System-theoretic Model Order Reduction for Classes of Nonlinear Systems

 Peter Benner Pawan K. Goyal Igor Pontes Duff and Serkan Gugercin (Virginia Tech)2019/5AN Conference on Computational Science and Engineering
 Modeling of Dynamical Systems Spokane, WA, February 25 - March 1, 2019

Supported by:

CSC Overview

1. Introduction
2. Gramian-based Model Reduction for Linear Systems
3. Balanced Truncation for QB Systems
4. Balanced Truncation for Polynomial Systems
5. Introduction

Model Reduction for Control Systems
System Classes
How general are these system classes?
Linear Systems and their Transfer Functions
2. Gramian-based Model Reduction for Linear Systems
3. Balanced Truncation for QB Systems
4. Balanced Truncation for Polynomial Systems

Nonlinear Control Systems

$$
\Sigma:\left\{\begin{aligned}
E \dot{x}(t) & =f(t, x(t), u(t)), \quad E x\left(t_{0}\right)=E x_{0} \\
y(t) & =g(t, x(t), u(t))
\end{aligned}\right.
$$

with

- (generalized) states $x(t) \in \mathbb{R}^{n}$,
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $y(t) \in \mathbb{R}^{a}$.

If E singular \rightsquigarrow descriptor system. Here, $E=I_{n}$ for simplicity.

Model Reduction for Control Systems

Original System $\left(E=I_{n}\right)$

$\Sigma:\left\{\begin{array}{l}\dot{x}(t)=f(t, x(t), u(t)), \\ y(t)=g(t, x(t), u(t)) .\end{array}\right.$

- states $x(t) \in \mathbb{R}^{n}$,
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $y(t) \in \mathbb{R}^{q}$.

Goals:

$$
\|y-\hat{y}\|<\text { tolerance } \cdot\|u\| \text { for all admissible input signals. }
$$

CSC Model Reduction for Control Systems

Original System $\left(E=I_{n}\right)$

$$
\begin{aligned}
& \Sigma:\left\{\begin{array}{l}
\dot{x}(t)=f(t, x(t), u(t)), \\
y(t)=g(t, x(t), u(t)) .
\end{array}\right. \\
& \text { - states } x(t) \in \mathbb{R}^{n} \text {, } \\
& \text { - inputs } u(t) \in \mathbb{R}^{m} \text {, } \\
& \text { - outputs } y(t) \in \mathbb{R}^{q} \text {. }
\end{aligned}
$$

Reduced-Order Model (ROM)

$$
\widehat{\Sigma}:\left\{\begin{array}{l}
\dot{\hat{x}}(t)=\widehat{f}(t, \hat{x}(t), u(t)) \\
\hat{y}(t)=\widehat{g}(t, \hat{x}(t), u(t))
\end{array}\right.
$$

- states $\hat{x}(t) \in \mathbb{R}^{r}, r \ll n$
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $\hat{y}(t) \in \mathbb{R}^{q}$.

Goals:

$\|y-\hat{y}\|<$ tolerance $\cdot\|u\|$ for all admissible input signals.

CSC Model Reduction for Control Systems

Original System $\left(E=I_{n}\right)$
$\Sigma:\left\{\begin{aligned} \dot{x}(t) & =f(t, x(t), u(t)), \\ y(t) & =g(t, x(t), u(t)) .\end{aligned}\right.$

- states $x(t) \in \mathbb{R}^{n}$,
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $y(t) \in \mathbb{R}^{q}$.

Reduced-Order Model (ROM)

$$
\begin{aligned}
& \widehat{\Sigma}:\left\{\begin{array}{l}
\dot{\hat{x}}(t)=\widehat{f}(t, \hat{x}(t), u(t)), \\
\hat{y}(t)=\widehat{g}(t, \hat{x}(t), u(t)) .
\end{array}\right. \\
& \text { - states } \hat{x}(t) \in \mathbb{R}^{r}, r \ll n \\
& \text { - inputs } u(t) \in \mathbb{R}^{m} \text {, } \\
& \text { - outputs } \hat{y}(t) \in \mathbb{R}^{q} \text {. }
\end{aligned}
$$

CSC Model Reduction for Control Systems

Original System $\left(E=I_{n}\right)$
$\Sigma:\left\{\begin{array}{l}\dot{x}(t)=f(t, x(t), u(t)), \\ y(t)=g(t, x(t), u(t)) .\end{array}\right.$

- states $x(t) \in \mathbb{R}^{n}$,
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $y(t) \in \mathbb{R}^{q}$.

Reduced-Order Model (ROM)

$$
\widehat{\Sigma}:\left\{\begin{array}{l}
\dot{\hat{x}}(t)=\widehat{f}(t, \hat{x}(t), u(t)) \\
\hat{y}(t)=\widehat{g}(t, \hat{x}(t), u(t))
\end{array}\right.
$$

- states $\hat{x}(t) \in \mathbb{R}^{r}, r \ll n$
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $\hat{y}(t) \in \mathbb{R}^{q}$.

Goals:
$\|y-\hat{y}\|<$ tolerance $\cdot\|u\|$ for all admissible input signals.
Secondary goal: reconstruct approximation of x from \hat{x}.

CSC System Classes

Control-Affine (Autonomous) Systems

$$
\begin{array}{ll}
\dot{x}(t)=f(t, x, u)=\mathcal{A}(x(t))+\mathcal{B}(x(t)) u(t), & \mathcal{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \mathcal{B}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times m} \\
y(t)=g(t, x, u)=\mathcal{C}(x(t))+\mathcal{D}(x(t)) u(t), & \mathcal{C}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q}, \mathcal{D}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q \times m}
\end{array}
$$

Control-Affine (Autonomous) Systems

$$
\begin{aligned}
& \dot{x}(t)=f(t, x, u)=\mathcal{A}(x(t))+\mathcal{B}(x(t)) u(t), \quad \mathcal{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \mathcal{B}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times m} \\
& y(t)=g(t, x, u)=\mathcal{C}(x(t))+\mathcal{D}(x(t)) u(t), \quad \mathcal{C}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q}, \mathcal{D}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q \times m}
\end{aligned}
$$

Linear, Time-Invariant (LTI) Systems

$$
\begin{array}{ll}
\dot{x}(t)=f(t, x, u)=A x(t)+B u(t), & A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
y(t)=g(t, x, u)=C x(t)+D u(t), & C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m} .
\end{array}
$$

CSC System Classes

Control-Affine (Autonomous) Systems

$$
\begin{array}{ll}
\dot{x}(t)=f(t, x, u)=\mathcal{A}(x(t))+\mathcal{B}(x(t)) u(t), & \mathcal{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \mathcal{B}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times m} \\
y(t)=g(t, x, u)=\mathcal{C}(x(t))+\mathcal{D}(x(t)) u(t), & \mathcal{C}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q}, \mathcal{D}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q \times m}
\end{array}
$$

Linear, Time-Invariant (LTI) Systems

$$
\begin{array}{ll}
\dot{x}(t)=f(t, x, u)=A x(t)+B u(t), & A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
y(t)=g(t, x, u)=C x(t)+D u(t), & C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m} .
\end{array}
$$

Bilinear Systems

$$
\begin{array}{rlrl}
\dot{x}(t) & =f(t, x, u) & =A x(t)+\sum_{i=1}^{m} u_{i}(t) A_{i} x(t)+B u(t), & A, A_{i} \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m} \\
y(t) & =g(t, x, u)=C x(t)+D u(t), & C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}
\end{array}
$$

CSC

Linear, Time-Invariant (LTI) Systems

$$
\begin{array}{ll}
\dot{x}(t)=f(t, x, u)=A x(t)+B u(t), & A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
y(t)=g(t, x, u)=C x(t)+D u(t), & C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}
\end{array}
$$

Bilinear Systems

$$
\begin{array}{rlrl}
\dot{x}(t) & =f(t, x, u) & =A x(t)+\sum_{i=1}^{m} u_{i}(t) A_{i} x(t)+B u(t), & A, A_{i} \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, \\
y(t)=g(t, x, u) & =C x(t)+D u(t), & C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m} .
\end{array}
$$

