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Introduction
Model Reduction for Control Systems

Nonlinear Control Systems

Z-{ Ex(t) = f(t,x(t),u(t)), Ex(to) = Exo,
L ov(t) g(t, x(t), u(t))

with
o (generalized) states x(t) € R”,
o inputs u(t) € R™,
@ outputs y(t) € R9.
If E singular ~~ descriptor system. Here, E = [, for simplicity.

(© Peter Benner, benner@mpi-magdeburg.mpg.de System-theoretic Model Order Reduction for Classes of Nonlinear Systems


mailto:benner@mpi-magdeburg.mpg.de

@ﬁ@ Model Reduction for Control Systems

f x(t) = f(t, x(t), u(t)),
> {y(r) = g(t.x(8), u(t)).

o states x(t) € R,

@ inputs u(t) € R,

@ outputs y(t) € RY.
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QA&@ Model Reduction for Control Systems

Original System (E = /,) Reduced-Order Model (ROM)

- {x‘(t) — (e, x(0), u(1)), c {?(t) = Fe.%(2), u(t).
y(t) = g(t, x(t), u(t)). y(t) = g(t, x(t), u(t)).
o states x(t) € R, o states X(t) € R", r < n

@ inputs u(t) € R™, @ inputs u(t) € R™,

@ outputs y(t) € RY. o outputs y(t) € RY.

{%
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QA&@ Model Reduction for Control Systems

Original System (E = /,) Reduced-Order Model (ROM)

- {x‘(t) — (e, x(0), u(1)), c {?(t) = Fe.%(2), u(t).
y(t) = g(t, x(t), u(t)). y(t) = g(t, x(t), u(t)).
o states x(t) € R, o states X(t) € R", r < n

@ inputs u(t) € R™, @ inputs u(t) € R™,

@ outputs y(t) € RY. o outputs y(t) € RY.

{%

lly — 7|l < tolerance - ||u|| for all admissible input signals.
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QA&@ Model Reduction for Control Systems

Original System (E = I,) Reduced-Order Model (ROM)

x(t) = f(t, x(t), u(t)), o [ X(t) = F(t, %(¢), u(t)),
R B {508 2 e oy
o states x(t) € R, o states X(t) € R", r < n

@ inputs u(t) € R™, @ inputs u(t) € R™,

@ outputs y(t) € RY. @ outputs y(t) € RY.

— —»

lly = ¥l < tolerance - ||u|| for all admissible input signals.

Secondary goal: reconstruct approximation of x from X.

Peter Benner, benner@mpi-magdeburg.mpg.de System-theoretic Model Order Reduction for Classes of Nonlinear Systems


mailto:benner@mpi-magdeburg.mpg.de

Control-Affine (Autonomous) Systems

x(t) = f(t,x,u) = A(x(t)) + B(x(t))u(t), A:R"—=R" B:R"— R™™
y(t) = g(t,x,u) = C(x(t))+D(x(t))u(t), C:R" =R D:R" — RI*".
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Control-Affine (Autonomous) Systems

x(t) = f(t,x,u) A(x(t)) + B(x(t))u(t), A:R"—=R" B:R"— R™",
y(t) = g(t,x,u) C(x(t)) + D(x(t))u(t), C:R" =R, D:R" — RI*".

Linear, Time-Invariant (LTI) Systems

x(t) = f(t,x,u) = Ax(t)+ Bu(t), AER™" BeR™",
y(t) = g(t, x,u) Cx(t) + Du(t), CeRY" DeRI™.
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Control-Affine (Autonomous) Systems

x(t) = f(t,x,u) A(x(t)) + B(x(t))u(t), A:R"—=R" B:R"— R™",
y(t) = g(t,x,u) C(x(t)) + D(x(t))u(t), C:R" =R, D:R" — RI*".

Linear, Time-Invariant (LTI) Systems

x(t) = f(t,x,u) = Ax(t)+ Bu(t), AER™" BeR™",
y(t) = g(t, x,u) Cx(t) + Du(t), CeRY" DeRI™.

Bilinear Systems

f(t,x, u) Ax(t) + D7, ui(t)Aix(t) + Bu(t), A,Ai e R™", B e R™™,
g(t,x,u) = Cx(t)+ Du(t), C eRY", D e RI*™.

-
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Linear, Time-Invariant (LTI) Systems
x(t)

y(t)

f(t,x, u)
g(t,x, u)

Ax(t) + Bu(t), AeR™" BeR™™,
Cx(t) + Du(t), C eRIY*" D eRI*™.

Bilinear Systems
Ax(t) + >, ui(t)Aix(t) + Bu(t), A,Ai € R™" B e R™™,
Cx(t) + Du(t), C eR*" D e RI*™.

x(t) =
y(t) =

f(t,xu) =

g(t,x, u)

Quadratic-Bilinear (QB) Systems

f(t,x, u)

g(t,x, u)

Ax(t) + H (x(t) @ x(t)) + 2211, wi(t)Aix(t) + Bu(t),
A,Ai e Rnxn, H E Rnxnz, B e Rnxm,
Cx(t) + Du(t), C € R%%", D € RI¥™.
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Quadratic-Bilinear (QB) Systems

x(t) = f(t,x,u) = Ax(t)+ H (x(t) ® x(t)) + >, ui(t)Aix(t) + Bu(t),
A7 Ai e Rnxn’ H e IRn)(nz7 B e Rnxm7
y(t) = g(t,x,u) = Cx(t)+ Du(t), C €R™", D € R™*™.

Polynomial Systems

m

x(t) = Ax(t)—i—ZH (®fx(t ) +ZZA" (®’x(t)) uk(t) + Bu(t),

j=2 k=1

Hj,Aj of "appropriate size”
y(t) = Cx(t), x(0) =0,
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Control-Affine (Autonomous) Systems

x(t) = f(t,x,u)
y(t) = g(t,x,u)

A(x(t)) + B(x(t))u(t), A:R"—=R" B:R"— R™",
C(x(t)) + D(x(t))u(t), C:R"—=RI, D:R" — RI*™.

