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Introduction
Linear Matrix Equations/Men with Beards

Sylvester equation

James Joseph Sylvester
(September 3, 1814 – March 15, 1897)

AX + XB = C .

Lyapunov equation

Alexander Michailowitsch Ljapunow
(June 6, 1857 – November 3, 1918)

AX + XAT = C , C = CT .
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Introduction
Generalizations of Sylvester (AX + XB = C) and Lyapunov (AX + XAT = C) Equations

Generalized Sylvester equation:

AXD + EXB = C .

Generalized Lyapunov equation:

AXET + EXAT = C , C = CT .

Stein equation:
X − AXB = C .

(Generalized) discrete Lyapunov/Stein equation:

EXET − AXAT = C , C = CT .

Note:

Consider only regular cases, having a unique solution!

Solutions of symmetric cases are symmetric, X = XT ∈ Rn×n; otherwise,
X ∈ Rn×` with n 6= ` in general.
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Introduction
Generalizations of Sylvester (AX + XB = C) and Lyapunov (AX + XAT = C) Equations

Bilinear Lyapunov equation/Lyapunov-plus-positive equation:

AX + XAT +
m∑

k=1

NkXN
T
k = C , C = CT .
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Bilinear Lyapunov equation/Lyapunov-plus-positive equation:

AX + XAT +
m∑

k=1
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Bilinear Lyapunov equation/Lyapunov-plus-positive equation:

AX + XAT +
m∑

k=1

NkXN
T
k = C , C = CT .

Bilinear Sylvester equation:

AX + XB +
m∑

k=1

NkXMk = C .

(Generalized) discrete bilinear Lyapunov/Stein-minus-positive eq.:

EXET − AXAT −
m∑

k=1

NkXN
T
k = C , C = CT .

Note: Again consider only regular cases, symmetric equations have symmetric

solutions.

Max Planck Institute Magdeburg © P. Benner, Numerical Solution of Matrix Equations 5/38



Introduction Applications Solving Sylvester Equations Lyapunov-plus-Positive Eqns. Fin

Introduction
Existence of Solutions of Linear Matrix Equations I

Exemplarily, consider the generalized Sylvester equation

AXD + EXB = C . (1)

Vectorization (using Kronecker product)  representation as linear
system:(

DT ⊗ A + BT ⊗ E︸ ︷︷ ︸
=:A

)
vec(X )︸ ︷︷ ︸

=:x

= vec(C )︸ ︷︷ ︸
=:c

⇐⇒ Ax = c .

=⇒ ”(1) has a unique solution ⇐⇒ A is nonsingular”

Lemma

Λ (A) = {αj + βk | αj ∈ Λ (A,E ), βk ∈ Λ (B,D)}.
Hence, (1) has unique solution ⇐⇒ Λ (A,E ) ∩ −Λ (B,D) = ∅.

Example: Lyapunov equation AX + XAT = C has unique solution
⇐⇒ @ µ ∈ C : ±µ ∈ Λ (A).
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Introduction
The Classical Lyapunov Theorem

Theorem (Lyapunov 1892)

Let A ∈ Rn×n and consider the Lyapunov operator L : X → AX + XAT .
Then the following are equivalent:

(a) ∀Y > 0: ∃X > 0: L(X ) = −Y ,

(b) ∃Y > 0: ∃X > 0: L(X ) = −Y ,

(c) Λ (A) ⊂ C− := {z ∈ C | <z < 0}, i.e., A is (asymptotically) stable or
Hurwitz.

A. M. Lyapunov. The General Problem of the Stability of Motion (in Russian). Doctoral dissertation, Univ. Kharkov 1892. English

translation: Stability of Motion, Academic Press, New-York & London, 1966.

P. Lancaster, M. Tismenetsky. The Theory of Matrices (2nd edition). Academic Press, Orlando, FL, 1985. [Chapter 13]
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Introduction
Existence of Solutions of Linear Matrix Equations II

For Lyapunov-plus-positive-type equations, the solution theory is more
involved.

Focus on the Lyapunov-plus-positive case:

AX + XAT︸ ︷︷ ︸
=:L(X )

+
m∑

k=1

NkXN
T
k︸ ︷︷ ︸

=:P(X )

= C , C = CT ≤ 0.

Note: The operator

P(X ) 7→
m∑
j=1

NkXN
T
k

is nonnegative in the sense that P(X ) ≥ 0, whenever X ≥ 0.

This nonnegative Lyapunov-plus-positive equation is the one occurring in
applications like model order reduction.

If A is Hurwitz and the Nk are small enough, eigenvalue perturbation theory
yields existence and uniqueness of solution.
This is related to the concept of bounded-input bounded-output (BIBO)
stability of dynamical systems.