Quadratic-Bilinear (QB) Systems

$$
\begin{aligned}
& \dot{x}(t)=f(t, x, u)=A x(t)+H(x(t) \otimes x(t))+\sum_{i=1}^{m} u_{i}(t) A_{i} x(t)+B u(t) \\
& A, A_{i} \in \mathbb{R}^{n \times n}, H \in \mathbb{R}^{n \times n^{2}}, B \in \mathbb{R}^{n \times m} \\
& y(t)=g(t, x, u)=C x(t)+D u(t), C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}
\end{aligned}
$$

Quadratic-Bilinear (QB) Systems

$$
\begin{aligned}
& \dot{x}(t)=f(t, x, u)=A x(t)+H(x(t) \otimes x(t))+\sum_{i=1}^{m} u_{i}(t) A_{i} x(t)+B u(t), \\
& y(t)=g(t, x, u)=C x(t)+D u(t), A, A_{i} \in \mathbb{R}^{n \times n}, H \in \mathbb{R}^{n \times n^{2}}, B \in \mathbb{R}^{n \times m}, \\
& y \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m} .
\end{aligned}
$$

Polynomial Systems

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+\sum_{j=2}^{n_{p}} H_{j}\left(\otimes^{j} x(t)\right)+\sum_{j=2}^{n_{p}} \sum_{k=1}^{m} A_{j}^{k}\left(\otimes^{j} x(t)\right) u_{k}(t)+B u(t), \\
& y(t)=C x(t), \quad x(0)=0,
\end{aligned}
$$

CSC System Classes

Control-Affine (Autonomous) Systems

$$
\begin{array}{ll}
\dot{x}(t)=f(t, x, u)=\mathcal{A}(x(t))+\mathcal{B}(x(t)) u(t), & \mathcal{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \mathcal{B}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times m} \\
y(t)=g(t, x, u)=\mathcal{C}(x(t))+\mathcal{D}(x(t)) u(t), & \mathcal{C}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q}, \mathcal{D}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q \times m}
\end{array}
$$

Quadratic-Bilinear (QB) Systems

$$
\begin{array}{rlrl}
\dot{x}(t)=f(t, x, u)=A x(t)+H(x(t) \otimes x(t))+\sum_{i=1}^{m} u_{i}(t) A_{i} x(t)+B u(t), \\
y(t)=g(t, x, u)= & A, A_{i} \in \mathbb{R}^{n \times n}, H \in \mathbb{R}^{n \times n^{2}}, B \in \mathbb{R}^{n \times m}, \\
y(t)+D u(t), & C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m} .
\end{array}
$$

Written in control-affine form:

$$
\begin{array}{rlrl}
\mathcal{A}(x) & :=A x+H(x \otimes x), & \mathcal{B}(x) & :=\left[A_{1}, \ldots, A_{m}\right]\left(I_{m} \otimes x\right)+B \\
\mathcal{C}(x) & :=C x, & \mathcal{D}(x):=D .
\end{array}
$$

Quadratic-Bilinearization

QB systems can be obtained as approximation (by truncating Taylor expansion) to weakly nonlinear systems [Phillips '03].

[^0]
Quadratic－Bilinearization

QB systems can be obtained as approximation（by truncating Taylor expansion）to weakly nonlinear systems［Phillips＇03］．

But exact representation of smooth nonlinear systems possible：

Theorem［Gu＇09／＇11］

Assume that the state equation of a nonlinear system is given by

$$
\dot{x}=a_{0} x+a_{1} g_{1}(x)+\ldots+a_{k} g_{k}(x)+B u
$$

where $g_{i}(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are compositions of uni－variable rational，exponential， logarithmic，trigonometric or root functions，respectively．Then，by iteratively taking derivatives and adding algebraic equations，respectively，the nonlinear system can be transformed into a QB（DAE）system．

[^1]
Linear Systems and their Transfer Functions
 Transfer functions of linear systems

Linear Systems in Frequency Domain

Application of Laplace transform $\quad(x(t) \mapsto x(s), \dot{x}(t) \mapsto s x(s)-x(0))$ to linear system

$$
\dot{x}(t)=A x(t)+B u(t), \quad y(t)=C x(t)+D u(t)
$$

with $x(0)=0$ yields:

$$
s x(s)=A x(s)+B u(s), \quad y(s)=C x(s)+D u(s)
$$

Model reduction in frequency domain: Fast evaluation of mapping $u \rightarrow y$.

Linear Systems in Frequency Domain

Application of Laplace transform $\quad(x(t) \mapsto x(s), \dot{x}(t) \mapsto s x(s)-x(0))$ to linear system

$$
\dot{x}(t)=A x(t)+B u(t), \quad y(t)=C x(t)+D u(t)
$$

with $x(0)=0$ yields:

$$
s x(s)=A x(s)+B u(s), \quad y(s)=C x(s)+D u(s)
$$

\Longrightarrow I/O-relation in frequency domain:

$$
y(s)=(\underbrace{C\left(s I_{n}-A\right)^{-1} B+D}_{=: G(s)}) u(s)
$$

$G(s)$ is the transfer function of Σ.
Model reduction in frequency domain: Fast evaluation of mapping $u \rightarrow y$.

Formulating model reduction in frequency domain
Approximate the dynamical system

$$
\begin{array}{ll}
\dot{x}=A x+B u, & A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m} \\
y=C x+D u, & C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}
\end{array}
$$

by reduced-order system

$$
\begin{aligned}
& \dot{\hat{x}}=\hat{A} \hat{x}+\hat{B} u, \quad \hat{A} \in \mathbb{R}^{r \times r}, \quad \hat{B} \in \mathbb{R}^{r \times m}, \\
& \hat{y}=\hat{C} \hat{x}+\hat{D} u, \quad \hat{C} \in \mathbb{R}^{q \times r}, \quad \hat{D} \in \mathbb{R}^{q \times m}
\end{aligned}
$$

of order $r \ll n$, such that

$$
\|y-\hat{y}\|=\|G u-\hat{G} u\| \leq\|G-\hat{G}\| \cdot\|u\|<\text { tolerance } \cdot\|u\|
$$

CSC Linear Systems and their Transfer Functions

Formulating model reduction in frequency domain
Approximate the dynamical system

$$
\begin{array}{ll}
\dot{x}=A x+B u, & A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m} \\
y=C x+D u, & C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}
\end{array}
$$

by reduced-order system

$$
\begin{array}{ll}
\dot{\hat{x}}=\hat{A} \hat{x}+\hat{B} u, & \hat{A} \in \mathbb{R}^{r \times r}, \quad \hat{B} \in \mathbb{R}^{r \times m}, \\
\hat{y}=\hat{C} \hat{x}+\hat{D} u, & \hat{C} \in \mathbb{R}^{q \times r}, \quad \hat{D} \in \mathbb{R}^{q \times m}
\end{array}
$$

of order $r \ll n$, such that

$$
\|y-\hat{y}\|=\|G u-\hat{G} u\| \leq\|G-\hat{G}\| \cdot\|u\|<\text { tolerance } \cdot\|u\|
$$

\Longrightarrow Approximation problem: $\min _{\operatorname{order}(\hat{G}) \leq r}\|G-\hat{G}\|$.

1. Introduction

2. Gramian-based Model Reduction for Linear Systems
3. Balanced Truncation for QB Systems
4. Balanced Truncation for Polynomial Systems

CSC Balanced Truncation for Linear Systems

Basic concept

- System $\Sigma:\left\{\begin{array}{l}\dot{x}(t)=A x(t)+B u(t), \\ y(t)=C x(t),\end{array} \quad\right.$ with A stable, i.e., $\Lambda(A) \subset \mathbb{C}^{-}$,
is balanced, if system Gramians, i.e., solutions P, Q of the Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

satisfy: $P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}>0$.

CSC Balanced Truncation for Linear Systems

Basic concept

- System $\Sigma:\left\{\begin{array}{l}\dot{x}(t)=A x(t)+B u(t), \\ y(t)=C x(t),\end{array} \quad\right.$ with A stable, i.e., $\Lambda(A) \subset \mathbb{C}^{-}$,
is balanced, if system Gramians, i.e., solutions P, Q of the Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

satisfy: $P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}>0$.

- $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the Hankel singular values (HSVs) of Σ.

CSC Balanced Truncation for Linear Systems

Basic concept

- System $\Sigma:\left\{\begin{array}{l}\dot{x}(t)=A x(t)+B u(t), \\ y(t)=C x(t),\end{array}\right.$
with A stable, i.e., $\Lambda(A) \subset \mathbb{C}^{-}$,
is balanced, if system Gramians, i.e., solutions P, Q of the Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

satisfy: $P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}>0$.

