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% Introduction to Parametric Model Order
| SO Reduction

Parametric Dynamical Systems

f(t,x(t; p), u(t),p), x(to) =x,  (a)
g(t, x(t; p), u(t), p) (b)

J E(p)x(t:p)
=(p): { y(t; p)
with
o (generalized) states x(t; p) € R" (E € R™"),
o inputs u(t) € R”,
o outputs y(t; p) € RY, (b) is called output equation,
o p e Q c RYis a parameter vector,  is bounded.

Applications:
@ Repeated simulation for varying material or geometry parameters, boundary
conditions,
@ control, optimization and design,
o of models, often generated by FE software (e.g., ANSYS, NASTRAN,...) or
automatic tools (e.g., Modelica).
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Introduction to Parametric Model Order
Reduction

Parametric Dynamical Systems

f(t,X(t; p),u(t),p), X(to) = X0, (a)
g(t,x(t; p), u(t), p) (b)

[ E(p)x(t;p)
p): { y(t; p)

with
o (generalized) states x(t; p) € R" (E € R™*"),
o inputs u(t) € R”,
o outputs y(t; p) € RY, (b) is called output equation,
o p e QcCRYis a parameter vector,  is bounded.

PDE and boundary conditions often not accessible!
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Introduction to Parametric Model Order
Reduction

E(p)x(t;p) = Alp)x(t;p) + B(p)u(t), Alp), E(p) € R™",
C(p)x(t: p), B(p) € R™™, C(p) € RT*".
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Introduction to Parametric Model Order

Reduction

E(p)x(t;p) = Alp)x(t;p) + B(p)u(t), Alp), E(p) € R™",
y(t:p) C(p)x(t: p), B(p) € R™™, C(p) € RT*".

Laplace Transformation / Frequency Domain

Application of Laplace transformation (x(t; p) — x(s; p), x(t; p) — sx(s; p))
to linear system with x(0; p) = 0:
sE(p)x(s: p) = A(p)x(si p) + B(p)u(s), y(s:ip) = C(p)x(s:p),

yields |/O-relation in frequency domain:

y(s:p) = ( C(P)(E(P) = A(P))*B(p) ) u(s).

=:G(s,p)

G(s, p) is the parameter-dependent transfer function of ¥(p).

PMOR via Projection and Interpolation
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Introduction to Parametric Model Order

Reduction

E(p)x(t;p) = Alp)x(t;p) + B(p)u(t), Alp), E(p) € R™",
y(t:p) C(p)x(t: p), B(p) € R™™, C(p) € RT*".

Laplace Transformation / Frequency Domain

Application of Laplace transformation (x(t; p) — x(s; p), x(t; p) — sx(s; p))
to linear system with x(0; p) = 0:
sE(p)x(s: p) = A(p)x(si p) + B(p)u(s), y(s:ip) = C(p)x(s:p),

yields |/O-relation in frequency domain:

y(s:p) = ( C(P)(E(P) = A(P))*B(p) ) u(s).

=:G(s,p)

G(s, p) is the parameter-dependent transfer function of ¥(p).

Goal: Fast evaluation of mapping (u,p) — y(s;p).

PMOR via Projection and Interpolation
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y - ¥ Motivating Example:
S Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

@ Applications:

o inertial navigation,
o electronic stability control
(ESP).

@ Voltage applied to electrodes induces vibration
of wings, resulting rotation due to Coriolis force
yields sensor data.

: %smvkv

@ FE model of second order:
N =17.361 ~» n=34.722, m=1, g = 12.

@ Sensor for position control based on
acceleration and rotation.

Source: MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Gyroscope
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http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Gyroscope

= Motivating Example:
NS Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Parametric FE model: M(d)x(t) + D(6,d, a, 8)x(t) + T(d)x(t) = Bu(t).

@© P. Benner PMOR via Projection and Interpolation



y - ¥ Motivating Example:
S Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Parametric FE model:

M(d)x(t) + D(0,d, o, B)x(t) + T(d)x(t) = Bu(t),

where
M(d) = M+ dMy,
D(,d,o,8) = 0(D1+ dDz)+aM(d)+ BT(d),
T(d) = Ti+ %Tz + dT3,
with

@ width of bearing: d,
@ angular velocity: 6,

@ Rayleigh damping parameters: «a, .

PMOR via Projection and Interpolatit



= Motivating Example:
NS Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Original. . . and reduced-order model.
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The Parametric Model Order Reduction
(PMOR) Problem

Problem

Approximate the dynamical system

E(p)x = A(p)x+B(p)u,  E(p),Alp) € R™",
y = C(p)x, B(p) € R™™, C(p) € RI*",

by reduced-order system

E(p)k = A(p)%+B(p)u, E(p),A(p) e R,
y = C(p), B(p) € R™*™ C(p) € RI*",

of order r < n, such that
ly =9Il = |Gu — Gul| < |G — G| - ||u|| < tolerance - |u]| V¥ p € Q.

© P. Benner PMOR via Projection and Interpolation



The Parametric Model Order Reduction
(PMOR) Problem

Problem

Approximate the dynamical system

E(p)x = A(p)x+B(p)u,  E(p),Alp) € R™",
y = C(p)x, B(p) € R™™, C(p) € RI*",

by reduced-order system

E(p)k = A(p)%+B(p)u, E(p),A(p) e R,
y = C(p), B(p) € R™*™ C(p) € RI*",

of order r < n, such that
ly =9Il = |Gu — Gul| < |G — G| - ||u|| < tolerance - |u]| V¥ p € Q.

