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The Unilateral Quadratic Matrix Equation

Problem: Find X ∈ Rn×n such that

AX 2 + BX + C = 0, A,B,C ∈ Rn×n.

Unilateral quadratic matrix equations (UQME) arise in
solving large-scale Dynamic Stochastic General Equilibrium (DSGE) models;

quasi-birth-death processes;

quadratic eigenvalue problems.

Explicit formula for solution of scalar quadratic equations does not
generalize to UQME, except in special situations: e.g., if A = In and B,C
commute, then

X = −1

2
B ± (B2 − 4C )

1
2 if B2 − 4C has a matrix root.

 need numerical solution schemes!

N.J. Higham and H.M. Kim. Numerical analysis of a quadratic matrix equation. IMA Journal of Numerical Analysis
20(4):499–519, 2000.
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The Schur Method for UQME

Theorem ([Higham/Kim 2000])

Given A,B,C ∈ Rn×n, consider the UQME AX 2 + BX + C = 0.

a) X ∈ Rn×n solves the UQME if and only if[
0 In

−C −B

]
︸ ︷︷ ︸

=:F

[
In
X

]
=

[
In 0

0 A

]
︸ ︷︷ ︸

=:G

[
In
X

]
X .

In mathematical terms, X defines an n-dimensional graph subspace of the
matrix pencil F − λG, corresponding to the eigenvalues Λ (X ) ⊂ Λ (F ,G ).

N.J. Higham and H.M. Kim. Numerical analysis of a quadratic matrix equation. IMA Journal of Numerical Analysis
20(4):499–519, 2000.
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The Schur Method for UQME

Theorem ([Higham/Kim 2000])

Given A,B,C ∈ Rn×n, consider the UQME AX 2 + BX + C = 0.

b) Let
F = QΣZT , G = QΦZT , with Σ,Φ =

[
@@
]
,

where Q,Z ∈ Rn×n are orthogonal (QTQ = ZTZ = In), be the generalized
Schur decomposition of F − λG.

Then every solution X ∈ Rn×n of the UQME has the form

X = Z21Z
−1
11 = Q11Σ11Φ−1

11 Q−1
11 ,

with Mij denoting the blocks in a uniform 2× 2-block partitioning of M.

Note: different solutions X correspond to different orderings of the eigenvalues of
F − λG , i.e., different orderings of the diagonal elements of Σ,Φ.

N.J. Higham and H.M. Kim. Numerical analysis of a quadratic matrix equation. IMA Journal of Numerical Analysis
20(4):499–519, 2000.
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The Schur Method for UQME

The characterization of solutions leads directly to a numerical solution
method for the UQME:

1. Form the 2n × 2n-block matrices F ,G .

2. Compute the generalized Schur decomposition of F − λG (e.g., using
the QZ algorithm in MATLAB via qz).

3. Re-order the diagonal elements/eigenvalues in the generalized Schur
form as needed.

4. Solve XZ11 = Z21.

Remark

As
cond2(Z11) ≤ 1 + ‖X‖2,

scaling X → X/ρ with ρ ≈ X may improve the accuracy of the solution.
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The Schur Method for UQME
Properties of the Schur method

+ QZ algorithm [Moler/Stewart 1973] is numerically backward stable
and is implemented in LAPACK, the backbone of Intel’s MKL, the
MATLAB Linear Algebra kernel, etc.

+ Thus, Schur method can be easily implemented, e.g., in MATLAB.

− Structure of matrices from DGSE models cannot be exploited, except,
maybe, for initial step (reduction to Hessenberg-triangular form).

− Data access pattern and data dependencies make the QZ algorithm a
serial, communication-bound algorithm.

− Therefore, QZ algorithm is notoriously difficult to parallelize. Hence,
it is not efficient on modern multicore architectures.

+ Recent performance improvement using block variant of QZ algorithm
[Kågström/Kressner 2008], not yet included in LAPACK.

B. Kågström and D. Kressner. Multishift variants of the QZ algorithm with aggressive early deflation. SIAM Journal on
Matrix Analysis and Applications 29(1):199–227, 2008.
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The Schur Method for UQME
Preliminary Performance Results

Uniform (−1, 1) random matrices

Compute generalized Schur decomposition only

2x8 core Intel Xeon Silver 4110, 192 GB RAM, Intel MKL 2018.1

Dim. n LAPACK KKQZ Speed-up

5 000 873s 482s 1.81

10 000 9 630s 5 647s 1.71

15 000 27 623s 17 195s 1.61

20 000 77 935s 48 189s 1.62

25 000 141 207s 86 009s 1.64
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A Sign Function Approach to Solving UQMEs

Basic Idea: for solving UQME, only basis of subspace spanned by
[

I
X

]
is

needed, that is, a separation of the spectrum into 2 clusters rather than a
separation of all eigenvalues as in the generalized Schur decompostion.