- $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the Hankel singular values (HSVs) of Σ.
- Compute balanced realization (needs $P, Q!$) of the system via state-space transformation

$$
\begin{aligned}
\mathcal{T}:(A, B, C) & \mapsto\left(T A T^{-1}, T B, C T^{-1}\right) \\
& =\left(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right],\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right]\right) .
\end{aligned}
$$

CSC Balanced Truncation for Linear Systems

Basic concept

- System $\Sigma:\left\{\begin{array}{l}\dot{x}(t)=A x(t)+B u(t), \\ y(t)=C x(t),\end{array} \quad\right.$ with A stable, i.e., $\Lambda(A) \subset \mathbb{C}^{-}$,
is balanced, if system Gramians, i.e., solutions P, Q of the Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

satisfy: $P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}>0$.

- $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the Hankel singular values (HSVs) of Σ.
- Compute balanced realization (needs $P, Q!$) of the system via state-space transformation

$$
\begin{aligned}
\mathcal{T}:(A, B, C) & \mapsto\left(T A T^{-1}, T B, C T^{-1}\right) \\
& =\left(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right],\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right]\right)
\end{aligned}
$$

- Truncation $\rightsquigarrow(\hat{A}, \hat{B}, \hat{C})=\left(A_{11}, B_{1}, C_{1}\right)$.

CSC Balanced Truncation for Linear Systems

Motivation:

HSV are system invariants: they are preserved under \mathcal{T} and determine the energy transfer given by the Hankel map

$$
\mathcal{H}: L_{2}(-\infty, 0) \mapsto L_{2}(0, \infty): u_{-} \mapsto y_{+} .
$$

"functional analyst's point of view"

CSC Balanced Truncation for Linear Systems

Motivation:

HSV are system invariants: they are preserved under \mathcal{T} and determine the energy transfer given by the Hankel map

$$
\mathcal{H}: L_{2}(-\infty, 0) \mapsto L_{2}(0, \infty): u_{-} \mapsto y_{+} .
$$

"functional analyst's point of view"

Minimum energy to reach x_{0} in balanced coordinates:

$$
\inf _{\substack{u \in L_{2}(-\infty, 0] \\ x(0)=x_{0}}} \int_{-\infty}^{0} u(t)^{T} u(t) d t=x_{0}^{T} P^{-1} x_{0}=\sum_{j=1}^{n} \frac{1}{\sigma_{j}} x_{0, j}^{2}
$$

CSC Balanced Truncation for Linear Systems

Motivation:

HSV are system invariants: they are preserved under \mathcal{T} and determine the energy transfer given by the Hankel map

$$
\mathcal{H}: L_{2}(-\infty, 0) \mapsto L_{2}(0, \infty): u_{-} \mapsto y_{+}
$$

"functional analyst's point of view"

Minimum energy to reach x_{0} in balanced coordinates:

$$
\inf _{\substack{u \in L_{2}(-\infty, 0] \\ x(0)=x_{0}}} \int_{-\infty}^{0} u(t)^{T} u(t) d t=x_{0}^{T} P^{-1} x_{0}=\sum_{j=1}^{n} \frac{1}{\sigma_{j}} x_{0, j}^{2}
$$

Energy contained in the system if $x(0)=x_{0}$ and $u(t) \equiv 0$ in balanced coordinates:

$$
\|y\|_{2}^{2}=\int_{0}^{\infty} y(t)^{T} y(t) d t=x_{0}^{T} Q x_{0}=\sum_{j=1}^{n} \sigma_{j} x_{0, j}^{2}
$$

CSC Balanced Truncation for Linear Systems

Motivation:

HSV are system invariants: they are preserved under \mathcal{T} and determine the energy transfer given by the Hankel map

$$
\mathcal{H}: L_{2}(-\infty, 0) \mapsto L_{2}(0, \infty): u_{-} \mapsto y_{+}
$$

"functional analyst's point of view"

In balanced coordinates, energy transfer from u_{-}to y_{+}is

$$
E:=\sup _{\substack{u \in L_{2}(-\infty, 0] \\ x(0)=x_{0}}} \frac{\int_{0}^{\infty} y(t)^{T} y(t) d t}{\int_{-\infty}^{0} u(t)^{T} u(t) d t}=\frac{1}{\left\|x_{0}\right\|_{2}} \sum_{j=1}^{n} \sigma_{j}^{2} x_{0, j}^{2}
$$

"engineer's point of view"

CSC Balanced Truncation for Linear Systems

Motivation:

HSV are system invariants: they are preserved under \mathcal{T} and determine the energy transfer given by the Hankel map

$$
\mathcal{H}: L_{2}(-\infty, 0) \mapsto L_{2}(0, \infty): u_{-} \mapsto y_{+}
$$

"functional analyst's point of view"

In balanced coordinates, energy transfer from u_{-}to y_{+}is

$$
E:=\sup _{\substack{u \in L_{2}(-\infty, 0] \\ x(0)=x_{0}}} \frac{\int_{0}^{\infty} y(t)^{T} y(t) d t}{\int_{-\infty}^{0} u(t)^{T} u(t) d t}=\frac{1}{\left\|x_{0}\right\|_{2}} \sum_{j=1}^{n} \sigma_{j}^{2} x_{0, j}^{2}
$$

"engineer's point of view"
\Longrightarrow Truncate states corresponding to "small" HSVs

CSC Balanced Truncation for Linear Systems

Properties

- Reduced-order model is stable with $\mathrm{HSVs} \sigma_{1}, \ldots, \sigma_{r}$.

CSC Balanced Truncation for Linear Systems

Properties

- Reduced-order model is stable with $\mathrm{HSVs} \sigma_{1}, \ldots, \sigma_{r}$.
- Adaptive choice of r via computable error bound:

$$
\|y-\hat{y}\|_{2} \leq\|G-\hat{G}\|_{\mathcal{H}_{\infty}}\|u\|_{2} \leq\left(2 \sum_{k=r+1}^{n} \sigma_{k}\right)\|u\|_{2}
$$

CSC Balanced Truncation for Linear Systems

Properties

- Reduced-order model is stable with $\mathrm{HSVs} \sigma_{1}, \ldots, \sigma_{r}$.
- Adaptive choice of r via computable error bound:

$$
\|y-\hat{y}\|_{2} \leq\|G-\hat{G}\|_{\mathcal{H}_{\infty}}\|u\|_{2} \leq\left(2 \sum_{k=r+1}^{n} \sigma_{k}\right)\|u\|_{2}
$$

Practical implementation

- Rather than solving Lyapunov equations for P, Q (n^{2} unknowns!), find $S, R \in \mathbb{R}^{n \times s}$ with $s \ll n$ such that $P \approx S S^{T}, Q \approx R R^{T}$.
- Reduced-order model directly obtained via small-scale $(s \times s)$ SVD of $R^{T} S$!
- No $\mathcal{O}\left(n^{3}\right)$ or $\mathcal{O}\left(n^{2}\right)$ computations necessary!

4. Balanced Truncation for Polynomial Systems

- Nonlinear balancing based on energy functionals [Scherpen '93, Gray/Mesko '96].

Definition

[Scherpen '93, Gray/Mesko '96]
The reachability energy functional, $L_{c}\left(x_{0}\right)$, and observability energy functional, $L_{0}\left(x_{0}\right)$ of a system are given as:

$$
L_{c}\left(x_{0}\right)=\inf _{\substack{u \in L_{2}(-\infty, 0] \\ x(-\infty)=0, x(0)=x_{0}}} \frac{1}{2} \int_{-\infty}^{0}\|u(t)\|^{2} d t, \quad L_{0}\left(x_{0}\right)=\frac{1}{2} \int_{0}^{\infty}\|y(t)\|^{2} d t
$$

Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi equations which are hardly solvable for large-scale systems.

- Nonlinear balancing based on energy functionals [Scherpen '93, Gray/Mesko '96]. Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi equations which are hardly solvable for large-scale systems.
- Empirical Gramians/frequency-domain POD [Lall et al '99, Willcox/Peraire '02].