Max Planck Institute Magdeburg © P. Benner, Numerical Solution of Matrix Equations 8/38
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Introduction
Existence of Solutions of Linear Matrix Equations II

Theorem (Schneider 1965, Damm 2004)

Let A ∈ Rn×n and consider the Lyapunov operator L : X → AX + XAT

and a nonnegative operator P (i.e., P(X ) ≥ 0 if X ≥ 0).
The following are equivalent:

(a) ∀Y > 0: ∃X > 0: L(X ) + P(X ) = −Y ,

(b) ∃Y > 0: ∃X > 0: L(X ) + P(X ) = −Y ,

(c) ∃Y ≥ 0 with (A,Y ) controllable: ∃X > 0: L(X ) + P(X ) = −Y ,

(d) Λ (L+ P) ⊂ C− := {z ∈ C | <z < 0},
(e) Λ (L) ⊂ C− and ρ(L−1P) < 1,

where ρ(T ) = max{|λ|
∣∣ λ ∈ Λ (T )} = spectral radius of T .

T. Damm. Rational Matrix Equations in Stochastic Control. Number 297 in Lecture Notes in Control and Information Sciences.

Springer-Verlag, 2004.

H. Schneider. Positive operators and an inertia theorem. Numerische Mathematik, 7:11–17, 1965.
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Applications
Stability Theory

From Lyapunov’s theorem, immediately obtain characterization of
asymptotic stability of linear dynamical systems

ẋ(t) = Ax(t). (2)

Theorem (Lyapunov)

The following are equivalent:

For (2), the zero state is asymptotically stable.

The Lyapunov equation AX + XAT = Y has a unique solution
X = XT > 0 for all Y = Y T < 0.

A is Hurwitz.

A. M. Lyapunov. The General Problem of the Stability of Motion (In Russian). Doctoral dissertation, Univ. Kharkov 1892. English

translation: Stability of Motion, Academic Press, New-York & London, 1966.
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Classical Control Applications
Algebraic Riccati Equations (ARE)

Solving AREs by Newtons’s Method

Feedback control design often involves solution of

ATX + XA− XGX + H = 0, G = GT ,H = HT .

 In each Newton step, solve Lyapunov equation

(A− GXj)
TXj+1 + Xj+1(A− GXj) = −XjGXj − H.

Decoupling of dynamical systems, e.g., in slow/fast modes, requires
solution of nonsymmetric ARE

AX + XF − XGX + H = 0.

 In each Newton step, solve Sylvester equation

(A− XjG )Xj+1 + Xj+1(F − GXj) = −XjGXj − H.

Max Planck Institute Magdeburg © P. Benner, Numerical Solution of Matrix Equations 11/38
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Classical Control Applications
Model Reduction

Model Reduction via Balanced Truncation
For linear dynamical system

ẋ(t) = Ax(t) + Bu(t), y(t) = Cxr (t), x(t) ∈ Rn

find reduced-order system

ẋr (t) = Arxr (t) + Bru(t), yr (t) = Crxr (t), x(t) ∈ Rr , r � n

such that ‖y(t)− yr (t)‖ < δ.

The popular method balanced truncation requires the solution of the dual
Lyapunov equations

AX + XAT + BBT = 0, ATY + YA + CTC = 0.
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Applications of Lyapunov-plus-Positive Equations

Bilinear control systems:

Σ :

 ẋ(t) = Ax(t) +
m∑
i=1

Nix(t)ui (t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

where A,Ni ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n.

Properties:

Approximation of (weakly) nonlinear systems by Carleman linearization
yields bilinear systems.

Appear naturally in boundary control problems, control via coefficients of
PDEs, Fokker-Planck equations, . . .

Due to the close relation to linear systems, a lot of successful concepts can
be extended, e.g. transfer functions, Gramians, Lyapunov equations, . . .

Linear stochastic control systems possess an equivalent structure and can
be treated alike [B./Damm ’11].
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Applications of Lyapunov-plus-Positive Equations

The concept of balanced truncation can be generalized to the case of
bilinear systems, where we need the solutions of the
Lyapunov-plus-positive equations:

AP + PAT +
m∑
i=1

NiPA
T
i + BBT = 0,

ATQ + QAT +
m∑
i=1

NT
i QAi + CTC = 0.

Due to its approximation quality, balanced truncation is method of
choice for model reduction of medium-size bilinear systems.

For stationary iterative solvers, see [Damm 2008], extended to
low-rank solutions recently by [Szyld/Shank/Simoncini 2014].
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Applications of Lyapunov-plus-Positive Equations

The concept of balanced truncation can be generalized to the case of
bilinear systems, where we need the solutions of the
Lyapunov-plus-positive equations:

AP + PAT +
m∑
i=1

NiPA
T
i + BBT = 0,

ATQ + QAT +
m∑
i=1

NT
i QAi + CTC = 0.

Further applications:

Analysis and model reduction for linear stochastic control systems driven
by Wiener noise [B./Damm 2011], Lévy processes [B./Redmann 2011/15].

Model reduction of linear parameter-varying (LPV) systems using
bilinearization approach [B./Breiten 2011, B./Bruns 2015].

Model reduction for Fokker-Planck equations [Hartmann et al. 2013].