— Approximation problem: ~ min  ||G — G].
order (G)<r

© P. Benner PMOR via Projection and Interpolation
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[ @ PMOR Methods — a Survey

Model Reduction for Linear Parametric Systems

Parametric System

[ E@X(Ep) = Alp)x(tip) + B(pu(t).
Z(")'{ y(tip) = Clp)x(t:p)

@© P. Benner PMOR via Projection and Interpolation



@ PMOR Methods — a Survey

Model Reduction for Linear Parametric Systems

Parametric System

[ E@X(Ep) = Alp)x(tip) + B(pu(t).
Z"’)'{ y(tip) = Clp)x(t:p)

Appropriate parameter-affine representation:

E(p) = Eo+e(p)Er+...+ eq(p)Eqe,
Alp) = Ao+ ai(p)AL+...+ ag(p)Aqg.,
B(p) = B+ bi(p)Bi+ ...+ bgy(p)Bas,
Cp) = G+alp)C+...+ coc(p)Coc,

allows easy parameter preservation for projection based model reduction.

@© P. Benner
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“ @ PMOR Methods — a Survey

Model Reduction for Linear Parametric Systems

Parametric System

[ E@X(Ep) = Alp)x(tip) + B(pu(t).
Z"’)'{ y(tip) = Clp)x(t:p)

Appropriate parameter-affine representation:

Alp) = Ao+ ai(p)Ar+ ...+ ag.(p)Agss

allows easy parameter preservation for projection based model reduction.

W.l.o.g. may assume this affine representation:

@ Any system can be written in this affine form for some gx < n?, but for
efficiency, need gx < n! (X € {E,A,B,C})

o Empirical (operator) interpolation yields this structure for "smooth enough”
nonlinearities [BARRAULT/MADAY /NGUYEN/PATERA 2004].

@© P. Benner PMOR via Projection and Interpolation



— @ PMOR Methods — a Survey

Model Reduction for Linear Parametric Systems

Parametric System

A(p)x(t; p) + B(p)u(t),
C(p)x(t; p).

| E(p)x(tip)
Z@y{ y(t; p)

Parametric model reduction goal:

preserve parameters as symbolic quantities in reduced-order model:

< . [ E(i(t:p) A(p)x(t; p) + B(p)u(t),
z@y{ y(tip) = C(p)(tip)

with states %(t; p) € R" and r < n.

@© P. Benner PMOR via Projection and Interpolation



@ Model Reduction for Linear Parametric Systems

Structure-Preservation

Petrov-Galerkin-type projection

For given projection matrices V, W € R™" with WTV = I,
(~ (VWT)2 = VWT is projector), compute

E(p) = WEV+ea(pWTEV+... +e,(p)WTE,V,
= B +ea(p)bi+. ..+ ew(p)Eo,

Alp) = WTAV +ai(p)WTAV + ...+ a5, (p)WTA,V,
= Ao+ a(p)AL+ ...+ ag,(p)Aqg,,

B(p) = WTBy +bi(p)WTBy +...+ by, (p)WT By,
By + b1(p)B1 + - .. + by (P) By

Clp) = GV+  aP)aV+...+  ce(p)CoV,

= G+aPG+.. +ce(p)Co-

© P. Benner PMOR via Projection and Interpolation



@ Model Reduction for Linear Parametric Systems

Structure-Preservation

Petrov-Galerkin-type projection

For given projection matrices V, W € R™" with WTV = I,
(~ (VWT)2 = VWT is projector), compute

E(p) = WTEV +ea(p)WTEV +...+e, (p)WTE,V,
= E+ea(p)bi+. . +ew(p)Eo,
Alp) = WTAV +a(p)W AV +... +ag,(p)WTA,V,
= Ao+ a(p)AL+ ...+ ag,(p)Aqa,
B(p) = WTBy +bi(p)WTB1 +...+ by, (p)WT By,
By + bi(p)B1 + ... + by, (p) By,
Clp) = GV+  aP)aV+...+  ce(p)CoV,

= éo—i—Cl(p)&l+...+ch(p)€qc.
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= A Short Introduction to
NS Interpolatory Model Reduction

Computation of reduced-order model by projection

Given a linear (descriptor) system Ex = Ax+ Bu, y = Cx  with transfer function
G(s) = C(sE — A)™'B, a reduced-order model is obtained using truncation matrices
V, W e R™" with WTV = I, (~ (VWT)?> = VW' is projector) by computing

E=WTEV, A=W"AV, B=W'B, €= CV.

Petrov-Galerkin-type (two-sided) projection: W # V,
Galerkin-type (one-sided) projection: W = V.

@© P. Benner jection and Interpolation



= A Short Introduction to
W Interpolatory Model Reduction

Computation of reduced-order model by projection

Given a linear (descriptor) system Ex = Ax+ Bu, y = Cx  with transfer function
G(s) = C(sE — A)™'B, a reduced-order model is obtained using truncation matrices
V, W e R™" with WTV = I, (~ (VWT)?> = VW' is projector) by computing

E=WTEV, A=W"AV, B=W'B, €= CV.
Petrov-Galerkin-type (two-sided) projection: W # V,

Galerkin-type (one-sided) projection: W = V.

Rational Interpolation/Moment-Matching

Choose V/, W such that
G(s)=6G(s), j=1,...,k

and ) ;
d' d - . .
EG(SJ):EG(SJ), I:l,...,l‘(j7 le,,k

jection and Interpolation



A Short Introduction to
Interpolatory Model Reduction

span {(siE — A)7!B,...,(skE — A)"'B} C range(V),
span {(stE —A)"TCT,...,(skE—A)"TC"} C range(W),

then J J
G(sj) = G(sj), EG(SJ‘) = EG(sj)’ forj=1,..., k.

@© P. Benner PMOR via Projection and Interpolation



A Short Introduction to
Interpolatory Model Reduction

span {(siE — A)7!B,...,(skE — A)"'B} C range(V),
span {(stE —A)"TCT,...,(skE—A)"TC"} C range(W),

then J J
G(sj) = G(sj), EG(SJ‘) = EG(sj), forj=1,..., k.

Remarks:
computation of V, W from rational Krylov subspaces, e.g.,
— dual rational Arnoldi/Lanczos [GRIMME ‘97],

— lter. Rational Krylov-Alg. (IRKA) [ANTOULAS/BEATTIE/ GUGERCIN 06/°08].