Example: controllability Gramian from time domain data (snapshots)

1. Define reachability Gramian of the system

$$
P=\int_{0}^{\infty} x(t) x(t)^{T} d t, \quad \text { where } x(t) \text { solves } \dot{x}=f(x, \delta), x(0)=x_{0}
$$

2. Use time-domain integrator to produce snapshots $x_{k} \approx x\left(t_{k}\right), k=1, \ldots, K$.
3. Approximate $P \approx \sum_{k=0}^{K} w_{k} x_{k} x_{k}^{T}$ with positive weights w_{k}.
4. Analogously for observability Gramian.
5. Compute balancing transformation and apply it to nonlinear system.

Disadvantage: Depends on chosen training input (e.g., $\delta\left(t_{0}\right)$) like other POD approaches.

Balanced Truncation for Nonlinear Systems

－Nonlinear balancing based on energy functionals［Scherpen＇93，Gray／Mesko＇96］． Disadvantage：energy functionals are the solutions of nonlinear Hamilton－Jacobi equations which are hardly solvable for large－scale systems．
－Empirical Gramians／frequency－domain POD［Lall et al＇99，Willcox／Peraire＇02］． Disadvantage：Depends on chosen training input（e．g．，$\delta\left(t_{0}\right)$ ）like other POD approaches．
－\rightsquigarrow Goal：computationally efficient and input－independent method！

[^2]
Balanced Truncation for Nonlinear Systems

- Nonlinear balancing based on energy functionals [Scherpen '93, Gray/Mesko '96]. Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi equations which are hardly solvable for large-scale systems.
- Empirical Gramians/frequency-domain POD [Lall et al '99, Willcox/Peraire '02]. Disadvantage: Depends on chosen training input (e.g., $\delta\left(t_{0}\right)$) like other POD approaches.
- \rightsquigarrow Goal: computationally efficient and input-independent method!
- For recent developments on empirical Gramians, see [Himpe '18].

[^3]
Balanced Truncation for QB Systems

Gramians for QB Systems

- A possible solution is to obtain bounds for the energy functionals, instead of computing them exactly.

Balanced Truncation for QB Systems

- A possible solution is to obtain bounds for the energy functionals, instead of computing them exactly.
- For bilinear systems, such local bounds were derived in [B./Damm '11] using the solutions to the Lyapunov-plus-positive equations:

$$
\begin{aligned}
& A P+P A^{T}+\sum_{i=1}^{m} A_{i} P A_{i}^{T}+B B^{T}=0 \\
& A^{T} Q+Q A^{T}+\sum_{i=1}^{m} A_{i}^{T} Q A_{i}+C^{T} C=0
\end{aligned}
$$

(If their solutions exist, they define reachability and observability Gramians of BIBO stable bilinear system.)

- Efficient solution methods for Lyapunov-plus-positive equations are derived in [B./Breiten '13, Shank/Simoncini/Szyld '16].

Balanced Truncation for QB Systems

- A possible solution is to obtain bounds for the energy functionals, instead of computing them exactly.
- For bilinear systems, such local bounds were derived in [B./Damm '11] using the solutions to the Lyapunov-plus-positive equations:

$$
\begin{array}{r}
A P+P A^{T}+\sum_{i=1}^{m} A_{i} P A_{i}^{T}+B B^{T}=0 \\
A^{T} Q+Q A^{T}+\sum_{i=1}^{m} A_{i}^{T} Q A_{i}+C^{T} C=0
\end{array}
$$

(If their solutions exist, they define reachability and observability Gramians of BIBO stable bilinear system.)

- Efficient solution methods for Lyapunov-plus-positive equations are derived in [B./Breiten '13, Shank/Simoncini/Szyld '16].
- Here we aim at determining algebraic Gramians for QB (and polynomial) systems, which
- provide bounds for the energy functionals of QB systems,
- generalize the Gramians of linear and bilinear systems, and
- allow us to find the states that are hard to control as well as hard to observe in an efficient and reliable way.

CSC Gramians for QB Systems

- Consider input \rightarrow state map of QB system $\left(m=1, N \equiv A_{1}\right)$:

$$
\dot{x}(t)=A x(t)+H x(t) \otimes x(t)+N x(t) u(t)+B u(t), \quad x(0)=0 .
$$

- Integration yields

$$
\begin{aligned}
& x(t)=\int_{0}^{t} e^{A \sigma_{1}} B u\left(t-\sigma_{1}\right) d \sigma_{1}+\int_{0}^{t} e^{A \sigma_{1}} N x\left(t-\sigma_{1}\right) u\left(t-\sigma_{1}\right) d \sigma_{1} \\
&+\int_{0}^{t} e^{A \sigma_{1}} H x\left(t-\sigma_{1}\right) \otimes x\left(t-\sigma_{1}\right) d \sigma_{1}
\end{aligned}
$$

Gramians for QB Systems

- Consider input \rightarrow state map of QB system $\left(m=1, N \equiv A_{1}\right)$:

$$
\dot{x}(t)=A x(t)+H x(t) \otimes x(t)+N x(t) u(t)+B u(t), \quad x(0)=0 .
$$

- Integration yields

$$
\begin{aligned}
x(t)= & \int_{0}^{t} e^{A \sigma_{1}} B u\left(t-\sigma_{1}\right) d \sigma_{1}+\int_{0}^{t} e^{A \sigma_{1}} N x\left(t-\sigma_{1}\right) u\left(t-\sigma_{1}\right) d \sigma_{1} \\
& +\int_{0}^{t} e^{A \sigma_{1}} H x\left(t-\sigma_{1}\right) \otimes x\left(t-\sigma_{1}\right) d \sigma_{1} \\
= & \int_{0}^{t} e^{A \sigma_{1}} B u\left(t-\sigma_{1}\right) d \sigma_{1}+\int_{0}^{t} \int_{0}^{t-\sigma_{1}} e^{A \sigma_{1}} N e^{A \sigma_{2}} B u\left(t-\sigma_{1}\right) u\left(t-\sigma_{1}-\sigma_{2}\right) d \sigma_{1} d \sigma_{2} \\
& +\int_{0}^{t} \int_{0}^{t-\sigma_{1}} \int_{0}^{t-\sigma_{1}} e^{A \sigma_{1}} H\left(e^{A \sigma_{2}} B \otimes e^{A \sigma_{3}} B\right) u\left(t-\sigma_{1}-\sigma_{2}\right) u\left(t-\sigma_{1}-\sigma_{3}\right) d \sigma_{1} d \sigma_{2} d \sigma_{3}+\ldots
\end{aligned}
$$

CSC
 Gramians for QB Systems

- Consider input \rightarrow state map of QB system $\left(m=1, N \equiv A_{1}\right)$:

$$
\dot{x}(t)=A x(t)+H x(t) \otimes x(t)+N x(t) u(t)+B u(t), \quad x(0)=0 .
$$

- Integration yields

$$
\begin{aligned}
x(t)= & \int_{0}^{t} e^{A \sigma_{1}} B u\left(t-\sigma_{1}\right) d \sigma_{1}+\int_{0}^{t} e^{A \sigma_{1}} N x\left(t-\sigma_{1}\right) u\left(t-\sigma_{1}\right) d \sigma_{1} \\
& +\int_{0}^{t} e^{A \sigma_{1}} H x\left(t-\sigma_{1}\right) \otimes x\left(t-\sigma_{1}\right) d \sigma_{1} \\
= & \int_{0}^{t} e^{A \sigma_{1}} B u\left(t-\sigma_{1}\right) d \sigma_{1}+\int_{0}^{t} \int_{0}^{t-\sigma_{1}} e^{A \sigma_{1}} N e^{A \sigma_{2}} B u\left(t-\sigma_{1}\right) u\left(t-\sigma_{1}-\sigma_{2}\right) d \sigma_{1} d \sigma_{2} \\
& +\int_{0}^{t} \int_{0}^{t-\sigma_{1}} \int_{0}^{t-\sigma_{1}} e^{A \sigma_{1}} H\left(e^{A \sigma_{2}} B \otimes e^{A \sigma_{3}} B\right) u\left(t-\sigma_{1}-\sigma_{2}\right) u\left(t-\sigma_{1}-\sigma_{3}\right) d \sigma_{1} d \sigma_{2} d \sigma_{3}+\ldots
\end{aligned}
$$

- By iteratively inserting expressions for $x(t-\bullet)$, we obtain the Volterra series expansion for the QB system.