Linear-quadratic regulators for stochastic systems require solution of AREs
of the form

AP + PAT − XCTCX +
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NiPA
T
i + BBT = 0,

application of Newton’s method  1 L-p-P equation/iteration.
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Overview
This part: joint work with Patrick Kürschner and Jens Saak (MPI Magdeburg)

1 Introduction

2 Applications

3 Solving Large-Scale Sylvester and Lyapunov Equations
Some Basics
LR-ADI Derivation
The New LR-ADI Applied to Lyapunov Equations

4 Solving Large-Scale Lyapunov-plus-Positive Equations

5 References
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Solving Large-Scale Sylvester and Lyapunov Equations
The Low-Rank Structure

Sylvester Equations

Find X ∈ Rn×m solving

AX − XB = FGT ,

where A ∈ Rn×n, B ∈ Rm×m, F ∈ Rn×r , G ∈ Rm×r .

If n,m large, but r � n,m
 X has a small numerical rank.
[Penzl 1999, Grasedyck 2004,

Antoulas/Sorensen/Zhou 2002]

rank(X , τ) = f � min(n,m)

300 600 900

100

10−10

u

σ155 ≈ u

singular values of 1600× 900 example

σ(X )

 Compute low-rank solution factors Z ∈ Rn×f , Y ∈ Rm×f ,
D ∈ Rf×f , such that X ≈ ZDY T with f � min(n,m).
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Lyapunov Equations

Find X ∈ Rn×n solving

AX+XAT = −FFT ,

where A ∈ Rn×n, F ∈ Rn×r .

If n large, but r � n
 X has a small numerical rank.
[Penzl 1999, Grasedyck 2004,

Antoulas/Sorensen/Zhou 2002]
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Solving Large-Scale Sylvester and Lyapunov Equations
Some Basics

Sylvester equation AX − XB = FGT is equivalent to linear system of
equations (

Im ⊗ A− BT ⊗ In
)

vec(X ) = vec(FGT ).

This cannot be used for numerical solutions unless nm ≤ 1, 000 (or so),
as

it requires O(n2m2) of storage;

direct solver needs O(n3m3) flops;

low (tensor-)rank of right-hand side is ignored;

in Lyapunov case, symmetry and possible definiteness are not respected.
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Solving Large-Scale Sylvester and Lyapunov Equations
Some Basics

Sylvester equation AX − XB = FGT is equivalent to linear system of
equations (

Im ⊗ A− BT ⊗ In
)

vec(X ) = vec(FGT ).

This cannot be used for numerical solutions unless nm ≤ 1, 000 (or so),
as

it requires O(n2m2) of storage;
direct solver needs O(n3m3) flops;
low (tensor-)rank of right-hand side is ignored;
in Lyapunov case, symmetry and possible definiteness are not respected.

Possible solvers:
Standard Krylov subspace solvers in operator from [Hochbruck, Starke,

Reichel, Bao, . . . ].
Block-Tensor-Krylov subspace methods with truncation [Kressner/Tobler,

Bollhöfer/Eppler, B./Breiten, . . . ].
Galerkin-type methods based on (extended, rational) Krylov subspace
methods [Jaimoukha, Kasenally, Jbilou, Simoncini, Druskin, Knizhermann,. . . ]

Doubling-type methods [Smith, Chu et al., B./Sadkane/El Khoury, . . . ].
ADI methods [Wachspress, Reichel et al., Li, Penzl, B., Saak, Kürschner, . . . ].
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Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Sylvester and Stein equations

Let α

k

6= β

k

with α

k

/∈ Λ(B), β

k

/∈ Λ(A), then

AX − XB = FGT︸ ︷︷ ︸
Sylvester equation

⇔ X = A

k

XB

k

+ (β

k

− α

k

)F

k

G

k

H︸ ︷︷ ︸
Stein equation

with the Cayley like transformations

A

k

:= (A− β

k

In)−1(A− α

k

In), B

k

:= (B − α

k

Im)−1(B − β

k

Im),

F

k

:= (A− β

k

In)−1F , G

k

:= (B − α

k

Im)−HG .

 fix point iteration

Xk = A

k

Xk−1B

k

+ (β

k

− α

k

)F

k

GH

k

for k ≥ 1, X0 ∈ Rn×m.

[Wachspress 1988]
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Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Sylvester and Stein equations

Let αk 6= βk with αk /∈ Λ(B), βk /∈ Λ(A), then

AX − XB = FGT︸ ︷︷ ︸
Sylvester equation

⇔ X = AkXBk + (βk − αk)FkGk
H︸ ︷︷ ︸

Stein equation

with the Cayley like transformations

Ak := (A− βkIn)−1(A− αkIn), Bk := (B − αkIm)−1(B − βkIm),

Fk := (A− βkIn)−1F , Gk := (B − αkIm)−HG .

 alternating directions implicit (ADI) iteration

Xk = AkXk−1Bk + (βk − αk)FkGHk

for k ≥ 1, X0 ∈ Rn×m. [Wachspress 1988]
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Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Sylvester ADI iteration [Wachspress 1988]

Xk = AkXk−1Bk + (βk − αk)FkGHk ,
Ak := (A− βk In)−1(A− αk In), Bk := (B − αk Im)−1(B − βk Im),

Fk := (A− βk In)−1F ∈ Rn×r , Gk := (B − αk Im)−HG ∈ Cm×r .

