

- 1. Introduction
- 2. Model Reduction for Dynamical Systems
- 3. Balanced Truncation for Linear Systems
- 4. Interpolatory Model Reduction
- 5. Parametric Model Order Reduction (PMOR)
- 6. Conclusions

 Frequency response is the quantitative measure of the output spectrum of a system or device in response to a stimulus, and is used to characterize the dynamics of the system.¹

¹ https://en.wikipedia.org/wiki/Frequency_response

- Frequency response is the quantitative measure of the output spectrum of a system or device in response to a stimulus, and is used to characterize the dynamics of the system.¹
- It is a measure of magnitude and phase of the output as a function of frequency, in comparison to the input.¹

¹ https://en.wikipedia.org/wiki/Frequency_response

- Frequency response is the quantitative measure of the output spectrum of a system or device in response to a stimulus, and is used to characterize the dynamics of the system.¹
- It is a measure of magnitude and phase of the output as a function of frequency, in comparison to the input.¹
- Main tool in engineering to study the dynamic behavior of a system is response to varying stimuli.

https://en.wikipedia.org/wiki/Frequency_response

- Frequency response is the quantitative measure of the output spectrum of a system or device in response to a stimulus, and is used to characterize the dynamics of the system.¹
- It is a measure of magnitude and phase of the output as a function of frequency, in comparison to the input.¹
- Main tool in engineering to study the dynamic behavior of a system is response to varying stimuli.
- It is based on the Laplace/Fourier transforms, mapping a time-domain signal to frequency domain.

https://en.wikipedia.org/wiki/Frequency_response

- Frequency response is the quantitative measure of the output spectrum of a system or device in response to a stimulus, and is used to characterize the dynamics of the system.¹
- It is a measure of magnitude and phase of the output as a function of frequency, in comparison to the input.¹
- Main tool in engineering to study the dynamic behavior of a system is response to varying stimuli.
- It is based on the Laplace/Fourier transforms, mapping a time-domain signal to frequency domain.
- For linear time-invariant (LTI) system Σ : $\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t) + Du(t), \end{cases}$ this requires the solution of a sequence of linear systems

$$H(:,:,k) = C(j\omega_k I_n - A)^{-1}B + D, \quad k = 1,...K,$$

where $\{\omega_1,\ldots,\omega_K\}$ defines a frequency grid (in [rad/s]).

¹ https://en.wikipedia.org/wiki/Frequency_response

Linear time-invariant (LTI) system

$$\Sigma: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m} \\ y(t) = Cx(t) + Du(t), & C \in \mathbb{R}^{q \times m}, \ D \in \mathbb{R}^{q \times m} \end{cases}$$

Laplace (Fourier) transform (assuming x(0) = 0) \rightsquigarrow

$$Y(s) = (C(sI_n - A)^{-1}B + D) U(s) =: G(s)U(s), \quad s \in \mathbb{C},$$

where $G \in \mathbb{R}(s)^{q \times m}$ is the (rational) transfer function of Σ .

Linear time-invariant (LTI) system

$$\Sigma: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m} \\ y(t) = Cx(t) + Du(t), & C \in \mathbb{R}^{q \times m}, \ D \in \mathbb{R}^{q \times m} \end{cases}$$

Laplace (Fourier) transform (assuming x(0) = 0) \rightsquigarrow

$$Y(s) = (C(sI_n - A)^{-1}B + D) U(s) =: G(s)U(s), \quad s \in \mathbb{C},$$

where $G \in \mathbb{R}(s)^{q \times m}$ is the (rational) transfer function of Σ .

• Visualization often by Bode (amplitude and phase), Bode magnitude (amplitude only), or sigma (only $\sigma(G(\jmath\omega))=\{\text{nonzero singular values of }G\}$) plots.

Linear time-invariant (LTI) system

$$\Sigma: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m} \\ y(t) = Cx(t) + Du(t), & C \in \mathbb{R}^{q \times m}, \ D \in \mathbb{R}^{q \times m} \end{cases}$$

Laplace (Fourier) transform (assuming x(0) = 0) \rightsquigarrow

$$Y(s) = (C(sI_n - A)^{-1}B + D) U(s) =: G(s)U(s), \quad s \in \mathbb{C},$$

where $G \in \mathbb{R}(s)^{q \times m}$ is the (rational) transfer function of Σ .

- Visualization often by Bode (amplitude and phase), Bode magnitude (amplitude only), or sigma (only $\sigma(G(\jmath\omega))=\{\text{nonzero singular values of } G\}$) plots.
- Requires K evaluations of the transfer function $G(\jmath\omega_k)$, $k=1,\ldots,K$, i.e., solution of K linear systems of equations with $\min\{q,m\}$ right-hand sides.