Using the Volterra kernels, we can define the controllability mappings

$$
\begin{aligned}
\Pi_{1}\left(t_{1}\right) & :=e^{A t_{1}} B, \quad \Pi_{2}\left(t_{1}, t_{2}\right):=e^{A t_{1}} N \Pi_{1}\left(t_{2}\right), \\
\Pi_{3}\left(t_{1}, t_{2}, t_{3}\right) & :=e^{A t_{1}}\left[H\left(\Pi_{1}\left(t_{2}\right) \otimes \Pi_{1}\left(t_{3}\right)\right), N \Pi_{2}\left(t_{1}, t_{2}\right)\right], \ldots
\end{aligned}
$$

and a candidate for a new Gramian:

$$
P:=\sum_{k=1}^{\infty} P_{k}, \quad \text { where } \quad P_{k}=\int_{0}^{\infty} \cdots \int_{0}^{\infty} \Pi_{k}\left(t_{1}, \ldots, t_{k}\right) \Pi_{k}\left(t_{1}, \ldots, t_{k}\right)^{T} d t_{1} \ldots d t_{k}
$$

Gramians for QB Systems

Using the Volterra kernels, we can define the controllability mappings

$$
\begin{aligned}
\Pi_{1}\left(t_{1}\right) & :=e^{A t_{1}} B, \quad \Pi_{2}\left(t_{1}, t_{2}\right):=e^{A t_{1}} N \Pi_{1}\left(t_{2}\right), \\
\Pi_{3}\left(t_{1}, t_{2}, t_{3}\right) & :=e^{A t_{1}}\left[H\left(\Pi_{1}\left(t_{2}\right) \otimes \Pi_{1}\left(t_{3}\right)\right), N \Pi_{2}\left(t_{1}, t_{2}\right)\right], \ldots
\end{aligned}
$$

and a candidate for a new Gramian:

$$
P:=\sum_{k=1}^{\infty} P_{k}, \quad \text { where } \quad P_{k}=\int_{0}^{\infty} \cdots \int_{0}^{\infty} \Pi_{k}\left(t_{1}, \ldots, t_{k}\right) \Pi_{k}\left(t_{1}, \ldots, t_{k}\right)^{T} d t_{1} \ldots d t_{k}
$$

Theorem

If it exists, the new controllability Gramian P for QB (MIMO) systems with stable A solves the quadratic Lyapunov equation

$$
A P+P A^{T}+\sum_{k=1}^{m} A_{k} P A_{k}^{T}+H(P \otimes P) H^{T}+B B^{T}=0
$$

Note: $H=0 \rightsquigarrow$ "bilinear reachability Gramian"; if additionally, all $A_{k}=0 \rightsquigarrow$ linear one.

Gramians for QB Systems

Dual systems and observability Gramians [Fujimoto et al. '02]

- Controllability energy functional (Gramian) of the dual system \Leftrightarrow observability energy functional (Gramian) of the original system.

Gramians for QB Systems
Dual systems and observability Gramians [Fujimoto eti al. '02]

- Controllability energy functional (Gramian) of the dual system \Leftrightarrow observability energy functional (Gramian) of the original system.
- Employ close relation between port-Hamiltonian systems and dual systems of nonlinear systems.
- Controllability energy functional (Gramian) of the dual system \Leftrightarrow observability energy functional (Gramian) of the original system.
- Employ close relation between port-Hamiltonian systems and dual systems of nonlinear systems.
- This allows to define dual systems for QB systems:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+H x(t) \otimes x(t)+\sum_{k=1}^{m} A_{k} x(t) u_{k}(t)+B u(t), & x(0)=0, \\
x_{d}(t) & =-A^{T} x_{d}(t)-H^{(2)} x(t) \otimes x_{d}(t)-\sum_{k=1}^{m} A_{k}^{T} x_{d}(t) u_{k}(t)-C^{T} u_{d}(t), & x_{d}(\infty)=0, \\
y_{d}(t) & =B^{T} x_{d}(t), &
\end{aligned}
$$

where $H^{(2)}$ is the mode-2 matricization of the QB Hessian.

Gramians for QB Systems

- Writing down the Volterra series for the dual system \rightsquigarrow observability mapping.
- This provides the observability Gramian Q for the QB system. It solves

$$
A^{T} Q+Q A+\sum_{k=1}^{m} A_{k}^{T} Q A_{k}+H^{(2)}(P \otimes Q)\left(H^{(2)}\right)^{T}+C^{T} C=0
$$

- Writing down the Volterra series for the dual system \rightsquigarrow observability mapping.
- This provides the observability Gramian Q for the $Q B$ system. It solves

$$
A^{T} Q+Q A+\sum_{k=1}^{m} A_{k}^{T} Q A_{k}+H^{(2)}(P \otimes Q)\left(H^{(2)}\right)^{T}+C^{T} C=0
$$

Remarks:

- Observability Gramian depends on controllability Gramian!
- For $H=0$, obtain "bilinear observability Gramian", and if also all $A_{k}=0$, the linear one.

CSC Gramians and Energy Functionals

Bounding the energy functionals:

In a neighborhood of the stable equilibrium, $B_{\varepsilon}(0)$,

$$
L_{c}\left(x_{0}\right) \geq \frac{1}{2} x_{0}^{\top} P^{-1} x_{0}, \quad L_{0}\left(x_{0}\right) \leq \frac{1}{2} x_{0}^{\top} Q x_{0}, \quad x_{0} \in B_{\varepsilon}(0),
$$

for "small signals" and x_{0} pointing in unit directions.

CSC Gramians and Energy Functionals

Bounding the energy functionals:

Lemma

In a neighborhood of the stable equilibrium, $B_{\varepsilon}(0)$,

$$
L_{c}\left(x_{0}\right) \geq \frac{1}{2} x_{0}^{\top} P^{-1} x_{0}, \quad L_{0}\left(x_{0}\right) \leq \frac{1}{2} x_{0}^{\top} Q x_{0}, \quad x_{0} \in B_{\varepsilon}(0),
$$

for "small signals" and x_{0} pointing in unit directions.

Another interpretation of Gramians in terms of energy functionals

1. If the system is to be steered from 0 to x_{0}, where $x_{0} \notin \operatorname{range}(P)$, then $L_{c}\left(x_{0}\right)=\infty$ for all feasible input functions u.
2. If the system is (locally) controllable and $x_{0} \in \operatorname{ker}(Q)$, then $L_{o}\left(x_{0}\right)=0$.

CsC
 Gramians and Energy Functionals

Illustration using a scalar system

$$
\dot{x}(t)=a x(t)+h x^{2}(t)+n x(t) u(t)+b u(t), \quad y(t)=c x(t)
$$

CsC Gramians and Energy Functionals

Illustration using a scalar system

$$
\dot{x}(t)=a x(t)+h x^{2}(t)+n x(t) u(t)+b u(t), \quad y(t)=c x(t)
$$

(a) Input energy lower bound.

(b) Output energy upper bound.

Figure: Comparison of energy functionals for $-a=b=c=2, h=1, n=0$.

- Now, the main obstacle for using the new Gramians is the solution of the (quadratic) Lyapunov-type equations.
- Now, the main obstacle for using the new Gramians is the solution of the (quadratic) Lyapunov-type equations.
- Fix point iteration scheme can be employed but very expensive.
[DAMM '08]
- Now, the main obstacle for using the new Gramians is the solution of the (quadratic) Lyapunov-type equations.
- Fix point iteration scheme can be employed but very expensive.
[DAMM '08]
- To overcome this issue, we propose truncated Gramians for QB systems.

CSC Truncated Gramians

- Now, the main obstacle for using the new Gramians is the solution of the (quadratic) Lyapunov-type equations.
- Fix point iteration scheme can be employed but very expensive.
[Damm '08]
- To overcome this issue, we propose truncated Gramians for QB systems.