@© P. Benner PMOR via Projection and Interpolation



A Short Introduction to
Interpolatory Model Reduction

span {(siE — A)7!B,...,(skE — A)"'B} C range(V),
span {(stE —A)"TCT,...,(skE—A)"TC"} C range(W),

then J J
G(sj) = G(sj), EG(sj):EG(sj)’ forj=1,..., k.
Remarks:

using Galerkin /one-sided projection (W = V) yields G(s;) = G(s;), but in general

d d .~
5 6(s) # Gls).

@© P. Benner PMOR via Projection and Interpolation



A Short Introduction to
Interpolatory Model Reduction

span {(siE — A)7!B,...,(skE — A)"'B} C range(V),
span {(stE —A)"TCT,...,(skE—A)"TC"} C range(W),

then J J
G(sj) = G(sj), EG(SJ‘) = EG(sj), forj=1,..., k.

Remarks:
k =1, standard Krylov subspace(s) of dimension K:
range (V) = Kk ((si/ — A) ™!, (s1/ — A)"'B).
~» moment-matching methods/Padé approximation,
dJ
ds’

d . ,
G(s1) = @G(sl), i=0,...,K—1(+K).

@© P. Benner PMOR via Projection and Interpolation



@ Interpolatory Model Reduction

Ho>-Model Reduction for Linear Systems

Two common system norms for measuring approximation quality:
1

o Hy-norm, ||X|4, = (% OZNtr((GT(—]w)G(]w))) dw)i,

0 Hoo-norm, ||X|jy.. = su%amax(G(jw)),
we

where
G(s)= C(sl — A)'B.

Note: Hoo-norm approximation ~~ balanced truncation, Hankel norm approximation.

@© P. Benner PMOR via Projection and Interpolation



@ Interpolatory Model Reduction

Error system and H,-Optimality [MEIER /LUENBERGER 1967]

In order to find an H>-optimal reduced system, consider the error system
G(s) — G(s) which can be realized by

A 0

err __ ~
A _[0 A

err B err A
], B :[é], cr=[c -C].

PMOR via Projection and Interpolation



@ Interpolatory Model Reduction

Error system and H,-Optimality [MEIER /LUENBERGER 1967]

In order to find an H>-optimal reduced system, consider the error system
G(s) — G(s) which can be realized by

err __ A0 err __ B err __ ~
A _[0 2\]’ B _[é], cr=[c -C].

Assuming a coordinate system in which Als diagonal and taking derivatives of
16(.) = G()l3,

with respect to free parameters in /\(/A4), B, C ~~ first-order necessary
H,-optimality conditions (SISO)

where }\; are the poles of the reduced system ..

@© P. Benner PMOR via Projection and Interpolation



@ Interpolatory Model Reduction

Error system and H,-Optimality [MEIER /LUENBERGER 1967]

In order to find an H>-optimal reduced system, consider the error system
G(s) — G(s) which can be realized by

err A 0 err B err A
A :[0 2\]’ B :H cr=[c -C].

G(—j\;)é; = (A; —X,’)é;, for i = 1, ey ﬁ,
(:'TG(—S\,'): ~"TG(_X,'), for i = 1,...,ﬁ,
CTH (=\)Bi = CTG'(=X\)B: fori=1,...,A,
v!hereA/Z\ = R/A\R_T is the spectral decomposition of the reduced system and
B=BTR"T, C=CR.

@© P. Benner PMOR via Projection and Interpolation



@ Interpolatory Model Reduction

Error system and H,-Optimality [MEIER /LUENBERGER 1967]

In order to find an H>-optimal reduced system, consider the error system
G(s) — G(s) which can be realized by

err __ A 0 err __ B err __ A
A _[0 2\]’ B _[é], cr=[c -CJ.

First-order necessary 7,-optimality conditions (MIMO):

G(—S\;)Bi = é —j\i)é;, for i = 1, ey ﬁ,
~,'TG(—3\[) = CI'TG(_S\,‘), for i = 1,...,ﬁ,
C.,'TH,(—S\, éi = C'.iTG/(—j\,‘)éi for i = 1, ey ﬁ,

@© P. Benner PMOR via Projection and Interpolation



@ Interpolatory Model Reduction

Interpolation of the Transfer Function [Grouwe 1997]
Construct reduced transfer function by Petrov-Galerkin projection P = VW T,
i.e.

G(s)=CV (sl - WTAV) ' WTB,

© P. Benner PMOR via Projection and Interpolation



@ Interpolatory Model Reduction

Interpolation of the Transfer Function [GrivmE 1997]

Construct reduced transfer function by Petrov-Galerkin projection P = VW T,
i.e.
G(s)=CV (sl - WTAV) ' WTB,

where V and W are given as
V= [(_Mll - A)_le ERE) (_:U’rl - A)_IB] ’
W= [(—pal —AT)ICT, o (—pd = AT)TICT].

@© P. Benner PMOR via Projection and Interpolation



@ Interpolatory Model Reduction

Interpolation of the Transfer Function [GrivmE 1997]

Construct reduced transfer function by Petrov-Galerkin projection P = VW T,
i.e.
G(s)=CV (sl - WTAV) ' WTB,

where V and W are given as
V= [(_Mll - A)_le ERE) (_:U’rl - A)_IB] ’
W= [(—pal —AT)ICT, o (—pd = AT)TICT].
Then . )
G(—pi) = G(—w) and G'(—p;) = G'(—p),
fori=1,...,r.

@© P. Benner PMOR via Projection and Interpolation



@ Interpolatory Model Reduction

Interpolation of the Transfer Function [GrivmE 1997]

Construct reduced transfer function by Petrov-Galerkin projection P = VW T,
. G(s)=CV (sl - WTAV) ' WTB,
where V and W are given as
V=[(—mal —A)'B,...,(—u ! — A)'B],
W= [(—pal —AT)ICT, o (—pd = AT)TICT].
Then

G(—pi) = G(—pw) and  G'(—pi) = G' (=),

fori=1,...,r.
Starting with an initial guess for A and setting p; = \; ~~ iterative algorithms
(IRKA/MIRIAm) that yield H»-optimal models.