Therefore, need Q,Z ∈ Rn×n (orthogonal) such that

Q(F − λG )Z =

[
F11 F12

F22

]
− λ

[
G11 G12

G22

]

=

[ ]
− λ

[ ]
,

i.e., block-triangular decomposition!
Then X = Z21Z

−1
11 and Q is not even needed!

This can be computed by spectral projection methods like (generalized)
sign and disk function methods.
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The Sign Function Method
Definition [Roberts 1971]

Definition (Matrix sign function)

Given Z ∈ Rn×n with k / n − k eigenvalues in the open left / right half of the
complex plane and Jordan decomposition

Z = S

[
J− 0

0 J+

]
S−1,

where the Jordan blocks corresponding to the eigenvalues

in the open left half plane are collected in J− ∈ Ck×k ,

in the open right half plane are collected in J+ ∈ Cn−k×n−k .

Then

sign (Z ) := S

[
−Ik 0

0 In−k

]
S−1,

and range (In − sign (Z )) is the Z -invariant subspace corresponding to J−.
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The Sign Function Method
Computation [Roberts 1971]

Computing the matrix sign function

Applying Newton’s method to F (Z ) = Z 2 − I with Z0 := Z yields

Z0 ← Z , Zj+1 ←
1

2cj
(Zj + c2

j Z
−1
j ), j = 0, 1, . . . ,

with limj→∞ Zj = sign (Z ) and where cj is a scaling factor accelerating
convergence.

Stable Z -invariant subspace can be computed using pivoted QR decomposition of
SVD applied to I − sign (Z ).
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The Sign Function Method
Computation for matrix pencils [Gardiner/Laub 1986]

Computing the matrix sign function

Applying Newton’s method to F (Z ) = Z 2 − I with Z0 := Z yields

Z0 ← Z , Zj+1 ←
1

2cj
(Zj + c2

j Z
−1
j ), j = 0, 1, . . . ,

with limj→∞ Zj = sign (Z ) and where cj is a scaling factor accelerating
convergence.

Stable Z -invariant subspace can be computed using pivoted QR decomposition of
SVD applied to I − sign (Z ).

Application to matrix pencils F − λG : apply sign function iteration implicitly to
Z := G−1F , leading to

F0 ← F , Fj+1 ←
1

2cj
(Fj + c2

j GF
−1
j G ), j = 0, 1, . . . ,

and range (limj→∞ Fj − G ) provides stable ”deflating” subspace.

Note: Usually, cj =
(
| det(Zj )|
| det(Y )|

) 1
n

.
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The Sign Function Method
Computation for matrix pencils [Gardiner/Laub 1986]

Algorithm 1 Generalized Sign Function Method

Input: A matrix pencil F − λG , F ,G ∈ Rn×n with no eigenvalues on the
imaginary axis.

Output: generalized sign function F∞ − λG .

1: Set F0 = F , g = | detG | 1n .
2: for j = 0, 1, . . . until convergence do
3: Fj = ΠTLU {LU factorization: L/U lower/upper triangular, Π permutation}
4: cj =

(∏n
k=1 |ukk |

1
n

)
/g .

5: Solve LW = ΠG by forward substitution.
6: Solve UX = W by backward substitution.
7: Fj+1 = 1

2cj
Fj +

cj
2 GX .

8: end for

Computational cost:

1 LU factorization, backward/forward solve, matrix product per iteration,

alternatively: 1 matrix inversion (Gauß-Jordan) plus 2 matrix products.
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A Sign Function Approach to Solving UQMEs
Preliminary Performance Results [Köhler 2019]

Set-up:

Uniform (−1, 1) random matrices

2x8 core Intel Xeon Silver 4110, 192 GB RAM, Intel MKL 2018.1

sign function run to compute generalized Schur form (not block-triangular
form!)