Example: Beam

- Clamped beam (discretized elasticity equation).
- n = 348, m = q = 1, MATLAB® automatically chooses K = 389.

Example: Beam

- Clamped beam (discretized elasticity equation).
- n = 348, m = q = 1, MATLAB® automatically chooses K = 389.

Example: Beam

- Clamped beam (discretized elasticity equation).
- n = 348, m = q = 1, MATLAB® automatically chooses K = 389.

Example: CD Player

- Modal model of a rotating swing arm in a CD player.
- n = 120, m = q = 2, MATLAB automatically chooses K = 445.

Example: CD Player

- Modal model of a rotating swing arm in a CD player.
- n = 120, m = q = 2, MATLAB automatically chooses K = 445.

Example: CD Player

- Modal model of a rotating swing arm in a CD player.
- n = 120, m = q = 2, MATLAB automatically chooses K = 445.

Accelerating Frequency response calculations

Use your Numerical Analysis. . .

Accelerating Frequency response calculations

Use your Numerical Analysis. . .

Example (ISS Module 12A, structure model)

- n = 1412, m = 2, q = 3
- MATLAB built-in command freqresp:

Use sparse arithmetic:

• Note: solve $(\jmath \omega I - A)X = B$, rather than $(\jmath \omega I - A)^T Y^T = C^T$ as m < q.

Accelerating Frequency response calculations

- Use your Numerical Analysis...
- Intelligent use of iterative methods, e.g., block-Krylov methods, recycling Krylov subspaces, shift-invariance of Krylov subspaces, ...

```
[Freund, Frommer, de Sturler, Meerbergen, Morgan, Nabben, Parks, Simoncini,
Soodhalter, Szyld, Vuik, ...]
```


Accelerating Frequency response calculations

- Use your Numerical Analysis...
- Intelligent use of iterative methods, e.g., block-Krylov methods, recycling Krylov subspaces, shift-invariance of Krylov subspaces, ... [Freund, Frommer, de Sturler, Meerbergen, Morgan, Nabben, Parks, Simoncini, Soodhalter, Szyld, Vuik, ...]
- Here: employ model (order) reduction techniques!

$$ightharpoonup$$
 Replace A,B,C,D by $(\hat{A},\hat{B},\hat{C},\hat{D}) \in \mathbb{R}^{r \times r} \times \mathbb{R}^{r \times m} \times \mathbb{R}^{q \times r} \times \mathbb{R}^{q \times m}$ with

$$r \ll n$$

so that

$$||G(j\omega) - \hat{G}(j\omega)||$$

is small in desired frequency range!

Accelerating Frequency response calculations

- Use your Numerical Analysis. . .
- Intelligent use of iterative methods, e.g., block-Krylov methods, recycling Krylov subspaces, shift-invariance of Krylov subspaces, . . .
 [Freund, Frommer, de Sturler, Meerbergen, Morgan, Nabben, Parks, Simoncini, Soodhalter, Szyld, Vuik, . . .]
- Here: employ model (order) reduction techniques!

$$\rightsquigarrow$$
 Replace A, B, C, D by $(\hat{A}, \hat{B}, \hat{C}, \hat{D}) \in \mathbb{R}^{r \times r} \times \mathbb{R}^{r \times m} \times \mathbb{R}^{q \times r} \times \mathbb{R}^{q \times m}$ with

$$r \ll n$$

so that

$$||G(j\omega) - \hat{G}(j\omega)||$$

is small in desired frequency range!

 $\bullet \parallel . \parallel \in \{\parallel . \parallel_{\mathcal{H}_2}, \parallel . \parallel_{\mathcal{H}_{\infty}}\}.$

Model Reduction for Dynamical Systems

Dynamical Systems

$$\Sigma: \left\{ \begin{array}{lcl} \dot{x}(t) & = & f(t,x(t),u(t)), & x(t_0) = x_0, \\ y(t) & = & g(t,x(t),u(t)) \end{array} \right.$$

with

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^q$.

Model Reduction for Dynamical Systems

Original System

$$\Sigma: \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^q$.

Model Reduction for Dynamical Systems

Original System

$$\Sigma: \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^q$.

Reduced-Order Model — ROM

$$\widehat{\Sigma}: \left\{ \begin{array}{l} \dot{\widehat{x}}(t) = \widehat{f}(t, \widehat{x}(t), u(t)), \\ \hat{y}(t) = \widehat{g}(t, \widehat{x}(t), u(t)). \end{array} \right.$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^q$.

Gnal

 $||y - \hat{y}|| < \text{tolerance} \cdot ||u||$ for all admissible input signals.

Original System

$$\Sigma: \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^q$.

Reduced-Order Model — ROM

$$\widehat{\Sigma}: \left\{ \begin{array}{l} \dot{\widehat{x}}(t) = \widehat{f}(t, \widehat{x}(t), u(t)), \\ \hat{y}(t) = \widehat{g}(t, \widehat{x}(t), u(t)). \end{array} \right.$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^q$.