Quadratic-Bilinear (QB) Systems

x(t) = f(t,x,u) Ax(t) + H (x(t) ® x(t)) + >, wi(t)Aix(t) + Bu(t),
A,Ai c Rnxn’ He Ranz’ Be ]Rnxm’
Cx(t) + Du(t), C eRY*" D eRI*™.

y(t) = g(t,x,u)
Written in control-affine form:
Ax) = Ax+H((x®x), B(x) [AL,.. ., An]l (In @ x) + B
C(x) = Cx, D(x) := D.
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dratic-Bilinearization

QB systems can be obtained as approximation (by truncating Taylor expansion) to
weakly nonlinear systems [PHILLIPS '03].

B cou QLMOR: A Projection-Based Nonlinear Model Order Reduction Approach Using Quadratic-Linear Representation of Nonlinear Systems. [EEE
TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 30(9):1307-1320, 2011.

B L Feng, X. Zeng, C. Chiang, D. Zhou, and Q. Fang. Direct nonlinear order reduction with variational analysis. In: Proceedings of DATE 2004,
pp. 1316-1321.

B Jir Phillips. Projection-based approaches for model reduction of weakly nonlinear time-varying systems. [EEE TRANSACTIONS ON
COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 22(2):171-187, 2003.
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QB systems can be obtained as approximation (by truncating Taylor expansion) to
weakly nonlinear systems [PHILLIPS '03].

But exact representation of smooth nonlinear systems possible:

Assume that the state equation of a nonlinear system is given by

X = aox + a1g1(x) + ... + akgk(x) + Bu,

where gi(x) : R” — R" are compositions of uni-variable rational, exponential,
logarithmic, trigonometric or root functions, respectively. Then, by iteratively taking
derivatives and adding algebraic equations, respectively, the nonlinear system can be
transformed into a QB(DAE) system.

B coau QLMOR: A Projection-Based Nonlinear Model Order Reduction Approach Using Quadratic-Linear Representation of Nonlinear Systems. [EEE
TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 30(9):1307-1320, 2011.

B L Feng, X. Zeng, C. Chiang, D. Zhou, and Q. Fang. Direct nonlinear order reduction with variational analysis. In: Proceedings of DATE 2004,
pp. 1316-1321.

B Jr Phillips. Projection-based approaches for model reduction of weakly nonlinear time-varying systems. [EEE TRANSACTIONS ON
COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 22(2):171-187, 2003.
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A@ Linear Systems and their Transfer Functions

Transfer functions of linear systems

Linear Systems in Frequency Domain

Application of Laplace transform  (x(t) — x(s), x(t) — sx(s) — x(0)) to linear system
x(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

with x(0) = 0 yields:
sx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),

Model reduction in frequency domain: Fast evaluation of mapping u — y.
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Linear Systems and their Transfer Functions
Transfer functions of linear systems

Linear Systems in Frequency Domain

Application of Laplace transform  (x(t) — x(s), x(t) — sx(s) — x(0)) to linear system

x(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)
with x(0) = 0 yields:

sx(s) = Ax(s) + Bu(s), y(s) = Cx(s)+ Du(s),
= |/O-relation in frequency domain:

y(s) = ( Clsly— A "B + D)u(s).

=:G(s)

G(s) is the transfer function of X.

Model reduction in frequency domain: Fast evaluation of mapping u — y.
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Linear Systems and their Transfer Functions
Transfer functions of linear systems

cy domain

Approximate the dynamical system

x = Ax+ Bu, AeR™" B e RM™M,
y = Cx+ Du, C e RI*" D e RI*™

by reduced-order system

X = AR+ Bu, AeR™ BeR™m

gy = C&+4Du, CeRI* DeRIxm
of order r < n, such that

ly =9Il = 16u = Gull < |G — G| - [lu| < tolerance - |lu].
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Formulating model reduction in frequency domain

Approximate the dynamical system

X Ax + Bu, AeR™" B e R™™m,
y = Cx+ Du, C e RI*" D e RI*™

by reduced-order system

% = A%+Bu, AeR™, BeR*m
y = Cx+Du, CeRI, DeRIm

of order r < n, such that
ly =9Il = |Gu — Gul| < [|G — G| - ||ul| < tolerance - ||u].

— Approximation problem:  min |G — G|
order (G)<r
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2. Gramian-based Model Reduction for Linear Systems
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”@ Balanced Truncation for Linear Systems

(K8 = Ax(0)+ Bu(e), | )
@ System ¥ : {y(t) — (o), with A stable, i.e., A(A) C C™,

is balanced, if system Gramians, i.e., solutions P, Q of the Lyapunov equations

AP+ PAT + BBT = 0, ATQ+QA+C'C = o,

satisfy: P = Q = diag(o1,...,0,) with o1 > 02> ... > 0, > 0.
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”@ Balanced Truncation for Linear Systems

(K8 = Ax(0)+ Bu(e), | )
@ System ¥ : {y(t) — (o), with A stable, i.e., A(A) C C™,

is balanced, if system Gramians, i.e., solutions P, Q of the Lyapunov equations

AP+ PA" + BBT = 0, ATQ+ QA+ C'C = 0,

satisfy: P = Q = diag(o1,...,0,) with o1 > 02> ... > 0, > 0.
@ {o1,...,0n} are the Hankel singular values (HSVs) of X.
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Q&g@ Balanced Truncation for Linear Systems