Dim. m LAPACK KKQZ sign fct. Speed-up Error 1

5 000 873s 482s 123s 3.91 1.42 · 10-11

10 000 9 630s 5 647s 645s 8.76 2.69 · 10-10

15 000 27 623s 17 195s 2 217s 7.75 8.59 · 10-13

20 000 77 935s 48 189s 4 838s 9.96 7.39 · 10-11

25 000 141 207s 86 009s 8 213s 10.47 4.08 · 10-11

1max{ ||A−QAsZ
T ||

||A|| , ||B−QBsZ
T ||

||B|| }
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A Sign Function Approach to Solving UQMEs

For DSGE models, want solution X =
[
hx
g x

0
0

]
with ρ(hx) < 1.

As Λ (X ) = Λ (hx) ∪ {0}, need solution X with ρ(X ) < 1; i.e., invariant
”deflating” subspace corresponding to eigenvalues inside unit circle.
Natural splitting of eigenvalues computed by (generalized) sign function is
w.r.t. imaginary axis. Thus, apply sign function method to

F̃ ← F − G =

[
−In In

−C A− B

]
, G̃ ← F + G =

[
In In

−C −(A + B)

]
.

Potential computational savings: matrix product with G :

G̃M =

[
In In

−C −(A + B)

][
M11 M12

M21 M22

]

=

[
M11 + M21 M12 + M22

[−N0, 0]M11 − (A + B)M21 [−N0, 0]M12 − (A + B)M22

]
Implementing this efficiently requires 4n2(n + nx) flops instead of 16n3; this
should save ≈ 50% of the operations/time per iteration!
No re-ordering needed as in Schur method!
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g x

0
0

]
with ρ(hx) < 1.

As Λ (X ) = Λ (hx) ∪ {0}, need solution X with ρ(X ) < 1; i.e., invariant
”deflating” subspace corresponding to eigenvalues inside unit circle.
Natural splitting of eigenvalues computed by (generalized) sign function is
w.r.t. imaginary axis. Thus, apply sign function method to

F̃ ← F − G =

[
−In In

−C A− B

]
, G̃ ← F + G =

[
In In

−C −(A + B)

]
.

Potential computational savings: matrix product with G :

G̃M =

[
In In

−C −(A + B)
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M11 M12

M21 M22
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=

[
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[−N0, 0]M11 − (A + B)M21 [−N0, 0]M12 − (A + B)M22

]
Implementing this efficiently requires 4n2(n + nx) flops instead of 16n3; this
should save ≈ 50% of the operations/time per iteration!
No re-ordering needed as in Schur method!
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The Unilateral Quadratic Matrix Equation
Alternative Approaches

(Quasi-)Newton’s method for 0 = Q(X ) = AX 2 + BX + C :

1. Solve Sylvester equation

A∆kXk + (AXk + B)∆k = −Q(Xk)

for ∆k .
2. Set Xk+1 = Xk + tk∆k . (Step length tk = 1 for Newton’s method.)

Functional iterations, e.g., Bernoulli iteration

Xk+1 = −A−1(B + CX−1
k ).

Not applicable for DSGE models, as A is singular.

Cyclic reduction — numerical stability is not guaranteed.
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Linear Matrix Equations in DGSE Models

The following linear matrix equations occur in the recursive solution of DSGE
models using perturbation methods [Harding ’19]:

Generalized Sylvester Equation

A0Y + AYC z + P0 + P1C z = 0,

where

A,A0 ∈ Rn×n, C z ∈ Rnz×nz , P0,P1 ∈ Rn×nz ,

and Y ∈ Rn×nz is the unknown matrix.

This can be transformed to a smaller Sylvester equation:

Sylvester Equation

TZ + ZC z + W = 0, T ,W ∈ Rnz×nz ,

where Z ∈ Rnz×nz is the unknown matrix.
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Classification of Linear Matrix Equations
Linear Matrix Equations/Men with Beards

Sylvester equation

James Joseph Sylvester
(September 3, 1814 – March 15, 1897)

AX + XB = C .

Lyapunov equation

Alexander Michailowitsch Ljapunow
(June 6, 1857 – November 3, 1918)

AX + XAT = C , C = CT .
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Classification of Linear Matrix Equations
Generalizations of Sylvester (AX + XB = C) and Lyapunov (AX + XAT = C) Equations

Generalized Sylvester equation:

AXD + EXB = C .

Generalized Lyapunov equation:

AXET + EXAT = C , C = CT .

Stein equation:
X − AXB = C .

(Generalized) discrete Lyapunov/Stein equation:

EXET − AXAT = C , C = CT .

Note:

Consider only regular cases, having a unique solution!