Goal:

 $||y - \hat{y}|| < \text{tolerance} \cdot ||u||$ for all admissible input signals.

Original System

$$\Sigma: \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^q$.

Reduced-Order Model — ROM

$$\widehat{\Sigma}: \left\{ \begin{array}{l} \dot{\widehat{x}}(t) = \widehat{f}(t, \widehat{x}(t), u(t)), \\ \hat{y}(t) = \widehat{g}(t, \widehat{x}(t), u(t)). \end{array} \right.$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^q$.

Goal:

 $||y - \hat{y}|| < \text{tolerance} \cdot ||u||$ for all admissible input signals.

Secondary goal: reconstruct approximation of x from \hat{x} .

Linear Systems

Linear, Time-Invariant (LTI) Systems

$$\dot{x} = f(t, x, u) = Ax + Bu, \quad A \in \mathbb{R}^{n \times n}, \qquad B \in \mathbb{R}^{n \times m},$$

 $y = g(t, x, u) = Cx + Du, \quad C \in \mathbb{R}^{q \times n}, \qquad D \in \mathbb{R}^{q \times m}.$

csc Introduction

Linear Systems

Formulating model reduction in frequency domain

Approximate the dynamical system

$$\dot{x} = Ax + Bu,$$
 $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m},$
 $y = Cx + Du,$ $C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m},$

by reduced-order system

of order $r \ll n$, such that

$$||y - \hat{y}|| = ||Gu - \hat{G}u|| \le ||G - \hat{G}|| \cdot ||u|| < \text{tolerance} \cdot ||u||.$$

csc Introduction

Linear Systems

Formulating model reduction in frequency domain

Approximate the dynamical system

$$\dot{x} = Ax + Bu,$$
 $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m},$
 $y = Cx + Du,$ $C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m},$

by reduced-order system

$$\dot{\hat{x}} = \hat{A}\hat{x} + \hat{B}u, \quad \hat{A} \in \mathbb{R}^{r \times r}, \ \hat{B} \in \mathbb{R}^{r \times m},
\hat{y} = \hat{C}\hat{x} + \hat{D}u, \quad \hat{C} \in \mathbb{R}^{q \times r}, \ \hat{D} \in \mathbb{R}^{q \times m}$$

of order $r \ll n$, such that

$$\|y - \hat{y}\| = \|Gu - \hat{G}u\| < \|G - \hat{G}\| \cdot \|u\| < \text{tolerance} \cdot \|u\|.$$

 \Longrightarrow Approximation problem: $\min_{\mathsf{order}\,(\hat{G}) \leq r} \|G - \hat{G}\|.$

Application Areas

- structural mechanics / (elastic) multibody simulation
- systems and control theory
- micro-electronics / circuit simulation / VLSI design
- computational electromagnetics,
- design of MEMS/NEMS (micro/nano-electrical-mechanical systems),
- computational acoustics,
- ...

Peter Benner and Lihong Feng.

Model Order Reduction for Coupled Problems

Applied and Computational Mathematics: An International Journal, 14(1):3-22, 2015.

Available from http://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-02.pdf.

Application Areas

- structural mechanics / (elastic) multibody simulation
- systems and control theory
- micro-electronics / circuit simulation / VLSI design
- computational electromagnetics,
- design of MEMS/NEMS (micro/nano-electrical-mechanical systems),
- computational acoustics,
- ...
- Current trend: more and more multi-physics problems, i.e., coupling
 of several field equations, e.g.,
 - electro-thermal (e.g., bondwire heating in chip design),
 - fluid-structure-interaction,
 - . . .

Peter Benner and Lihong Feng.

Model Order Reduction for Coupled Problems

Applied and Computational Mathematics: An International Journal, 14(1):3-22, 2015.

Available from http://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-02.pdf.

Basic idea

•
$$\Sigma$$
:
$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t), \end{cases}$$
 with A stable, i.e., $\Lambda(A) \subset \mathbb{C}^-$,

is balanced, if system Gramians = solutions P, Q of Lyapunov equations

$$AP + PA^T + BB^T = 0,$$
 $A^TQ + QA + C^TC = 0,$

satisfy: $P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$ with $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n > 0$.

Basic idea

• Σ : $\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t), \end{cases}$ with A stable, i.e., $\Lambda(A) \subset \mathbb{C}^-$,

is balanced, if system Gramians = solutions P, Q of Lyapunov equations

$$AP + PA^T + BB^T = 0,$$
 $A^TQ + QA + C^TC = 0,$

satisfy: $P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$ with $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n > 0$.

• $\{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .

Basic idea

• Σ : $\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t), \end{cases}$ with A stable, i.e., $\Lambda(A) \subset \mathbb{C}^-$,

is balanced, if system Gramians = solutions P, Q of Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0,$$

satisfy:
$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$$
 with $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n > 0$.

- $\{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .
- \bullet Compute balanced realization (needs P, Q!) of the system via state-space transformation

$$\mathcal{T}: (A,B,C) \quad \mapsto \quad (TAT^{-1},TB,CT^{-1}) \\ = \quad \left(\left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right], \left[\begin{array}{cc} B_1 \\ B_2 \end{array} \right], \left[\begin{array}{cc} C_1 & C_2 \end{array} \right] \right).$$

Basic idea

• Σ : $\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t), \end{cases}$ with A stable, i.e., $\Lambda(A) \subset \mathbb{C}^-$,

is balanced, if system Gramians = solutions P, Q of Lyapunov equations

$$AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0,$$

satisfy:
$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$$
 with $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n > 0$.

- $\{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .
- ullet Compute balanced realization (needs P,Q!) of the system via state-space transformation

$$\mathcal{T}: (A, B, C) \mapsto (TAT^{-1}, TB, CT^{-1})$$

$$= \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} C_1 & C_2 \end{bmatrix} \right).$$

• Truncation \rightsquigarrow $(\hat{A}, \hat{B}, \hat{C}) = (A_{11}, B_1, C_1).$

Properties

• Reduced-order model is stable with HSVs $\sigma_1, \ldots, \sigma_{\hat{n}}$.

Balanced Truncation for Linear Systems

Properties

- Reduced-order model is stable with HSVs $\sigma_1, \ldots, \sigma_{\hat{n}}$.
- Adaptive choice of *r* via computable error bound:

$$||y - \hat{y}||_2 \le \left(2\sum_{k=\hat{n}+1}^n \sigma_k\right)||u||_2.$$

Balanced Truncation for Linear Systems

Properties

- Reduced-order model is stable with HSVs $\sigma_1, \ldots, \sigma_{\hat{n}}$.
- Adaptive choice of *r* via computable error bound:

$$||y - \hat{y}||_2 \le \left(2\sum_{k=\hat{n}+1}^n \sigma_k\right)||u||_2.$$

Practical implementation

- Rather than solving Lyapunov equations for P, Q (n^2 unknowns!), find $S, R \in \mathbb{R}^{n \times s}$ with $s \ll n$ such that $P \approx SS^T$, $Q \approx RR^T$.
- Reduced-order model directly obtained via small-scale $(s \times s)$ SVD of $R^TS!$
- No $\mathcal{O}(n^3)$ or $\mathcal{O}(n^2)$ computations necessary!

Electro-Thermal Simulation of Integrated Circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]

• SIMPLORER® test circuit with 2 transistors.

- Conservative thermal sub-system in SIMPLORER: voltage → temperature, current → heat flow.
- Original model: n = 270.593, $m = q = 2 \Rightarrow$ Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):
 - Main computational cost for set-up data $\approx 22min$.
 - Computation of reduced models from set-up data: 44–49sec. (r = 20-70).
 - Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):
 7.5h for original system , < 1min for reduced system.

Electro-Thermal Simulation of Integrated Circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]

- Original model: n = 270.593, m = q = 2 ⇒
 Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):
 - Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):
 7.5h for original system , < 1min for reduced system.

Electro-Thermal Simulation of Integrated Circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]

- Original model: n = 270.593, m = q = 2 ⇒
 Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):
 - Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):
 7.5h for original system , < 1min for reduced system.

Elastic Multi-Body Simulation (EMBS)

- Resolving complex 3D geometries ⇒ can involve millions of degrees of freedom.
- EMBS: ROM is used as surrogate in simulation runs with varying forcing terms.

Source: ITM, U Stuttgart

MOR in EMBS

Christine Nowakowski, Patrick Kürschner, Peter Eberhard, Peter Benner,

Model Reduction of an Elastic Crankshaft for Elastic Multibody Simulations ZAMM, 93(4):198-216, 2013.

EMBS in Tribological Study of Combustion Engine

- Consider coupling laws between elements of the combustion engine; tribological contacts describe the relative motion between solids separated by fluid film lubrication.
- Need to compute hydrodynamic pressure distribution.
- Crankshaft modeled as elastic body, all other parts rigid.
- LTI system with n = 84,252, m = q = 35.

Structure of crank drive: Crankshaft of a four-cylinder engine:

EMBS in Tribological Study of Combustion Engine

- Crankshaft modeled as elastic body, all other parts rigid.
- LTI system with n = 84,252, m = q = 35.

ROM of order r = 70 computed by the different methods, including second-order variant of balanced truncation (< 2min to compute ROM):

Christine Nowakowski, Patrick Kürschner, Peter Eberhard, Peter Benner.

