow identifying the rightmost pair of complex eigenvalues of large sparse generalized eigenvalue problems.

 $[{\rm MeerBergen/Spence}\ 2010]$ suggest Lyapunov inverse iteration for the dynamical system with parameter $\mu\in\mathbb{R}$

$$Mx_t = f(x; \mu).$$

Task: Identify critical points (x^*, μ^*) where the steady-state solution (i.e., $x_t \equiv 0$) changes from being stable to unstable.

Their continuation algorithm involves solution of generalized Lyapunov equation

$$AX_{j+1}M^{T} + MX_{j+1}A^{T} = -F_{j} \equiv F(X_{j}),$$

where $A = D_x f(\bar{x}; \bar{\mu})$ and $(\bar{x}; \bar{\mu})$ is current estimate of critical point.

K. Meerbergen, A. Spence. Inverse iteration for purely imaginary eigenvalues with application to the detection of Hopf bifurcations in large-scale problems. SIAM Journal on Matrix Analysis and Applications, 31:1982-1999, 2010.

H.C. Elman, K. Meerbergen, A. Spence, M. Wu. Lyapunov inverse iteration for identifying Hopf bifurcations in models of incompressible flow. SIAM Journal on Scientific Computing, 34(3):A1584-A1606, 2012.

C. Kuehn. Deterministic continuation of stochastic metastable equilibria via Lyapunov equations and ellipsoids. SIAM Journal on Scientific Computing, 34(3):A1635-A1658, 2012.

Annlic	ations		(Ca

Stability Theory III — Metastable Equilibria of Stochastic Systems

Tracking (w.r.t. a parameter $\mu \in \mathbb{R}$) metastable equilibrium points of stochastic differential equations (SDEs) via continuation methods:

Let $x \in \mathbb{R}^n$ and consider the SDE

$$dx_t = f(x_t; \mu)dt + \sigma F(x_t; \mu)dW_t,$$

where $W_t = k$ -dimensional Brownian motion, $\sigma > 0$ controls the noise level and f, F sufficiently smooth.

For metastable equilibrium points $x^* := x^*(\mu)$, stochastic paths with high probability stay in regions characterized by covariance matrix C of x_t , linearized at x^* , defined by Lyapunov equation

$$A(x^{*};\mu)C + CA(x^{*};\mu)^{T} + \sigma^{2}F(x^{*};\mu)F(x^{*};\mu)^{T} = 0.$$

where $A(x; \mu) := (D_x f)(x; \mu)$.

C. Kuehn, Deterministic continuation of stochastic metastable equilibria via Lyapunov equations and ellipsoids, SIAM Journal on Scientific Computing, 34(3):A1635-A1658, 2012.

Biochemical Engineering

Biochemical reaction networks under certain assumptions can be described by

$$\dot{c}(t) = Sv(c(t), q), \qquad (2)$$

where $S \in \mathbb{R}^{n \times m}$ is the stoichiometric matrix, $c(t) \in \mathbb{R}^n$ denotes the species concentrations, $v(t) \in \mathbb{R}^m$ the reaction rates, and q the rate constants.

In order to take molecular fluctuations (or intrinsic noise) due the stochasticity of the biochemical reactions into account, need the covariance matrix $C \in \mathbb{R}^{n \times n}$ of the concentrations. With

- the diffusion matrix $D \in \mathbb{R}^{n \times n}$ reflecting the randomness of the reaction events, and
- the drift matrix A = ∂v/∂c(c⁰) ∈ ℝ^{n×n} denoting the Jacobian of (2) along the macroscopic state trajectory at the equilibrium state c⁰,

C is determined by the Lyapunov equation

$$AC + CA^T + D = 0.$$

Fractional Differential Equations

Fractional partial differential equations have received recent interest in various fields, e.g.,

- viscoelasticity (e.g., Kelvin-Voigt fractional derivative model),
- image processing,
- electro-analytical chemistry,
- biomedical engineering.

T. Breiten, V. Simoncini, M. Stoll. Fast iterative solvers for fractional differential equations. Max Planck Institute Magdeburg Preprints MPIMD/14-02, January 2014.

Fractional Differential Equations

Fractional partial differential equations have received recent interest in various fields, e.g.,

- viscoelasticity (e.g., Kelvin-Voigt fractional derivative model),
- image processing,
- electro-analytical chemistry,
- biomedical engineering.

Definition (Caputo derivative)

Given $f \in C^n(a, b)$, $\alpha \in [n - 1, n)$, Caputo derivative of real order α is defined by:

$$\int_{a}^{C} D_{t}^{\alpha} f(t) := \frac{1}{\Gamma(n-\alpha)} \int_{a}^{t} \frac{f^{(n)}(s)}{(t-s)^{\alpha-n+1}} ds.$$

T. Breiten, V. Simoncini, M. Stoll. Fast iterative solvers for fractional differential equations. Max Planck Institute Magdeburg Preprints MPIMD/14-02, January 2014.

Fractional Differential Equations

Fractional partial differential equations have received recent interest in various fields, e.g.,

- viscoelasticity (e.g., Kelvin-Voigt fractional derivative model),
- image processing,
- electro-analytical chemistry,
- biomedical engineering.

Definition (Riemann-Liouville derivative)

Given integrable f(t) with $t \in [a, b]$, $\beta \in [n - 1, n)$, left sided Riemann-Liouville derivative of real order β is defined by:

$${}^{RL}_{a}D^{\beta}_{t}f(t):=rac{1}{\Gamma(n-eta)}\left(rac{d}{dt}
ight)^{n}\int_{a}^{t}rac{f(s)}{(t-s)^{eta-n+1}}ds.$$

T. Breiten, V. Simoncini, M. Stoll. Fast iterative solvers for fractional differential equations. Max Planck Institute Magdeburg Preprints MPIMD/14-02, January 2014.

Fractional Differential Equations

Consider fractional "heat equation"

$${}_{0}^{C}D_{t}^{\alpha}u(x,t)-{}_{a}^{RL}D_{x}^{\beta}u(x,t)=f(x,t).$$

For discretization use Grünwald-Letnikov formula ($\beta \in (1,2)$)

$$a^{RL}_{a}D_{x}^{\beta}u(x,t) = \lim_{M\to\infty}\frac{1}{h^{\alpha}}\sum_{k=0}^{M}g_{\beta,k}u(x-(k-1)h,t)$$

and as an approximation get

$${}^{RL}_{a}D_{x}^{\beta}u_{i}^{n+1}\approx\frac{1}{h_{x}^{\beta}}\sum_{k=0}^{i+1}g_{\beta,k}u_{i-k+1}^{n+1}.$$

T. Breiten, V. Simoncini, M. Stoll. Fast iterative solvers for fractional differential equations. Max Planck Institute Magdeburg Preprints MPIMD/14-02, January 2014.
Sylvester Equations

Lyapunov-plus-Positive Eqns

Applications Fractional Differential Equations

Consider fractional "heat equation"

$${}_{0}^{C}D_{t}^{\alpha}u(x,t)-{}_{a}^{RL}D_{x}^{\beta}u(x,t)=f(x,t).$$

For discretization use Grünwald-Letnikov formula ($\beta \in (1,2)$)

$$a^{RL}_{a}D_{x}^{\beta}u(x,t) = \lim_{M\to\infty}\frac{1}{h^{\alpha}}\sum_{k=0}^{M}g_{\beta,k}u(x-(k-1)h,t)$$

and as an approximation get in (Toeplitz) matrix form

	0000	000000000000000000000000000000000000000	0000000000000	
Applic	cations			

Fractional Differential Equations

For fractional heat equation equation

$${}_{0}^{C}D_{t}^{\alpha}u(x,t)-{}_{a}^{RL}D_{x}^{\beta}u(x,t)=f(x,t)$$

get

$$\left((\mathsf{T}^{n_t}_{\alpha}\otimes\mathsf{I}^{n_x})-(\mathsf{I}^{n_t}\otimes\mathsf{L}^{n_x}_{\beta})
ight)\mathsf{u}=\mathsf{f}$$

where $\mathbf{T}_{\alpha}^{n_t}$ and $\mathbf{L}_{\beta}^{n_x}$ are Toeplitz matrices. With $\mathbf{u} = \text{vec}(\mathbf{U})$ and dropping all superscripts this corresponds to the Sylvester equation

 $\mathbf{U}\mathbf{T}_{\alpha}^{T}-\mathbf{L}_{\beta}\mathbf{U}=\mathbf{F}.$

T. Breiten, V. Simoncini, M. Stoll. Fast iterative solvers for fractional differential equations. Max Planck Institute Magdeburg Preprints MPIMD/14-02, January 2014.

