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@ Frequency response is the quantitative measure of the output spectrum of a
system or device in response to a stimulus, and is used to characterize the
dynamics of the system.

1
https://en.wikipedia.org/wiki/Frequency_response
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https://en.wikipedia.org/wiki/Frequency_response

@ Frequency response is the quantitative measure of the output spectrum of a
system or device in response to a stimulus, and is used to characterize the
dynamics of the system.

It is a measure of magnitude and phase of the output as a function of
frequency, in comparison to the input.!

Main tool in engineering to study the dynamic behavior of a system is
response to varying stimuli.

It is based on the Laplace/Fourier transforms, mapping a time-domain signal
to frequency domain.

X(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

this requires the solution of a sequence of linear systems

H(:, . k) = Clywkl, —A)*B+D, k=1,...K,

where {w1, ...,wk} defines a frequency grid (in [rad/s]).

For linear time-invariant (LTI) system X : {

1
https://en.wikipedia.org/wiki/Frequency_response
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Linear time-invariant (LTI) system

5. x(t) = Ax(t)+ Bu(t), AeR™" BeRM™"
ol y(t) = Cx(t)+ Du(t), C e R9*" D e RIxm

Laplace (Fourier) transform (assuming x(0) = 0) ~~
Y(s) = (C(sl, — A)"'B+ D) U(s) =: G(s)U(s), se€C,

where G € R(s)9*™ is the (rational) transfer function of X.
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Linear time-invariant (LTI) system

5. x(t) = Ax(t)+ Bu(t), AeR™" BeRM™"
ol y(t) = Cx(t)+ Du(t), C e R9*" D e RIxm

Laplace (Fourier) transform (assuming x(0) = 0) ~~
Y(s) = (C(sl, — A)"'B+ D) U(s) =: G(s)U(s), se€C,
where G € R(s)9*™ is the (rational) transfer function of X.

o Visualization often by Bode (amplitude and phase), Bode magnitude
(amplitude only), or sigma (only O'(G(jw))={nonzero singular values of G}) plots.
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Linear time-invariant (LTI) system

5. x(t) = Ax(t)+ Bu(t), AeR™" BeRM™"
ol y(t) = Cx(t)+ Du(t), C e R9*" D e RIxm

Laplace (Fourier) transform (assuming x(0) = 0) ~~
Y(s) = (C(sl, — A)"'B + D) U(s) =: G(s)U(s), se€C,
where G € R(s)9*™ is the (rational) transfer function of X.

o Visualization often by Bode (amplitude and phase), Bode magnitude
(amplitude only), or sigma (only O'(G(]w))={nonzero singular values of G}) plots.

@ Requires K evaluations of the transfer function G(jwi), k =1,...,K, i.e.,
solution of K linear systems of equations with min{q, m} right-hand sides.
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@ @ Frequency Response Analysis

Example: Beam

@ Clamped beam (discretized elasticity equation).
@ n=348, m= g =1, MATLAB® automatically chooses K = 389.
Bode plot

bode (sys)

Bode Diagram
T

Magnitude (dB)

Phase (deg)
5 &
:

480 I .
107 10" 10" 10' 10 10’ 10"
Frequency (rad/s)

Source: The SLICOT Benchmark Collection for Model Reduction,
http://slicot.org/20-site/126-benchmark-examples-for-model-reduction
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@ Frequency Response Analysis

Example: Beam

@ Clamped beam (discretized elasticity equation).
@ n=348, m= g =1, MATLAB® automatically chooses K = 389.

Bode plot

bodemag (sys)

B Diagram
T

Frequency (adfs)

Source: The SLICOT Benchmark Collection for Model Reduction,
http://slicot.org/20-site/126-benchmark-examples-for-model-reduction
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@ Clamped beam (discretized elasticity equation).
@ n=348, m= g =1, MATLAB® automatically chooses K = 389.

Sigma plot

Singular Values (dB)

sigma(sys)

. Singular Values
T

I .
107 10" 10" 10' 10 10’ 10"
Frequency (rad/s)

P. Benner

Source: The SLICOT Benchmark Collection for Model Reduction,
http://slicot.org/20-site/126-benchmark-examples-for-model-reduction
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@ Frequency Response Analysis

Example: CD Player

@ Modal model of a rotating swing arm in a CD player.
@ n=120,m = q = 2, MATLAB automatically chooses K = 445.