[GUGERCIN ET AL. 2006/08], [BUNSE-GERSTNER ET AL. 2007],
[VAN DOOREN ET AL. 2008]

@© P. Benner PMOR via Projection and Interpolation



@ Interpolatory Model Reduction

The Basic IRKA Algorithm

Algorithm 1 IRKA (MIMO version/MIRIAm)

Input: A stable, B, C, A stable, B, CA,', 6> 0.
Output: APt Bort (ort

._,old
1: while (max;j=1,.. {”’—”’l} > §) do

]

2: di g{m,...,ur} = T-'AT = spectral decomposition,
B=BHT-T C=CT.

3 V= [( A lel,...,(—,u,I—A)—lBB,]

4 W= [(~pml —AT)ICT&, ..., (—pd — AT)ICTE]

5.V =orth(V), W =orth(W), W= W(VHW)1

6: A=WHAV, B=W"B C=cV

@© P. Benner PMOR via Projection and Interpolation



@ PMOR based on Multi-Moment Matching

Idea: choose appropriate frequency parameter 5 and parameter vector p, expand
into multivariate power series about (3, p) and compute reduced-order model, so
that

G(s,p) = G(s,p) + O (Is — 3" + |p = p|I" +Is — 3"|lp — BII) ,

i.e., first K, L,k + ¢ (mostly: K= L= k+¢) coefficients (multi-moments) of
Taylor/Laurent series coincide.

© P. Benner jection and Interpolation



“ @ PMOR based on Multi-Moment Matching

Idea: choose appropriate frequency parameter 5 and parameter vector p, expand
into multivariate power series about (3, p) and compute reduced-order model, so
that

G(s.p) = G(s,p) + O (Is—3/" +lp— plI" + s — 8P — BI"),

i.e., first K, L,k + ¢ (mostly: K= L= k+¢) coefficients (multi-moments) of
Taylor/Laurent series coincide.

Algorithms:

[1] [DanteL T AL. 2004]: explicit computation of moments, numerically unstable.

[2] [FarLE ET aL. 2006/07]: Krylov subspace approach, only polynomial
param.-dependance, numerical properties not clear, but appears to be robust.

[3] [WEILE ET AL. 1999, FENG/B. 2007/14]: Arnoldi-MGS method, employ recursive
dependance of multi-moments, numerically robust, r often larger as for [2].

[4] New: employ dual-weighted residual error bound and greedy procedure to
define interpolation points an # of multi-moments matched
[ANTOULAS/B./FENG 2014/15].

@© P. Benner PMOR via Projection and Interpolation



@ PMOR based on Multi-Moment Matching

Compute cyclic voltammogram based on FE model

Ex(t) = (Ao + p1A1 + paA2)x(t) + Bu(t), y(t) =c"x(t),
where n = 16,912, m = 3, Ay, A, diagonal.

full simulation, n=16912
———reduced order 26

—full simulation, n=16912
—=——reduced order 86

current, nA
current, nA

05

[ 05 5 0 05
voltage u(t), alpha=0.5 voltage u(t), alpha=0.5

Source: MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Scanning_Electrochemical_Microscopy

@© P. Benner PMOR via Projection and Interpolation
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“ @ PMOR based on Rational Interpolation

Theory: Interpolation of the Transfer Function

Theorem [BAUR/BEATTIE/B./GUGERCIN 2007/2011]

Let G(s,p) = C(p)(sE(p) — A(p))'B(p)

= C(p)V(sWTE(p)V — WTA(p)V) "' W' B(p).
SuAppose b= [P1, ..., ps]" and 5 € C are chosen such that both § £(p) — A(p) and
SE(p) — A(p) are invertible.
If

(3E(p) — A(p)) ™" B(P) € range (V)

or

(CB)GE®) ~ AB) ™) € range(W),

then G(3,p) = G(3, p).

@© P. Benner PMOR via Projection and Interpolation



“ @ PMOR based on Rational Interpolation

Theory: Interpolation of the Transfer Function

Theorem [BAUR/BEATTIE/B./GUGERCIN 2007/2011]

Let G(s,p) = C(p)(sE(p) — A(p))'B(p)
= C(p)V(sWTE(p)V — WTA(p)V) "' W' B(p).

SuAppose b= [P1, ..., ps]" and 5 € C are chosen such that both § £(p) — A(p) and
SE(p) — A(p) are invertible.
If
(3E(p) — A(p)) ™" B(P) € range (V)
or
A~ ~ ~ Ay —1 U
(CB)GE®) ~ AB) ™) € range(W),
then G(3,p) = G(3, p).

Note: result extends to MIMO case using tangential interpolation:
Let 0 # b € R", 0 # ¢ € RY be arbitrary.
a) If (8E(p) — A(p))  B(p)b € range (V) , then G(5, p)b = G (3, p)b:

b) If (cTC(p) (5 E(p) — A(p))~* e range (W), then ¢’ G(3,p) = ¢’ G(5, p).