(K8 = Ax(0)+ Bu(e), | )
@ System ¥ : {y(t) — (o), with A stable, i.e., A(A) C C™,

is balanced, if system Gramians, i.e., solutions P, Q of the Lyapunov equations
AP+ PAT+BBT =0, A'Q+QA+C'C =0,

satisfy: P = Q = diag(o1,...,0,) with o1 > 02> ... > 0, > 0.
@ {o1,...,0n} are the Hankel singular values (HSVs) of X.

o Compute balanced realization (needs P, Q!) of the system via state-space
transformation

T:(AB,C) — (TAT ', TB,CT 1)

- (& &) [&] e <)
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Q&g@ Balanced Truncation for Linear Systems

x(t) = Ax(t) + Bu(t),
o System X : (e) 2 (&) with A stable, i.e., A(A) C C,
y(t) = Cx(t),
is balanced, if system Gramians, i.e., solutions P, Q of the Lyapunov equations
AP+ PAT 4+ BBT = 0,

satisfy: P = Q = diag(oy, .
o {0’17 000

ATQ+ QA+ C'C = 0,

..,0n) With o1 > 05> ... >0, > 0.
,on} are the Hankel singular values (HSVs) of X.

@ Compute balanced realization (needs P, Q!) of the system via state-space
transformation

T:(AB,C) — (TAT ', TB,CT 1)

(% %] [&]1s «1).

@ Truncation ~» (AA7 é, é) = (A11, Bl, Cl)
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HSV are system invariants: they are preserved under 7 and determine the energy
transfer given by the Hankel map

H : Ly(—00,0) — Lr(0,00) : u_ > y,.

” functional analyst’s point of view”
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HSV are system invariants: they are preserved under 7 and determine the energy
transfer given by the Hankel map

H i Ly(—00,0) — Lx(0,00) : u_ > yy.

” functional analyst’s point of view”

Minimum energy to reach xp in balanced coordinates:

n

0

_ 1

inf ) u(t)dt = x Pt :E:_?

uEL(ZIU()—co,O] /_oo u(t) u(t) o o = O‘_,'XO’J
X| :Xo =
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'@ Balanced Truncation for Linear Systems

HSV are system invariants: they are preserved under 7 and determine the energy
transfer given by the Hankel map

H i Ly(—00,0) — Lx(0,00) : u_ > yy.

” functional analyst’s point of view”

Minimum energy to reach xp in balanced coordinates:

n

0
: T _ T, 15
ueLzl(n—fco,U] / u(t) u(t)dt =xg P~ xo = E ;jxo,j

x(0)=xo - Jj=1

Energy contained in the system if x(0) = xo and u(t) = 0 in balanced coordinates:

oo n
Iyl3 = / V() y(t) dt = xd Qo = 3 053,
0 =
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HSV are system invariants: they are preserved under 7 and determine the energy
transfer given by the Hankel map

H i Ly(—00,0) — Lx(0,00) : u_ > yy.

” functional analyst’s point of view”

In balanced coordinates, energy transfer from u_ to y, is

oo
[y©OTy(@®d
E:= sup O = Zafxgj.
ueLy(—c0,0] lIxoll2 — :
x0)=x f u(t) dt =

”engineer’s point of view”

System-theoretic Model Order Reduction for Classes of Nonlinear Systems
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HSV are system invariants: they are preserved under 7 and determine the energy
transfer given by the Hankel map

H i Ly(—00,0) — Lx(0,00) : u_ > yy.
” functional analyst’s point of view”

In balanced coordinates, energy transfer from u_ to y, is

(¢]
[y©OTy(@®d
E:= sup O = Zcrfxgj.
ueLy(—c0,0] lIxoll2 — :
x0)=x f u(t) dt =

”engineer’s point of view”

= Truncate states corresponding to “small” HSVs
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@ Balanced Truncation for Linear Systems

o Reduced-order model is stable with HSVs o7, ..., 0.
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@ Balanced Truncation for Linear Systems

o Reduced-order model is stable with HSVs o7, ..., 0.

o Adaptive choice of r via computable error bound:

~ N n
ly = 9lle <16 = Gllaelivllz < (2377 k) lule.
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@ Balanced Truncation for Linear Systems

o Reduced-order model is stable with HSVs o7, ..., 0.

o Adaptive choice of r via computable error bound:

~ N n
ly = 9lle <16 = Gllaelivllz < (2377 k) lule.

Practical implementation

@ Rather than solving Lyapunov equations for P, @ (n? unknowns!), find
S,R € R"™** with s < nsuch that P~ SST, Q ~ RR'.

o Reduced-order model directly obtained via small-scale (s x s) SVD of RTS!

@ No O(n®) or O(n?) computations necessary!
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3. Balanced Truncation for QB Systems
Balanced Truncation for Nonlinear Systems
Gramians for QB Systems
Truncated Gramians
Numerical Results
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Balanced Truncation for Nonlinear Systems
Approaches

The reachability energy functional, Lc(xo), and observability energy functional, Lo(xo) of
a system are given as:

0 oo
Le(x) = 3] Il Lo =3 [ Iverd

uELzl(n—oo,O] 2
x(—00)=0, x(0)=xp

Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi
equations which are hardly solvable for large-scale systems.
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Balanced Truncation for Nonlinear Systems

Approaches

@ Nonlinear balancing based on energy functionals [ScuerpEN 93, GRAY/MESKO '96].

Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi
equations which are hardly solvable for large-scale systems.

@ Empirical Gramians/frequency-domain POD [LaLL ET AL 799, WiLLCOX/PERAIRE "02].

Example: controllability Gramian from time domain data (snapshots)

1. Define reachability Gramian of the system
P = [° x(t)x(t)"dt, where x(t) solves X = f(x,d), x(0) = xo.

2. Use time-domain integrator to produce snapshots xx ~ x(tx), k=1,..., K.
3. Approximate P ~ ZkK:O wixkx, with positive weights w.