Bode plot ode(sys)

Bode Diagram
From: In{1) From: In(2)

J_/ﬁ/\m\

To: Out(1)

Magnitude (dB) ; Phase (deg)
To: Out(2)

10 10 10 10 10 10 10 10
Frequency (radis)

Source: The SLICOT Benchmark Collection for Model Reduction,
http://slicot.org/20-site/126-benchmark-examples-for-model-reduction
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@ @ Frequency Response Analysis

Example: CD Player

@ Modal model of a rotating swing arm in a CD player.
@ n=120,m = q = 2, MATLAB automatically chooses K = 445.

Bode plot

bodemag (sys)

Bt Diagram
From: Inf1) From )

o o
g .

200
100

To: 0uE)

Fraquency (ads)

Source: The SLICOT Benchmark Collection for Model Reduction,
http://slicot.org/20-site/126-benchmark-examples-for-model-reduction

P. Benner Fast Frequency Response Analysis


http://slicot.org/20-site/126-benchmark-examples-for-model-reduction

@ @ Frequency Response Analysis

Example: CD Player

@ Modal model of a rotating swing arm in a CD player.
@ n=120,m = q = 2, MATLAB automatically chooses K = 445.
a plot

Singular Values
T T

Singular Values (dB)

150 I 1 I I " I
10 10 10 10° 10’ 10" 10° 10°
Frequency (rads)

Source: The SLICOT Benchmark Collection for Model Reduction,
http://slicot.org/20-site/126-benchmark-examples-for-model-reduction
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@ Frequency Response Analysis

Accelerating Frequency response calculations

@ Use your Numerical Analysis. . .
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@ Frequency Response Analysis

Accelerating Frequency response calculations

@ Use your Numerical Analysis. ..

Example (ISS Module 12A, structure model)

o n=1412 m=2,qg=3
o MATLAB built-in command freqresp:

>> tic, h=freqresp(sys, [100]); toc
Elapsed time is 9.135650 seconds.
o Use sparse arithmetic:
>> tic, hs=C*((100*i*speye(1412)-As)\B); toc
Elapsed time is 0.007246 seconds.

o Note: solve (ywl — A)X = B, rather than (yw/ — A)TYT = CT as
m < q.
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@ Frequency Response Analysis

Accelerating Frequency response calculations

@ Use your Numerical Analysis. . .

@ Intelligent use of iterative methods, e.g., block-Krylov methods, recycling
Krylov subspaces, shift-invariance of Krylov subspaces, ...
[Freund, Frommer, de Sturler, Meerbergen, Morgan, Nabben, Parks, Simoncini,
Soodhalter, Szyld, Vuik, . ..]
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@ Frequency Response Analysis

Accelerating Frequency response calculations

@ Use your Numerical Analysis. . .

@ Intelligent use of iterative methods, e.g., block-Krylov methods, recycling
Krylov subspaces, shift-invariance of Krylov subspaces, ...
[Freund, Frommer, de Sturler, Meerbergen, Morgan, Nabben, Parks, Simoncini,
Soodhalter, Szyld, Vuik, . ..]

@ Here: employ model (order) reduction techniques!
~~ Replace A, B, C,D by (A, B, C,D) € R™*" x R™M x RI*" x RI*M with

r<n

so that .
[G(w) — G(w)l

is small in desired frequency range!
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@ Frequency Response Analysis

Accelerating Frequency response calculations

@ Use your Numerical Analysis. . .

@ Intelligent use of iterative methods, e.g., block-Krylov methods, recycling
Krylov subspaces, shift-invariance of Krylov subspaces, ...
[Freund, Frommer, de Sturler, Meerbergen, Morgan, Nabben, Parks, Simoncini,
Soodhalter, Szyld, Vuik, . ..]