@© P. Benner jection and Interpolation



@ PMOR based on Rational Interpolation

Theory: Interpolation of the Parameter Gradient

Theorem [BAUR/BEATTIE/B./GUGE

Suppose that E(p), A(p), B(p), C(p) are Cl in a neighborhood of
p = [P1,..., P4]" and that both 3 E(p) — A(p) and 3 E(p) — A(p) are invertible.
If

(3E(p) — A(P)) " B(p) € range (V)

and T
(CB)GE®) ~A(B) ™) € range (W),
then 9 5.
VpG(3,5) = V,Gr(8B),  5-G(5.P) = 5-G(5,P)
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“ @ PMOR based on Rational Interpolation

Theory: Interpolation of the Parameter Gradient

Theorem [BAUR/BEATTIE/B. /GUGERCIN

Suppose that £(p), A(p), B(p), C(p) are C* in a neighborhood of
p = [P1,..., P4]" and that both 3 E(p) — A(p) and 3 E(p) — A(p) are invertible.
If

(3E(p) — A(P)) " B(p) € range (V)

and

then
. A A 0 .. . 0 ~n .
VoG(5.8) = V,G(5.8),  5-G(6.B) = 5 6(5.p)

Note: result extends to MIMO case using tangential interpolation:

Let 0 # b € R™, 0 # ¢ € RY be arbitrary. If (5 E(p) — A(p)) " B(p)b € range (V) and
T N

(CTC(f)) (BE(p) — A(f)))*l) € range (W), then V,c” G(3, p)b = V,c” G(3, p)b.
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“ @ PMOR based on Rational Interpolation

Theory: Interpolation of the Parameter Gradient

Theorem [BAUR/BEATTIE/B. /G

Suppose that £(p), A(p), B(p), C(p) are C* in a neighborhood of
p = [P1,..., P4]" and that both 3 E(p) — A(p) and 3 E(p) — A(p) are invertible.
If

(3E(p) — A(P)) " B(p) € range (V)

and

then
. A A 0 .. . 0 ~n .
VoG(5.8) = V,G(5.8),  5-G(6.B) = 5 6(5.p)

1. Assertion of theorem satisfies necessary conditions for surrogate models in trust region
methods [ALEXANDROV/DENNIS/LEWIS/TORCZON "98].

2. Approximation of gradient allows use of reduced-order model for sensitivity analysis.
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» @ PMOR based on Rational Interpolation

Algorithm

Generic implementation of polatory PMOR

Define A(s, p) := sE(p) — A(p).
1. Select “frequencies” si,...,sc € C and parameter vectors p), ... p© e RY.

2. Compute (orthonormal) basis of
V = span {A(s1, p) 2 B(pD), ..., A(si, pw)-lB(p“))}.
3. Compute (orthonormal) basis of

W = s {Als1, o) T )T Al o) T TS

4. Set V:=[vi,...,vie], W:=[wa,...,wk], and W := W(WT V)L
(Note: r = k¥).

A(p) = WTA(R)V,

C(p) = W' C(p)V,

(p) :== WTB(p)V,

5. Compute { =
(p) =W E(p)V.
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@ PMOR based on Rational Interpolation

o If directional derivatives w.r.t. p are included in range (V), range (W), then
also the Hessian of G (&, p) is interpolated by the Hessian of G(5,p).
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@ PMOR based on Rational Interpolation

o If directional derivatives w.r.t. p are included in range (V/), range (W), then
also the Hessian of G(3, p) is interpolated by the Hessian of G(5,p).

@ Choice of optimal interpolation frequencies s, and parameter vectors p(¥)
in general is an open problem.
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@ PMOR based on Rational Interpolation

o If directional derivatives w.r.t. p are included in range (V/), range (W), then
also the Hessian of G(3, p) is interpolated by the Hessian of G(5,p).

@ Choice of optimal interpolation frequencies s, and parameter vectors p(¥)
in general is an open problem.

o For prescribed parameter vectors p(¥), we can use corresponding
‘Ho-optimal frequencies s, ¢, £ =1,...,r, computed by IRKA, ie.,
reduced-order systems @ik) so that

16(-p*) = GO0 = min [6(p) = GO e

order(G)=
G stable

where

I6he = (& [ letmlias)
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@ PMOR based on Rational Interpolation

o If directional derivatives w.r.t. p are included in range (V/), range (W), then
also the Hessian of G(3, p) is interpolated by the Hessian of G(5,p).

@ Choice of optimal interpolation frequencies s, and parameter vectors p(¥)
in general is an open problem.

o For prescribed parameter vectors p(¥), we can use corresponding
‘Ho-optimal frequencies s, ¢, £ =1,...,r, computed by IRKA, ie.,
reduced-order systems @ik) so that

16 p*) = ED )y = _min (16 p¥) = GO )l

order(G)=
G stable

I6he = (& [ letmlias)

e Optimal choice of interpolation frequencies s, and parameter vectors p(¥)
possible for special cases.

where
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@ PMOR based on Rational Interpolation

Numerical Example: Thermal Conduction in a Semiconductor Chip

@ Important requirement for a compact model of thermal conduction is boundary
condition independence.

@ The thermal problem is modeled by the heat equation, where heat exchange
through device interfaces is modeled by convection boundary conditions containing
film coefficients {p; 3 |, to describe the heat exchange at the ith interface.

@ Spatial semi-discretization leads to
3
Ex(t) = (Ao + > piA)x(t) + bu(t), y(t) = ¢ x(t),
i=1

where n = 4,257, A;, i = 1,2, 3, are diagonal.

Source: C.J.M Lasance, Two benchmarks to facilitate the study of compact thermal modeling phenomena,
IEEE. Trans. Components and Packaging Technologies, 24(4):559-565, 2001.

MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Microthruster_Unit
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@ PMOR based on Rational Interpolation

Numerical Example: Thermal Conduction in a Semiconductor Chip

Choose 2 interpolation points for parameters (“important” configurations), 8/7 H-optimal
interpolation frequencies selected by IRKA. = k =2, = 8,7, hence r = 15.

ps =1, p1, p> € [1,10%].