4. Analogously for observability Gramian.

5. Compute balancing transformation and apply it to nonlinear system.

Disadvantage: Depends on chosen training input (e.g., d(to)) like other POD
approaches.
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Balanced Truncation for Nonlinear Systems

Approaches

@ Nonlinear balancing based on energy functionals [ScuerpEN 93, GRAY/MESKO '96].
Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi
equations which are hardly solvable for large-scale systems.

@ Empirical Gramians/frequency-domain POD [LaLL ET AL 99, WILLCOX/PERAIRE *02].
Disadvantage: Depends on chosen training input (e.g., d(to)) like other POD
approaches.

@ ~~ Goal: computationally efficient and input-independent method!

B w.s. Gray and J. P. Mesko. Controllability and observability functions for model reduction of nonlinear systems. In Proc. of the Conf. on Information
Sci. and Sys., pp. 1244-1249, 1996.

B c Himpe. emgr — The empirical Gramian framework. ALGORITHMS 11(7): 91, 2018. doi:10.3390/a11070091.

B s Lall, J. Marsden, and S. Glavaski. A subspace approach to balanced truncation for model reduction of nonlinear control systems. INTERNATIONAL
JOURNAL OF ROBUST AND NONLINEAR CONTROL, 12:519-535, 2002.

B JMA Scherpen. Balancing for nonlinear systems. Systins & CONTROL L

RS, 21:143-153, 1993,

B K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition. AIAA JourNAL, 40:2323-2330, 2002.
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Balanced Truncation for Nonlinear Systems

Approaches

@ Nonlinear balancing based on energy functionals [ScuerpEN 93, GRAY/MESKO '96].

Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi
equations which are hardly solvable for large-scale systems.

@ Empirical Gramians/frequency-domain POD [LaLL ET AL 799, WiLLCOX/PERAIRE "02].

Disadvantage: Depends on chosen training input (e.g., d(to)) like other POD
approaches.

@ ~~ Goal: computationally efficient and input-independent method!

@ For recent developments on empirical Gramians, see [HivmPE '18].

B w.s. Gray and J. P. Mesko. Controllability and observability functions for model reduction of nonlinear systems. In Proc. of the Conf. on Information
Sci. and Sys., pp. 1244-1249, 1996.

B c Himpe. emgr — The empirical Gramian framework. ALcORITHMS 11(7): 91, 2018. doi:10.3390/a11070091.

B s Lall, J. Marsden, and S. Glavaski. A subspace approach to balanced truncation for model reduction of nonlinear control systems. INTERNATIONAL
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Gramians for QB Systems

@ Balanced Truncation for QB Systems

@ A possible solution is to obtain bounds for the energy functionals, instead of
computing them exactly.
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Gramians for QB Systems

@ Balanced Truncation for QB Systems

@ A possible solution is to obtain bounds for the energy functionals, instead of
computing them exactly.

@ For bilinear systems, such local bounds were derived in [B./Damm ’11] using the
solutions to the Lyapunov-plus-positive equations:

AP+ PAT 45" APAT + BBT =0,
ATQ+ QAT+ ATQA +CTC=0.
(If their solutions exist, they define reachability and observability Gramians of BIBO

stable bilinear system.)

@ Efficient solution methods for Lyapunov-plus-positive equations are derived in
[B./BREITEN ’13, SHANK/SIMONCINI/SZYLD ’16].
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Gramians for QB Systems

@ Balanced Truncation for QB Systems

@ A possible solution is to obtain bounds for the energy functionals, instead of
computing them exactly.

@ For bilinear systems, such local bounds were derived in [B./Damm ’11] using the
solutions to the Lyapunov-plus-positive equations:

AP+ PAT 45" APAT + BBT =0,
ATQ+ QAT+ ATQA +CTC=0.

(If their solutions exist, they define reachability and observability Gramians of BIBO
stable bilinear system.)

@ Efficient solution methods for Lyapunov-plus-positive equations are derived in
[B./BREITEN ’13, SHANK/SIMONCINI/SZYLD ’16].

o Here we aim at determining algebraic Gramians for QB (and polynomial)
systems, which

e provide bounds for the energy functionals of QB systems,

o generalize the Gramians of linear and bilinear systems, and

o allow us to find the states that are hard to control as well as hard to
observe in an efficient and reliable way.
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Gramians for QB Systems

Controllability Gramians

o Consider input — state map of QB system (m=1, N = A;):
x(t) = Ax(t) + Hx(t) ® x(t) + Nx(t)u(t) + Bu(t), x(0) = 0.
@ Integration yields

t

t
x(t) = /eAU1 Bu(t — o1)doy + / ! Nx(t — o1)u(t — o1)doy
0

¢
+ / e Hx(t — 01) ® x(t — o1)do1
0

[RucH ’81]
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Gramians for QB Systems

Controllability Gramians

o Consider input — state map of QB system (m=1, N = A;):
x(t) = Ax(t) + Hx(t) ® x(t) + Nx(t)u(t) + Bu(t), x(0) = 0.
@ Integration yields

t

t
x(t) = /(—:IAU1 Bu(t — o1)doy + / ! Nx(t — o1)u(t — o1)doy
0

¢
+ / e Hx(t — 01) ® x(t — o1)do1
0

: ¢ t—oq
= /eAalBu(t — o1)doy + / / 71 NeAaZBu(t — o1)u(t — 01 — 02)do1dor
0 0
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Gramians for QB Systems

Controllability Gramians

o Consider input — state map of QB system (m=1, N = A;):
x(t) = Ax(t) + Hx(t) ® x(t) + Nx(t)u(t) + Bu(t), x(0) = 0.
@ Integration yields

t

t
x(t) = /(—:IAU1 Bu(t — o1)doy + / ! Nx(t — o1)u(t — o1)doy
0

¢
+ / e Hx(t — 01) ® x(t — o1)do1
0

: ¢ t—oq
= /eAalBu(t — o1)doy + / / 71 NeAaZBu(t — o1)u(t — 01 — 02)do1dor
0 0

@ By iteratively inserting expressions for x(t — @), we obtain the Volterra series
expansion for the QB system. [Ruch "81]
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Gramians for QB Systems