@ Here: employ model (order) reduction techniques!
~~ Replace A, B, C,D by (A, B, C,D) € R™*" x R™M x RI*" x RI*M with
r<<n

so that .
[G(w) — G(w)l

is small in desired frequency range!

o |- lhedll M I e -
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@&g @ Model Reduction for Dynamical Systems

Dynamical Systems

Z.{>'<(1f) = f(t,x(t), u(t)), x(to) = xo,
L oyv(1) g(t, x(t), u(t))

with
o states x(t) € R”,
@ inputs u(t) € R™,
@ outputs y(t) € R9.
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@ Model Reduction for Dynamical Systems

f x(t) = £(t,x(t), u(t)),
= {y(t) = g(t, x(t), u(t)).

o states x(t) € R”,

@ inputs u(t) € R™,

@ outputs y(t) € R9.
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Original System Reduced-Order Model — ROM

[ %(t) = At x(t), u(2)). o [ 4(e) = F(tx(2), u(2),
= {Y(f) = g(t,x(t), u(t)). = {f/(t) = &(t,%(t), u(1)).

o states x(t) € R”, o states X(t) eR", r< n

@ inputs u(t) € R”, @ inputs u(t) € R™,

@ outputs y(t) € RY. @ outputs y(t) € RY.

_n_.
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Original System Reduced-Order Model — ROM

[ %(t) = At x(t), u(2)). o [ 4(e) = F(tx(2), u(2),
= {Y(f) = g(t,x(t), u(t)). = {f/(t) = &(t,%(t), u(1)).

o states x(t) € R”, o states X(t) eR", r< n

@ inputs u(t) € R”, @ inputs u(t) € R™,

@ outputs y(t) € RY. @ outputs y(t) € RY.

_n_.

ly = 9|l < tolerance - ||ul| for all admissible input signals.
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Reduced-Order Model — ROM

5. {X(f) = f(t,x(t), u(t)), s {ﬁ(f) = F(£,%(t), u(t)),
S Ly(t) = g(t,x(t), u(t)). - L9() = &(t,%(t), u(t)).
o states x(t) € R”, o states X(t) eR", r< n
@ inputs u(t) € R", @ inputs u(t) € R™,

@ outputs y(t) € RY. @ outputs y(t) € RY.

CEE

lly — ¥|| < tolerance - ||ul| for all admissible input signals.

Secondary goal: reconstruct approximation of x from X.
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@ Introduction

Linear Systems

Linear, Time-Invariant (LTI) Systems

x = f(t,x,u) = Ax+Bu, AeR™" B € RX™M,
y = g(t,x,u) = Cx+ Du, CeRI*" D e RI*m,
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@ Introduction

Linear Systems

Formulating model reduction in frequency domain
Approximate the dynamical system

X = Ax+ Bu, AeR™" BeR™m,
y = Cx+ Du, C eRI*" D e RI*M,

by reduced-order system

= Ax+Bu, AeR™" BeR*m
= Cx+Du, CeR¥", DeRIm

> X0

of order r < n, such that

ly =9Il = 16u = Gull < |G — G| - [lu| < tolerance - |lu].

@© P. Benner
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& @ Introduction

Linear Systems

Formulating model reduction in frequency domain

Approximate the dynamical system

X = Ax+Bu, ~AcR™" BeR™mM
y = Cx+Du,  CeRI*" DecRIXM

by reduced-order system

% = Ax+Bu, AeR™, BeR*m

gy = Cx+Du, CeRI* DeRyxm

of order r < n, such that

ly =9Il = 16u = Gull < |G — G| - [lu| < tolerance - |lu].

— Approximation problem:  min |G — G|
order (G)<r
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@ Application Areas

@ structural mechanics / (elastic) multibody simulation
@ systems and control theory

micro-electronics / circuit simulation / VLSI design
computational electromagnetics,
design of MEMS/NEMS (micro/nano-electrical-mechanical systems),

computational acoustics,

Peter Benner and Lihong Feng.
Model Order Reduction for Coupled Problems
Applied and Computational Mathematics: An International Journal, 14(1):3-22, 2015.
Available from http://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-02. pdf.
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@ Application Areas

@ structural mechanics / (elastic) multibody simulation

@ systems and control theory

@ micro-electronics / circuit simulation / VLSI design

@ computational electromagnetics,

o design of MEMS/NEMS (micro/nano-electrical-mechanical systems),
@ computational acoustics,

°
°

Current trend: more and more multi-physics problems, i.e., coupling
of several field equations, e.g.,

o electro-thermal (e.g., bondwire heating in chip design),

o fluid-structure-interaction,

o ...