Relative H_error for p, = 1

log (TH=H_II_/IlH1I

log (p,) o0 log (p,)
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@ PMOR Methods — a Survey

o Transfer function interpolation (= output interpolation in frequency
domain) [B./BAUR 2008]
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@ PMOR Methods — a Survey

Other Approaches

o Transfer function interpolation (= output interpolation in frequency
domain) [B./BAUR 2008]

@ Matrix interpolation [PANZER/MOHRING/EID/LOHMANN 2010, AMSALLAM/FARHAT 2011]
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@ PMOR Methods — a Survey

Other Approaches

o Transfer function interpolation (= output interpolation in frequency

domain) [B./BAUR 2008]
@ Matrix interpolation [PANZER/MOHRING/EID/LOHMANN 2010, AMSALLAM/FARHAT 2011]
@ Manifold interpolation [AMSALLAM/FARHAT/. .. 2008]
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@ PMOR Methods — a Survey

Other Approaches

o Transfer function interpolation (= output interpolation in frequency

domain) [B./BAUR 2008]
@ Matrix interpolation [PANZER/MOHRING/EID/LOHMANN 2010, AMSALLAM/FARHAT 2011]
@ Manifold interpolation [AMSALLAM/FARHAT/. .. 2008]

o Proper orthogonal /generalized decomposition (POD/PGD)

[Kuniscu/VOLKWEIN, HINzE, WILLCOX, NoUY, ...]
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@ PMOR Methods — a Survey

Other Approaches

o Transfer function interpolation (= output interpolation in frequency
domain) [B./BAUR 2008]

Matrix interpolation [PANZER/MOHRING/EID/LOHMANN 2010, AMSALLAM/FARHAT 2011]

Manifold interpolation [AMSALLAM/FARHAT/. .. 2008]
Proper orthogonal/generalized decomposition (POD/PGD)

[Kuniscu/VOLKWEIN, HINzE, WILLCOX, NoUY, ...]

Reduced basis method (RBM)

[HAASDONK, MADAY, PATERA, PRUD’'HOMME, R0OzzA, URBAN, ...]
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@ PMOR Methods — a Survey

Other Approaches

o Transfer function interpolation (= output interpolation in frequency

domain) [B./BAUR 2008]
@ Matrix interpolation [PANZER/MOHRING/EID/LOHMANN 2010, AMSALLAM/FARHAT 2011]
@ Manifold interpolation [AMSALLAM/FARHAT/. .. 2008]

o Proper orthogonal /generalized decomposition (POD/PGD)
[Kuniscu/VOLKWEIN, HINzE, WILLCOX, NoUY, ...]

o Reduced basis method (RBM)

[HAASDONK, MADAY, PATERA, PRUD’'HOMME, R0OzzA, URBAN, ...]
@ Loewner-based rational interpolation [LEFTERIU/ANTOULAS/IONITA 2010/11]
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FlowProfile

Senl Heater SenR

Figure : [BAur/BENNER/GREINER/KORVINK / LIENEMANN/MOOSMANN 2010]

Consider an anemometer, a flow sensing device located on a membrane used in
the context of minimizing heat dissipation.

o FE model:
Ex(t) = (A+ pAi)x(t) + Bu(t), y(t) = Cx(t), x(0)=0,

e n=29,008, m=1, g =3, p; €[0,1] fluid velocity.

Source: MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Anemometer
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@ Numerical Comparison: Anemometer

Consider an anemometer, a flow sensing device located on a membrane used in
the context of minimizing heat dissipation.

o FE model:
Ex(t) = (A+ pAx(t) + Bu(t), y(t) = Cx(t), x(0) =0,

e n=29,008 m=1, g =3, p1 €[0,1] fluid velocity.

H,. error

e(c;ehay),
5

——POD
——— POD-Greedy
6| Matrint

D TransFncint
——— PWH2Tanint
MultiPMomMtch

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Parameter Value

Source: MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Anemometer

@© P. Benner PMOR via Projection and Interpolati 25/37


http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Anemometer

@ Numerical Comparison: Anemometer

Consider an anemometer, a flow sensing device located on a membrane used in

the context of minimizing heat dissipation.
o FE model:

Ex(t) = (A+ pAu)x(t) + Bu(t),

y(t) = (1),

e n=29,008 m=1, g =3, p1 €[0,1] fluid velocity.

H, error

e(G‘,Ghal‘)NZ

——POD
——— POD-Greedy
Matrint

——— TransFncint
—— PWH2Tanint
MuliPMomMtch
emwx

0.1 02 0.3 0.4 05 0.6 0.7
Parameter Value

0.8

0.9

1

@© P. Benner

Source: MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Anemometer
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@ Parametric Systems as Bilinear Systems

Linear Parametric Systems — An Alternative Interpretation

Consider bilinear control systems:
- { X(t) = Ax(t) + ) Ax(t)ui(t) + Bu(t),
y(t) = Cx(t), x(0) = xo,
where A, A; € R"™" B e R™™ C ¢ RI*".
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@ Parametric Systems as Bilinear Systems

Linear Parametric Systems — An Alternative Interpretation

Consider bilinear control systems:
- {X(t) = Ax(t)+ ) Aix(t)ui(t) + Bu(t),
y(t) = Cx(t), x(0) = xo,
where A, A; € R™" B e R™™ C € RI*".

Key Observation [B./BREITEN 2011]
Consider parameters as additional inputs, a linear parametric system

x(t) = Ax(t) +Z ai(p)Aix(t) + Bouo(t), y(t) = Cx(t)

with By € R"*™ can be interpreted as bilinear system:

u(t) == [a(p) .. am(p) w(t)],
B:=[0 ... 0 By eR™™ m=mp,+ my.

@© P. Benner PMOR via Projection and Interpolation



@ Parametric Systems as Bilinear Systems

Linear Parametric Systems — An Alternative Interpretation

Linear parametric systems can be interpreted as bilinear systems.
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@ Parametric Systems as Bilinear Systems

Linear Parametric Systems — An Alternative Interpretation

Linear parametric systems can be interpreted as bilinear systems.

Consequence

Model order reduction techniques for bilinear systems can be applied to linear
parametric systems!

Here:
@ Balanced truncation,

o 7, optimal model reduction.
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@ ‘H>-Model Reduction for Bilinear Systems

Some background

Consider bilinear system (m =1, i.e. SISO)
Y {x(t) = Ax(t) + Aux(t)u(t) + Bu(t), y(t) = Cx(t).
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@ ‘H>-Model Reduction for Bilinear Systems

Some background s
Consider bilinear system (m =1, i.e. SISO)
Y {x(t) = Ax(t) + Aux(t)u(t) + Bu(t), y(t) = Cx(t).