Now set X0 = 0 and find factorization Xk = ZkDkY
H
k

X1 = A1X0B1 + (β1 − α1)F1GH1

⇒ V1 := Z1 = (A− β1In)−1F ∈ Rn×r ,

D1= (β1 − α1)Ir ∈ Rr×r

,

W1 := Y1 = (B − α1Im)−HG ∈ Cm×r .
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X1 = (β1 − α1)(A− β1In)−1FGT (B − α1Im)−1
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Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Sylvester ADI iteration [Wachspress 1988]

Xk = AkXk−1Bk + (βk − αk)FkGHk ,
Ak := (A− βk In)−1(A− αk In), Bk := (B − αk Im)−1(B − βk Im),

Fk := (A− βk In)−1F ∈ Rn×r , Gk := (B − αk Im)−HG ∈ Cm×r .

Now set X0 = 0 and find factorization Xk = ZkDkY
H
k

X2 = A2X1B2 + (β2 − α2)F2GH2 = . . . =

V2 = V1 + (β2 − α1)(A + β2I )
−1V1 ∈ Rn×r ,

W2 = W1 + (α2 − β1)(B + α2I )
−HW1 ∈ Rm×r ,

Z2 = [Z1, V2],

D2 = diag (D1, (β2 − α2)Ir ),

Y2 = [Y1, W2].
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Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Algorithm [B. 2005, Li/Truhar 2008, B./Li/Truhar 2009]

Algorithm 1: Low-rank Sylvester ADI / factored ADI (fADI)

Input : Matrices defining AX − XB = FGT and shift parameters
{α1, . . . , αkmax}, {β1, . . . , βkmax}.

Output: Z , D, Y such that ZDY H ≈ X .
1 Z1 = V1 = (A− β1In)−1F ,

2 Y1 = W1 = (B − α1Im)−HG .
3 D1 = (β1 − α1)Ir
4 for k = 2, . . . , kmax do
5 Vk = Vk−1 + (βk − αk−1)(A− βk In)−1Vk−1.

6 Wk = Wk−1 + (αk − βk−1)(B − αk In)−HWk−1.
7 Update solution factors

Zk = [Zk−1,Vk ], Yk = [Yk−1,Wk ], Dk = diag (Dk−1, (βk−αk)Ir ).
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Solving Large-Scale Sylvester and Lyapunov Equations
ADI Shifts

Optimal Shifts

Solution of rational optimization problem

min
αj∈C
βj∈C

max
λ∈Λ(A)

µ∈Λ(B)

k∏
j=1

∣∣∣∣ (λ− αj)(µ− βj)
(λ− βj)(µ− αj)

∣∣∣∣ ,
for which no analytic solution is known in general.

Some shift generation approaches:

generalized Bagby points, [Levenberg/Reichel 1993]

adaption of Penzl’s cheap heuristic approach available
[Penzl 1999, Li/Truhar 2008]

 approximate Λ(A), Λ(B) by small number of Ritz values w.r.t. A,
A−1, B, B−1 via Arnoldi,

just taking these Ritz values alone also works well quite often.
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Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Disadvantages of Low-Rank ADI as of 2012:

1 No efficient stopping criteria:

Difference in iterates  norm of added columns/step: not reliable,
stops often too late.
Residual is a full dense matrix, can not be calculated as such.

2 Requires complex arithmetic for real coefficients when complex shifts
are used.

3 Expensive (only semi-automatic) set-up phase to precompute ADI
shifts.

None of these disadvantages exists as of today
=⇒ speed-ups old vs. new LR-ADI can be up to 20!

Max Planck Institute Magdeburg © P. Benner, Numerical Solution of Matrix Equations 21/38



Introduction Applications Solving Sylvester Equations Lyapunov-plus-Positive Eqns. Fin

Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Disadvantages of Low-Rank ADI as of 2012:

1 No efficient stopping criteria:

Difference in iterates  norm of added columns/step: not reliable,
stops often too late.
Residual is a full dense matrix, can not be calculated as such.

2 Requires complex arithmetic for real coefficients when complex shifts
are used.

3 Expensive (only semi-automatic) set-up phase to precompute ADI
shifts.

None of these disadvantages exists as of today
=⇒ speed-ups old vs. new LR-ADI can be up to 20!

Max Planck Institute Magdeburg © P. Benner, Numerical Solution of Matrix Equations 21/38



Introduction Applications Solving Sylvester Equations Lyapunov-plus-Positive Eqns. Fin

Projection-Based Lyapunov Solvers. . .
. . . for Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace Z ⊂ Rn,

dimZ = r .

2 Set Â := ZTAZ , B̂ := ZTB.

3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.

4 Use X ≈ ZX̂ZT .

Examples:

Krylov subspace methods, i.e., for m = 1:

Z = K(A,B, r) = span{B,AB,A2B, . . . ,Ar−1B}

[Saad 1990, Jaimoukha/Kasenally 1994, Jbilou 2002–2008].

Extended Krylov subspace method (EKSM) [Simoncini 2007],

Z = K(A,B, r) ∪ K(A−1,B, r).