Peter Benner and Lihong Feng.
Model Order Reduction for Coupled Problems
Applied and Computational Mathematics: An International Journal, 14(1):3-22, 2015
Available from http://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-02. pdf.
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S5 @ Balanced Truncation for Linear Systems

— X(t) = Ax(t) + Bu(t),
() = &),

is balanced, if system Gramians = solutions P, Q of Lyapunov equations

with A stable, i.e., A(A) C C,

AP+ PAT + BBT = 0, ATQ+QA+C'C = 0,
satisfy: P = Q = diag(o1,...,0,) with oy >0, > ... >0, > 0.
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S5 @ Balanced Truncation for Linear Systems

— X(t) = Ax(t) + Bu(t),
() = &),

is balanced, if system Gramians = solutions P, Q of Lyapunov equations

with A stable, i.e., A(A) C C,

AP+ PAT+BBT =0, ATQ+QA+CTC =0,
satisfy: P = Q = diag(o1,...,0,) with oy >0, > ... >0, > 0.
0 {01,...,0n} are the Hankel singular values (HSVs) of X.
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S5 @ Balanced Truncation for Linear Systems

x(t) = Ax(t) + Bu(t),
ox: {XO=AFBUE), L able, e, A(4) C C,
y(t) = (1),
is balanced, if system Gramians = solutions P, Q of Lyapunov equations
AP+PAT+BBT =0, ATQ+QA+C'C =0,
satisfy: P = Q = diag(o1,...,0,) with oy >0, > ... >0, > 0.
0 {01,...,0n} are the Hankel singular values (HSVs) of X.

@ Compute balanced realization (needs P, Q!) of the system via state-space
transformation

T:(AB,C) — (TAT ', TB,CT )

- (& 2][5]ts ).
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S5 @ Balanced Truncation for Linear Systems

x(t) = Ax(t) + Bu(t),
ox: {XO=AFBUE), L able, e, A(4) C C,
y(t) = (1),
is balanced, if system Gramians = solutions P, Q of Lyapunov equations
AP+PAT+BBT =0, ATQ+QA+C'C =0,
satisfy: P = Q = diag(o1,...,0,) with oy >0, > ... >0, > 0.
0 {01,...,0n} are the Hankel singular values (HSVs) of X.

@ Compute balanced realization (needs P, Q!) of the system via state-space
transformation

T:(AB,C) — (TAT ', TB,CT )
. Aun A By
- <|:A21 Azz]’[&}’[q C2]>'

@ Truncation ~~ (A, B, €) = (Au1, Bi, G1).
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@ Balanced Truncation for Linear Systems

o Reduced-order model is stable with HSVs o1, ..., op.
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@ Balanced Truncation for Linear Systems

o Reduced-order model is stable with HSVs o1, ..., op.

o Adaptive choice of r via computable error bound:

n
ly=sll< (2, o) lull
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w.sg @ Balanced Truncation for Linear Systems

o Reduced-order model is stable with HSVs o1, ..., 04.

o Adaptive choice of r via computable error bound:

n
— vl <
ly=sll< (2, o) lull
Practical implementation

o Rather than solving Lyapunov equations for P, @ (n?> unknowns!), find
S,R € R™* with s < nsuch that P~ SST, Q ~ RR.

o Reduced-order model directly obtained via small-scale (s x s) SVD of
RTS!

o No O(n®) or O(n?) computations necessary!
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@ SiMPLORER® test circuit —
with 2 transistors.

@ Conservative thermal sub-system in SIMPLORER:
voltage ~~ temperature, current ~~ heat flow.
@ Original model: n =270.593, m=qg=2 =
Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

— Main computational cost for set-up data ~ 22min.
— Computation of reduced models from set-up data: 44—49sec. (r = 20-70).
— Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):

7.5h for original system , < 1min for reduced system.
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@ Computational Examples

@ Original model: n =270.593, m=qg=2 =
Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

— Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):
7.5h for original system , < 1min for reduced system.