Definition (Truncated Gramians)

The truncated Gramians $P_{\mathcal{T}}$ and $Q_{\mathcal{T}}$ for QB systems satisfy

$$
\begin{aligned}
& A P_{\mathcal{T}}+P_{\mathcal{T}} A^{T}=-B B^{T}-\sum_{k=1}^{m} A_{k} P_{l} A_{k}^{T}-H\left(P_{l} \otimes P_{l}\right) H^{T} \\
& A^{T} Q_{\mathcal{T}}+Q_{\mathcal{T}} A=-C^{T} C-\sum_{k=1}^{m} A_{k}^{T} Q_{l} A_{k}-H^{(2)}\left(P_{l} \otimes Q_{l}\right)\left(H^{(2)}\right)^{T}
\end{aligned}
$$

where

$$
A P_{1}+P_{1} A^{T}=-B B^{T} \quad \text { and } \quad A^{T} Q_{1}+Q_{1} A=-C^{T} C
$$

- T-Gramians approximate energy functionals better than the actual Gramians.
- T-Gramians approximate energy functionals better than the actual Gramians.

(a) Input energy lower bounds.

(b) Output energy upper bounds.

Figure: Comparison of energy functionals for $-a=b=c=2, h=1, n=0$.

- T-Gramians approximate energy functionals better than the actual Gramians.
- $\sigma_{i}(P \cdot Q)>\sigma_{i}\left(P_{\mathcal{T}} \cdot Q_{\mathcal{T}}\right) \Rightarrow$ obtain smaller order of reduced system if truncation is done at the same cutoff threshold.
- T-Gramians approximate energy functionals better than the actual Gramians.
- $\sigma_{i}(P \cdot Q)>\sigma_{i}\left(P_{\mathcal{T}} \cdot Q_{\mathcal{T}}\right) \Rightarrow$ obtain smaller order of reduced system if truncation is done at the same cutoff threshold.
- Most importantly, we need solutions of only four standard Lyapunov equations.
- T-Gramians approximate energy functionals better than the actual Gramians.
- $\sigma_{i}(P \cdot Q)>\sigma_{i}\left(P_{\mathcal{T}} \cdot Q_{\mathcal{T}}\right) \Rightarrow$ obtain smaller order of reduced system if truncation is done at the same cutoff threshold.
- Most importantly, we need solutions of only four standard Lyapunov equations.
- Interpretation of controllability/observability of the system via T-Gramians:
- If the system is to be steered from 0 to x_{0}, where $x_{0} \notin \operatorname{range}\left(P_{\mathcal{T}}\right)$, then $L_{c}\left(x_{0}\right)=\infty$.
- If the system is controllable and $x_{0} \in \operatorname{ker}\left(Q_{\mathcal{T}}\right)$, then $L_{o}\left(x_{0}\right)=0$.

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).
1: Input: A, H, A_{k}, B, C.

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).
1: Input: A, H, A_{k}, B, C.
2: Compute low-rank factors of T-Gramians: $P_{\mathcal{T}} \approx S S^{\top}$ and $Q_{\mathcal{T}} \approx R R^{\top}$.

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).
1: Input: A, H, A_{k}, B, C.
2: Compute low-rank factors of T-Gramians: $P_{\mathcal{T}} \approx S S^{\top}$ and $Q_{\mathcal{T}} \approx R R^{\top}$.
3: Compute SVD of $S^{\top} R$:

$$
S^{T} R=U \Sigma V^{T}=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right] \operatorname{diag}\left(\Sigma_{1}, \Sigma_{2}\right)\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]^{T} .
$$

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).

1: Input: A, H, A_{k}, B, C.
2: Compute low-rank factors of T-Gramians: $P_{\mathcal{T}} \approx S S^{\top}$ and $Q_{\mathcal{T}} \approx R R^{\top}$.
3: Compute SVD of $S^{\top} R$:

$$
S^{\top} R=U \Sigma V^{\top}=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right] \operatorname{diag}\left(\Sigma_{1}, \Sigma_{2}\right)\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]^{T} .
$$

4: Construct the projection matrices \mathcal{V} and \mathcal{W} :

$$
\mathcal{V}=S U_{1} \Sigma_{1}^{-1 / 2} \text { and } \mathcal{W}=R V_{1} \Sigma_{1}^{-1 / 2}
$$

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).
1: Input: A, H, A_{k}, B, C.
2: Compute low-rank factors of T-Gramians: $P_{\mathcal{T}} \approx S S^{\top}$ and $Q_{\mathcal{T}} \approx R R^{\top}$.
3: Compute SVD of $S^{T} R$:

$$
S^{T} R=U \Sigma V^{\top}=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right] \operatorname{diag}\left(\Sigma_{1}, \Sigma_{2}\right)\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]^{T} .
$$

4: Construct the projection matrices \mathcal{V} and \mathcal{W} :

$$
\mathcal{V}=S U_{1} \Sigma_{1}^{-1 / 2} \text { and } \mathcal{W}=R V_{1} \Sigma_{1}^{-1 / 2}
$$

5: Output: reduced-order matrices:

$$
\begin{aligned}
\hat{A}= & \mathcal{W}^{\top} A \mathcal{V}, \quad \hat{H}=\mathcal{W}^{\top} H(\mathcal{V} \otimes \mathcal{V}), \quad \hat{A}_{k}=\mathcal{W}^{\top} A_{k} \mathcal{V}, \\
& \hat{B}=\mathcal{W}^{\top} B, \quad \hat{C}=C \mathcal{V} .
\end{aligned}
$$

Remark: There are efficient ways to compute \hat{H}, avoiding the explicit computation of $\mathcal{V} \otimes \mathcal{V}$.
[B./Breiten '15, B./Goyal/Gugercin. '16]

Numerical Results

Chafee-Infante equation

$$
\begin{aligned}
v_{t}+v^{3} & =v_{x x}+v, & & (0, L) \times(0, T), \\
v(0, .) & =u(t), & & (0, T), \\
v_{x}(L, .) & =0, & & (0, T), \\
v(x, 0) & =v_{0}(x), & & (0, L) .
\end{aligned}
$$

Figure: Chafee-Infante equation.

- Cubic nonlinearity that can be rewritten into QB form.
[B./Breiten '15']

Numerical Results

$$
\begin{aligned}
v_{t}+v^{3} & =v_{x x}+v, & & (0, L) \times(0, T), \\
v(0, .) & =u(t), & & (0, T), \\
v_{x}(L, .) & =0, & & (0, T), \\
v(x, 0) & =v_{0}(x), & & (0, L) .
\end{aligned}
$$

Figure: Chafee-Infante equation.

- Cubic nonlinearity that can be rewritten into QB form.
[B./Breiten '15']
- The transformed QB system is of order $n=1,000$.
- The output of interest is the response at right boundary at $x=L$.

Numerical Results

$$
\begin{aligned}
v_{t}+v^{3} & =v_{x x}+v, & & (0, L) \times(0, T), \\
v(0, .) & =u(t), & & (0, T), \\
v_{x}(L, .) & =0, & & (0, T), \\
v(x, 0) & =v_{0}(x), & & (0, L) .
\end{aligned}
$$

Figure: Chafee-Infante equation.

- Cubic nonlinearity that can be rewritten into QB form. [B./Breiten '15']
- The transformed QB system is of order $n=1,000$.
- The output of interest is the response at right boundary at $x=L$.
- We determine the reduced-order system of order $r=10$.

Figure: Boundary control for a control input $u(t)=5 t \exp (-t)$.

Figure: Boundary control for a control input $u(t)=25(1+\sin (2 \pi t)) / 2$.

$$
\begin{aligned}
\epsilon v_{t}(x, t) & =\epsilon^{2} v_{x x}(x, t)+f(v(x, t))-w(x, t)+q \\
w_{t}(x, t) & =h v(x, t)-\gamma w(x, t)+q
\end{aligned}
$$

with a nonlinear function

$$
f(v(x, t))=v(v-0.1)(1-v)
$$

The boundary conditions are as follows:

$$
v_{x}(0, t)=i_{0}(t), \quad v_{x}(L, t)=0, \quad t \geq 0
$$

where $\epsilon=0.015, h=0.5, \gamma=2, q=0.05$,
$L=0.2$.

- Input $i_{0}(t)=5 \cdot 10^{4} t^{3} \exp (-15 t)$ serves as actuator.

$$
\text { —Original system }(n=1500) \quad \times \text { Reduced system (BT) }(r=20)
$$

(a) Limit-cycles at various x.
(b) Projection onto the $v-w$ plane.

Figure: Comparison of the limit-cycles obtained via the original and reduced-order (BT) systems. The reduced-order systems constructed by moment-matching methods were unstable.