Solutions of symmetric cases are symmetric, X = XT ∈ Rn×n; otherwise,
X ∈ Rn×` with n 6= ` in general.
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Classification of Linear Matrix Equations
Generalizations of Sylvester (AX + XB = C) and Lyapunov (AX + XAT = C) Equations

Bilinear Lyapunov equation/Lyapunov-plus-positive equation:

AX + XAT +
m∑

k=1

NkXN
T
k = C , C = CT .
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Bilinear Lyapunov equation/Lyapunov-plus-positive equation:

AX + XAT +
m∑

k=1

NkXN
T
k = C , C = CT .

Bilinear Sylvester equation:

AX + XB +
m∑

k=1

NkXMk = C .
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Classification of Linear Matrix Equations
Generalizations of Sylvester (AX + XB = C) and Lyapunov (AX + XAT = C) Equations

Bilinear Lyapunov equation/Lyapunov-plus-positive equation:

AX + XAT +
m∑

k=1

NkXN
T
k = C , C = CT .

Bilinear Sylvester equation:

AX + XB +
m∑

k=1

NkXMk = C .

(Generalized) discrete bilinear Lyapunov/Stein-minus-positive eq.:

EXET − AXAT −
m∑

k=1

NkXN
T
k = C , C = CT .

Note: Again consider only regular cases, symmetric equations have symmetric

solutions.
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Linear Matrix Equations
Existence and Uniqueness of Solutions

Exemplarily, consider the generalized Sylvester equation

AXD + EXB = C . (1)

Vectorization (using Kronecker product)  representation as linear system:(
DT ⊗ A + BT ⊗ E︸ ︷︷ ︸

=:A

)
vec(X )︸ ︷︷ ︸

=:x

= vec(C )︸ ︷︷ ︸
=:c

⇐⇒ Ax = c .

=⇒ ”(1) has a unique solution ⇐⇒ A is nonsingular”

Lemma

Λ (A) = {αj + βk | αj ∈ Λ (A,E ), βk ∈ Λ (B,D)}.
Hence, (1) has unique solution ⇐⇒ Λ (A,E ) ∩ −Λ (B,D) = ∅.
Example: Lyapunov equation AX + XAT = C has unique solution

⇐⇒ @ µ ∈ C : ±µ ∈ Λ (A).
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Linear Matrix Equations
The Classical Lyapunov Theorem

Theorem (Lyapunov 1892)

Let A ∈ Rn×n and consider the Lyapunov operator L : X → AX + XAT .
Then the following are equivalent:
(a) ∀Y > 0: ∃X > 0: L(X ) = −Y ,

(b) ∃Y > 0: ∃X > 0: L(X ) = −Y ,

(c) Λ (A) ⊂ C− := {z ∈ C | <z < 0}, i.e., A is (asymptotically) stable or
Hurwitz.

A. M. Lyapunov. The General Problem of the Stability of Motion (in Russian). Doctoral dissertation, Univ. Kharkov 1892.
English translation: Stability of Motion, Academic Press, New-York & London, 1966.

P. Lancaster, M. Tismenetsky. The Theory of Matrices (2nd edition). Academic Press, Orlando, FL, 1985. [Chapter 13]
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Some Applications
Classical Stability Theory

From Lyapunov’s theorem, one immediately obtains a characterization of
asymptotic stability of linear dynamical systems

ẋ(t) = Ax(t). (2)

Theorem (Lyapunov)

The following are equivalent:

For (2), the zero state is asymptotically stable.

The Lyapunov equation AX + XAT = Y has a unique solution
X = XT > 0 for all Y = Y T < 0.

A is Hurwitz.

A. M. Lyapunov. The General Problem of the Stability of Motion (In Russian). Doctoral dissertation, Univ. Kharkov 1892.
English translation: Stability of Motion, Academic Press, New-York & London, 1966.
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Some Applications
Algebraic Riccati Equations (ARE)

Solving AREs by Newtons’s Method

Feedback control design often involves solution of

ATX + XA− XGX + H = 0, G = GT ,H = HT .

 In each Newton step, solve Lyapunov equation

(A− GXj)
TXj+1 + Xj+1(A− GXj) = −XjGXj − H.

Decoupling of dynamical systems, e.g., in slow/fast modes, requires solution of
nonsymmetric ARE

AX + XF − XGX + H = 0.

 In each Newton step, solve Sylvester equation

(A− XjG )Xj+1 + Xj+1(F − GXj) = −XjGXj − H.

Also occurs in solving DSGE models, but how to compute desired solution?
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Some Applications
Algebraic Riccati Equations (ARE)

Solving AREs by Newtons’s Method

Feedback control design often involves solution of

ATX + XA− XGX + H = 0, G = GT ,H = HT .