Bode magnitude plot Hankel Singular Values

, Transfer functions of original and reduced systems

Computed Hankel singular values

S,

magnitude

S,

o || —original
10" | — ROM 20

——ROM 30
—— ROM 40| 20|
ROM 50 10
~— ROM 60
_|[=—Rom70

10* 10° 10° 10" 50 100 150 200 250 800 850
o index
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@ Computational Examples

@ Original model: n =270.593, m=qg=2 =
Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

— Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):
7.5h for original system , < 1min for reduced system.

Absolute Error Relative Error
107 107"

absolute model reduction error wom o] relative model reduction error

—— Rom 20|

~——— RoM 30| ~——— ROM 30|
—— RoM 40) —— Rom 40|

2 Romso Romso
. x—nuum om0
—— Rowo) ——roum
- £ 107
10 _\__

0,..,(Gli0) - G (jo)
] 3
(G(0) - G o) / |Gl
B
[
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@ Resolving complex 3D geometries = can involve millions of degrees of
freedom.

o EMBS: ROM is used as surrogate in simulation runs with varying
forcing terms.

Source: ITM, U Stuttgart
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& @ Computational Examples

MOR in EMBS

modeling of
the multibody
dynamic

technical
system

characterization of

characterization
of the kinetics

B

principles of

modeling of
flexible parts

the kinematics mechanics or;
> E‘ZJE
Ti h;
continuum discretization model reduction
formulation FEM of elastic dofs

COM oM

basic equations
of multibody dy-

simulation
of EMBS

reduced flexibil-
ity of each body

Christine Nowakowski, Patrick Kiirschner, Peter Eberhard, Peter Benner.

Model Reduction of an Elastic Crankshaft for Elastic Multibody Simulations
ZAMM, 93(4):198-216, 2013.

Benner
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@ Computational Examples

EMBS in Tribological Study of Combustion Engine

@ Consider coupling laws between elements of the combustion engine;
tribological contacts describe the relative motion between solids separated by
fluid film lubrication.

@ Need to compute hydrodynamic pressure distribution.
@ Crankshaft modeled as elastic body, all other parts rigid.
@ LTI system with n = 84,252, m = q = 35.

Structure of crank drive: Crankshaft of a four-cylinder engine:
piston crank main pin
iston rod webs  bearing bearing flange
cylinder d.'ﬂ“a"E
end

crankcase 1

. =HI

| with
counterweight

Rz
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@ Computational Examples

EMBS in Tribological Study of Combustion Engine

@ Crankshaft modeled as elastic body, all other parts rigid.
@ LTI system with n = 84,252, m = q = 35.

ROM of order r = 70 computed by the different methods, including second-order variant
of balanced truncation (< 2min to compute ROM):

0 — Modal
. - - -CraigBampton
E R == Krylov
ERTRANN \ tang. Kryl
] ~——tang. Krylov
\Q BT
3 107 T .
107 e 107
0 35 70 105 140 0 150 300 450 600 750
singular value no. j f [Hz]

Christine Nowakowski, Patrick Kiirschner, Peter Eberhard, Peter Benner.

Model Reduction of an Elastic Crankshaft for Elastic Multibody Simulations
ZAMM, 93(4):198-216, 2013.
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@ Computational Examples

@ Used for localized actuation to superimpose micro motions of machine tool.
@ Descriptor LTI system with n = 290,137, m = q =09.

Piezo-actuated structure (CAD): FEM model:

HSC spindle

Source: Fraunhofer IWU Chemnitz/Dresden

@© P. Benner Fast Frequency Response Analysis via MOR 17/24



@ Computational Examples

@ Used for localized actuation to superimpose micro motions of machine tool.
@ Descriptor LTI system with n = 290,137, m = q =09.

ROM of orders r = 20, ...,168 computed by variant of balanced truncation for
descriptor systems, sigma plot (left) and relative errors (right):

108 ——T T
full model

102 —

10"

1A

10-2 =

=
]
= £ .
2 J AU
g B =
S | ] 3
g r ] g
| 3 1w
2 T
0o d E ------- 2 ertass snenwr . 4'.'""'\
£ Ll Ll I |||||||: blofln T il Lol I R
10t 10% 10% 104 10t 10* 10% 104
w w

Mohammad Monir Uddin, Jens Saak, Burkhard Kranz, Peter Benner.