Output Characterization (SISO): Volterra series

> t oty te_1
y(t):Z/O/O /0 K(ty,...,tu(t —t1— ... — t) -~ u(t — t)dte - - - dty,
k=1

with kernels K(t1,...,tx) = Ce”A; --- e A1 et B.

@© P. Benner PMOR via Projection and Interpolation



@ ‘H>-Model Reduction for Bilinear Systems

Some background s
Consider bilinear system (m =1, i.e. SISO)
Y {x(t) = Ax(t) + Aux(t)u(t) + Bu(t), y(t) = Cx(t).

Output Characterization (SISO): Volterra series

e t t1 ti_1
y(t):Z/O/O /0 K(ty,...,tu(t —t1— ... — t) -~ u(t — t)dte - - - dty,
k=1

with kernels K(t1,...,tx) = Ce”A; --- e A1 et B.
Multivariate Laplace-transform:

Gk(Sl, - ,Sk) = C(Skl — A)_lAl s (Sg/ — A)_lAl(Sll — A)_IB.
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@ ‘H>-Model Reduction for Bilinear Systems

Some background

Consider bilinear system (m =1, i.e. SISO)

Y {x(t) = Ax(t) + Aux(t)u(t) + Bu(t), y(t) = Cx(t).
Output Characterization (SISO): Volterra series

© t ot te—1
:Z// / K(t, ..., t)u(t —t1 — ... — t) -~ u(t — t)dty - - - dta,
/o Jo 0

with kernels K(t1,...,tx) = Ce”A; --- e A1 et B.
Multivariate Laplace-transform:
Gk(Sl, e ,Sk) = C(Skl — A)_lAl te (Sg/ — A)_lAl(Sll — A)_IB.

Bilinear #{,-norm: [ZuanG/LaM 2002

I, = (n((Z/ / o )k Gk(iwl,...,iwk)GkT(iwl,...,iwk))>> .
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4\1 H,-Model Reduction for Bilinear Systems
el .

Measuring the Approximation Error

[B./BREITEN 2012]

Let X denote a bilinear system. Then, the H,-norm is given as:

i -1
=15, = (vec(lg))" (C & C) (—A RI-I®A-Y A® A;) (B ® B) vec(Im).
i=1
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4\1 H,-Model Reduction for Bilinear Systems
el .

Measuring the Approximation Error

[B./BREITEN 2012]

Let X denote a bilinear system. Then, the H,-norm is given as:

m -1
=15, = (vec(lg))" (C & C) (—A RI-I®A-Y A® A;) (B ® B) vec(Im).
i=1

In order to find an H,-optimal reduced system, define the error system
Y =% — ¥ as follows:

err __ A0 err __ A 0 err __ B err __ A
A _{0 2\], AS _[0 2\,-]’ B _[B’]’ cr=[c -C].
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@ H,-Model Reduction

‘H>-Optimality Conditions

Assume 3 is given in coordinate system induced by eigendecomposition of A:

A=RAR™Y, A =R AR, B=R'B, C=CR.
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@ #H,-Model Reduction

‘H>-Optimality Conditions

Assume 3 is given in coordinate system induced by eigendecomposition of A:
A=RAR™Y, A =R AR, B=R'B, C=CR.

Using A, /Z\,-, é, C as optimization parameters, we can derive necessary conditions for
‘Ho-optimality, e.g.:
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@ #H,-Model Reduction

‘H>-Optimality Conditions

Assume 3 is given in coordinate system induced by eigendecomposition of A:
A=RAR™Y, A =R AR, B=R'B, C=CR.

Using A, Ai, B, C as optimization parameters, we can derive necessary conditions for
‘H.o-optimality, e.g.:

(vec(l))T (eje[ ® c) (—/\ @l — Iy @ A— Xm:/”\,- ® A,-) - (é ® B) vec(/m)
i=1

/2\,-> B (é ® é) vec(Im).

Il
<
o
a
Q0
=
=

\1
—~
O
o
SN
®
[@N
~—
/|\
>
®
3=
|
ol
®
>
|
Nk
P
®
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@ #H,-Model Reduction

‘H>-Optimality Conditions

Assume 3 is given in coordinate system induced by eigendecomposition of A:
A=RAR™Y, A =R AR, B=R'B, C=CR.

Using A, Ai, B, C as optimization parameters, we can derive necessary conditions for
‘H.o-optimality, e.g.:

(vec(l))T (eje[ ® c) (—/\ @l — Iy @ A— Xm:/”\,- ® A,-) - (é ® B) vec(/m)
i=1

/2\,-> B (é ® é) vec(Im).

Il
<
o
a
Q0
=
=

\1
—~
O
o
SN
®
[@N
~—
/|\
>
®
3=
|
ol
®
>
|
Nk
P
®

Connection to interpolation of transfer functions?

@© P. Benner PMOR via Projection and Interpolation



@ #H,-Model Reduction

‘H>-Optimality Conditions

Assume 3 is given in coordinate system induced by eigendecomposition of A:
A=RAR™Y, A =R AR, B=R'B, C=CR.

Using A, Ai, B, C as optimization parameters, we can derive necessary conditions for
‘H.o-optimality, e.g.:

(vec(l))T (eje[ ® c) (-/\ @l — Iy @ A— iji\,- ® A,-) - (é ® B) vec(Im)
i=1

/2\,-> B (é ® é) vec(Im).

Il
<
o
a
Q0
=
=

\1
—~
O
o
SN
®
[@N
~—
/|\
>
®
3=
|
ol
®
>
|
Nk
>
®

For A; = 0, this is equivalent to
G(—Ae)B/ = G(— )B/

~~ tangential interpolation at mirror images of reduced system poles!
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@ #H,-Model Reduction

‘H>-Optimality Conditions

Assume 3 is given in coordinate system induced by eigendecomposition of A:
A=RAR™Y, A =R AR, B=R'B, C=CR.