Introduction 00000 Applications

Sylvester Equations

Lyapunov-plus-Positive Eqns. 000000000000000

Some Classical Applications

Algebraic Riccati Equations (ARE)

Solving AREs by Newtons's Method

Feedback control design often involves solution of

$$A^TX + XA - XGX + H = 0, \quad G = G^T, H = H^T.$$

 \rightsquigarrow In each Newton step, solve Lyapunov equation

$$(A - GX_j)^T X_{j+1} + X_{j+1}(A - GX_j) = -X_j GX_j - H_j$$

Introduction 00000 Applications

Sylvester Equations

Lyapunov-plus-Positive Eqns. 0000000000000000

Some Classical Applications

Algebraic Riccati Equations (ARE)

Solving AREs by Newtons's Method

Feedback control design often involves solution of

$$A^TX + XA - XGX + H = 0, \quad G = G^T, H = H^T.$$

 \rightsquigarrow In each Newton step, solve Lyapunov equation

$$(A - GX_j)^T X_{j+1} + X_{j+1}(A - GX_j) = -X_j GX_j - H.$$

Decoupling of dynamical systems, e.g., in slow/fast modes, requires solution of nonsymmetric ARE

$$AX + XF - XGX + H = 0.$$

 \rightsquigarrow In each Newton step, solve Sylvester equation

$$(A-X_jG)X_{j+1}+X_{j+1}(F-GX_j)=-X_jGX_j-H.$$

Lyapunov-plus-Positive Eqns.

Some Classical Applications

Model Reduction via Balanced Truncation

For linear dynamical system

$$\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx_r(t), \qquad x(t) \in \mathbb{R}^n$$

find reduced-order system

$$\dot{x_r}(t) = A_r x_r(t) + B_r u(t), \quad y_r(t) = C_r x_r(t), \qquad x(t) \in \mathbb{R}^r, \quad r \ll n$$

such that $\|y(t) - y_r(t)\| < \delta$.

The popular method balanced truncation requires the solution of the dual Lyapunov equations

$$AX + XA^T + BB^T = 0,$$
 $A^TY + YA + C^TC = 0.$

Overview

This part: joint work with Patrick Kürschner and Jens Saak (MPI Magdeburg)

2 Applications

3 Solving Large-Scale Sylvester and Lyapunov Equations

- Some Basics
- LR-ADI Derivation
- Low-Rank Structure of the Residual
- Realification of LR-ADI
- Self-generating Shifts
- The New LR-ADI Applied to Lyapunov Equations

Solving Large-Scale Lyapunov-plus-Positive Equations

~ · ·			F	6
00000	0000	•••••••	0000000000000	

Ø

Solving Large-Scale Sylvester and Lyapunov Equations The Low-Bank Structure

Sylvester Equations

Find $X \in \mathbb{R}^{n \times m}$ solving

$$AX - XB = FG^T,$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{m \times m}$, $F \in \mathbb{R}^{n \times r}$, $G \in \mathbb{R}^{m \times r}$.

If n, m large, but $r \ll n, m$ $\rightsquigarrow X$ has a small numerical rank. [PENZL 1999, GRASEDYCK 2004, ANTOULAS/SORENSEN/ZHOU 2002]

$$\operatorname{rank}(X,\tau) = \mathbf{f} \ll \min(n,m)$$

singular values of 1600 \times 900 example

→ Compute low-rank solution factors $Z \in \mathbb{R}^{n \times f}$, $Y \in \mathbb{R}^{m \times f}$, $D \in \mathbb{R}^{f \times f}$, such that $X \approx ZDY^T$ with $f \ll \min(n, m)$.

Solving	Large-Scal	e Sylvester and Lyapu	nov Equations	C
00000	0000			

The Low-Rank Structure

Lyapunov Equations

Find $X \in \mathbb{R}^{n \times n}$ solving

$$AX + XA^{T} = -FF^{T},$$

where $A \in \mathbb{R}^{n \times n}$, $F \in \mathbb{R}^{n \times r}$.

If n large, but $r \ll n$ $\rightsquigarrow X$ has a small numerical rank. [PENZL 1999, GRASEDYCK 2004, ANTOULAS/SORENSEN/ZHOU 2002]

 $\operatorname{rank}(X,\tau) = \mathbf{f} \ll \mathbf{n}$

singular values of 1600 \times 900 example

→ Compute low-rank solution factors $Z \in \mathbb{R}^{n \times f}$, $D \in \mathbb{R}^{f \times f}$, such that $X \approx ZDZ^T$ with $f \ll n$.

Sylvester equation $AX - XB = FG^T$ is equivalent to linear system of equations

$$(I_m \otimes A - B^T \otimes I_n) \operatorname{vec}(x) = \operatorname{vec}(FG^T).$$

Sylvester equation $AX - XB = FG^T$ is equivalent to linear system of equations

$$(I_m \otimes A - B^T \otimes I_n) \operatorname{vec}(x) = \operatorname{vec}(FG^T).$$

This cannot be used for numerical solutions unless $nm \leq 100$ (or so), as

• it requires $\mathcal{O}(n^2m^2)$ of storage;

Sylvester equation $AX - XB = FG^T$ is equivalent to linear system of equations

$$(I_m \otimes A - B^T \otimes I_n) \operatorname{vec}(x) = \operatorname{vec}(FG^T).$$

This cannot be used for numerical solutions unless $nm \leq 100$ (or so), as

- it requires $\mathcal{O}(n^2m^2)$ of storage;
- direct solver needs $\mathcal{O}(n^3m^3)$ flops;

Sylvester equation $AX - XB = FG^T$ is equivalent to linear system of equations

$$(I_m \otimes A - B^T \otimes I_n) \operatorname{vec}(x) = \operatorname{vec}(FG^T).$$

This cannot be used for numerical solutions unless $nm \le 100$ (or so), as

- it requires $\mathcal{O}(n^2m^2)$ of storage;
- direct solver needs $\mathcal{O}(n^3m^3)$ flops;
- low (tensor-)rank of right-hand side is ignored;

Sylvester equation $AX - XB = FG^T$ is equivalent to linear system of equations

$$(I_m \otimes A - B^T \otimes I_n) \operatorname{vec}(x) = \operatorname{vec}(FG^T).$$

This cannot be used for numerical solutions unless $nm \leq 100$ (or so), as

- it requires $\mathcal{O}(n^2m^2)$ of storage;
- direct solver needs $\mathcal{O}(n^3m^3)$ flops;
- low (tensor-)rank of right-hand side is ignored;
- in Lyapunov case, symmetry and possible definiteness are not respected.

Ø

Solving Large-Scale Sylvester and Lyapunov Equations Some Basics

Sylvester equation $AX - XB = FG^T$ is equivalent to linear system of equations

$$(I_m \otimes A - B^T \otimes I_n) \operatorname{vec}(x) = \operatorname{vec}(FG^T).$$

This cannot be used for numerical solutions unless $nm \leq 100$ (or so), as

- it requires $\mathcal{O}(n^2m^2)$ of storage;
- direct solver needs $\mathcal{O}(n^3m^3)$ flops;
- low (tensor-)rank of right-hand side is ignored;
- in Lyapunov case, symmetry and possible definiteness are not respected.

Possible solvers:

- Standard Krylov subspace solvers in operator from [Hochbruck, Starke, Reichel, Bao, ...].
- Block-Tensor-Krylov subspace methods with truncation [Kressner/Tobler, Bollhöfer/Eppler, B./Breiten, ...].
- Galerkin-type methods based on (extended, rational) Krylov subspace methods [JAIMOUKHA, KASENALLY, JBILOU, SIMONCINI, DRUSKIN, KNIZHERMANN,...]
- Doubling-type methods [Smith, Chu et al., B./Sadkane/El Khoury, ...].
- ADI methods [Wachspress, Reichel et al., Li, Penzl, B., Saak, Kürschner, ...].

		Sylvester Equations			
Solvi _{LR-AD}	ng Large-Scale	e Sylvester a	and Lyapı	nov Equations	Ø
Sy	lvester and Stei	n equations			
Let	$\alpha \neq \beta$ with α	$\notin \Lambda(B), \beta \notin I$	$\Lambda(A)$, then		
	AX - XB = B	$=G^T \Leftrightarrow X$	$= \mathcal{A} \ \mathcal{XB} \ +$	$(\beta - \alpha)\mathcal{F} \mathcal{G}^{H}$	
	Sylvester equat	on	Stein	equation	
wit	h the Cayley like t	ransformations			
	$\mathcal{A} := (\mathbf{A} - \beta \ \mathbf{I}_n)^{-1}$	$^{-1}(A - \alpha I_n),$	$\mathcal{B} := (B -$	$\alpha I_m)^{-1}(B-\beta I_m),$	
	$\mathcal{F} := (A - \beta I_n)^{-1}$	^{-1}F ,	$\mathcal{G} := (B -$	$\alpha I_m)^{-H}G.$	

 \rightsquigarrow fix point iteration

$$X_k = \mathcal{A} X_{k-1} \mathcal{B} + (\beta - \alpha) \mathcal{F} \mathcal{G}^H$$

for $k \geq 1$, $X_0 \in \mathbb{R}^{n \times m}$.

	tion Applications Sylvester Equations Lyapunov-plus-Positive Eqns. → 0000 00 €0000 0000000000000000000000000	
So LR-/	Iving Large-Scale Sylvester and Lyapunov Equations ADI Derivation	Ø
	Sylvester and Stein equations	
	Let $\alpha_{\mathbf{k}} \neq \beta_{\mathbf{k}}$ with $\alpha_{\mathbf{k}} \notin \Lambda(B)$, $\beta_{\mathbf{k}} \notin \Lambda(A)$, then	
	$\underbrace{AX - XB = FG^{T}}_{\text{Sylvester equation}} \Leftrightarrow \underbrace{X = A_{\mathbf{k}} X B_{\mathbf{k}} + (\beta_{\mathbf{k}} - \alpha_{\mathbf{k}}) \mathcal{F}_{\mathbf{k}} \mathcal{G}_{\mathbf{k}}^{H}}_{\text{Stein equation}}$	
	with the Cayley like transformations	
	$\mathcal{A} := (\mathcal{A} - \beta_{\mathbf{k}} I_n)^{-1} (\mathcal{A} - \alpha_{\mathbf{k}} I_n), \qquad \mathcal{B} := (\mathcal{B} - \alpha_{\mathbf{k}} I_m)^{-1} (\mathcal{B} - \beta_{\mathbf{k}} I_m),$	
	$\mathcal{F} := (A - \beta_{\mathbf{k}} I_n)^{-1} F, \qquad \qquad \mathcal{G} := (B - \alpha_{\mathbf{k}} I_m)^{-H} G.$	

~ alternating directions implicit (ADI) iteration

$$X_{k} = \mathcal{A}_{k} X_{k-1} \mathcal{B}_{k} + (\beta_{k} - \alpha_{k}) \mathcal{F}_{k} \mathcal{G}^{H}_{k}$$

for $k \geq 1$, $X_0 \in \mathbb{R}^{n \times m}$.