Computation of a Compact State Space Model for an Adaptive Spindle Head Configuration with Piezo Actuators using
Balanced Truncation. Production Engineering, 6(6):577-586, 2012.

P. Benner Fast Frequency Res e Analysis via MOR



@ Computational Examples

@ Used for localized actuation to superimpose micro motions of machine tool.
@ Descriptor LTI system with n = 290,137, m = q =09.

ROM of orders r = 20...168 computed by variant of balanced truncation for descriptor
systems, Bode magnitude plots for 1 — 9 (left), 9 — 9 (right):

10%

—— full model

d

107

3 i 3
2 po-2f 2 el J
o F <R 5 E
10-3 I 1
F 108 | E
104 F E
]0_5_ T RS T B T " T T R
10* 10° 10° 104 00 10? 10° 1

w w

Mohammad Monir Uddin, Jens Saak, Burkhard Kranz, Peter Benner.

Computation of a Compact State Space Model for an Adaptive Spindle Head Configuration with Piezo Actuators using
Balanced Truncation. Production Engineering, 6(6):577-586, 2012.
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@ Computational Examples

@ Used for localized actuation to superimpose micro motions of machine tool.
@ Descriptor LTI system with n = 290,137, m = q =09.
ROM of orders r = 20...168 computed by variant of balanced truncation.

| system dimension | execution time (sec) | speedup |

290,137 90.00
168 0.029 3,103
75 0.019 4,737
60 0.017 5,294
50 0.014 6,429
20 0.013 6,923

Peter Benner, Jens Saak, Mohammad Monir Uddin.
Structure preserving model order reduction of large sparse second-order index-1 systems and application to a mechatronics
model. Mathematical and Computer Modelling of Dynamical Systems, 22(6):509-523, 2016.

Mohammad Monir Uddin, Jens Saak, Burkhard Kranz, Peter Benner.

Computation of a Compact State Space Model for an Adaptive Spindle Head Configuration with Piezo Actuators using
Balanced Truncation. Production Engineering, 6(6):577-586, 2012.
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L @ Interpolatory Model Reduction

Computation of reduced-order model by projection

Given linear (descriptor) system Ex = Ax + Bu, y = Cx with transfer function

G(s) = C(sE — A)~'B, a ROM is obtained using truncation matrices

V,W e R™" with WTV =1, (~ (VWT)2 = VWT is projector) by computing
E=WTEV, A=WTAV, B=W'B, C=CV.

Petrov-Galerkin-type (two-sided) projection: W # V/,

Galerkin-type (one-sided) projection: W = V.
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S @ Interpolatory Model Reduction

Computation of reduced-order model by projection

Given linear (descriptor) system Ex = Ax + Bu, y = Cx with transfer function

G(s) = C(sE — A)~'B, a ROM is obtained using truncation matrices

V,W e R™ with WTV = [, (~ (VWWT)2 = VWT is projector) by computing
E=WTEV, A=wWTAV, B=W'B, C=cCV.

Petrov-Galerkin-type (two-sided) projection: W # V/,

Galerkin-type (one-sided) projection: W = V.

Rational Interpolation/Moment-Matching

Choose V, W such that

G(s)=G(s), j=1,...,k,

=—G(s), i=1,...,K, j=1,...,k
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@ Interpolatory Model Reduction

Theorem (simplified) [GRIMME ’97, VILLEMAGNE/SKELTON ’87]

span {(siE — A)7'B,...,(skE — A)"'B} < Ran(V),
span {(siE —A)"TCT,....(skE—A)"TC"} C Ran(W),

then J J
G(sj) = G(sj), EG(SJ) = EG(SJ-), forj=1,..., k.
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@ Interpolatory Model Reduction

Theorem (simplified) [GRIMME ’97, VILLEMAGNE/SKELTON ’87]

span {(siE — A)7'B,...,(skE — A)"'B} < Ran(V),
span {(siE —A)"TCT,....(skE—A)"TC"} C Ran(W),

then J J
G(sj) = G(sj), EG(SJ-) = EG(SJ-), forj=1,..., k.