Rational Krylov subspace methods (RKSM) [Druskin/Simoncini 2011].
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The New LR-ADI Applied to Lyapunov Equations
Example: an ocean circulation problem [Van Gijzen et al. 1998]

FEM discretization of a simple 3D ocean circulation model
(barotropic, constant depth)  stiffness matrix −A with
n = 42, 249, choose artificial constant term B = rand(n,5).

Convergence history:
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10−10

10−5

100

TOL

coldim(Z )

‖R
‖/
‖B

T
B
‖

LR-ADI with adaptive shifts vs. EKSM

LR-ADI
EKSM

CPU times: LR-ADI ≈ 110 sec, EKSM ≈ 135 sec.
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Solving Large-Scale Sylvester and Lyapunov Equations
Summary & Outlook

Numerical enhancements of low-rank ADI for large
Sylvester/Lyapunov equations:

1 low-rank residuals, reformulated implementation,
2 compute real low-rank factors in the presence of complex shifts,
3 self-generating shift strategies (quantification in progress).

For diffusion-convection-reaction example:
332.02 sec. down to 17.24 sec.  acceleration by factor almost 20.

Generalized version enables derivation of low-rank solvers for various
generalized Sylvester equations.
Ongoing work:

Apply LR-ADI in Newton methods for algebraic Riccati equations

R(X ) = AX + XAT + GGT − XSSTX = 0,

D(X ) = AXAT − EXET + GGT + ATXF (Ir + FTXF )−1FTXA = 0.

For nonlinear AREs see

P. Benner, P. Kürschner, J. Saak. Low-rank Newton-ADI methods for large nonsymmetric algebraic Riccati

equations. J. Franklin Inst., 2015.
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Overview
This part: joint work with Tobias Breiten (KFU Graz, Austria)

1 Introduction

2 Applications

3 Solving Large-Scale Sylvester and Lyapunov Equations

4 Solving Large-Scale Lyapunov-plus-Positive Equations
Existence of Low-Rank Approximations
Generalized ADI Iteration
Bilinear EKSM
Tensorized Krylov Subspace Methods
Comparison of Methods

5 References
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Solving Large-Scale Lyapunov-plus-Positive Equations
Some basic facts and assumptions

AX + XAT +
m∑
j=1

NjXN
T
j + BBT = 0. (3)

Need a positive semi-definite symmetric solution X .

As discussed before, solution theory for Lyapuonv-plus-positive
equation is more involved then in standard Lyapuonv case.
Here, existence and uniqueness of positive semi-definite solution
X = XT is assumed.

Want: solution methods for large scale problems, i.e., only
matrix-matrix multiplication with A,Nj , solves with (shifted) A
allowed!

Requires to compute data-sparse approximation to generally dense
X ; here: X ≈ ZZT with Z ∈ Rn×nZ , nZ � n!

Max Planck Institute Magdeburg © P. Benner, Numerical Solution of Matrix Equations 26/38



Introduction Applications Solving Sylvester Equations Lyapunov-plus-Positive Eqns. Fin

Solving Large-Scale Lyapunov-plus-Positive Equations
Some basic facts and assumptions

AX + XAT +
m∑
j=1

NjXN
T
j + BBT = 0. (3)

Need a positive semi-definite symmetric solution X .

As discussed before, solution theory for Lyapuonv-plus-positive
equation is more involved then in standard Lyapuonv case.
Here, existence and uniqueness of positive semi-definite solution
X = XT is assumed.

Want: solution methods for large scale problems, i.e., only
matrix-matrix multiplication with A,Nj , solves with (shifted) A
allowed!

Requires to compute data-sparse approximation to generally dense
X ; here: X ≈ ZZT with Z ∈ Rn×nZ , nZ � n!
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Solving Large-Scale Lyapunov-plus-Positive Equations
Existence of Low-Rank Approximations

Question

Can we expect low-rank approximations ZZT ≈ X to the solution of

AX + XAT +
m∑
j=1

NjXN
T
j + BBT = 0 ?
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Existence of Low-Rank Approximations

Question

Can we expect low-rank approximations ZZT ≈ X to the solution of

AX + XAT +
m∑
j=1

NjXN
T
j + BBT = 0 ?

Standard Lyapunov case: [Grasedyck ’04]

AX + XAT + BBT = 0 ⇐⇒ (In ⊗ A + A⊗ In)︸ ︷︷ ︸
=:A

vec(X ) = − vec(BBT ).
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Solving Large-Scale Lyapunov-plus-Positive Equations
Existence of Low-Rank Approximations

Standard Lyapunov case: [Grasedyck ’04]

AX + XAT + BBT = 0 ⇐⇒ (In ⊗ A + A⊗ In)︸ ︷︷ ︸
=:A

vec(X ) = − vec(BBT ).