Controllability Gramians

Using the Volterra kernels, we can define the controllability mappings

I'I1(t1) = eAtl B, nz(tl, tz) = eAthl'Il(tz),
Ms(t, 0o, 13) = e [H(M1(t2) @ Mi(83)), NMa(t1, 12)], ...

and a candidate for a new Gramian:

P::ZPk7 where Pk:/ / I_Ik(t1,...,tk)nk(ﬁ,...,tk)Tdﬁ...dt‘k.
k=1 0 0
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Gramians for QB Systems

Controllability Gramians

Using the Volterra kernels, we can define the controllability mappings

I'I1(t1) = eAtl B, nz(tl, tz) = eAtl an(tz),
|_|3(t1, to, t’3) = eAtl[H(rll(t2) ® nl(t3))a NnZ(tL t2)]7 s

and a candidate for a new Gramian:

P::ZP/(, where Pk:/ / I_Ik(tl,...,tk)nk(ﬁ,...,tk)TdH...dt‘k.
k=1 0 0

[B./GoyAL '16]
If it exists, the new controllability Gramian P for QB (MIMO) systems with stable A
solves the quadratic Lyapunov equation

AP+ PAT +> " AcPA{ + H(P @ P)H™ + BB =0.
k=1

Note: H = 0 ~~ "bilinear reachability Gramian™; if additionally, all Ax = 0 ~~ linear one.
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Gramians for QB Systems

Dual systems and observability Gramians [FujiMOTO ET AL. '02]

o Controllability energy functional (Gramian) of the dual system <
observability energy functional (Gramian) of the original system.
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Gramians for QB Systems

Dual systems and observability Gramians [FujiMOTO ET AL. '02]

o Controllability energy functional (Gramian) of the dual system <
observability energy functional (Gramian) of the original system.

o Employ close relation between port-Hamiltonian systems and dual systems of
nonlinear systems.
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Gramians for QB Systems

Dual systems and observability Gramians [FujiMOTO ET AL. '02]

o Controllability energy functional (Gramian) of the dual system <
observability energy functional (Gramian) of the original system.

o Employ close relation between port-Hamiltonian systems and dual systems of
nonlinear systems.

o This allows to define dual systems for QB systems:

x(t) = Ax(t) + Hx(t) ® x(t) + Z:ﬂ Arx(t)ug(t) + Bu(t), x(0) =0,
xg(t) = —AT xq(t) — HOx(t) ® xq(t) — Zm Al xa(t)u(t) = CTug(t), xa(o0) =0,

k=1
ya(t) = BT xq(t),

where H®) is the mode-2 matricization of the QB Hessian.
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Gramians for QB Systems

Dual systems and observability Gramians for QB systems [B./GovAL ’16]

o Writing down the Volterra series for the dual system ~» observability
mapping.

@ This provides the observability Gramian Q for the QB system. It solves

m T
ATQ+ QA+ AT QA+ HO(P© Q) (H?) +cTC=0.
k=1
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Gramians for QB Systems

Dual systems and observability Gramians for QB systems [B./GovAL ’16]

o Writing down the Volterra series for the dual system ~~ observability
mapping.

@ This provides the observability Gramian Q for the QB system. It solves

m T
ATQ+ QA+ ALQA+HO(P& Q) (H®) +cTc=o.
k=1

Remarks:

— Observability Gramian depends on controllability Gramian!
— For H = 0, obtain "bilinear observability Gramian”, and if also all Ax =0, the
linear one.
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@ Gramians and Energy Functionals

Bounding the energy functionals:

Lemma [B./GoYAL ’16]
In a neighborhood of the stable equilibrium, B.(0),

Le(xo) > %XOTP_lxo, Lo(xp) < %XJ—QX(), X0 € B:(0),

for "small signals” and xp pointing in unit directions.
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@v@ Gramians and Energy Functionals

\‘4

Bounding the energy functionals:
Lemma [B./GoYAL ’16]
In a neighborhood of the stable equilibrium, B.(0),

Le(xo) > %XOTP_lxo, Lo(xp) < %XJ—QX(), X0 € B:(0),

for "small signals” and xp pointing in unit directions.

Another interpretation of Gramians in terms of energy functionals

1. If the system is to be steered from 0 to xg, where xp & range (P), then
Lc(xo) = oo for all feasible input functions u.

2. If the system is (locally) controllable and xo € ker (@), then Ly(xp) = 0.

System-theoretic Model Order Reduction for Classes of Nonlinear Systems
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@ Gramians and Energy Functionals

lllustration using a scalar system

x(t) = ax(t) + hx2(t) + nx(t)u(t) + bu(t), y(t) = ex(t).
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@ Gramians and Energy Functionals

lllustration using a scalar system

x(t) = ax(t) + hx2(t) + nx(t)u(t) + bu(t), y(t) = ex(t).

—— Actual energy >
-------- Via Gramians

—— Actual energy ki
-------- Via Gramians

&~ [e)]
ooof

2 - - ]
1N @ S
ol e

-0.2 0 0.2

(a) Input energy lower bound. (b) Output energy upper bound.

Figure: Comparison of energy functionals for —-a=b=c=2,h=1,n=0.
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@ Now, the main obstacle for using the new Gramians is the solution of the
(quadratic) Lyapunov-type equations.
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@ Now, the main obstacle for using the new Gramians is the solution of the
(quadratic) Lyapunov-type equations.

@ Fix point iteration scheme can be employed but very expensive.
[DammM 08|
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@ Now, the main obstacle for using the new Gramians is the solution of the
(quadratic) Lyapunov-type equations.