 In each Newton step, solve Lyapunov equation

(A− GXj)
TXj+1 + Xj+1(A− GXj) = −XjGXj − H.

Decoupling of dynamical systems, e.g., in slow/fast modes, requires solution of
nonsymmetric ARE

AX + XF − XGX + H = 0.

 In each Newton step, solve Sylvester equation

(A− XjG )Xj+1 + Xj+1(F − GXj) = −XjGXj − H.

Also occurs in solving DSGE models, but how to compute desired solution?
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Some Applications
Model Reduction

Model Reduction via Balanced Truncation

For linear dynamical system

ẋ(t) = Ax(t) + Bu(t), y(t) = Cxr (t), x(t) ∈ Rn

find reduced-order system

ẋr (t) = Arxr (t) + Bru(t), yr (t) = Crxr (t), x(t) ∈ Rr , r � n

such that ‖y(t)− yr (t)‖ < δ.

The popular method balanced truncation requires the solution of the dual
Lyapunov equations

AX + XAT + BBT = 0, ATY + YA + CTC = 0.
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Solving Large-Scale Sylvester and Lyapunov Equations
Some Basics

Sylvester equation AX − XB = C is equivalent to linear system of equations(
Im ⊗ A− BT ⊗ In

)
vec(X ) = vec(C ).

This cannot be used for numerical solutions unless nm ≤ 100 (or so), as

direct solver requires O(n2m2) of storage and O(n3m3) flops;

(potential) low (tensor-)rank of right-hand side is ignored;

in Lyapunov case, symmetry and possible definiteness are not respected.
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Solving Large-Scale Sylvester and Lyapunov Equations
Some Basics

Sylvester equation AX − XB = C is equivalent to linear system of equations(
Im ⊗ A− BT ⊗ In

)
vec(X ) = vec(C ).

This cannot be used for numerical solutions unless nm ≤ 100 (or so), as

direct solver requires O(n2m2) of storage and O(n3m3) flops;

(potential) low (tensor-)rank of right-hand side is ignored;

in Lyapunov case, symmetry and possible definiteness are not respected.

Possible solvers:

Hessenberg-Schur or Bartels-Stewart method [Bartels/Stewart ’72,
Golub/Nash/Van Loan ’79]

Sign function method [Roberts ’71, B ’04]

Krylov subspace solvers in operator from [Hochbruck, Starke, Reichel, . . . ]

Block-Tensor-Krylov subspace methods with truncation [Kressner/Tobler,
Bollhöfer/Eppler, B./Breiten, . . . ]

Galerkin-type methods based on (extended, rational) Krylov subspace methods
[Jaimoukha, Kasenally, Jbilou, Simoncini, Druskin, Knizhermann,. . . ]

ADI methods [Wachspress, Reichel, Li2, Penzl, B, Saak, Kürschner, Truhar,
Tomljanović. . . ]
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Solving Large-Scale Sylvester and Lyapunov Equations
The Low-Rank Structure

Sylvester Equations

Find X ∈ Rn×m solving

AX − XB = FGT ,

where A ∈ Rn×n, B ∈ Rm×m, F ∈ Rn×r , G ∈ Rm×r .

If n,m large, but r � n,m
 X has a small numerical rank.
[Penzl 1999, Grasedyck 2004,

Antoulas/Sorensen/Zhou 2002]

rank(X , τ) = f � min(n,m)

300 600 900

100

10−10

u
σ155 ≈ u

singular values of 1600× 900 example

σ(X )

 Compute low-rank solution factors Z ∈ Rn×f , Y ∈ Rm×f ,
D ∈ Rf×f , such that X ≈ ZDY T with f � min(n,m).
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Solving Large-Scale Sylvester and Lyapunov Equations
The Low-Rank Structure

Lyapunov Equations

Find X ∈ Rn×n solving

AX+XAT = −FFT ,

where A ∈ Rn×n, F ∈ Rn×r .

If n large, but r � n
 X has a small numerical rank.
[Penzl 1999, Grasedyck 2004,

Antoulas/Sorensen/Zhou 2002]

rank(X , τ) = f � n

300 600 900

100

10−10

u
σ155 ≈ u

singular values of 1600× 900 example

σ(X )

 Compute low-rank solution factors Z ∈ Rn×f ,
D ∈ Rf×f , such that X ≈ ZDZT with f � n.
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The Sign Function Method for Sylvester Equations

Consider AX − XB + FGT = 0 with Λ (A) ⊂ C− and Λ (B) ⊂ C+.