Remarks:

computation of V, W from rational Krylov subspaces, e.g.,
— dual rational Arnoldi/Lanczos [GRIMME "97],

— lter. Rational Krylov-Alg. (IRKA) [ANTOULAS/BEATTIE/GUGERCIN '06/°08].
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@ Interpolatory Model Reduction

Theorem (simplified) [GRIMME ’97, VILLEMAGNE/SKELTON ’87]

span {(siE — A)7'B,...,(skE — A)"'B} < Ran(V),
span {(siE —A)"TCT,....(skE—A)"TC"} C Ran(W),

then J J
G(sj) = G(sj), EG(SJ-) = EG(SJ-), forj=1,..., k.

Remarks:

using Galerkin/one-sided projection (W = V) yields G(s;) = G(s;), but in general

d d »
(s # L Gls).
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@ Interpolatory Model Reduction

Theorem (simplified) [GRIMME ’97, VILLEMAGNE/SKELTON ’87]

span {(siE — A)7'B,...,(skE — A)"'B} < Ran(V),
span {(siE —A)"TCT,....(skE—A)"TC"} C Ran(W),

then J J
G(sj) = G(sj), EG(SJ-) = EG(SJ-), forj=1,..., k.

Remarks:
k =1, standard Krylov subspace(s) of dimension K:
range (V) = Kk ((si/ — A)~, (s1/ — A)7'B).
~» moment-matching methods/Padé approximation [FREUND/FELDMANN ’95],
di

d . .
EG(&)_@G(&)’ I—O,...,K—1(+K).
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\' @ Interpolatory Model Reduction

Remarks:
k =1, standard Krylov subspace(s) of dimension K:
range (V) = Kk ((si/ — A)~, (s1/ — A)"'B).
~» moment-matching methods/Padé approximation [FREUND/FELDMANN '95],

d’ d . .
EG(S]_)—EG(Sl), I—O,...,K—1(+K).
News:

Adaptive choice of interpolation points and number of moments to be matched
based on dual-weighted residual based error estimate!

Lihong Feng, Jan G. Korvink, Peter Benner.

A Fully Adaptive Scheme for Model Order Reduction Based on Moment-Matching. |[EEE Transactions on Components,
Packaging, and Manufacturing Technology, 5(12):1872—1884, 2015.

Lihong Feng, Athanasios C. Antoulas, Peter Benner

Some a posteriori error bounds for reduced order modelling of (non-)parametrized linear systems. MP/ Magdeburg
Preprints MPIMD /15-17, October 2015.
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\' @ Interpolatory Model Reduction

Micro-electronics: clock tree

@ Each segment has 4 RL pairs in series, representing the wiring on a chip,
with four capacitors to ground, representing the wire-substrate interaction,

® n=06,134, m= g =1 (SISO).

Level [

segment Level 2 < e Output

Levell

Segment Circuit:

L

—
—
‘I}—J»—‘
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@ Each segment has 4 RL pairs in series, representing the wiring on a chip,
with four capacitors to ground, representing the wire-substrate interaction,

® n=06,134, m= g =1 (SISO).

Sigma plot (r = 18): Relative error (r = 18):
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\' @ Interpolatory Model Reduction

Micro-electronics: SPICE MNA model

@ Model of a CMOS-inverter driven two-bit bus determined, using modified
modal analysis, by SPICE.

@ n=980, m= g =4 (MIMO), ROM of order r = 48.