@ Fix point iteration scheme can be employed but very expensive.
[DammM 08|

@ To overcome this issue, we propose truncated Gramians for QB systems.
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@ Now, the main obstacle for using the new Gramians is the solution of the
(quadratic) Lyapunov-type equations.

@ Fix point iteration scheme can be employed but very expensive.
[DammM 08|

@ To overcome this issue, we propose truncated Gramians for QB systems.

Definition (Truncated Gramians)

The truncated Gramians P7 and Q7 for QB systems satisfy
APy + PrAT = —BBT =37 APA] — H(P & P)H,

ATQr+QrA=—CTC=3"" AlQA—HA(P o Q)H®)T,

here
M AP+ PAT=-BBT  and  ATQ+QA=-CTC.
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Truncated Gramians

Advantages of truncated Gramians (T-Gramians)

o T-Gramians approximate energy functionals better than the actual Gramians.
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Truncated Gramians

Advantages of truncated Gramians (T-Gramians)

o T-Gramians approximate energy functionals better than the actual Gramians.

1072 1072
3 T | —— Actual energy 1 6k | —— Actual energy ]

N\ [ Via Gramians B [ Via Gramians
2 - -- Via T-Gramians 4l *, |==-= Via T-Gramians |
10
0 s

—-0.2 0 0.2

X
(a) Input energy lower bounds. (b) Output energy upper bounds.

Figure: Comparison of energy functionals for —a=b=c=2,h=1,n=0.
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Truncated Gramians
Advantages of truncated Gramians (T-Gramians)

o T-Gramians approximate energy functionals better than the actual Gramians.

o gi(P- Q) > oi(Pr - Qr) = obtain smaller order of reduced system if
truncation is done at the same cutoff threshold.
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Truncated Gramians
Advantages of truncated Gramians (T-Gramians)

o T-Gramians approximate energy functionals better than the actual Gramians.

o gi(P- Q) > oi(Pr - Qr) = obtain smaller order of reduced system if
truncation is done at the same cutoff threshold.

o Most importantly, we need solutions of only four standard Lyapunov
equations.
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5 Truncated Gramians
Advantages of truncated Gramians (T-Gramians)

@ T-Gramians approximate energy functionals better than the actual Gramians.

e gi(P- Q) > oi(Pr - Qr) = obtain smaller order of reduced system if
truncation is done at the same cutoff threshold.

@ Most importantly, we need solutions of only four standard Lyapunov
equations.

o Interpretation of controllability /observability of the system via T-Gramians:

o If the system is to be steered from 0 to xo, where xo & range (P7), then
Lc(x0) = oo.

o If the system is controllable and xp € ker (Q7), then Lo(xp) = 0.
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@ Balanced Truncation Algorithm

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).
1: Input: A H, A, B, C.
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@ Balanced Truncation Algorithm

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).
1: Input: A H, A, B, C.

2: Compute low-rank factors of T-Gramians: Py ~ SST and Qr ~ RR”.
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& @ Balanced Truncation Algorithm

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).
1: Input: A H, A, B, C.

2: Compute low-rank factors of T-Gramians: Py ~ SST and Qr ~ RR”.

3: Compute SVD of STR:
STR UZVT [Ul U2]d1ag(21,22)[V1 V2]T
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& @ Balanced Truncation Algorithm

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).
1: Input: A H, A, B, C.

2: Compute low-rank factors of T-Gramians: Py ~ SST and Qr ~ RR”.

3: Compute SVD of STR:
STR=UXVT = [U; Uo]diag(Xy, X)[Vi Vo]T.
. Construct the projection matrices VV and W:
V=SUx; 2 and W= RVE; /2.

N
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& @ Balanced Truncation Algorithm

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).
1: Input: A H, A, B, C.

2: Compute low-rank factors of T-Gramians: Py ~ SST and Qr ~ RR”.

3: Compute SVD of STR:
STR=UXVT = [U; Uo]diag(Xy, X)[Vi Vo]T.
4. Construct the projection matrices VV and W:
V=SUx; 2 and W= RVE; /2.
5: OQutput: reduced-order matrices:
=WTAY, A=WTHYV®V), Ac=WTAY,
B=WTB, C=CV.

Remark: There are efficient ways to compute A, avoiding the explicit computation
of V& V. [B./BREITEN 15, B./GOYAL/GUGERCIN. '16]
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Numerical Results

Chafee-Infante equation

Vi + V= v v, (0,L) x (0, T), 2
v(0,.) = u(t), (0, 7), ’
vi(L,.) =0, (0, 7), o
v(x,0) = w(x), (0, L). e ' o2
Time [s] 00
Figure: Chafee-Infante equation.
o Cubic nonlinearity that can be rewritten into QB form. [B./BREITEN '15’]

(@© Peter Benner, benner@mpi-magdeburg.mpg.de System-theoretic Model Order Reduction for Classes of Nonlinear Systems


mailto:benner@mpi-magdeburg.mpg.de

Numerical Results

Chafee-Infante equation

Vi + V= v v, (0,L) x (0, T), 2.
vi(L,.) =0, (0, 7), o
v(x,0) = w(x), (0, L). e , °e
Time [s] 0o
Figure: Chafee-Infante equation.
o Cubic nonlinearity that can be rewritten into QB form. [B./BREITEN '15’]

o The transformed QB system is of order n = 1, 000.

@ The output of interest is the response at right boundary at x = L.
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Numerical Results

Chafee-Infante equation

Vi + V= v v, (0,L) x (0, T), 2.
v(0,.) = u(t), (0, T), |
vi(L,.) =0, (0, 7),
v(x,0) = vp(x), (0,L). Py 08
Times o0
Figure: Chafee-Infante equation.
o Cubic nonlinearity that can be rewritten into QB form. [B./BREITEN '15’]

@ The transformed QB system is of order n = 1, 000.
@ The output of interest is the response at right boundary at x = L.

o We determine the reduced-order system of order r = 10.
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Numerical Results

Chafee-Infante equation

|— Original System  ——BT  —— One-sided proj. = —— Two-sided proj.