Polynomial Control Systems Gramians for PC Systems
Truncated Gramians
Numerical Example

Now, consider the class of polynomial control (PC) Systems:

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+\sum_{j=2}^{n_{p}} H_{j}\left(\otimes^{j} x(t)\right)+\sum_{j=2}^{n_{p}} \sum_{k=1}^{m} N_{j}^{k}\left(\otimes^{j} x(t)\right) u_{k}(t)+B u(t) \\
& y(t)=C x(t), \quad x(0)=0
\end{aligned}
$$

where

- n_{p} is the degree of the polynomial part of the system,
- $x(t) \in \mathbb{R}^{n}, \otimes^{j} x(t)=\underbrace{x(t) \otimes \cdots \otimes x(t)}_{j \text {-times }}$,
- $u(t) \in \mathbb{R}^{m}$, and $y(t) \in \mathbb{R}^{p}, n \gg m, p$.
- $A \in \mathbb{R}^{n \times n}, H_{j}, N_{j}^{k} \in \mathbb{R}^{n \times n^{j}}, B \in \mathbb{R}^{n \times m}$ and $C \in \mathbb{R}^{p \times n}$.
- Assumption: A is supposed to be Hurwitz \Rightarrow local stability.

Now, consider the class of polynomial control (PC) Systems:

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+\sum_{j=2}^{n_{p}} H_{j}\left(\otimes^{j} x(t)\right)+\sum_{j=2}^{n_{p}} \sum_{k=1}^{m} N_{j}^{k}\left(\otimes^{j} x(t)\right) u_{k}(t)+B u(t) \\
& y(t)=C x(t), \quad x(0)=0
\end{aligned}
$$

where

- n_{p} is the degree of the polynomial part of the system,
- $x(t) \in \mathbb{R}^{n}, \otimes^{j} x(t)=\underbrace{x(t) \otimes \cdots \otimes x(t)}_{j \text {-times }}$,
- $u(t) \in \mathbb{R}^{m}$, and $y(t) \in \mathbb{R}^{p}, n \gg m, p$.
- $A \in \mathbb{R}^{n \times n}, H_{j}, N_{j}^{k} \in \mathbb{R}^{n \times n^{j}}, B \in \mathbb{R}^{n \times m}$ and $C \in \mathbb{R}^{p \times n}$.
- Assumption: A is supposed to be Hurwitz \Rightarrow local stability.

Examples: FitzHugh-Nagumo and Chafee-Infante equations lead to cubic control systems; cubic-quintic Allen-Cahn equation to quintic control system.

Expanding the response of the PC system into a Volterra series representation and following the same ideas as in the QB case, we define the reachability Gramian as

$$
P=\sum_{k=1}^{\infty} \int_{0}^{\infty} \ldots \int_{0}^{\infty} \bar{P}_{k}\left(t_{1}, \ldots, t_{k}\right) \bar{P}_{k}\left(t_{1}, \ldots, t_{k}\right)^{T} d t_{1} \ldots d t_{k}
$$

Expanding the response of the PC system into a Volterra series representation and following the same ideas as in the QB case, we define the reachability Gramian as

$$
P=\sum_{k=1}^{\infty} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \bar{P}_{k}\left(t_{1}, \ldots, t_{k}\right) \bar{P}_{k}\left(t_{1}, \ldots, t_{k}\right)^{T} d t_{1} \ldots d t_{k},
$$

where $\bar{P}_{1}\left(t_{1}\right)=e^{A t_{1}} B, \quad \bar{P}_{2}\left(t_{1}, t_{2}\right)=\sum_{k=1}^{m} e^{A t_{1}} N_{1}^{k} e^{A t_{2}} B$,
$\bar{P}_{3}\left(t_{1}, t_{2}, t_{3}\right)=e^{A t_{1}} H_{2} e^{A t_{2}} B \otimes e^{A t_{3}} B, \ldots$ are the kernels of the Volterra series.

CSC
 Gramians for PC Systems
 The reachability Gramian

Expanding the response of the PC system into a Volterra series representation and following the same ideas as in the QB case, we define the reachability Gramian as

$$
P=\sum_{k=1}^{\infty} \int_{0}^{\infty} \ldots \int_{0}^{\infty} \bar{P}_{k}\left(t_{1}, \ldots, t_{k}\right) \bar{P}_{k}\left(t_{1}, \ldots, t_{k}\right)^{T} d t_{1} \ldots d t_{k}
$$

where $\bar{P}_{1}\left(t_{1}\right)=e^{A t_{1}} B, \quad \bar{P}_{2}\left(t_{1}, t_{2}\right)=\sum_{k=1}^{m} e^{A t_{1}} N_{1}^{k} e^{A t_{2}} B$,
$\bar{P}_{3}\left(t_{1}, t_{2}, t_{3}\right)=e^{A t_{1}} H_{2} e^{A t_{2}} B \otimes e^{A t_{3}} B, \ldots$ are the kernels of the Volterra series.

Theorem

The reachability Gramian \mathbf{P} of a PC system solves the polynomial Lyapunov equation

$$
A P+P A^{T}+B B^{T}+\sum_{j=2}^{n_{p}} H_{j}\left(\otimes^{j} P\right) H_{j}^{T}+\sum_{j=2}^{n_{p}} \sum_{k=1}^{m} N_{j}^{k}\left(\otimes^{j} P\right)\left(N_{j}^{k}\right)^{T}=0 .
$$

Dual system and observability Gramian
The Observability Gramian is defined as follows

Gramians for PC Systems
Dual system and observability Gramian
The Observability Gramian is defined as follows

- First, we write the adjoint system as
[Fujimoto et. al. '02]

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+\sum_{j=2}^{n_{p}} H_{j} x_{j}^{\otimes}(t)+\sum_{j=1}^{n_{p}} \sum_{k=1}^{m} N_{j}^{k} x_{j}^{\otimes}(t) u_{k}(t)+B u(t), \\
& x_{d}(t)=-A^{T} x_{d}(t)-\sum_{j=2}^{n_{p}} H_{j}^{(2)} x_{d, j}^{\otimes}(t)-\sum_{j=1}^{n_{p}} \sum_{k=1}^{m}\left(N_{j}^{k,(2)}\right) x_{d, j}^{\otimes}(t) u_{d, k}(t)-C^{T} u_{d}(t), \quad x_{d}(\infty)=0, \\
& y_{d}(t)=B^{T} x_{d}(t) .
\end{aligned}
$$

The Observability Gramian is defined as follows

- First, we write the adjoint system as
[Fujimoto et. al. '02]

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+\sum_{j=2}^{n_{p}} H_{j} x_{j}^{\otimes}(t)+\sum_{j=1}^{n_{p}} \sum_{k=1}^{m} N_{j}^{k} x_{j}^{\otimes}(t) u_{k}(t)+B u(t), \\
& x_{d}(t)=-A^{T} x_{d}(t)-\sum_{j=2}^{n_{p}} H_{j}^{(2)} x_{d, j}^{\otimes}(t)-\sum_{j=1}^{n_{p}} \sum_{k=1}^{m}\left(N_{j}^{k},(2)\right) x_{d, j}^{\otimes}(t) u_{d, k}(t)-C^{T} u_{d}(t), \quad x_{d}(\infty)=0, \\
& y_{d}(t)=B^{T} x_{d}(t) .
\end{aligned}
$$

- Then, by taking the kernel of Volterra series, one has

Theorem

Let \mathbf{P} be the reachability Gramian. Then, the observability Gramian \mathbf{Q} of a PC system solves the polynomial Lyapunov equation

$$
A^{T} Q+Q A+C^{T} C+\sum_{j=2}^{n_{p}} H_{j}^{(2)}\left(\otimes^{j-1} P \otimes Q\right)\left(H_{j}^{(2)}\right)^{T}+\sum_{j=2}^{n_{p}} \sum_{k=1}^{m} N_{j}^{k,(2)}\left(\otimes^{j-1} P \otimes Q\right)\left(N_{j}^{k,(2)}\right)^{T}=0 .
$$

CSC
 Truncated Gramians

- Polynomial Lyapunov equations are very expensive to solve.
- As for QB systems, we thus propose truncated Gramians that only involve a finite number of kernels.

$$
P_{\mathcal{T}}=\sum_{k=1}^{n_{p}+1} \int_{0}^{\infty} \ldots \int_{0}^{\infty} \bar{P}_{k}\left(t_{1}, \ldots, t_{k}\right) \bar{P}_{k}\left(t_{1}, \ldots, t_{k}\right)^{T} d t_{1} \ldots d t_{k}
$$

Truncated Gramians

The reachability truncated Gramian solves

$$
A P_{\mathcal{T}}+P_{\mathcal{T}} A^{T}+B B^{T}+\sum_{j=2}^{n_{p}} H_{j} \otimes^{j} P_{l} H_{j}^{T}+\sum_{j=2}^{n_{p}} \sum_{k=1}^{m} N_{j}^{k} \otimes^{j} P_{l}\left(N_{j}^{k}\right)^{T}=0 .
$$

where $A P_{1}+P_{1} A^{T}+B B^{T}=0$

- Advantage: Only need to solve a finite number of (linear) Lyapunov equations.