Using A, Ai, B, C as optimization parameters, we can derive necessary conditions for
‘H.o-optimality, e.g.:

(vec(l))T (eje[ ® c) (-/\ @l — Iy @ A— iji\,- ® A,-) - (é ® B) vec(Im)
i=1

/2\,-> B (é ® é) vec(Im).

Il
<
o
a
Q0
=
=

\1
—~
O
o
SN
®
[@N
~—
/|\
>
®
3=
|
ol
®
>
|
Nk
>
®

For A; = 0, this is equivalent to
G(—Ae)B/ = G(— )B/

~~ tangential interpolation at mirror images of reduced system poles!
Note: [FLAGG 2011] shows equivalence to interpolating the Volterra series!
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@ A First Iterative Approach — BIRKA

Algorithm 2 Bilinear IRKA

Input:

A A, B, C A A, B C

Output: A%t AP* Bort  Cort
1. while (change in A > ¢) do

2:

3:

RAR1=A B=R1B, C=CR, A = R A

m -1
vec(V) = (—A@ Ih—lh® A=Y A ®A,~>
i=1

m —1
vec(W) = (-/\ ©h-hoAT -5 Al ® A,-T> (C‘T ® CT) vec(ly)
i=1
V = orth(V), W = orth(W)
A= (WTV)'WTAV, A = (WTV) T WTAY,
B=(WTV)'W'B, C=cV

7: end while
8 AP = A AP = A, B¥ =B, CP =

@© P. Benner
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@ PMOR via Bilinearization

Fast simulation of cyclic voltammogramms [FENG /K0z10L/RUDNYI/KORVINK 2006]

FE model:

Ex(t) = (A+ pi(t)A1L + p2(t)A2)x(t) + B,
y(t) = Cx(t), x(0) = xo # 0,

@ Rewritten as system with zero initial condition,
e n=16,912, m=3, g=1,
@ p; € [0,10° time-varying voltage functions,
@ reduced system dimension r = 67,
pj€ (P P } Axis of symmetry
@ evaluation times: FOM 4.5h, ROM 38s Figure : [FENG ET AL. 2006]

~~ speed-up factor ~~ 426.
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< @ PMOR via Bilinearization

Fast simulation of cyclic voltammogramms [FENG/Koz10L/RUDNYT/KORVINK 2006]

Original. .. and reduced-order model.

= 73907.2203 ® =73907.2203

lIHG®p,.p, ), (dB)
IIHrjop,.p,)ll, (dB)
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@ Thermal simulations to detect whether temperature changes lead to fatigue or
deterioration of employed materials.

@ Main heat source: thermal losses resulting from current stator coil /rotor.

@ Many different current profiles need to be considered to predict whether
temperature on certain parts of the motor remains in feasible region.

@ Finite element analysis on rather complicated geometries ~~ large-scale linear

models with 7/13 parameters.

magnets

coil

stator

rotor

Schematic view of an electrical motor. Bosch integrated motor generator used in hybrid
variants of Porsche Cayenne, VW Touareg.
Pictures: @ BOSCH
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FEM analysis of thermal model ~ linear
parametric systems with n = 41,199,
m = 4 inputs, and d = 13 parameters,

measurements taken at g = 4 heat
sensors;

time for 1 transient simulation in
COMSOL® ~ 90min;

ROM order A = 300, time for 1 transient
simulation ~ 15sec.

Legend: Temperature curves for six
different values (5, 25, 45, 65, 85,
100[W/m?K]) of the heat transfer
coefficient on the coil.

Output 2 — on top of the coil

500)

50
< 460
2 40
& 4]
& a0
= 350

T 20 a0 0 S0 20100600 S0
Time (s) Time (s)

Output 3 — insulation between coil and stator  Output 4 — insulation on top of the stator
440

32|

.

Temperature (K

2010 w0 w0 20 _10 w0 50
Time (5) Time (s)

[==COMSOL solution — reduced model].
1077

Absolute error (K)

U 20010 o w0 U 200 _10 60 80
Time (s)

—output 1-—output 2~ output 3 output 4
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@ Conclusions and Outlook

@ We have reviewed some of the most popular PMOR methods developed in the last
decade, in particular those based on rational interpolation.

Open problem in general: optimal interpolation points.
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@ Conclusions and Outlook

@ We have reviewed some of the most popular PMOR methods developed in the last
decade, in particular those based on rational interpolation.

Open problem in general: optimal interpolation points.
@ We have established a connection between special linear parametric and bilinear

systems that automatically yields structure-preserving model reduction techniques
for linear parametric systems.
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@ Conclusions and Outlook

@ We have reviewed some of the most popular PMOR methods developed in the last
decade, in particular those based on rational interpolation.

Open problem in general: optimal interpolation points.

@ We have established a connection between special linear parametric and bilinear
systems that automatically yields structure-preserving model reduction techniques
for linear parametric systems.

@ PMOR via H, optimal model reduction for bilinear systems:

@ Yields competitive approach, proven in industrial context.
o Still high offline cost (= time for generating reduced-order model).
@ May need to switch to one-sided projection (W = V) to preserve stability.
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\ @ Conclusions and Outlook

@ We have reviewed some of the most popular PMOR methods developed in the last
decade, in particular those based on rational interpolation.

Open problem in general: optimal interpolation points.

@ We have established a connection between special linear parametric and bilinear
systems that automatically yields structure-preserving model reduction techniques
for linear parametric systems.

@ PMOR via H, optimal model reduction for bilinear systems:

@ Yields competitive approach, proven in industrial context.
o Still high offline cost (= time for generating reduced-order model).
@ May need to switch to one-sided projection (W = V) to preserve stability.

@ PMOR via balanced truncation for bilinear systems:
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