Model Reduction of an Elastic Crankshaft for Elastic Multibody Simulations ZAMM, 93(4):198-216, 2013.

Mechatronics / Piezo-Actuated Spindle Head

- Used for localized actuation to superimpose micro motions of machine tool.
- Descriptor LTI system with n = 290, 137, m = q = 9.

Piezo-actuated structure (CAD):

FEM model:

Source: Fraunhofer IWU Chemnitz/Dresden

Mechatronics / Piezo-Actuated Spindle Head

- Used for localized actuation to superimpose micro motions of machine tool.
- Descriptor LTI system with n = 290, 137, m = q = 9.

ROM of orders $r = 20, \dots, 168$ computed by variant of balanced truncation for descriptor systems, sigma plot (left) and relative errors (right):

Mohammad Monir Uddin, Jens Saak, Burkhard Kranz, Peter Benner.

Computation of a Compact State Space Model for an Adaptive Spindle Head Configuration with Piezo Actuators using Balanced Truncation. Production Engineering, 6(6):577-586, 2012.

Mechatronics / Piezo-Actuated Spindle Head

- Used for localized actuation to superimpose micro motions of machine tool.
- Descriptor LTI system with n = 290, 137, m = q = 9.

ROM of orders r=20...168 computed by variant of balanced truncation for descriptor systems, Bode magnitude plots for $1 \rightarrow 9$ (left), $9 \rightarrow 9$ (right):

Mohammad Monir Uddin, Jens Saak, Burkhard Kranz, Peter Benner.

Computation of a Compact State Space Model for an Adaptive Spindle Head Configuration with Piezo Actuators using Balanced Truncation. *Production Engineering*, 6(6):577–586, 2012.

Mechatronics / Piezo-Actuated Spindle Head

- Used for localized actuation to superimpose micro motions of machine tool.
- Descriptor LTI system with n = 290, 137, m = q = 9.

ROM of orders r = 20...168 computed by variant of balanced truncation.

system dimension	execution time (sec)	speedup
290,137	90.00	
168	0.029	3,103
75	0.019	4,737
60	0.017	5,294
50	0.014	6,429
20	0.013	6,923

Peter Benner, Jens Saak, Mohammad Monir Uddin,

Structure preserving model order reduction of large sparse second-order index-1 systems and application to a mechatronics model. *Mathematical and Computer Modelling of Dynamical Systems*, 22(6):509–523, 2016.

Mohammad Monir Uddin, Jens Saak, Burkhard Kranz, Peter Benner.

Computation of a Compact State Space Model for an Adaptive Spindle Head Configuration with Piezo Actuators using Balanced Truncation. *Production Engineering*, 6(6):577–586, 2012.

Computation of reduced-order model by projection

Given linear (descriptor) system $E\dot{x} = Ax + Bu$, y = Cx with transfer function $G(s) = C(sE - A)^{-1}B$, a ROM is obtained using truncation matrices $V, W \in \mathbb{R}^{n \times r}$ with $W^T V = I_r (\rightsquigarrow (VW^T)^2 = VW^T)$ is projector) by computing $\hat{E} = W^T E V$. $\hat{A} = W^T A V$. $\hat{B} = W^T B$. $\hat{C} = C V$.

$$E = W'EV, A = W'AV, B = W'B, C = C$$

Petrov-Galerkin-type (two-sided) projection: $W \neq V$,

Galerkin-type (one-sided) projection: W = V.

Computation of reduced-order model by projection

Given linear (descriptor) system $E\dot{x}=Ax+Bu$, y=Cx with transfer function $G(s)=C(sE-A)^{-1}B$, a ROM is obtained using truncation matrices $V,W\in\mathbb{R}^{n\times r}$ with $W^TV=I_r$ ($\leadsto(VW^T)^2=VW^T$ is projector) by computing

$$\hat{E} = W^T E V, \ \hat{A} = W^T A V, \ \hat{B} = W^T B, \ \hat{C} = C V.$$

Petrov-Galerkin-type (two-sided) projection: $W \neq V$,

Galerkin-type (one-sided) projection: W = V.