Balanced Truncation for Polynomial Systems

$$
\begin{aligned}
\epsilon v_{t}(x, t) & =\epsilon^{2} v_{x x}(x, t)+f(v(x, t))-w(x, t)+q \\
w_{t}(x, t) & =h v(x, t)-\gamma w(x, t)+q
\end{aligned}
$$

with a nonlinear function

$$
f(v(x, t))=v(v-0.1)(1-v)
$$

The boundary conditions are as follows:

$$
v_{x}(0, t)=i_{0}(t), \quad v_{x}(L, t)=0, \quad t \geq 0
$$

where $\epsilon=0.015, h=0.5, \gamma=2, q=0.05, L=0.2$.

- After discretization we obtain a PC system with cubic nonlinearity of order $n_{p c}=600$.
[B./Breiten '15]
- The transformed quadratic-bilinear (QB) system is of order $n_{q b}=900$.
- The outputs of interest $v(0, t), w(0, t)$ are the responses at the left boundary at $x=0$.
- We compare balanced truncation for PC and QB systems.
—BT for QB systems ——BT for PC systems

- Decay singular values for PC systems is faster \Rightarrow smaller reduced order model!

- Original PC system of order 600 . Original QB system of order 900 .
- Reduced PC system of order 10. Reduced QB system of order 10.
— Original PC system $\quad \boldsymbol{= - =}$ BT for QB systems $\quad==$ BT for PC systems

- Original PC system of order 600. Original QB system of order 900.
- Reduced PC system of order 10. Reduced QB system of order 30.

- Original PC system of order 600. Original QB system of order 900 .
- Reduced PC system of order 10. Reduced QB system of order 43.

Conclusions

- BT extended to bilinear, QB, and polynomial systems.
- Local Lyapunov stability is preserved.
- As of yet, only weak motivation by bounding energy functionals.
- No error bounds in terms of "Hankel" singular values.
- Computationally efficient (as compared to nonlinear balancing), and input independent.
- To do:
- improve efficiency of Lyapunov solvers with many right-hand sides further;
- error bound;
- conditions for existence of new QB Gramians;
- extension to descriptor systems;
- time-limited versions.

For H_{2}-optimal reduction, extension to bilinear [B./Breiten '12,FlagG/Gugercin '15] and QB [B./Goyal/Gugercin '18] cases, as well as polynomial and parametric systems [B./Goyal '19].

P．Benner and T．Damm．
Lyapunov Equations，Energy Functionals，and Model Order Reduction of Bilinear and Stochastic Systems． SIAM Journal on Control and Optimiztion，49（2）：686－711， 2011.
寿 P．Benner and T．Breiten．
Low Rank Methods for a Class of Generalized Lyapunov Equations and Related Issues．
Numerische Mathematik，124（3）：441－470， 2013.
用 P．Benner，P．Goyal，and M．Redmann．
Truncated Gramians for Bilinear Systems and their Advantages in Model Order Reduction．
In P．Benner，M．Ohlberger，T．Patera，G．Rozza，K．Urban（Eds．），Model Reduction of
Parametrized Systems，MS \＆A－Modeling，Simulation and Applications，Vol．17，pp．285－300．
Springer International Publishing，Cham， 2017.
國 P．Benner and P．Goyal．
Balanced Truncation Model Order Reduction for Quadratic－Bilinear Control Systems．
arXiv Preprint arXiv：1705．00160，April 2017.

P．Benner，P．Goyal，and Serkan Gugercin．
H_{2}－Quasi－Optimal Model Order Reduction for Quadratic－Bilinear Control Systems．
SIAM Journal on Matrix Analysis and Applications 39（2）：983－1032， 2018.
P．Benner and P．Goyal．
Interpolation－based Model Order Reduction For Polynomial Parametric Systems．
Preprint，February 2019.
用 P．Benner，P．Goyal，and I．Pontes Duff．
Approximate Balanced Truncation for Polynomial Control Systems．
In preparation．

4th Workshop on Model Reduction of Complex Dynamical Systems - MODRED 2019 -

August 28th to 30th, 2019 in Graz

Overview
News
Photos
Scientific Program
Participants
Proceedings
Location
Social Activities
Deadlines
Abstracts
Registration
Accommodation
Travel
Useful links
Contact

The conference starts Wednesday morning and ends on Friday. There will be plenary talks by a number of invited speakers. Moreover, there will be several contributed talks (20 minutes plus 5 minutes for questions and discussion).

Plenary Speakers

- Serkan Gugercin
- Bernard Haasdonk
- Dirk Hartmann (Siemens)
- Laura lapichino
- J. Nathan Kutz

Contributed Talks

t.b.a.

[^0]: C. Gu. QLMOR: A Projection-Based Nonlinear Model Order Reduction Approach Using Quadratic-Linear Representation of Nonlinear Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30(9):1307-1320, 2011.
 L. Feng, X. Zeng, C. Chiang, D. Zhou, and Q. Fang. Direct nonlinear order reduction with variational analysis. In: Proceedings of DATE 2004, pp. 1316-1321.

 目 J. R. Phillips. Projection-based approaches for model reduction of weakly nonlinear time-varying systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22(2):171-187, 2003.

[^1]: 用 C．Gu．QLMOR：A Projection－Based Nonlinear Model Order Reduction Approach Using Quadratic－Linear Representation of Nonlinear Systems．IEEE Transactions on Computer－Aided Design of Integrated Circuits and Systems，30（9）：1307－1320， 2011.
 用 L．Feng，X．Zeng，C．Chiang，D．Zhou，and Q．Fang．Direct nonlinear order reduction with variational analysis．In：Proceedings of DATE 2004， pp．1316－1321．

 目 J．R．Phillips．Projection－based approaches for model reduction of weakly nonlinear time－varying systems．IEEE Transactions on Computer－Aided Design of Integrated Circuits and Systems，22（2）：171－187， 2003.

[^2]: W．S．Gray and J．P．Mesko．Controllability and observability functions for model reduction of nonlinear systems．In Proc．of the Conf．on Information Sci．and Sys．，pp．1244－1249， 1996.

 國 C．Himpe．emgr — The empirical Gramian framework．Algorithms 11（7）：91，2018．doi：10．3390／a11070091．S．Lall，J．Marsden，and S．Glavaški．A subspace approach to balanced truncation for model reduction of nonlinear control systems．International
 Journal of Robust and Nonlinear Control，12：519－535， 2002.
 目 J．M．A．Scherpen．Balancing for nonlinear systems．Systems \＆Control Letters，21：143－153， 1993.
 目 K．Willcox and J．Peraire，Balanced model reduction via the proper orthogonal decomposition．AIAA Journal，40：2323－2330， 2002.

[^3]: W. S. Gray and J. P. Mesko. Controllability and observability functions for model reduction of nonlinear systems. In Proc. of the Conf. on Information Sci. and Sys., pp. 1244-1249, 1996.

 國 C. Himpe. emgr — The empirical Gramian framework. Algorithms 11(7): 91, 2018. doi:10.3390/a11070091.S. Lall, J. Marsden, and S. Glavaški. A subspace approach to balanced truncation for model reduction of nonlinear control systems. International

 Journal of Robust and Nonlinear Control, 12:519-535, 2002.
 目 J. M. A. Scherpen. Balancing for nonlinear systems. Systems \& Control Letters, 21:143-153, 1993.
 F. K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition. AIAA Journal, 40:2323-2330, 2002.