Definition

Recall: the matrix sign function of M ∈ Rn×n with no purely imaginary
eigenvalues is

sign (M) = sign

(
T

[
J− 0

0 J+

]
T−1

)
= T

[
−I 0

0 I

]
T−1

with J± containing all Jordan blocks of M corresponding to eigenvalues with
positive/negative real parts.
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The Sign Function Method for Sylvester Equations

Consider AX − XB + FGT = 0 with Λ (A) ⊂ C− and Λ (B) ⊂ C+.

Definition

Recall: the matrix sign function of M ∈ Rn×n with no purely imaginary
eigenvalues is

sign (M) = sign

(
T

[
J− 0

0 J+

]
T−1

)
= T

[
−I 0

0 I

]
T−1

with J± containing all Jordan blocks of M corresponding to eigenvalues with
positive/negative real parts.

Observations

1. sign
([

A
0

FGT

B

])
=
[
−I
0

2X
I

]
.

2. sign (M) = limk→∞Mk with Mk+1 = 1
2 (Mk + M−1

k ) if M0 = M.
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The Sign Function Method for Sylvester Equations

Consider AX − XB + FGT = 0 with Λ (A) ⊂ C− and Λ (B) ⊂ C+.

Observations

1. sign
([

A
0

FGT

B

])
=
[
−I
0

2X
I

]
.

2. sign (M) = limk→∞Mk with Mk+1 = 1
2 (Mk + M−1

k ) if M0 = M.

Sign function iteration for solving Sylvester equations

M0 =
[
A0

0
F0G

T
0

B0

]
=
[
A
0

FGT

B

]
, and inversion formula for block-triangular matrices:

Ak+1 ← 1

2
(Ak + A−1

k ), Bk+1 ←
1

2
(Bk + B−1

k ),

Fk+1G
T
k+1 ← 1

2
(FkG

T
k + A−1

k FkG
T
k B−1

k ) =
1

2
[Fk , A

−1
k Fk ][Gk , B

−T
k Gk ]T ,

so that FkG
T
k → 2X .
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The Sign Function Method for Sylvester Equations

Consider AX − XB + FGT = 0 with Λ (A) ⊂ C− and Λ (B) ⊂ C+.

Factored sign function iteration for Sylvester equations [B. 2004]

Ak+1 ← 1

2
(Ak + A−1

k ), Bk+1 ←
1

2
(Bk + B−1

k ),

Fk+1 ← 1√
2

[Fk , A
−1
k Fk ], Gk+1 ←

1√
2

[Gk , B
−T
k Gk ]

Problem: number of columns in Fk ,Gk doubles each iteration!
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The Sign Function Method for Sylvester Equations

Consider AX − XB + FGT = 0 with Λ (A) ⊂ C− and Λ (B) ⊂ C+.

Factored sign function iteration for Sylvester equations [B. 2004]

Ak+1 ← 1

2
(Ak + A−1

k ), Bk+1 ←
1

2
(Bk + B−1

k ),

Fk+1 ← 1√
2

[Fk , A
−1
k Fk ], Gk+1 ←

1√
2

[Gk , B
−T
k Gk ]

Problem: number of columns in Fk ,Gk doubles each iteration!

Cure: truncation operator

Fk+1 ← Tε
(

1√
2

[Fk , A
−1
k Fk ]

)
with, e.g., Tε returning the scaled left singular vectors of the truncated SVD w.r.t.
the numerical rank tolerance ε, similar for Gk+1.
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Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Sylvester and Stein equations

Let α

k

6= β

k

with α

k

/∈ Λ(B), β

k

/∈ Λ(A), then

AX − XB = FGT︸ ︷︷ ︸
Sylvester equation

⇔ X = A

k

XB

k

+ (β

k

− α

k

)F

k

G

k

H︸ ︷︷ ︸
Stein equation

with the Cayley like transformations

A

k

:= (A− β

k

In)−1(A− α

k

In), B

k

:= (B − α

k

Im)−1(B − β

k

Im),

F

k

:= (A− β

k

In)−1F , G

k

:= (B − α

k

Im)−HG .

 fix point iteration

Xk = A

k

Xk−1B

k

+ (β

k

− α

k

)F

k

G

k

H

for k ≥ 1, X0 ∈ Rn×m.