Transient response Relative error
T T T 10! T T T

10 ]

! ! ! —7 ! ! !
0 1 2 3 4100 1 2 3 4

Time [s] Time [s]

Figure: Boundary control for a control input u(t) = 5t exp(—t).
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Numerical Results

Chafee-Infante equation

|— Original System  ——BT  —— One-sided proj. =~ —— Two-sided proj.

Transient response Relative error
3 10! T T T

1073

Time [s] Time [s]

Figure: Boundary control for a control input u(t) = 25(1 + sin(2nt))/2.
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Numerical Results

N FitzHugh-Nagumo (F-N) model

evi(x, t) = Ev(x, t) + F(v(x, 1) — w(x, t) + g,
we(x, t) = hv(x, t) — yw(x, t) + q,

with a nonlinear function 0.2
0.1
F(v(x, 1)) = v(v — 0.1)(1 — v). -
0
The boundary conditions are as follows: 1 . " 0.2
v 0 '

vi(0,t) = ip(t), w(L,t)=0, t>0,

where € = 0.015, h =0.5, v =2, g = 0.05,
L=0.2.

o Input ip(t) =5 - 10*t3 exp(—15t) serves as actuator.

System-theoretic Model Order Reduction for Classes of Nonlinear Systems
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Numerical Results

X
*“‘; FitzHugh-Nagumo (F-N) model

|— Original system (n = 1500) x Reduced system (BT) (r = 20) |

0.2

0
1.5 > 0.2 0
v05 0.1z “ 04 0 04 08 1.2
0 v
(a) Limit-cycles at various x. (b) Projection onto the v—w plane.

Figure: Comparison of the limit-cycles obtained via the original and reduced-order (BT)
systems. The reduced-order systems constructed by moment-matching methods were
unstable.
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4. Balanced Truncation for Polynomial Systems
Polynomial Control Systems
Gramians for PC Systems
Truncated Gramians
Numerical Example

eoretic Model Order Reduction for Classes of Nonlinear Systems
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@ Polynomial Control Systems

Now, consider the class of polynomial control (PC) Systems:

x(t) = Ax(t) + Zp H; ((X)jx(t)) n ZP i NE (®jx(t)> uk(t) + Bu(t),
j=2 j=2 k=1

y(t) = (1), x(0) =0,

where
@ np is the degree of the polynomial part of the system,
x(t) €R", @x(t) = x(t) ® - - - @ x(t),
j-times
u(t) € R™, and y(t) € RP, n>> m, p.
AER™", H, Nf e R™” B eR™ and C € RP*".
Assumption: A is supposed to be Hurwitz = local stability.
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@ Polynomial Control Systems

Now, consider the class of polynomial control (PC) Systems:

x(t) = Ax(t) + Zp H; ((X)jx(t)) n ZP i NE (®jx(t)> uk(t) + Bu(t),
j=2 j=2 k=1

y(t) = (1), x(0) =0,

where
@ np is the degree of the polynomial part of the system,
x(t) €R", @x(t) = x(t) ® - - - @ x(t),
j-times
u(t) € R™, and y(t) € RP, n>> m, p.
° AcR™", H;, Nf e R™” B cR™ and C € RP*".
@ Assumption: A is supposed to be Hurwitz = local stability.

Examples: FitzHugh-Nagumo and Chafee-Infante equations lead to cubic control
systems; cubic-quintic Allen-Cahn equation to quintic control system.
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Gramians for PC Systems

The reachability Gramian

Expanding the response of the PC system into a Volterra series representation and
following the same ideas as in the QB case, we define the reachability Gramian as

0 e} e}
P:Z Pk(tl,...,tk)Pk(tl,...,tk)Tdtl...dtk,
k=10 0
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Gramians for PC Systems

The reachability Gramian

Expanding the response of the PC system into a Volterra series representation and
following the same ideas as in the QB case, we define the reachability Gramian as

0 e} e}
P:Z Pk(tl,...,tk)Pk(tl,...,tk)Tdtl...dtk,
k=10 0

m
where Pi(t;) = e*1B, Py(t1, 1) = ZeAth{‘eA”B,
k=1
P3(t1, to, t3) = et Hye”2B @ €A B, ... are the kernels of the Volterra series.
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The reachability Gramian

<3 Gramians for PC Systems

v

Expanding the response of the PC system into a Volterra series representation and
following the same ideas as in the QB case, we define the reachability Gramian as

0 e} e}
P:Z Pk(tl,...,tk)Pk(tl,...,tk)Tdtl...dtk,
k=10 0

m
where Pi(t;) = e*1B, Py(t1, 1) = ZeAth{‘eAt2B,
k=1
P3(t1, to, t3) = et Hye”2B @ €A B, ... are the kernels of the Volterra series.