Rational Interpolation/Moment-Matching

Choose V, W such that

$$G(s_i) = \hat{G}(s_i), \quad j = 1, \ldots, k,$$

and

$$\frac{d^i}{ds^i}G(s_j) = \frac{d^i}{ds^i}\hat{G}(s_j), \quad i = 1, \dots, K_j, \quad j = 1, \dots, k.$$

Theorem (simplified) [GRIMME '97, VILLEMAGNE/SKELTON '87]

lf

$$\operatorname{span}\left\{(s_1E-A)^{-1}B,\ldots,(s_kE-A)^{-1}B\right\} \subset \operatorname{Ran}(V),$$

$$\operatorname{span}\left\{(s_1E-A)^{-T}C^T,\ldots,(s_kE-A)^{-T}C^T\right\} \subset \operatorname{Ran}(W),$$

then

$$G(s_j) = \hat{G}(s_j), \quad \frac{d}{ds}G(s_j) = \frac{d}{ds}\hat{G}(s_j), \quad \text{for } j = 1, \dots, k.$$

Theorem (simplified) [GRIMME '97, VILLEMAGNE/SKELTON '87]

lf

$$\operatorname{span} \left\{ (s_1 E - A)^{-1} B, \dots, (s_k E - A)^{-1} B \right\} \subset \operatorname{Ran}(V),$$

$$\operatorname{span} \left\{ (s_1 E - A)^{-T} C^T, \dots, (s_k E - A)^{-T} C^T \right\} \subset \operatorname{Ran}(W),$$

then

$$G(s_j) = \hat{G}(s_j), \quad \frac{d}{ds}G(s_j) = \frac{d}{ds}\hat{G}(s_j), \quad \text{for } j = 1, \dots, k.$$

Remarks:

computation of V, W from rational Krylov subspaces, e.g.,

- dual rational Arnoldi/Lanczos [GRIMME '97],
- Iter. Rational Krylov-Alg. (IRKA) [Antoulas/Beattie/Gugercin '06/'08].

Theorem (simplified) [GRIMME '97, VILLEMAGNE/SKELTON '87]

lf

$$\operatorname{span}\left\{(s_1E-A)^{-1}B,\ldots,(s_kE-A)^{-1}B\right\} \subset \operatorname{Ran}(V),$$

$$\operatorname{span}\left\{(s_1E-A)^{-T}C^T,\ldots,(s_kE-A)^{-T}C^T\right\} \subset \operatorname{Ran}(W),$$

then

$$G(s_j) = \hat{G}(s_j), \quad \frac{d}{ds}G(s_j) = \frac{d}{ds}\hat{G}(s_j), \quad \text{for } j = 1, \dots, k.$$

Remarks:

using Galerkin/one-sided projection ($W \equiv V$) yields $G(s_j) = \hat{G}(s_j)$, but in general

$$\frac{d}{ds}G(s_j)\neq \frac{d}{ds}\hat{G}(s_j).$$

Theorem (simplified) [GRIMME '97, VILLEMAGNE/SKELTON '87]

lf

$$\operatorname{span} \left\{ (s_1 E - A)^{-1} B, \dots, (s_k E - A)^{-1} B \right\} \subset \operatorname{Ran}(V),$$

$$\operatorname{span} \left\{ (s_1 E - A)^{-T} C^T, \dots, (s_k E - A)^{-T} C^T \right\} \subset \operatorname{Ran}(W),$$

then

$$G(s_j) = \hat{G}(s_j), \quad \frac{d}{ds}G(s_j) = \frac{d}{ds}\hat{G}(s_j), \quad \text{for } j = 1, \dots, k.$$

Remarks:

k = 1, standard Krylov subspace(s) of dimension K:

range
$$(V) = \mathcal{K}_K((s_1I - A)^{-1}, (s_1I - A)^{-1}B).$$

→ moment-matching methods/Padé approximation [FREUND/FELDMANN '95],

$$\frac{d^i}{ds^i}G(s_1)=\frac{d^i}{ds^i}\hat{G}(s_1), \quad i=0,\ldots,K-1(+K).$$

CSC

Interpolatory Model Reduction

Remarks:

k = 1, standard Krylov subspace(s) of dimension K:

range
$$(V) = \mathcal{K}_K((s_1I - A)^{-1}, (s_1I - A)^{-1}B).$$

→ moment-matching methods/Padé approximation [FREUND/FELDMANN '95],

$$\frac{d^i}{ds^i}G(s_1)=\frac{d^i}{ds^i}\hat{G}(s_1), \quad i=0,\ldots,K-1(+K).$$

News:

Adaptive choice of interpolation points and number of moments to be matched based on dual-weighted residual based error estimate!

Lihong Feng, Jan G. Korvink, Peter Benner.

A Fully Adaptive Scheme for Model Order Reduction Based on Moment-Matching. *IEEE Transactions on Components*, Packaging, and Manufacturing Technology, 5(12):1872–1884, 2015.

Lihong Feng, Athanasios C. Antoulas, Peter Benner

Some a posteriori error bounds for reduced order modelling of (non-)parametrized linear systems. *MPI Magdeburg Preprints* MPIMD/15-17, October 2015.

Micro-electronics: clock tree

- Each segment has 4 RL pairs in series, representing the wiring on a chip, with four capacitors to ground, representing the wire-substrate interaction,
- n = 6, 134, m = q = 1 (SISO).