[Wachspress 1988]

	000000000000000000000000000000000000000	

Sylvester ADI iteration

[Wachspress 1988]

$$\begin{split} X_k &= \mathcal{A}_k X_{k-1} \mathcal{B}_k + (\beta_k - \alpha_k) \mathcal{F}_k \mathcal{G}_k^H, \\ \mathcal{A}_k &:= (A - \beta_k I_n)^{-1} (A - \alpha_k I_n), \quad \mathcal{B}_k &:= (B - \alpha_k I_m)^{-1} (B - \beta_k I_m), \\ \mathcal{F}_k &:= (A - \beta_k I_n)^{-1} \mathcal{F} \in \mathbb{R}^{n \times r}, \quad \mathcal{G}_k &:= (B - \alpha_k I_m)^{-H} \mathcal{G} \in \mathbb{C}^{m \times r}. \end{split}$$

Now set $X_0 = 0$ and find factorization $X_k = Z_k D_k Y_k^H$

$$X_1 = \mathcal{A}_1 X_0 \mathcal{B}_1 + (\beta_1 - \alpha_1) \mathcal{F}_1 \mathcal{G}_1^H$$

,

Sylvester ADI iteration

[Wachspress 1988]

$$\begin{split} X_k &= \mathcal{A}_k X_{k-1} \mathcal{B}_k + (\beta_k - \alpha_k) \mathcal{F}_k \mathcal{G}_k^H, \\ \mathcal{A}_k &:= (A - \beta_k I_n)^{-1} (A - \alpha_k I_n), \quad \mathcal{B}_k &:= (B - \alpha_k I_m)^{-1} (B - \beta_k I_m), \\ \mathcal{F}_k &:= (A - \beta_k I_n)^{-1} \mathcal{F} \in \mathbb{R}^{n \times r}, \quad \mathcal{G}_k &:= (B - \alpha_k I_m)^{-H} \mathcal{G} \in \mathbb{C}^{m \times r}. \end{split}$$

Now set $X_0 = 0$ and find factorization $X_k = Z_k D_k Y_k^H$

$$X_{1} = (\beta_{1} - \alpha_{1})(A - \beta_{1}I_{n})^{-1}FG^{T}(B - \alpha_{1}I_{m})^{-1}$$
$$\Rightarrow V_{1} := Z_{1} = (A - \beta_{1}I_{n})^{-1}F \in \mathbb{R}^{n \times r},$$
$$D_{1} = (\beta_{1} - \alpha_{1})I_{r} \in \mathbb{R}^{r \times r},$$
$$W_{1} := Y_{1} = (B - \alpha_{1}I_{m})^{-H}G \in \mathbb{C}^{m \times r}.$$

Sylvester ADI iteration

[Wachspress 1988]

$$\begin{split} X_k &= \mathcal{A}_k X_{k-1} \mathcal{B}_k + (\beta_k - \alpha_k) \mathcal{F}_k \mathcal{G}_k^H, \\ \mathcal{A}_k &:= (A - \beta_k I_n)^{-1} (A - \alpha_k I_n), \quad \mathcal{B}_k &:= (B - \alpha_k I_m)^{-1} (B - \beta_k I_m) \\ \mathcal{F}_k &:= (A - \beta_k I_n)^{-1} \mathcal{F} \in \mathbb{R}^{n \times r}, \quad \mathcal{G}_k &:= (B - \alpha_k I_m)^{-H} \mathcal{G} \in \mathbb{C}^{m \times r}. \end{split}$$

Now set $X_0 = 0$ and find factorization $X_k = Z_k D_k Y_k^H$

$$\begin{aligned} X_2 &= \mathcal{A}_2 X_1 \mathcal{B}_2 + (\beta_2 - \alpha_2) \mathcal{F}_2 \mathcal{G}_2^H = \dots = \\ V_2 &= V_1 + (\beta_2 - \alpha_1) (\mathcal{A} + \beta_2 I)^{-1} V_1 \in \mathbb{R}^{n \times r}, \\ \mathcal{W}_2 &= \mathcal{W}_1 + \overline{(\alpha_2 - \beta_1)} (\mathcal{B} + \alpha_2 I)^{-H} \mathcal{W}_1 \in \mathbb{R}^{m \times r}, \\ Z_2 &= [Z_1, \ V_2], \\ D_2 &= \operatorname{diag} (D_1, (\beta_2 - \alpha_2) I_r), \\ \mathbf{Y}_2 &= [\mathbf{Y}_1, \ \mathbf{W}_2]. \end{aligned}$$

[B. 2005, LI/TRUHAR 2008, B./LI/TRUHAR 2009]

Algorithm 1: Low-rank Sylvester ADI / factored ADI (fADI)

Input : Matrices defining $AX - XB = FG^{T}$ and shift parameters $\{\alpha_1,\ldots,\alpha_{k_{\max}}\}, \{\beta_1,\ldots,\beta_{k_{\max}}\}.$ **Output**: Z, D, Y such that $ZDY^H \approx X$. 1 $Z_1 = V_1 = (A - \beta_1 I_n)^{-1} F$, 2 $Y_1 = W_1 = (B - \alpha_1 I_m)^{-H} G$. **3** $D_1 = (\beta_1 - \alpha_1)I_r$ 4 for $k = 2, ..., k_{max}$ do $V_k = V_{k-1} + (\beta_k - \alpha_{k-1})(A - \beta_k I_n)^{-1} V_{k-1}.$ 5 $W_k = W_{k-1} + \overline{(\alpha_k - \beta_{k-1})} (B - \alpha_k I_n)^{-H} W_{k-1}.$ 6 Update solution factors 7 $Z_k = [Z_{k-1}, V_k], Y_k = [Y_{k-1}, W_k], D_k = \text{diag}(D_{k-1}, (\beta_k - \alpha_k)I_r).$

Solving Large-Scale Sylvester and Lyapunov Equations ADI Shifts

Optimal Shifts

Solution of rational optimization problem

$$\min_{\substack{\alpha_j \in \mathbb{C} \\ \beta_j \in \mathbb{C} \\ \mu \in \Lambda(B)}} \max_{\lambda \in \Lambda(A)} \prod_{j=1}^k \left| \frac{(\lambda - \alpha_j)(\mu - \beta_j)}{(\lambda - \beta_j)(\mu - \alpha_j)} \right|,$$

for which no analytic solution is known in general.

Some shift generation approaches:

- generalized Bagby points, [Levenberg/Reichel 1993]
- adaption of Penzl's cheap heuristic approach available

[Penzl 1999, Li/Truhar 2008]

→ approximate $\Lambda(A)$, $\Lambda(B)$ by small number of Ritz values w.r.t. A, A^{-1} , B, B^{-1} via Arnoldi,

• just taking these Ritz values alone also works well quite often.

	000000000000000000000000000000000000000	

Disadvantages of Low-Rank ADI as of 2012:

- No efficient stopping criteria:
 - Difference in iterates \rightsquigarrow norm of added columns/step: not reliable, stops often too late.
 - Residual is a full dense matrix, can not be calculated as such.
- Requires complex arithmetic for real coefficients when complex shifts are used.
- Expensive (only semi-automatic) set-up phase to precompute ADI shifts.

	00 0000 000000000000000000000000000000	

Disadvantages of Low-Rank ADI as of 2012:

- No efficient stopping criteria:
 - $\bullet\,$ Difference in iterates $\rightsquigarrow\,$ norm of added columns/step: not reliable, stops often too late.
 - Residual is a full dense matrix, can not be calculated as such.
- Requires complex arithmetic for real coefficients when complex shifts are used.
- Expensive (only semi-automatic) set-up phase to precompute ADI shifts.

Will show: none of these disadvantages exists as of today \implies speed-ups old vs. new LR-ADI can be up to 20!

 Introduction
 Applications
 Sylvester Equations
 Conditions
 Condit
 Conditions
 Con

⇒ $\operatorname{rank}(S_k) \leq r$. Moreover, with $Q_0 = F$, $U_0 = G$ it holds for the LR-ADI iterations

$$V_k = (A - \alpha_k I_n)^{-1} Q_{k-1},$$

$$W_k = (B - \beta_k I_n)^{-H} U_{k-1}, \quad \forall k \ge 1.$$

 \rightsquigarrow Holds also similarly in LR-ADI for Lyapunov equations.