[Wachspress 1988]
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Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Sylvester and Stein equations

Let αk 6= βk with αk /∈ Λ(B), βk /∈ Λ(A), then

AX − XB = FGT︸ ︷︷ ︸
Sylvester equation

⇔ X = AkXBk + (βk − αk)FkGk
H︸ ︷︷ ︸

Stein equation

with the Cayley like transformations

Ak := (A− βkIn)−1(A− αkIn), Bk := (B − αkIm)−1(B − βkIm),

Fk := (A− βkIn)−1F , Gk := (B − αkIm)−HG .

 alternating directions implicit (ADI) iteration

Xk = AkXk−1Bk + (βk − αk)FkGk
H

for k ≥ 1, X0 ∈ Rn×m. [Wachspress 1988]

© benner@mpi-magdeburg.mpg.de Numerical Solution of Matrix Equations Arising in DSGE Models 28/37

mailto:benner@mpi-magdeburg.mpg.de


Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Sylvester ADI iteration [Wachspress 1988]

Xk = AkXk−1Bk + (βk − αk)FkGHk ,
Ak := (A− βk In)−1(A− αk In), Bk := (B − αk Im)−1(B − βk Im),

Fk := (A− βk In)−1F ∈ Rn×r , Gk := (B − αk Im)−HG ∈ Cm×r .

Now set X0 = 0 and find factorization Xk = ZkDkY
H
k

X1 = A1X0B1 + (β1 − α1)F1GH1

⇒ V1 := Z1 = (A− β1In)−1F ∈ Rn×r , D1 = (β1 − α1)Ir ∈ Rr×r ,

W1 := Y1 = (B − α1Im)−HG ∈ Cm×r .
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Now set X0 = 0 and find factorization Xk = ZkDkY
H
k

X1 = (β1 − α1)(A− β1In)−1FGT (B − α1Im)−1

⇒ V1 := Z1 = (A− β1In)−1F ∈ Rn×r , D1 = (β1 − α1)Ir ∈ Rr×r ,
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Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Sylvester ADI iteration [Wachspress 1988]

Xk = AkXk−1Bk + (βk − αk)FkGHk ,
Ak := (A− βk In)−1(A− αk In), Bk := (B − αk Im)−1(B − βk Im),

Fk := (A− βk In)−1F ∈ Rn×r , Gk := (B − αk Im)−HG ∈ Cm×r .

Now set X0 = 0 and find factorization Xk = ZkDkY
H
k

X2 = A2X1B2 + (β2 − α2)F2GH2 = . . . =

V2 = V1 + (β2 − α1)(A + β2I )
−1V1 ∈ Rn×r ,

W2 = W1 + (α2 − β1)(B + α2I )
−HW1 ∈ Rm×r ,

Z2 = [Z1, V2], D2 = diag (D1, (β2 − α2)Ir ),

Y2 = [Y1, W2].
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Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Algorithm [B. 2005, Li/Truhar 2008, B./Li/Truhar 2009]

Algorithm 2 Low-rank Sylvester ADI / factored ADI (fADI)

Input: Matrices defining AX − XB = FGT and shift parameters
{α1, . . . , αkmax}, {β1, . . . , βkmax}.

Output: Z , D, Y such that ZDY H ≈ X .

1: Z1 = V1 = (A− β1In)−1F .
2: Y1 = W1 = (B − α1Im)−HG .
3: D1 = (β1 − α1)Ir
4: for k = 2, . . . , kmax do
5: Vk = Vk−1 + (βk − αk−1)(A− βk In)−1Vk−1.
6: Wk = Wk−1 + (αk − βk−1)(B − αk In)−HWk−1.
7: Update solution factors

Zk = [Zk−1,Vk ], Yk = [Yk−1,Wk ], Dk = diag (Dk−1, (βk−αk)Ir ) .

8: end for
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LR-ADI Derivation
ADI Shifts

Optimal Shifts

Solution of rational optimization problem

min
αj∈C
βj∈C

max
λ∈Λ(A)

µ∈Λ(B)

k∏
j=1

∣∣∣∣(λ− αj)(µ− βj)
(λ− βj)(µ− αj)

∣∣∣∣ ,
for which no analytic solution is known in general.

Some shift generation approaches:
generalized Bagby points, [Levenberg/Reichel 1993]

adaption of Penzl’s cheap heuristic approach available
[Penzl 1999, Li/Truhar 2008]

 approximate Λ(A), Λ(B) by small number of Ritz values w.r.t. A, A−1,
B, B−1 via Arnoldi,

just taking these Ritz values alone also works well quite often.
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Solving Large-Scale Sylvester and Lyapunov Equations
Low-rank ADI Development

Disadvantages of Low-Rank ADI as of 2012:

1. No efficient stopping criteria:

Difference in iterates  norm of added columns/step: not reliable,
stops often too late.
Residual is a full dense matrix, can not be calculated as such.