The reachability Gramian P of a PC system solves the polynomial Lyapunov equation

AP + PAT + BBT +§;Hj (e/P) HT +§;§Nf (eP) (M) =0

System-theoretic Model Order Reduction for Classes of Nonlinear Systems
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Gramians for PC Systems

Dual system and observability Gramian

The Observability Gramian is defined as follows
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Gramians for PC Systems

Dual system and observability Gramian

The Observability Gramian is defined as follows

o First, we write the adjoint system as [FUusMOTO ET. AL. '02]
— Ax(t +ZHx®(t)+ZZNx (t) + Bu(t),
j=1k=1
p pm
5q0) = =ATxg() = S M0 = 32 50 (M0P) o 0ug k) = €Tugl), xgloe) =0,
j=2 j=1k=1
(0 =B xy(0

Peter Benner, benner@mpi-magdel eoretic Model Order Reduction for Classes of Nonlinear Systems


mailto:benner@mpi-magdeburg.mpg.de

Gramians for PC Systems

Dual system and observability Gramian

The Observability Gramian is defined as follows

o First, we write the adjoint system as [FUusMOTO ET. AL. '02]

— Ax(t +ZHx®(t)+ZZNk® t)ug(t) + Bu(t),
J=1k=1

EY
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>
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<

|
I
)

x

af
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=

|
173
M=
—~
[
B
~—
°“®

( ug K (t) — cT ug(t), xg(c0) =0,

o Then, by taking the kernel of Volterra series, one has

Let P be the reachability Gramian. Then, the observability Gramian Q of a PC system
solves the polynomial Lyapunov equation

ATQ+QA+CTC+§:H}2)(®’ PoQ) (H?) + @) (& 'Po Q) (M) =0,

= j=2 k=1

(@© Peter Benner, benner@mpi-magdeb y i ar Systems


mailto:benner@mpi-magdeburg.mpg.de

@ Truncated Gramians

@ Polynomial Lyapunov equations are very expensive to solve.

@ As for QB systems, we thus propose truncated Gramians that only involve a
finite number of kernels.

np+1

PTZ Z Pk(tl,...,tk)ﬁk(tl,...7tk)7—dt1...dtk,
k=1 70 0

Truncated Gramians

The reachability truncated Gramian solves

" ; B & ; T
APy + PrAT + BBT + > H&/PH + > S NP, (Nf) —0.
j=2 j=2 k=1

where AP, + PLAT + BBT =0

o Advantage: Only need to solve a finite number of (linear) Lyapunov
equations.
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Numerical Example, the FitzHugh-Nagumo model, revisited

@ Balanced Truncation for Polynomial Systems

eve(x, t) = v (x, t) + F(v(x, t)) — w(x, t) + q,
we(x, t) = hv(x, t) — yw(x, t) + q,

with a nonlinear function

f(v(x,t)) = v(v—0.1)(1—v). 02

The boundary conditions are as follows: 5 0.1

v (0,t) = ip(t), w(L,t)=0, t>0, 0
where ¢ = 0.015, h=0.5, vy =2, ¢ =0.05, L =0.2. 1v 0 0 0.1 02

@ After discretization we obtain a PC system with cubic nonlinearity of order

npe = 600. [B./BREITEN '15]
@ The transformed quadratic-bilinear (QB) system is of order ng, = 900.
@ The outputs of interest v(0, t), w(0, t) are the responses at the left boundary at

x =0.

@ We compare balanced truncation for PC and QB systems.
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Numerical Example

Singular values decay

= BT for QB systems = BT for PC systems
102 T T T

—16 | | | |
1077020 40 60 80 100

@ Decay singular values for PC systems is faster = smaller reduced order
model!
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Numerical Example

Q“" Time-domain simulations

‘ mmm Original PC system === BT for QB systems =am BT for PC systems ‘
% . 100 ’:-I.:’]"",-"'.-"'.-“'tl."‘.-".—
e o i . A
g o SRAXTS IR RSN
- 210} = -
g &
= _8 I I
10 0 5 10 15
Time (t) Time (t)

o Original PC system of order 600. Original QB system of order 900.
o Reduced PC system of order 10. Reduced QB system of order 10.
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Numerical Example

Q“" Time-domain simulations

‘ mmm Original PC system === BT for QB systems === BT for PC systems ‘
0
% » v in T R
o .l i b
[a% - wlbed g .
8 5 fngaanta . iibiA
= L o4 tef” f R ]
5 E : f
5 2 : !
s & o
= 8 ! w
10 0 5 10 15
Time (t)

@ Original PC system of order 600. Original QB system of order 900.
@ Reduced PC system of order 10. Reduced QB system of order 30.
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Numerical Example

Q“" Time-domain simulations

‘ mmm Original PC system === BT for QB systems === BT for PC systems ‘

v 100 .

5 5 .

o = oy [

5 pesadntioid LA,

F PRI

5 k= A |

2 = i 3’.7' i

& o R

e 10-8 oy s | I

0 5 10 15 0 5 10 15

Time (t) Time (1)

@ Original PC system of order 600. Original QB system of order 900.
o Reduced PC system of order 10. Reduced QB system of order 43.
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@ BT extended to bilinear, QB, and polynomial systems.

@ Local Lyapunov stability is preserved.
@ As of yet, only weak motivation by bounding energy functionals.
@ No error bounds in terms of "Hankel” singular values.

o Computationally efficient (as compared to nonlinear balancing), and input
independent.

o To do:

improve efficiency of Lyapunov solvers with many right-hand sides further;
error bound;

conditions for existence of new QB Gramians;

extension to descriptor systems;

time-limited versions.

For H»-optimal reduction, extension to bilinear [B./BREITEN '12,FLAGG/GUGERCIN '15]
and QB [B./GovaL/GUGERCIN 18] cases, as well as polynomial and parametric systems
[B./GovaL ’19].
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4th Workshop on Model Reduction of Complex D
Systems - MODRED 2019 -

August 28th to 30th, n Graz

Overview

News

Photos

Participants

Proceedings

Location

Social Activities

Deadlines

Abstracts

Registration

Accommodation

Travel

Useful links

Contact

The conference starts Wednesday morning and ends on Friday. There will be plenary talks by a
number of invited speakers. Moreover, there will be several contributed talks (20 minutes plus 5
minutes for questions and discussion).

Plenary Speakers

« Serkan Gugercin

« Bernard Haasdonk

« Dirk Hartmann (Siemens)
« Laura lapichino

« J. Nathan Kutz

Contributed Talks

tb.a.

Contact: modred2019@uni-graz.at Last changed: 2018-06-19
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