 $Q_{k} = Q_{k-1} + (\beta_{k} - \alpha_{k})V_{k} \in \mathbb{C}^{n \times r},$ $U_{k} = U_{k-1} - \overline{(\beta_{k} - \alpha_{k})}W_{k} \in \mathbb{C}^{m \times r}.$

[B./Kürschner/Saak 2013]

$$Z_k = [Z_{k-1}, V_k], Y_k = [Y_{k-1}, W_k], D_k = \operatorname{diag}(D_{k-1}, \gamma_k I_r).$$

7 _ k + ·

	000000000000000000000000000000000000000	

Solving Large-Scale Sylvester and Lyapunov Equations Computing the Residual Norm

Low-rank factors Q_k , U_k of the residual S_k now integral part of the iteration.

Allows a cheap computation of $\|S_k\|_2$ via, e.g.,

$$\|S_k\|_2 = \|Q_k U_k^H\|_2 = \|U_k R_k^H\|_2, \ Q_k = H_k R_k, \ H_k^H H_k = I_r$$

→→ requires thin QR factorization of an $n \times r$ matrix and $\|\cdot\|_2$ computation of an $r \times r$ matrix.

Much cheaper than the traditional approach: apply Lanczos to $S_k^H S_k$ to get $\|S_k\|_2 = \sqrt{\lambda_{\max}(S_k^H S_k)}$

 \rightsquigarrow requires several matrix vector products with A, B (and A^T , B^T) and additional scalar products.

Note: In Lyapunov case, residual evaluation is almost "free" as no QR factorization is required.

Coluina.		a Sulvester and Luser		æ
00000	0000	0000000 000 000000000000000000	0000000000000	C

Solving Large-Scale Sylvester and Lyapunov Equations Low-Rank Structure of the Residual

Example I: 5-point discretizations of the operator

$$L(x) := \Delta x - v \cdot \nabla x - f(\xi_1, \xi_2) x$$

on $\Omega = (0,1)^2$ for $x = x(\xi_1, \xi_2)$, homogeneous Dirichlet BC.

A: 150 grid points, $v = [e^{\xi_1 + \xi_2}, 1000\xi_2], f(\xi_1, \xi_2) = \xi_1$,

B: 120 grid points, $v = [\sin(\xi_1 + 2\xi_2), 20e^{\xi_1 + \xi_2}]$, $f(\xi_1, \xi_2) = \xi_1\xi_2$.

 \Rightarrow *n* = 22500, *m* = 14400, *F*, *G* random with *r* = 4 columns.

Shifts: 10 Ritz values w.r.t. A, A^{-1}, B, B^{-1} yield

20 α - shifts, 20 β - shifts

 \sim [JBILOU 2006]

Solving	Large-Scal	le Sylvester and Lyapu	nov Equations	()
00000	0000	000000000000000000000000000000000000000	000000000000	

Low-Rank Structure of the Residual

Example I: 5-point discretizations of the operator

$$L(x) := \Delta x - v \cdot \nabla x - f(\xi_1, \xi_2) x$$

on $\Omega = (0,1)^2$ for $x = x(\xi_1, \xi_2)$, homogeneous Dirichlet BC.

 \sim [JBILOU 2006]

	La Calenatian and Langue		(P)
	000000000 000000 00000000	0000000000000	

Solving Large-Scale Sylvester and Lyapunov Equations Realification of LR-ADI

We have real matrices A, B, F, G defining the Sylvester equation. If $\Lambda(A), \Lambda(B) \subset \mathbb{C} \rightsquigarrow$ some α_k, β_k might be complex \rightsquigarrow complex operations in LR-ADI \rightsquigarrow Z, D, Y complex.

To generate real solution factors we need that $\{\alpha_k\}, \{\beta_k\}$ form

Proper and suitably ordered sets of shifts

• If
$$\alpha_k \in \mathbb{C}$$
 then $\alpha_{k+1} = \overline{\alpha_k}$
and either $\beta_k, \beta_{k+1} = \overline{\beta_k} \in \mathbb{C}$ or $\beta_k, \beta_{k+1} \in \mathbb{R}$.

• If
$$\beta_k \in \mathbb{C}$$
 then $\beta_{k+1} = \beta_k$
and either $\alpha_k, \alpha_{k+1} = \overline{\alpha_k} \in \mathbb{C}$ or $\alpha_k, \alpha_{k+1} \in \mathbb{R}$.

No restriction, since ADI is independent of the order of shifts. Can be achieved by simple permutation of the sets of shifts.

Realification of LR-ADI

Relation of Iterates

[B./Kürschner 2013]

If
$$\alpha_k, \alpha_{k+1} = \overline{\alpha_k} \in \mathbb{C}$$
 and $\beta_k, \beta_{k+1} = \overline{\beta_k} \in \mathbb{C}$ then

$$V_{k+1} = \overline{V_k} + rac{eta_k - \gamma_k}{\operatorname{Im}(eta_k)} \operatorname{Im}(V_k), \quad W_{k+1} = \overline{W_k} + rac{\overline{eta_k - \gamma_k}}{\operatorname{Im}(lpha_k)} \operatorname{Im}(W_k).$$

- Linear systems with $A \overline{\alpha_k} I_n$, $B \overline{\beta_k} I_m$ not required,
- low-rank factors always augmented by real data:

$$\begin{split} Z_{k+1} &= \left[Z_{k-1}, \left[\operatorname{Re} \left(V_k \right), \operatorname{Im} \left(V_k \right) \right] \in \mathbb{R}^{n \times 2\mathbf{r}} \right], \\ Y_{k+1} &= \left[Y_{k-1}, \left[\operatorname{Re} \left(W_k \right), \operatorname{Im} \left(W_k \right) \right] \in \mathbb{R}^{m \times 2\mathbf{r}} \right], \\ D_{k+1} &= \operatorname{diag} \left(D_{k-1}, \left[\begin{smallmatrix} * & * \\ * & * \end{smallmatrix} \right] \in \mathbb{R}^{2\mathbf{r} \times 2\mathbf{r}} \right), \end{split}$$

• similar relations for residual factors $Q_{k+1} \in \mathbb{R}^{n \times r}$, $U_{k+1} \in \mathbb{R}^{m \times r}$ and for the other shift sequences.

(Generalization of Lyapunov case as in [B./KÜRSCHNER/SAAK 2012/13].)

Solving Large-Scale Sylvester and Lyapunov Equations Self-generating Shifts

- low-rank structure of solution not embraced,
- no known rules for the numbers
 - ${\sf k}_{\sf max}$ of lpha / eta shifts,
 - Ritz values (i.e., Arnoldi steps)

 $\mathbf{k}_{+}^{A}, \ \mathbf{k}_{-}^{A}, \ \mathbf{k}_{+}^{B}, \ \mathbf{k}_{-}^{B}$ w.r.t. $A, \ A^{-1}, \ B, \ B^{-1},$

• Arnoldi process brings additional costs.

Solving Large-Scale Sylvester and Lyapunov Equations Self-generating Shifts

- low-rank structure of solution not embraced,
- no known rules for the numbers
 - ${\sf k}_{\sf max}$ of lpha / eta shifts,
 - Ritz values (i.e., Arnoldi steps)

 $\mathbf{k}_{+}^{A}, \ \mathbf{k}_{-}^{A}, \ \mathbf{k}_{+}^{B}, \ \mathbf{k}_{-}^{B}$ w.r.t. $A, \ A^{-1}, \ B, \ B^{-1},$

• Arnoldi process brings additional costs.

Solving Large-Scale Sylvester and Lyapunov Equations Self-generating Shifts A cheap but powerful way out [Hund 2012, B./KÜRSCHNER/SAAK 2013] Choose initial shifts, e.g. $\tilde{Q} = \operatorname{orth}(F), \quad \tilde{U} = \operatorname{orth}(G),$ $\{\alpha\} = \Lambda(\tilde{Q}^T A \tilde{Q}), \quad \{\beta\} = \Lambda(\tilde{U}^T B \tilde{U}).$ If these are depleted during ADI compute new shifts via $\{\alpha_{new}\} = \Lambda(\tilde{Q}^T A \tilde{Q}), \quad \{\beta_{new}\} = \Lambda(\tilde{U}^T B \tilde{U}),$ where Variant 1: $\tilde{Q} = \operatorname{orth}(\operatorname{Re}(V), \operatorname{Im}(V)),$

 $\tilde{U} = \operatorname{orth}(\operatorname{Re}(W), \operatorname{Im}(W))$ (iterates), Variant 2: $\tilde{Q} = \operatorname{orth}(Q), \tilde{U} = \operatorname{orth}(U)$ (residual factors).

 \rightsquigarrow Works surprisingly well although **no setup parameters** are needed. \rightsquigarrow Theoretical foundation is current research.

Example I, cont.:

Lyapunov-plus-Positive Eqns. 000000000000000

Projection-Based Lyapunov Solvers...