Apply

M−1 = −
∫ ∞

0

exp(tM)dt

to A and approximate the integral via (sinc) quadrature ⇒

A−1 ≈ −
k∑

i=−k

ωi exp(tkA),

with error ∼ exp(−
√
k) (exp(−k) if A = AT ), then an approximate Lyapunov

solution is given by

vec(X ) ≈ vec(Xk) =
k∑

i=−k

ωi exp(tiA) vec(BBT ).
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Solving Large-Scale Lyapunov-plus-Positive Equations
Existence of Low-Rank Approximations

Standard Lyapunov case: [Grasedyck ’04]

AX + XAT + BBT = 0 ⇐⇒ (In ⊗ A + A⊗ In)︸ ︷︷ ︸
=:A

vec(X ) = − vec(BBT ).

vec(X ) ≈ vec(Xk) =
k∑

i=−k

ωi exp(tiA) vec(BBT ).

Now observe that

exp(tiA) = exp (ti (In ⊗ A + A⊗ In)) ≡ exp(tiA)⊗ exp(tiA).
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Now observe that

exp(tiA) = exp (ti (In ⊗ A + A⊗ In)) ≡ exp(tiA)⊗ exp(tiA).

Hence,

vec(Xk) =
k∑

i=−k

ωi (exp(tiA)⊗ exp(tiA)) vec(BBT )
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Standard Lyapunov case: [Grasedyck ’04]

AX + XAT + BBT = 0 ⇐⇒ (In ⊗ A + A⊗ In)︸ ︷︷ ︸
=:A

vec(X ) = − vec(BBT ).

Hence,

vec(Xk) =
k∑

i=−k

ωi (exp(tiA)⊗ exp(tiA)) vec(BBT )

=⇒ Xk =
k∑

i=−k

ωi exp(tiA)BBT exp(tiA
T ) ≡

k∑
i=−k

ωiBiB
T
i ,

so that rank (Xk) ≤ (2k + 1)m with

||X − Xk ||2 . exp(−
√
k) ( exp(−k) for A = AT )!

Max Planck Institute Magdeburg © P. Benner, Numerical Solution of Matrix Equations 27/38



Introduction Applications Solving Sylvester Equations Lyapunov-plus-Positive Eqns. Fin

Solving Large-Scale Lyapunov-plus-Positive Equations
Existence of Low-Rank Approximations

Question

Can we expect low-rank approximations ZZT ≈ X to the solution of

AX + XAT +
m∑
j=1

NjXN
T
j + BBT = 0 ?

Problem: in general,

exp

ti (I ⊗ A + A⊗ I +
m∑
j=1

Nj ⊗ Nj )

 6= (exp (tiA)⊗ exp (tiA)) exp

ti (
m∑
j=1

Nj ⊗ Nj )

.
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Solving Large-Scale Lyapunov-plus-Positive Equations
Existence of Low-Rank Approximations

Question

Can we expect low-rank approximations ZZT ≈ X to the solution of

AX + XAT +
m∑
j=1

NjXN
T
j + BBT = 0 ?

Assume that m = 1 and N1 = UV T with U,V ∈ Rn×r and consider

( In ⊗ A + A⊗ In︸ ︷︷ ︸
=A

+N1 ⊗ N1 ) vec(X ) = − vec(BBT )︸ ︷︷ ︸
=:y

.
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T
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( In ⊗ A + A⊗ In︸ ︷︷ ︸
=A

+N1 ⊗ N1 ) vec(X ) = − vec(BBT )︸ ︷︷ ︸
=:y

.

Sherman-Morrison-Woodbury =⇒(
Ir ⊗ Ir + (V T ⊗ V T )A−1(U ⊗ U)

)
w = (V T ⊗ V T )A−1y ,

A vec(X ) = y − (U ⊗ U)w .
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Existence of Low-Rank Approximations

Question

Can we expect low-rank approximations ZZT ≈ X to the solution of

AX + XAT +
m∑
j=1

NjXN
T
j + BBT = 0 ?

Assume that m = 1 and N1 = UV T with U,V ∈ Rn×r and consider

( In ⊗ A + A⊗ In︸ ︷︷ ︸
=A

+N1 ⊗ N1 ) vec(X ) = − vec(BBT )︸ ︷︷ ︸
=:y

.

Sherman-Morrison-Woodbury =⇒(
Ir ⊗ Ir + (V T ⊗ V T )A−1(U ⊗ U)

)
w = (V T ⊗ V T )A−1y ,

A vec(X ) = y − (U ⊗ U)w .

Matrix rank of RHS −BBT − U vec−1 (w)UT is ≤ r + 1!
 Apply results for linear Lyapunov equations with r.h.s of rank r + 1.
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Solving Large-Scale Lyapunov-plus-Positive Equations
Existence of Low-Rank Approximations

Theorem [B./Breiten 2012]

Assume existence and uniqueness with stable A and Nj = UjV
T
j , with

Uj ,Vj ∈ Rn×rj . Set r =
∑m

j=1 rj .
Then the solution X of

AX + XAT +
m∑
j=1

NjXN
T
j + BBT = 0

can be approximated by Xk of rank (2k + 1)(m + r), with an error
satisfying

‖X − Xk‖2 . exp(−
√
k).
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Solving Large-Scale Lyapunov-plus-Positive Equations
Generalized ADI Iteration

Let us again consider the Lyapunov-plus-positive equation

AP + PAT + NPNT + BBT = 0.
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Solving Large-Scale Lyapunov-plus-Positive Equations
Generalized ADI Iteration

Let us again consider the Lyapunov-plus-positive equation

AP + PAT + NPNT + BBT = 0.