Micro-electronics: clock tree

- Each segment has 4 RL pairs in series, representing the wiring on a chip, with four capacitors to ground, representing the wire-substrate interaction,
- n = 6,134, m = q = 1 (SISO).

Sigma plot (r = 18):

Relative error (r = 18):

Micro-electronics: SPICE MNA model

- Model of a CMOS-inverter driven two-bit bus determined, using modified modal analysis, by SPICE.
- n = 980, m = q = 4 (MIMO), ROM of order r = 48.

Bode plot (magnitude, $1 \rightarrow 4$):

Bode plot (phase, $1, 4 \rightarrow 4$):

Source: The SLICOT Benchmark Collection for Model Reduction, http://slicot.org/20-site/126-benchmark-examples-for-model-reduction

The PMOR Problem

Approximate the dynamical system

$$E(p)\dot{x} = A(p)x + B(p)u, \qquad E(p), A(p) \in \mathbb{R}^{n \times n}, y = C(p)x, \qquad B(p) \in \mathbb{R}^{n \times m}, C(p) \in \mathbb{R}^{q \times n},$$

by reduced-order system

$$\hat{E}(p)\dot{\hat{x}} = \hat{A}(p)\hat{x} + \hat{B}(p)u, \quad \hat{E}(p), \hat{A}(p) \in \mathbb{R}^{r \times r},
\hat{y} = \hat{C}(p)\hat{x}, \qquad \hat{B}(p) \in \mathbb{R}^{r \times m}, \hat{C}(p) \in \mathbb{R}^{q \times r},$$

of order $r \ll n$, such that

$$\|y - \hat{y}\| = \|Gu - \hat{G}u\| \le \|G - \hat{G}\| \cdot \|u\| < \mathsf{tolerance} \cdot \|u\| \quad \forall \ p \in \Omega \subset \mathbb{R}^d.$$

The PMOR Problem

Approximate the dynamical system

$$\begin{array}{rcl} E(p)\dot{x} & = & A(p)x + B(p)u, & E(p), A(p) \in \mathbb{R}^{n \times n}, \\ y & = & C(p)x, & B(p) \in \mathbb{R}^{n \times m}, C(p) \in \mathbb{R}^{q \times n}, \end{array}$$

by reduced-order system

$$\begin{array}{ccc} \hat{E}(p)\dot{\hat{x}} & = & \hat{A}(p)\hat{x} + \hat{B}(p)u, & \hat{E}(p), \hat{A}(p) \in \mathbb{R}^{r \times r}, \\ \hat{y} & = & \hat{C}(p)\hat{x}, & \hat{B}(p) \in \mathbb{R}^{r \times m}, \hat{C}(p) \in \mathbb{R}^{q \times r}, \end{array}$$

of order $r \ll n$, such that

$$\|y - \hat{y}\| = \|Gu - \hat{G}u\| \le \|G - \hat{G}\| \cdot \|u\| < \text{tolerance} \cdot \|u\| \quad \forall \ p \in \Omega \subset \mathbb{R}^d.$$

 \Longrightarrow Approximation problem: $\min_{\operatorname{order}(\hat{G}) \leq r} \|G - \hat{G}\|.$

Example: Microsystems/MEMS Design (butterfly gyro)

- Voltage applied to electrodes induces vibration of wings, resulting rotation due to Coriolis force yields sensor data.
- FE model of second order: $N = 17.361 \rightsquigarrow n = 34.722, m = 1, q = 12.$
- Sensor for position control based on acceleration and rotation.

Applications:

- inertial navigation,
- electronic stability control (ESP).

Source: MOR Wiki http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Gyroscope

Example: Microsystems/MEMS Design (butterfly gyro)

Parametric FE model: $M(d)\ddot{x}(t) + D(\theta, d, \alpha, \beta)\dot{x}(t) + T(d)x(t) = Bu(t)$.

Example: Microsystems/MEMS Design (butterfly gyro)

Parametric FE model:

$$M(d)\ddot{x}(t) + D(\theta, d, \alpha, \beta)\dot{x}(t) + T(d)x(t) = Bu(t),$$

where

$$M(d) = M_1 + dM_2,$$

 $D(\theta, d, \alpha, \beta) = \theta(D_1 + dD_2) + \alpha M(d) + \beta T(d),$
 $T(d) = T_1 + \frac{1}{d}T_2 + dT_3,$

with

- width of bearing: d,
- angular velocity: θ ,
- Rayleigh damping parameters: α, β .

Example: Microsystems/MEMS Design (butterfly gyro)

Response surfaces: $\sigma_{\max}(G(\jmath\omega,p))$ vs. p at ω , original...

and reduced-order model.

Computation times:

ca. 1 week ca. 1.5 hours

• A huge savings in computational time and energy can be obtained using reduced-order models in frequency response analysis.