... for Lyapunov equation $0 = AX + XA^T + BB^T$

Projection-based methods for Lyapunov equations with $A + A^T < 0$:

Compute orthonormal basis range (Z), Z ∈ ℝ^{n×r}, for subspace Z ⊂ ℝⁿ, dim Z = r.

$$I e A := Z^T A Z, \ \hat{B} := Z^T B$$

- Solve small-size Lyapunov equation $\hat{A}\hat{X} + \hat{X}\hat{A}^{T} + \hat{B}\hat{B}^{T} = 0.$
- Use $X \approx Z \hat{X} Z^T$.

Projection-Based Lyapunov Solvers...

... for Lyapunov equation $0 = AX + XA^T + BB^T$

Projection-based methods for Lyapunov equations with $A + A^T < 0$:

Ocompute orthonormal basis range (Z), $Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^n$, dim $\mathcal{Z} = r$.

$$I equation Set \hat{A} := Z^T A Z, \ \hat{B} := Z^T B$$

- Solve small-size Lyapunov equation $\hat{A}\hat{X} + \hat{X}\hat{A}^{T} + \hat{B}\hat{B}^{T} = 0.$
- Use $X \approx Z \hat{X} Z^T$.

Examples:

• Krylov subspace methods, i.e., for m = 1:

$$\mathcal{Z} = \mathcal{K}(A, B, r) = \operatorname{span}\{B, AB, A^2B, \dots, A^{r-1}B\}$$

[SAAD 1990, JAIMOUKHA/KASENALLY 1994, JBILOU 2002–2008].

• Extended Krylov subspace method (EKSM) [SIMONCINI 2007],

$$\mathcal{Z} = \mathcal{K}(A, B, r) \cup \mathcal{K}(A^{-1}, B, r).$$

Rational Krylov subspace methods (RKSM) [DRUSKIN/SIMONCINI 2011].

Solving Large-Scale Sylvester and Lyapunov Equations

The New LR-ADI Applied to Lyapunov Equations

Comparison of the new LR-ADI and EKSM

• Both methods require a system solve and several matvecs per iteration.

Solving Large-Scale Sylvester and Lyapunov Equations

The New LR-ADI Applied to Lyapunov Equations

- Both methods require a system solve and several matvecs per iteration.
- EKSM requires only one (or two in the presence of a mass matrix) factorizations in total, LR-ADI needs a new factorization for each new shift.

Solving Large-Scale Sylvester and Lyapunov Equations The New LR-ADI Applied to Lyapunov Equations

- Both methods require a system solve and several matvecs per iteration.
- EKSM requires only one (or two in the presence of a mass matrix) factorizations in total, LR-ADI needs a new factorization for each new shift.
- EKSM requires deflation strategy for MIMO systems MIMO case requires no extra treatment in LR-ADI.

Solving Large-Scale Sylvester and Lyapunov Equations The New LR-ADI Applied to Lyapunov Equations

- Both methods require a system solve and several matvecs per iteration.
- EKSM requires only one (or two in the presence of a mass matrix) factorizations in total, LR-ADI needs a new factorization for each new shift.
- EKSM requires deflation strategy for MIMO systems MIMO case requires no extra treatment in LR-ADI.
- Both methods have low-rank expressions for the residual, enabling residual-based stopping criteria.

ntroduction Applications **Sylvester Equations** Lyapunov-plus-Positive Eqns.

Solving Large-Scale Sylvester and Lyapunov Equations The New LR-ADI Applied to Lyapunov Equations

- Both methods require a system solve and several matvecs per iteration.
- EKSM requires only one (or two in the presence of a mass matrix) factorizations in total, LR-ADI needs a new factorization for each new shift.
- EKSM requires deflation strategy for MIMO systems MIMO case requires no extra treatment in LR-ADI.
- Both methods have low-rank expressions for the residual, enabling residual-based stopping criteria.
- Both methods can be run fully automatic (LR ADI requires self-generating shifts for this).

ntroduction Applications **Sylvester Equations** Lyapunov-plus-Positive Eqns.

Solving Large-Scale Sylvester and Lyapunov Equations The New LR-ADI Applied to Lyapunov Equations

- Both methods require a system solve and several matvecs per iteration.
- EKSM requires only one (or two in the presence of a mass matrix) factorizations in total, LR-ADI needs a new factorization for each new shift.
- EKSM requires deflation strategy for MIMO systems MIMO case requires no extra treatment in LR-ADI.
- Both methods have low-rank expressions for the residual, enabling residual-based stopping criteria.
- Both methods can be run fully automatic (LR ADI requires self-generating shifts for this).
- EKSM requires dissipativity of A, i.e., A + A^T < 0, to guarantee convergence, ADI only needs Λ (A) ⊂ C[−].

Solving Large-Scale Sylvester and Lyapunov Equations The New LR-ADI Applied to Lyapunov Equations

- Both methods require a system solve and several matvecs per iteration.
- EKSM requires only one (or two in the presence of a mass matrix) factorizations in total, LR-ADI needs a new factorization for each new shift.
- EKSM requires deflation strategy for MIMO systems MIMO case requires no extra treatment in LR-ADI.
- Both methods have low-rank expressions for the residual, enabling residual-based stopping criteria.
- Both methods can be run fully automatic (LR ADI requires self-generating shifts for this).
- EKSM requires dissipativity of A, i.e., A + A^T < 0, to guarantee convergence, ADI only needs Λ (A) ⊂ C[−].
- If it converges, EKSM is usually faster for SISO systems with $A = A^T < 0$.

TI NI		A 11. L		(Pb)
00000	0000	000000000000000000000000000000000000000	000000000000	0

The New LR-ADI Applied to Lyapunov Equations

Example II: an ocean circulation problem

[VAN GIJZEN ET AL. 1998]

 FEM discretization of a simple 3D ocean circulation model (barotropic, constant depth) → stiffness matrix -A with n = 42,249, choose artificial constant term B = rand(n,5).

Example II: an ocean circulation problem

[VAN GIJZEN ET AL. 1998]

- FEM discretization of a simple 3D ocean circulation model (barotropic, constant depth) → stiffness matrix -A with n = 42,249, choose artificial constant term B = rand(n,5).
- Convergence history:

LR-ADI with adaptive shifts vs. EKSM

Example II: an ocean circulation problem

[VAN GIJZEN ET AL. 1998]

- FEM discretization of a simple 3D ocean circulation model (barotropic, constant depth) → stiffness matrix -A with n = 42,249, choose artificial constant term B = rand(n,5).
- Convergence history:

LR-ADI with adaptive shifts vs. EKSM

• CPU times: LR-ADI \approx 110 sec, EKSM \approx 135 sec.

Standard vibrational system

 \rightsquigarrow second-order system with n = 21,001, linearization $\rightsquigarrow n = 42,002$,

Standard vibrational system

→ second-order system with n = 21,001, linearization → n = 42,002,

• Again, artificial constant term: B = rand(n,5).

The New LR-ADI Applied to Lyapunov Equations

Example III: the triple-chain-ocillator

[TRUHAR/VESELIC 2009]

- Standard vibrational system \rightsquigarrow second-order system with n = 21,001, linearization $\rightsquigarrow n = 42,002$,
- Again, artificial constant term: B = rand(n,5).
- Convergence history:

LR-ADI with adaptive shifts vs. EKSM

Solving	Large-Scal	le Sylvester and Lyanu	nov Equations	(Ce)
		00000000000000000000000	0000000000000	

Summary & Outlook

- Numerical enhancements of low-rank ADI for large Sylvester/Lyapunov equations:
 - Iow-rank residuals, reformulated implementation,
 - compute real low-rank factors in the presence of complex shifts, 2
 - self-generating shift strategies (quantification in progress).

Recall the example:

332.02 sec. down to **17.24 sec.** \rightarrow acceleration by factor almost **20**.

- Generalized version enables derivation of low-rank solvers for various generalized Sylvester equations.
- Ongoing work:
 - Apply LR-ADI in Newton methods for algebraic Riccati equations

$$\mathcal{N}(X) = AX + XB + FG^{T} - XST^{T}X = 0,$$

$$\mathcal{D}(X) = AXA^{T} - EXE^{T} + SS^{T} + A^{T}XF(I_{r} + F^{T}XF)^{-1}F^{T}XA = 0.$$

Overview

This part: joint work with Tobias Breiten (KFU Graz, Austria)

Applications

3 Solving Large-Scale Sylvester and Lyapunov Equations

Solving Large-Scale Lyapunov-plus-Positive Equations

- Application: Balanced Truncation for Bilinear Systems
- Existence of Low-Rank Approximations
- Generalized ADI Iteration
- Bilinear EKSM
- Tensorized Krylov Subspace Methods
- Comparison of Methods

Solving Large-Scale Lyapunov-plus-Positive Equations Application: Balanced Truncation for Bilinear Systems

Bilinear control systems:

$$\Sigma: \quad \begin{cases} \dot{x}(t) = Ax(t) + \sum_{i=1}^{m} N_i x(t) u_i(t) + Bu(t), \\ y(t) = Cx(t), \quad x(0) = x_0, \end{cases}$$

where $A, N_i \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}$.

Properties:

- Approximation of (weakly) nonlinear systems by Carleman linearization yields bilinear systems.
- Appear naturally in boundary control problems, control via coefficients of PDEs, Fokker-Planck equations, ...
- Due to the close relation to linear systems, a lot of successful concepts can be extended, e.g. transfer functions, Gramians, Lyapunov equations, . . .
- Linear stochastic control systems possess an equivalent structure and can be treated alike [B./DAMM '11].