2. Requires complex arithmetic for real coefficients when complex shifts
are used.

3. Expensive (only semi-automatic) set-up phase to precompute ADI
shifts.

None of these disadvantages exists as of today
=⇒ speed-ups old vs. new LR-ADI can be up to 20!
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Projection-Based Lyapunov Solvers. . .
. . . for Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1. Compute orthonormal basis range (Z ), Z ∈ Rn×r , for subspace Z ⊂ Rn,

dimZ = r .

2. Set Â := ZTAZ , B̂ := ZTB.

3. Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.

4. Use X ≈ ZX̂ZT .

Examples:

Krylov subspace methods, i.e., for m = 1:

Z = K(A,B, r) = span{B,AB,A2B, . . . ,Ar−1B}
[Saad 1990, Jaimoukha/Kasenally 1994, Jbilou 2002–2008].

Extended Krylov subspace method (EKSM) [Simoncini 2007],

Z = K(A,B, r) ∪ K(A−1,B, r).

Rational Krylov subspace methods (RKSM) [Druskin/Simoncini 2011].
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Numerical Performance
Example: an ocean circulation problem[Van Gijzen et al. 1998]

FEM discretization of a simple 3D ocean circulation model
(barotropic, constant depth)  stiffness matrix −A with n = 42, 249,
choose artificial constant term B = rand(n,5).

Convergence history:

0 100 200 300 400 500
10−10

10−5

100

TOL

coldim(Z )

‖R
‖/
‖B

T
B
‖

LR-ADI with adaptive shifts vs. EKSM

LR-ADI
EKSM

CPU times: LR-ADI ≈ 110 sec, EKSM ≈ 135 sec.
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(barotropic, constant depth)  stiffness matrix −A with n = 42, 249,
choose artificial constant term B = rand(n,5).

Convergence history:

0 100 200 300 400 500
10−10

10−5

100

TOL

coldim(Z )

‖R
‖/
‖B

T
B
‖
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CPU times: LR-ADI ≈ 110 sec, EKSM ≈ 135 sec.
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Solving Large-Scale Sylvester and Lyapunov Equations
Summary & Outlook

Numerical enhancements of low-rank ADI for large
Sylvester/Lyapunov equations:

1. low-rank residuals, reformulated implementation,
2. compute real low-rank factors in the presence of complex shifts,
3. self-generating shift strategies (quantification in progress).

For diffusion-convection-reaction example:
332.02 sec. down to 17.24 sec.  acceleration by factor almost 20.

Generalized version enables derivation of low-rank solvers for various
generalized Sylvester equations.
Ongoing work:

Apply LR-ADI in Newton methods for algebraic Riccati equations

D(X ) = AXAT − EXET + GGT + ATXF (Ir + FTXF )−1FTXA = 0.

For nonlinear AREs see
P. Benner, P. Kürschner, J. Saak. Low-rank Newton-ADI methods for large
nonsymmetric algebraic Riccati equations. J. Franklin Inst., 353(5):1147–1167, 2016.
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Outline
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P. Benner, P. Kürschner, and J. Saak.
Self-generating and efficient shift parameters in ADI methods for large Lyapunov and
Sylvester equations.
Electronic Transactions on Numerical Analysis, 43:142–162, 2014.

P. Benner and J. Saak.
Numerical solution of large and sparse continuous time algebraic matrix Riccati and
Lyapunov equations: a state of the art survey.
GAMM Mitteilungen 36(1):32–52, 2013.

© benner@mpi-magdeburg.mpg.de Numerical Solution of Matrix Equations Arising in DSGE Models 37/37

mailto:benner@mpi-magdeburg.mpg.de

	The Unilateral Quadratic Matrix Equation
	Problem Setting
	The Schur Method for UQME
	A Sign Function Approach to Solving UQMEs

	Linear Matrix Equations
	Linear Matrix Equations in DGSE Models
	Classification of Linear Matrix Equations
	Existence and Uniqueness of Solutions
	Some Applications

	Solving Large-Scale Sylvester and Lyapunov Equations
	Some Basics
	The Sign Function Method for Sylvester Equations
	LR-ADI Derivation
	Numerical Performance

	References
	Further Reading