- A huge savings in computational time and energy can be obtained using reduced-order models in frequency response analysis.
- ROMs can be computed by many methods, e.g., based on system-theoretic considerations, by

- A huge savings in computational time and energy can be obtained using reduced-order models in frequency response analysis.
- ROMs can be computed by many methods, e.g., based on system-theoretic considerations, by
 - novel implementation variants of balanced truncation using efficient numerical linear algebra,

- A huge savings in computational time and energy can be obtained using reduced-order models in frequency response analysis.
- ROMs can be computed by many methods, e.g., based on system-theoretic considerations, by
 - novel implementation variants of balanced truncation using efficient numerical linear algebra,
 - variants of rational interpolation / moment-matching.

- A huge savings in computational time and energy can be obtained using reduced-order models in frequency response analysis.
- ROMs can be computed by many methods, e.g., based on system-theoretic considerations, by
 - novel implementation variants of balanced truncation using efficient numerical linear algebra,
 - variants of rational interpolation / moment-matching.
- Savings increase by a considerable factor for parametric systems.

- A huge savings in computational time and energy can be obtained using reduced-order models in frequency response analysis.
- ROMs can be computed by many methods, e.g., based on system-theoretic considerations, by
 - novel implementation variants of balanced truncation using efficient numerical linear algebra,
 - variants of rational interpolation / moment-matching.
- Savings increase by a considerable factor for parametric systems.
- Current and future work:

- A huge savings in computational time and energy can be obtained using reduced-order models in frequency response analysis.
- ROMs can be computed by many methods, e.g., based on system-theoretic considerations, by
 - novel implementation variants of balanced truncation using efficient numerical linear algebra,
 - variants of rational interpolation / moment-matching.
- Savings increase by a considerable factor for parametric systems.
- Current and future work:
 - combine MOR methods with reduction methods for parameter space (a lot of progress in this direction in recent years, mostly for instationary problems so far),

- A huge savings in computational time and energy can be obtained using reduced-order models in frequency response analysis.
- ROMs can be computed by many methods, e.g., based on system-theoretic considerations, by
 - novel implementation variants of balanced truncation using efficient numerical linear algebra,
 - variants of rational interpolation / moment-matching.
- Savings increase by a considerable factor for parametric systems.
- Current and future work:
 - combine MOR methods with reduction methods for parameter space (a lot of progress in this direction in recent years, mostly for instationary problems so far),
 - extend balanced truncation and rational interpolation techniques in computationally feasible way to nonlinear systems,

- A huge savings in computational time and energy can be obtained using reduced-order models in frequency response analysis.
- ROMs can be computed by many methods, e.g., based on system-theoretic considerations, by
 - novel implementation variants of balanced truncation using efficient numerical linear algebra,
 - variants of rational interpolation / moment-matching.
- Savings increase by a considerable factor for parametric systems.
- Current and future work:
 - combine MOR methods with reduction methods for parameter space (a lot of progress in this direction in recent years, mostly for instationary problems so far),
 - extend balanced truncation and rational interpolation techniques in computationally feasible way to nonlinear systems,
 - merge the best features of so far competing methods.

- A huge savings in computational time and energy can be obtained using reduced-order models in frequency response analysis.
- ROMs can be computed by many methods, e.g., based on system-theoretic considerations, by
 - novel implementation variants of balanced truncation using efficient numerical linear algebra,
 - variants of rational interpolation / moment-matching.
- Savings increase by a considerable factor for parametric systems.
- Current and future work:
 - combine MOR methods with reduction methods for parameter space (a lot of progress in this direction in recent years, mostly for instationary problems so far),
 - extend balanced truncation and rational interpolation techniques in computationally feasible way to nonlinear systems,
 - merge the best features of so far competing methods.
- How do we get MOR into the pro software packages in CAE / CSE ?

Further Reading

1. U. Baur, P. Benner, and L. Feng.

Model Order Reduction for Linear and Nonlinear Systems: a System-Theoretic Perspective Arch. Comp. Meth. Engrg., 21(4):331-358, 2014.

2. P. Benner.

Solving large-scale control problems.

IEEE CONTROL SYSTEMS MAGAZINE, 24(1):44-59, 2004.

3. P. Benner and A. Bruns.

Parametric model order reduction of thermal models using the bilinear interpolatory rational Krylov algorithm.

Mathematical and Computer Modelling of Dynamical Systems, 21(2):103-129, 2015.

4. P. Benner, S. Gugercin, and K. Willcox.

A Survey of Model Reduction Methods for Parametric Systems.

SIAM Review, 57(4):483-531, 2015.

5. P. Benner and J. Saak.

Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey.

GAMM-MITTEILUNGEN, 36(1):32-52, 2013.

6. V. Simoncini.

Computational methods for linear matrix equations (survey article).

SIAM Review, 58(3):377-441, 2016.