Solving Large-Scale Lyapunov-plus-Positive Equations Application: Balanced Truncation for Bilinear Systems

The concept of balanced truncation can be generalized to the case of bilinear systems, where we need the solutions of the Lyapunov-plus-positive equations:

$$AP + PA^{T} + \sum_{i=1}^{m} N_{i}PA_{i}^{T} + BB^{T} = 0,$$
$$A^{T}Q + QA^{T} + \sum_{i=1}^{m} N_{i}^{T}QA_{i} + C^{T}C = 0.$$

- Due to its approximation quality, balanced truncation is method of choice for model reduction of medium-size biliner systems.
- For stationary iterative solvers, see [DAMM 2008], extended to low-rank solutions recently by [SZYLD/SHANK/SIMONCINI 2014].

Solving Large-Scale Lyapunov-plus-Positive Equations Application: Balanced Truncation for Bilinear Systems

The concept of balanced truncation can be generalized to the case of bilinear systems, where we need the solutions of the Lyapunov-plus-positive equations:

$$AP + PA^{T} + \sum_{i=1}^{m} N_{i}PA_{i}^{T} + BB^{T} = 0,$$
$$A^{T}Q + QA^{T} + \sum_{i=1}^{m} N_{i}^{T}QA_{i} + C^{T}C = 0.$$

Further applications:

- Analysis and model reduction for linear stochastic control systems driven by Wiener noise [B./DAMM 2011], Lévy processes [B./REDMANN 2011].
- Model reduction of linear parameter-varying (LPV) systems using bilinearization approach [B./BREITEN 2011].
- Model reduction for Fokker-Planck equations [HARTMANN ET AL. 2013].

$$AX + XA^{T} + \sum_{i=1}^{m} N_{i}XN_{i}^{T} + BB^{T} = 0.$$
 (3)

• Need a positive semi-definite symmetric solution X.

$$AX + XA^{T} + \sum_{i=1}^{m} N_{i}XN_{i}^{T} + BB^{T} = 0.$$
 (3)

- Need a positive semi-definite symmetric solution X.
- As discussed before, solution theory for Lyapuonv-plus-positive equation is more involved then in standard Lyapuonv case. Here, existence and uniqueness of positive semi-definite solution $X = X^{T}$ is assumed.

$$AX + XA^{T} + \sum_{i=1}^{m} N_{i}XN_{i}^{T} + BB^{T} = 0.$$
 (3)

- Need a positive semi-definite symmetric solution X.
- As discussed before, solution theory for Lyapuonv-plus-positive equation is more involved then in standard Lyapuonv case. Here, existence and uniqueness of positive semi-definite solution $X = X^{T}$ is assumed.
- Want: solution methods for large scale problems, i.e., only matrix-matrix multiplication with *A*, *N_j*, solves with (shifted) *A* allowed!

00000	0000	000000000000000000000000000000000000000	00 00 00000000	C
			Lyapunov-plus-Positive Eqns.	

$$AX + XA^{T} + \sum_{i=1}^{m} N_{i}XN_{i}^{T} + BB^{T} = 0.$$
 (3)

- Need a positive semi-definite symmetric solution X.
- As discussed before, solution theory for Lyapuonv-plus-positive equation is more involved then in standard Lyapuonv case. Here, existence and uniqueness of positive semi-definite solution X = X^T is assumed.
- Want: solution methods for large scale problems, i.e., only matrix-matrix multiplication with *A*, *N_j*, solves with (shifted) *A* allowed!
- Requires to compute data-sparse approximation to generally dense X; here: $X \approx ZZ^T$ with $Z \in \mathbb{R}^{n \times n_Z}$, $n_Z \ll n!$

Can we expect low-rank approximations $ZZ^T \approx X$ to the solution of

$$AX + XA^{T} + \sum_{j=1}^{m} N_j X N_j^{T} + BB^{T} = 0 ?$$

Can we expect low-rank approximations $ZZ^T \approx X$ to the solution of

$$AX + XA^{T} + \sum_{j=1}^{m} N_{j}XN_{j}^{T} + BB^{T} = 0$$
?

Standard Lyapunov case:

[GRASEDYCK '04]

$$AX + XA^{T} + BB^{T} = 0 \iff \underbrace{(I_n \otimes A + A \otimes I_n)}_{=:\mathcal{A}} \operatorname{vec}(X) = -\operatorname{vec}(BB^{T}).$$

Standard Lyapunov case:

[Grasedyck '04]

$$AX + XA^{T} + BB^{T} = 0 \iff \underbrace{(I_n \otimes A + A \otimes I_n)}_{=:\mathcal{A}} \operatorname{vec}(X) = -\operatorname{vec}(BB^{T}).$$

Apply

$$M^{-1} = -\int_0^\infty \exp(tM) \mathrm{d}t$$

to ${\cal A}$ and approximate the integral via (sinc) quadrature \Rightarrow

$$\mathcal{A}^{-1} \; pprox \; - \sum_{i=-k}^{k} \omega_i \exp(t_k \mathcal{A}),$$

with error $\sim \exp(-\sqrt{k})$ ($\exp(-k)$ if $A = A^T$), then an approximate Lyapunov solution is given by

$$\operatorname{vec}(X) \approx \operatorname{vec}(X_k) = \sum_{i=-k}^{k} \omega_i \exp(t_i A) \operatorname{vec}(BB^T).$$

	000000000000000000000000000000000000000

Standard Lyapunov case:

[Grasedyck '04]

$$AX + XA^{T} + BB^{T} = 0 \iff \underbrace{(I_{n} \otimes A + A \otimes I_{n})}_{=:\mathcal{A}} \operatorname{vec}(X) = -\operatorname{vec}(BB^{T}).$$

$$\operatorname{vec}(X) \approx \operatorname{vec}(X_k) = \sum_{i=-k}^{n} \omega_i \exp(t_i \mathcal{A}) \operatorname{vec}(BB^T).$$

Now observe that

$$\exp(t_i A) = \exp(t_i (I_n \otimes A + A \otimes I_n)) \equiv \exp(t_i A) \otimes \exp(t_i A).$$

Standard Lyapunov case:

[Grasedyck '04]

$$AX + XA^T + BB^T = 0 \iff \underbrace{(I_n \otimes A + A \otimes I_n)}_{=:A} \operatorname{vec}(X) = -\operatorname{vec}(BB^T).$$

$$\operatorname{vec}(X) \approx \operatorname{vec}(X_k) = \sum_{i=-k}^{n} \omega_i \exp(t_i \mathcal{A}) \operatorname{vec}(BB^T).$$

Now observe that

$$\exp(t_i\mathcal{A}) = \exp(t_i(I_n\otimes A + A\otimes I_n)) \equiv \exp(t_iA)\otimes \exp(t_iA).$$

Hence,

$$\operatorname{vec}(X_k) = \sum_{i=-k}^{k} \omega_i \left(\exp(t_i A) \otimes \exp(t_i A) \right) \operatorname{vec}(BB^{\mathsf{T}})$$

Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Standard Lyapunov case:

[Grasedyck '04]

$$AX + XA^{T} + BB^{T} = 0 \iff \underbrace{(I_{n} \otimes A + A \otimes I_{n})}_{=:\mathcal{A}} \operatorname{vec}(X) = -\operatorname{vec}(BB^{T}).$$

Hence,

$$\operatorname{vec}(X_k) = \sum_{i=-k}^{k} \omega_i \left(\exp(t_i A) \otimes \exp(t_i A) \right) \operatorname{vec}(BB^{\mathsf{T}})$$
$$\implies X_k = \sum_{i=-k}^{k} \omega_i \exp(t_i A) BB^{\mathsf{T}} \exp(t_i A^{\mathsf{T}}) \equiv \sum_{i=-k}^{k} \omega_i B_i B_i^{\mathsf{T}},$$

so that $\operatorname{rank}(X_k) \leq (2k+1)m$ with

$$||X - X_k||_2 \lesssim \exp(-\sqrt{k})$$
 ($\exp(-k)$ for $A = A^T$)!

Can we expect low-rank approximations $ZZ^T \approx X$ to the solution of

$$AX + XA^{T} + \sum_{j=1}^{m} N_{j}XN_{j}^{T} + BB^{T} = 0$$
?

Problem: in general,

$$\exp\left(t_i(I\otimes A+A\otimes+\sum_{j=1}^mN_j\otimes N_j)\right)\neq (\exp(t_iA)\otimes\exp(t_iA))\exp\left(t_i(\sum_{j=1}^mN_j\otimes N_j)\right).$$

Can we expect low-rank approximations $ZZ^T \approx X$ to the solution of

$$AX + XA^{T} + \sum_{j=1}^{m} N_{j}XN_{j}^{T} + BB^{T} = 0$$
?

Assume that m = 1 and $N_1 = UV^T$ with $U, V \in \mathbb{R}^{n \times r}$ and consider

$$(\underbrace{I_n \otimes A + A \otimes I_n}_{=\mathcal{A}} + N_1 \otimes N_1) \operatorname{vec}(X) = \underbrace{-\operatorname{vec}(BB^T)}_{=:y}.$$

Can we expect low-rank approximations $ZZ^T \approx X$ to the solution of

$$AX + XA^{T} + \sum_{j=1}^{m} N_{j}XN_{j}^{T} + BB^{T} = 0$$
?