For a fixed parameter p, we can rewrite the linear Lyapunov operator as

AP + PAT =
1

2p

(
(A + pI )P(A + pI )T − (A− pI )P(A− pI )T

)
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Solving Large-Scale Lyapunov-plus-Positive Equations
Generalized ADI Iteration

Let us again consider the Lyapunov-plus-positive equation

AP + PAT + NPNT + BBT = 0.

For a fixed parameter p, we can rewrite the linear Lyapunov operator as

AP + PAT =
1

2p

(
(A + pI )P(A + pI )T − (A− pI )P(A− pI )T

)
leading to the fix point iteration [Damm 2008]

Pj = (A− pI )−1(A + pI )Pj−1(A + pI )T (A− pI )−T

+ 2p(A− pI )−1(NPj−1N
T + BBT )(A− pI )−T .
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Let us again consider the Lyapunov-plus-positive equation

AP + PAT + NPNT + BBT = 0.

For a fixed parameter p, we can rewrite the linear Lyapunov operator as

AP + PAT =
1

2p

(
(A + pI )P(A + pI )T − (A− pI )P(A− pI )T

)
leading to the fix point iteration [Damm 2008]

Pj = (A− pI )−1(A + pI )Pj−1(A + pI )T (A− pI )−T

+ 2p(A− pI )−1(NPj−1N
T + BBT )(A− pI )−T .

Pj ≈ ZjZ
T
j (rank (Zj)� n)  factored iteration

ZjZ
T
j = (A− pI )−1(A + pI )Zj−1Z

T
j−1(A + pI )T (A− pI )−T

+ 2p(A− pI )−1(NZj−1Z
T
j−1N

T + BBT )(A− pI )−T .
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Solving Large-Scale Lyapunov-plus-Positive Equations
Generalized ADI Iteration

Hence, for a given sequence of shift parameters {p1, . . . , pq}, we can
extend the linear ADI iteration as follows:

Z1 =
√

2p1 (A− p1I )
−1 B,

Zj = (A− pj I )
−1 [(A + pj I )Zj−1

√
2pjB

√
2pjNZj−1

]
, j ≤ q.
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Solving Large-Scale Lyapunov-plus-Positive Equations
Generalized ADI Iteration

Hence, for a given sequence of shift parameters {p1, . . . , pq}, we can
extend the linear ADI iteration as follows:

Z1 =
√

2p1 (A− p1I )
−1 B,

Zj = (A− pj I )
−1 [(A + pj I )Zj−1

√
2pjB

√
2pjNZj−1

]
, j ≤ q.

Problems:

A and N in general do not commute  we have to operate on full
preceding subspace Zj−1 in each step.

Rapid increase of rank (Zj) perform some kind of column
compression.

Choice of shift parameters?  No obvious generalization of
minimax problem.
Here, we will use shifts minimizing a certain H2-optimization
problem, see [B./Breiten 2011/14].
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Generalized ADI Iteration
Numerical Example: A Heat Transfer Model with Uncertainty

2-dimensional heat distribution
motivated by [Benner/Saak ’05]

boundary control by a cooling
fluid with an uncertain spraying
intensity

Ω = (0, 1)× (0, 1)

xt = ∆x in Ω

n · ∇x = (0.5 + dω1)x on Γ1

x = u on Γ2

x = 0 on Γ3, Γ4

spatial discretization k × k-grid

⇒ dx ≈ Axdt + Nxdωi + Budt

output: C =
1

k2

[
1 . . . 1

]

Γ1

Γ3

Γ4

Γ2

x10

x20

x30

x01 x02 x03

x14

x24

x34

x41 x42 x43

x11

x21

x31

x12

x22

x32

x13

x23

x33
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Generalized ADI Iteration
Numerical Example: A Heat Transfer Model with Uncertainty

Conv. history for bilinear low-rank ADI method (n = 40, 000)
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Solving Large-Scale Lyapunov-plus-Positive Equations
Generalizing the Extended Krylov Subspace Method (EKSM) [Simoncini ’07]

Low-rank solutions of the Lyapunov-plus-positive equation may be
obtained by projecting the original equation onto a suitable smaller
subspace V = span(V ), V ∈ Rn×k , with V TV = I .

In more detail, solve(
V TAV

)
X̂ + X̂

(
V TATV

)
+
(
V TNV

)
X̂
(
V TNTV

)
+
(
V TB

) (
V TB

)T
= 0

and prolongate X ≈ V X̂V T .

For this, one might use the extended Krylov subspace method (EKSM)
algorithm in the following way:

V1 =
[
B A−1B

]
,

Vr =
[
AVr−1 A−1Vr−1 NVr−1

]
, r = 2, 3, . . .