Bode plot (magnitude, 1 — 4): Bode plot (phase, 1,4 — 4):
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Source: The SLICOT Benchmark Collection for Model Reduction,
http://slicot.org/20-site/126-benchmark-examples-for-model-reduction
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” @ Parametric Model Order Reduction (PMOR)

The PMOR Problem

Approximate the dynamical system

E(p)x = A(p)x+ B(p)u,  E(p),A(p) € R™",
y = C(p)x, B(p) € R™™, C(p) € RI*",

by reduced-order system

E(p)%

A(p)% + B(p)u, E(p),A(p) e R™,
C(p)&, B(p) € R™*™, C(p) € RI*",

<>
|

of order r < n, such that

ly — 9l = |Gu— Gu|| < ||G — G|| - ||u]| < tolerance - ||lu|| V peQc R
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<S5 @ Parametric Model Order Reduction (PMOR)

The PMOR Problem

Approximate the dynamical system

E(p)x = A(p)x+ B(p)u,  E(p),A(p) € R™",
y = C(p)x, B(p) € R™™, C(p) € RI*",

by reduced-order system

E(p)k = A(p)x+B(p)u, E(p),A(p) e R,

C(p)x, B(p) e R™*™ C(p) € RI*",

<>
|

of order r < n, such that
ly =9Il = [|Gu — Gu|| < ||G — G| - ||u|| < tolerance - |[u]| V¥ pe€QcC R

— Approximation problem:  min |G — G|
order (G)<r
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@ Applications:

e inertial navigation,
o electronic stability control

(ESP).

@ Voltage applied to electrodes induces
vibration of wings, resulting rotation due
to Coriolis force yields sensor data.

@ FE model of second order: .
N =17.361 ~ n=34722, m=1, g =12.

@ Sensor for position control based on Eycaton s
acceleration and rotation. .

Source: MOR Wiki http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Gyroscope
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@ Parametric Model Order Reduction (PMOR)
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@ Parametric Model Order Reduction (PMOR)

Parametric FE model:

M(d)x(t) + D(0,d, o, B)x(t) + T(d)x(t) = Bu(t),

where
M(d) = M+ dM.,

D(0,d,a,B) = 6(D1+ dD>)+ aM(d)+ 5T(d),
T(d) = T+ %Tz +dTs,

with

@ width of bearing: d,
@ angular velocity: 6,

@ Rayleigh damping parameters: «, 3.
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@ Parametric Model Order Reduction (PMOR)

Response surfaces: omax(G(jw, p) vs. p at w,

original. .. and reduced-order model.

©=0025

Mo )
IH i 0.d)

Computation times:

ca. 1 week ca. 1.5 hours

22/24

Fast Frequency Response Analysis via MOR
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@ A huge savings in computational time and energy can be obtained using
reduced-order models in frequency response analysis.
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@ A huge savings in computational time and energy can be obtained using
reduced-order models in frequency response analysis.

@ ROMs can be computed by many methods, e.g., based on system-theoretic
considerations, by

o novel implementation variants of balanced truncation using efficient
numerical linear algebra,

e variants of rational interpolation / moment-matching.

@ Savings increase by a considerable factor for parametric systems.
@ Current and future work:

o combine MOR methods with reduction methods for parameter space (a
lot of progress in this direction in recent years, mostly for instationary
problems so far),

o extend balanced truncation and rational interpolation techniques in
computationally feasible way to nonlinear systems,

o merge the best features of so far competing methods.

@ How do we get MOR into the pro software packages in CAE / CSE ?
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@ Further Reading

1. U. Baur, P. Benner, and L. Feng.

Model Order Reduction for Linear and Nonlinear Systems: a System-Theoretic Perspective
ArcH. ComP. METH. ENGRG., 21(4):331-358, 2014.

P. Benner.
Solving large-scale control problems.
IEEE CONTROL SYSTEMS MAGAZINE, 24(1):44-59, 2004.

P. Benner and A. Bruns.

Parametric model order reduction of thermal models using the bilinear interpolatory
rational Krylov algorithm.

Mathematical and Computer Modelling of Dynamical Systems, 21(2):103-129, 2015.

P. Benner, S. Gugercin, and K. Willcox.
A Survey of Model Reduction Methods for Parametric Systems.
SIAM Review, 57(4):483-531, 2015.

P. Benner and J. Saak.

Numerical solution of large and sparse continuous time algebraic matrix Riccati and
Lyapunov equations: a state of the art survey.

GAMM-MITTEILUNGEN, 36(1):32-52, 2013.

. V. Simoncini.

Computational methods for linear matrix equations (survey article).
SIAM Review, 58(3):377-441, 2016.
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