Assume that m = 1 and $N_1 = UV^T$ with $U, V \in \mathbb{R}^{n \times r}$ and consider

$$(\underbrace{I_n \otimes A + A \otimes I_n}_{=\mathcal{A}} + N_1 \otimes N_1) \operatorname{vec}(X) = \underbrace{-\operatorname{vec}(BB^T)}_{=:y}.$$

Sherman-Morrison-Woodbury \Longrightarrow

$$(I_r \otimes I_r + (V^T \otimes V^T) \mathcal{A}^{-1} (U \otimes U)) w = (V^T \otimes V^T) \mathcal{A}^{-1} y, \mathcal{A} \operatorname{vec}(X) = y - (U \otimes U) w.$$

Can we expect low-rank approximations $ZZ^T \approx X$ to the solution of

$$AX + XA^{T} + \sum_{j=1}^{m} N_{j}XN_{j}^{T} + BB^{T} = 0$$
?

Assume that m = 1 and $N_1 = UV^T$ with $U, V \in \mathbb{R}^{n \times r}$ and consider

$$(\underbrace{I_n \otimes A + A \otimes I_n}_{=\mathcal{A}} + N_1 \otimes N_1) \operatorname{vec}(X) = \underbrace{-\operatorname{vec}(BB^T)}_{=:y}.$$

Sherman-Morrison-Woodbury \Longrightarrow

$$(I_r \otimes I_r + (V^T \otimes V^T) \mathcal{A}^{-1} (U \otimes U)) w = (V^T \otimes V^T) \mathcal{A}^{-1} y, \mathcal{A} \operatorname{vec}(X) = y - (U \otimes U) w.$$

Rank of matrix representation of r.h.s. $-BB^{T} - U \operatorname{vec}^{-1}(w) U^{T}$ is $\leq r + 1!$

 \rightsquigarrow Apply results for linear Lyapunov equations with r.h.s of rank r + 1.

Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Theorem

[B./BREITEN 2012]

Assume existence and uniqueness assumption with stable A and $N_j = U_j V_j^T$, with $U_j, V_j \in \mathbb{R}^{n \times r_j}$. Set $r = \sum_{j=1}^m r_j$. Then the solution X of

$$AX + XA^{T} + \sum_{j=1}^{m} N_{j}XN_{j}^{T} + BB^{T} = 0$$

can be approximated by X_k of rank (2k+1)(m+r), with an error satisfying

$$|X-X_k\|_2 \lesssim \exp(-\sqrt{k}).$$

	000000000000000000000000000000000000000

Solving Large-Scale Lyapunov-plus-Positive Equations Generalized ADI Iteration

Let us again consider the Lyapunov-plus-positive equation

$$AP + PA^{T} + NPN^{T} + BB^{T} = 0.$$

Solving Large-Scale Lyapunov-plus-Positive Equations Generalized ADI Iteration

Let us again consider the Lyapunov-plus-positive equation

$$AP + PA^{T} + NPN^{T} + BB^{T} = 0.$$

For a fixed parameter p, we can rewrite the linear Lyapunov operator as

$$AP + PA^{T} = \frac{1}{2p} \left((A + pI)P(A + pI)^{T} - (A - pI)P(A - pI)^{T} \right)$$

Solving Large-Scale Lyapunov-plus-Positive Equations Generalized ADI Iteration

Let us again consider the Lyapunov-plus-positive equation

$$AP + PA^{T} + NPN^{T} + BB^{T} = 0.$$

For a fixed parameter p, we can rewrite the linear Lyapunov operator as

$$AP + PA^{T} = \frac{1}{2p} \left((A + pI)P(A + pI)^{T} - (A - pI)P(A - pI)^{T} \right)$$

leading to the fix point iteration

[Damm 2008]

$$P_{j} = (A - pl)^{-1} (A + pl) P_{j-1} (A + pl)^{T} (A - pl)^{-T} + 2p(A - pl)^{-1} (NP_{j-1}N^{T} + BB^{T}) (A - pl)^{-T}$$

Solving Large-Scale Lyapunov-plus-Positive Equations

Generalized ADI Iteration

Let us again consider the Lyapunov-plus-positive equation

$$AP + PA^T + NPN^T + BB^T = 0.$$

For a fixed parameter p, we can rewrite the linear Lyapunov operator as

$$AP + PA^{T} = \frac{1}{2p} \left((A + pI)P(A + pI)^{T} - (A - pI)P(A - pI)^{T} \right)$$

leading to the fix point iteration

$$P_{j} = (A - pl)^{-1}(A + pl)P_{j-1}(A + pl)^{T}(A - pl)^{-T} + 2p(A - pl)^{-1}(NP_{j-1}N^{T} + BB^{T})(A - pl)^{-T}.$$

 $P_i \approx Z_i Z_i^T (\operatorname{rank}(Z_j) \ll n) \rightsquigarrow$ factored iteration $Z_i Z_i^T = (A - pI)^{-1} (A + pI) Z_{i-1} Z_{i-1}^T (A + pI)^T (A - pI)^{-T}$ $+2p(A-pI)^{-1}(NZ_{i-1}Z_{i-1}^{T}N^{T}+BB^{T})(A-pI)^{-T}.$

[Damm 2008]

	in Farmetiana	
	0000000000000000	

Solving Large-Scale Lyapunov-plus-Positive Equations Generalized ADI Iteration

Hence, for a given sequence of shift parameters $\{p_1, \ldots, p_q\}$, we can extend the linear ADI iteration as follows:

$$Z_{1} = \sqrt{2p_{1}} (A - p_{1}I)^{-1} B,$$

$$Z_{j} = (A - p_{j}I)^{-1} [(A + p_{j}I) Z_{j-1} \quad \sqrt{2p_{j}}B \quad \sqrt{2p_{j}}NZ_{j-1}], \quad j \leq q$$

Solving Large-Scale Lyapunov-plus-Positive Equations Generalized ADI Iteration

Hence, for a given sequence of shift parameters $\{p_1, \ldots, p_q\}$, we can extend the linear ADI iteration as follows:

$$Z_{1} = \sqrt{2p_{1}} (A - p_{1}I)^{-1} B,$$

$$Z_{j} = (A - p_{j}I)^{-1} [(A + p_{j}I) Z_{j-1} \quad \sqrt{2p_{j}}B \quad \sqrt{2p_{j}}NZ_{j-1}], \quad j \leq q.$$

Problems:

- A and N in general do not commute → we have to operate on full preceding subspace Z_{j-1} in each step.
- Rapid increase of rank (Z_j) → perform some kind of column compression.
- Choice of shift parameters? → No obvious generalization of minimax problem.
 Here, we will use shifts minimizing a certain *H*₂-optimization problem, see [B./BREITEN 2011/14].

Generalized ADI Iteration

Numerical Example: A Heat Transfer Model with Uncertainty

- 2-dimensional heat distribution motivated by [BENNER/SAAK '05]
- boundary control by a cooling fluid with an uncertain spraying intensity

$$\Omega = (0, 1) \times (0, 1)$$

$$x_t = \Delta x \qquad \text{in } \Omega$$

$$n \cdot \nabla x = (0.5 + d\omega_1) x \qquad \text{on } \Gamma_1$$

$$x = u \qquad \qquad \text{on } \Gamma_2$$

$$x = 0 \qquad \qquad \text{on } \Gamma_3, \Gamma_4$$

- spatial discretization $k \times k$ -grid
- $\Rightarrow dx \approx Axdt + Nxd\omega_i + Budt$ output: $C = \frac{1}{k^2} \begin{bmatrix} 1 & \dots & 1 \end{bmatrix}$

Generalized ADI Iteration Numerical Example: A Heat Transfer Model with Uncertainty Conv. history for bilinear low-rank ADI method (n = 40,000) 10^{5} – Absolute Residual 10^{1} Residual 10^{-3}

Low-rank solutions of the Lyapunov-plus-positive equation may be obtained by projecting the original equation onto a suitable smaller subspace $\mathcal{V} = \operatorname{span}(V), V \in \mathbb{R}^{n \times k}$, with $V^T V = I$.

In more detail, solve

 $(V^{\mathsf{T}}AV)\hat{X} + \hat{X}(V^{\mathsf{T}}A^{\mathsf{T}}V) + (V^{\mathsf{T}}NV)\hat{X}(V^{\mathsf{T}}N^{\mathsf{T}}V) + (V^{\mathsf{T}}B)(V^{\mathsf{T}}B)^{\mathsf{T}} = 0$ and prolongate $X \approx V \hat{X} V^T$.

Low-rank solutions of the Lyapunov-plus-positive equation may be obtained by projecting the original equation onto a suitable smaller subspace $\mathcal{V} = \operatorname{span}(V)$, $V \in \mathbb{R}^{n \times k}$, with $V^T V = I$.

In more detail, solve

$$\left(V^{T}AV\right)\hat{X} + \hat{X}\left(V^{T}A^{T}V\right) + \left(V^{T}NV\right)\hat{X}\left(V^{T}N^{T}V\right) + \left(V^{T}B\right)\left(V^{T}B\right)^{T} = 0$$

and prolongate $X \approx V \hat{X} V^T$.