However, criteria like dissipativity of A for the linear case which ensure
solvability of the projected equation have to be further investigated.
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Bilinear EKSM
Residual Computation in O(k3)

Theorem (B./Breiten 2012)

Let Vi ∈ Rn×ki be the extend Krylov matrix after i generalized EKSM steps.
Denote the residual associated with the approximate solution Xi = Vi X̂iV

T
i by

Ri := AXi + XiA
T + NXiN

T + BBT ,

where X̂i is the solution of the reduced Lyapunov-plus-positive equation

V T
i AVi X̂i + X̂iV

T
i ATVi + V T

i NVi X̂iV
T
i NTVi + V T

i BBTVi = 0.

Then:

range (Ri ) ⊂ range (Vi+1),

‖Ri‖ = ‖V T
i+1RiVi+1‖ for the Frobenius and spectral norms.

Remarks:

Residual evaluation only requires quantities needed in i + 1st projection
step plus O(k3

i+1) operations.

No Hessenberg structure of reduced system matrix that allows to simplify
residual expression as in standard Lyapunov case!
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Bilinear EKSM
Numerical Example: A Heat Transfer Model with Uncertainty

Convergence history for bilinear EKSM variant (n = 6, 400)
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Solving Large-Scale Lyapunov-plus-Positive Equations
Tensorized Krylov Subspace Methods

Another possibility is to iteratively solve the linear system

(In ⊗ A + A⊗ In + N ⊗ N) vec(X ) = − vec(BBT ),

with a fixed number of ADI iteration steps used as a preconditioner M

M−1 (In ⊗ A + A⊗ In + N ⊗ N) vec(X ) = −M−1 vec(BBT ).

We implemented this approach for PCG and BiCGstab.

Updates like Xk+1 ← Xk + ωkPk require truncation operator to preserve
low-order structure.

Note, that the low-rank factorization X ≈ ZZT has to be replaced by
X ≈ ZDZT , D possibly indefinite.

Similar to more general tensorized Krylov solvers, see [Kressner/Tobler 2010/12].
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Tensorized Krylov Subspace Methods
Vanilla Implementation of Tensor-PCG for Matrix Equations

Algorithm 2: Preconditioned CG method for A(X ) = B
Input : Matrix functions A,M : Rn×n → Rn×n, low rank factor B of right-hand side

B = −BBT . Truncation operator T w.r.t. relative accuracy εrel .
Output: Low rank approximation X = LDLT with ||A(X )− B||F ≤ tol.

1 X0 = 0, R0 = B, Z0 =M−1(R0), P0 = Z0, Q0 = A(P0), ξ0 = 〈P0,Q0〉, k = 0
2 while ||Rk ||F > tol do

3 ωk = 〈Rk ,Pk〉
ξk

4 Xk+1 = Xk + ωkPk , Xk+1 ← T (Xk+1)
5 Rk+1 = B −A(Xk+1), Optionally: Rk+1 ← T (Rk+1)

6 Zk+1 =M−1(Rk+1)

7 βk = − 〈Zk+1,Qk〉
ξk

8 Pk+1 = Zk+1 + βkPk , Pk+1 ← T (Pk+1)
9 Qk+1 = A(Pk+1), Optionally: Qk+1 ← T (Qk+1)

10 ξk+1 = 〈Pk+1,Qk+1〉
11 k = k + 1

12 X = Xk

Here, A : X → AX + XAT + NXNT , M: ` steps of (bilinear) ADI, both in
low-rank (”ZDZT” format).
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Comparison of Methods
Heat Equation with Boundary Control

Comparison of low rank solution methods for n = 562, 500.
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Comparison of Methods
Fokker-Planck Equation

Comparison of low rank solution methods for n = 10, 000.
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Comparison of Methods
RC Circuit Simulation

Comparison of low rank solution methods for n = 250, 000.
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Comparison of Methods

Comparison of CPU times

Heat equation RC circuit Fokker-Planck

Bilin. ADI 2 H2 shifts - - 1.733 (1.578)

Bilin. ADI 6 H2 shifts 144,065 (2,274) 20,900 (3091) -

Bilin. ADI 8 H2 shifts 135,711 (3,177) - -

Bilin. ADI 10 H2 shifts 33,051 (4,652) - -

Bilin. ADI 2 Wachspress shifts - - 6.617 (4.562)

Bilin. ADI 4 Wachspress shifts 41,883 (2,500) 18,046 (308) -

CG (Bilin. ADI precond.) 15,640 - -

BiCG (Bilin. ADI precond.) - 16,131 11.581

BiCG (Linear ADI precond.) - 12,652 9.680

EKSM 7,093 19,778 8.555

Numbers in brackets: computation of shift parameters.
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Solving Large-Scale Lyapunov-plus-Positive Equations
Summary & Outlook

Under certain assumptions, we can expect the existence of low-rank
approximations to the solution of Lyapunov-plus-positive equations.

Solutions strategies via extending the ADI iteration to bilinear
systems and EKSM as well as using preconditioned iterative solvers
like CG or BiCGstab up to dimensions n ∼ 500, 000 in MATLAB®.

Optimal choice of shift parameters for ADI is a nontrivial task.

Other ”tricks” (realification, low-rank residuals) not adapted from
standard case so far.

What about the singular value decay in case of N being full rank?

Need efficient implementation!
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