For this, one might use the extended Krylov subspace method (EKSM) algorithm in the following way:

Low-rank solutions of the Lyapunov-plus-positive equation may be obtained by projecting the original equation onto a suitable smaller subspace $\mathcal{V} = \operatorname{span}(V), V \in \mathbb{R}^{n \times k}$, with $V^T V = I$.

In more detail, solve

$$\left(V^{T}AV\right)\hat{X} + \hat{X}\left(V^{T}A^{T}V\right) + \left(V^{T}NV\right)\hat{X}\left(V^{T}N^{T}V\right) + \left(V^{T}B\right)\left(V^{T}B\right)^{T} = 0$$

and prolongate $X \approx V \hat{X} V^T$.

For this, one might use the extended Krylov subspace method (EKSM) algorithm in the following way:

$$V_1 = \begin{bmatrix} B & A^{-1}B \end{bmatrix},$$

$$V_r = \begin{bmatrix} AV_{r-1} & A^{-1}V_{r-1} & NV_{r-1} \end{bmatrix}, \quad r = 2, 3, \dots$$

Low-rank solutions of the Lyapunov-plus-positive equation may be obtained by projecting the original equation onto a suitable smaller subspace $\mathcal{V} = \operatorname{span}(V), V \in \mathbb{R}^{n \times k}$, with $V^T V = I$.

In more detail, solve

$$\left(V^{T}AV\right)\hat{X} + \hat{X}\left(V^{T}A^{T}V\right) + \left(V^{T}NV\right)\hat{X}\left(V^{T}N^{T}V\right) + \left(V^{T}B\right)\left(V^{T}B\right)^{T} = 0$$

and prolongate $X \approx V \hat{X} V^T$.

For this, one might use the extended Krylov subspace method (EKSM) algorithm in the following way:

$$V_1 = \begin{bmatrix} B & A^{-1}B \end{bmatrix},$$

$$V_r = \begin{bmatrix} AV_{r-1} & A^{-1}V_{r-1} & NV_{r-1} \end{bmatrix}, \quad r = 2, 3, \dots$$

However, criteria like dissipativity of A for the linear case which ensure solvability of the projected equation have to be further investigated.

	00000000000000	
	Lyapunov-plus-Positive Eqns.	

Ø

Bilinear EKSM Residual Computation in $O(k^3)$

Theorem (B./BREITEN 2012)

Let $V_i \in \mathbb{R}^{n \times k_i}$ be the extendend Krylov matrix after *i* generalized EKSM steps. Denote the residual associated with the approximate solution $X_i = V_i \hat{X}_i V_i^T$ by

$$R_i := AX_i + X_i A^T + NX_i N^T + BB^T,$$

where \hat{X}_i is the solution of the reduced Lyapunov-plus-positive equation

$$V_i^T A V_i \hat{X}_i + \hat{X}_i V_i^T A^T V_i + V_i^T N V_i \hat{X}_i V_i^T N^T V_i + V_i^T B B^T V_i = 0.$$

Then:

- range $(R_i) \subset$ range (V_{i+1}) ,
- $||R_i|| = ||V_{i+1}^T R_i V_{i+1}||$ for the Frobenius and spectral norms.

		Lyapunov-plus-Positive Eqns.
		0000000000000

Ø

Bilinear EKSM Residual Computation in $O(k^3)$

Theorem (B./BREITEN 2012)

Let $V_i \in \mathbb{R}^{n \times k_i}$ be the extendend Krylov matrix after *i* generalized EKSM steps. Denote the residual associated with the approximate solution $X_i = V_i \hat{X}_i V_i^T$ by

$$R_i := AX_i + X_i A^T + NX_i N^T + BB^T,$$

where \hat{X}_i is the solution of the reduced Lyapunov-plus-positive equation

$$V_i^T A V_i \hat{X}_i + \hat{X}_i V_i^T A^T V_i + V_i^T N V_i \hat{X}_i V_i^T N^T V_i + V_i^T B B^T V_i = 0.$$

Then:

• range
$$(R_i) \subset$$
 range (V_{i+1}) ,

• $||R_i|| = ||V_{i+1}^T R_i V_{i+1}||$ for the Frobenius and spectral norms.

Remarks:

- Residual evaluation only requires quantities needed in i + 1st projection step plus $\mathcal{O}(k_{i+1}^3)$ operations.
- No Hessenberg structure of reduced system matrix that allows to simplify residual expression as in standard Lyapunov case!

Max Planck Institute Magdeburg

Bilinear EKSM

Numerical Example: A Heat Transfer Model with Uncertainty

Applications Sylveter Equations Coordinations Sylveter Equations Coordinations Coordin

Another possibility is to iteratively solve the linear system

$$(I_n \otimes A + A \otimes I_n + N \otimes N) \operatorname{vec}(X) = -\operatorname{vec}(BB^T),$$

with a fixed number of ADI iteration steps used as a preconditioner ${\cal M}$

$$\mathcal{M}^{-1}(I_n \otimes A + A \otimes I_n + N \otimes N) \operatorname{vec}(X) = -\mathcal{M}^{-1} \operatorname{vec}(BB^T).$$

We implemented this approach for PCG and BiCGstab.

Updates like $X_{k+1} \leftarrow X_k + \omega_k P_k$ require truncation operator to preserve low-order structure.

Note, that the low-rank factorization $X \approx ZZ^T$ has to be replaced by $X \approx ZDZ^T$, *D* possibly indefinite.

Similar to more general tensorized Krylov solvers, see [KRESSNER/TOBLER 2010/12].

Tensorized Krylov Subspace Methods

Vanilla Implementation of Tensor-PCG for Matrix Equations

Algorithm 3: Preconditioned CG method for $\mathcal{A}(X) = \mathcal{B}$

Input : Matrix functions $\mathcal{A}, \mathcal{M}: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$, low rank factor B of right-hand side $\mathcal{B} = -BB^{T}$. Truncation operator \mathcal{T} w.r.t. relative accuracy ϵ_{rel} . Output: Low rank approximation $X = LDL^{T}$ with $||\mathcal{A}(X) - \mathcal{B}||_{F} \leq \text{tol.}$

Here, $\mathcal{A} : X \to AX + XA^{T} + NXN^{T}$, \mathcal{M} : ℓ steps of (bilinear) ADI, both in low-rank (" ZDZ^{T} " format).

Comparison of Methods

Heat Equation with Boundary Control

Introduction

Application

Sylvester Equations

Lyapunov-plus-Positive Eqns

Comparison of Methods

Comparison of CPU times

	Heat equation	RC circuit	Fokker-Planck
Bilin. ADI 2 \mathcal{H}_2 shifts	-	-	1.733 (1.578)
Bilin. ADI 6 \mathcal{H}_2 shifts	144,065 (2,274)	20,900 (3091)	-
Bilin. ADI 8 \mathcal{H}_2 shifts	135,711 (3,177)	-	-
Bilin. ADI 10 \mathcal{H}_2 shifts	33,051 (4,652)	-	-
Bilin. ADI 2 Wachspress shifts	-	-	6.617 (4.562)
Bilin. ADI 4 Wachspress shifts	41,883 (2,500)	18,046 (308)	-
CG (Bilin. ADI precond.)	15,640	-	-
BiCG (Bilin. ADI precond.)	-	16,131	11.581
BiCG (Linear ADI precond.)	-	12,652	9.680
EKSM	7,093	19,778	8.555

Numbers in brackets: computation of shift parameters.

ntroduction Applications Sylvester Equations Lyapunov-plus-Positive Eqns.

Solving Large-Scale Lyapunov-plus-Positive Equations Summary & Outlook

- Under certain assumptions, we can expect the existence of low-rank approximations to the solution of Lyapunov-plus-positive equations.
- Solutions strategies via extending the ADI iteration to bilinear systems and EKSM as well as using preconditioned iterative solvers like CG or BiCGstab up to dimensions n ~ 500,000 in MATLAB[®].
- Optimal choice of shift parameters for ADI is a nontrivial task.
- Other "tricks" (realification, low-rank residuals) not adapted from standard case so far.
- What about the singular value decay in case of N being full rank?
- Need efficient implementation!

Applicatio 0000 Sylvester Equations

Further Reading

P. Benner and T. Breiten.

On H₂ model reduction of linear parameter-varying systems. Proceedings in Applied Mathematics and Mechanics 11:805-806, 2011

P. Benner and T. Breiten.

Low rank methods for a class of generalized Lyapunov equations and related issues. Numerische Mathematik 124(3):441–470, 2013.

P. Benner and T. Damm.

Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems. SIAM Journal on Control and Optimization 49(2):686–711, 2011.

P. Benner and P. Kürschner.

Computing real low-rank solutions of Sylvester equations by the factored ADI method. Computers and Mathematics with Applications 67:1656–1672, 2014.

P. Benner, P. Kürschner, and J. Saak.

Efficient handling of complex shift parameters in the low-rank Cholesky factor ADI method. Numerical Algorithms 62(2):225–251, 2013.

P. Benner, P. Kürschner, and J. Saak.

Self-generating and efficient shift parameters in ADI methods for large Lyapunov and Sylvester equations. MPI Magdeburg Preprint MPIMD/13-18, October 2013, http://www.mpi-magdeburg.mpg.de/preprints/2013/18/.

P. Benner and J. Saak.

Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM Mitteilungen 36(1):32–52, 2013.

(Upcoming) preprints available at

http://www.mpi-magdeburg.mpg.de/preprints/index.php