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1. The Unilateral Quadratic Matrix Equation
Problem Setting
The Schur Method for UQME
A Sign Function Approach to Solving UQMEs
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@ The Unilateral Quadratic Matrix Equation

Problem: Find X € R™" such that
AX?> 4+ BX + C =0, A, B, C e R™",

Unilateral quadratic matrix equations (UQME) arise in
@ solving large-scale Dynamic Stochastic General Equilibrium (DSGE) models;
@ quasi-birth-death processes;
@ quadratic eigenvalue problems.
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@ The Unilateral Quadratic Matrix Equation

Problem: Find X € R™" such that

AX? +BX+ C=0, A B, C € R™",

Unilateral quadratic matrix equations (UQME) arise in
@ solving large-scale Dynamic Stochastic General Equilibrium (DSGE) models;
@ quasi-birth-death processes;
@ quadratic eigenvalue problems.

Explicit formula for solution of scalar quadratic equations does not
generalize to UQME, except in special situations: e.g., if A= 1, and B, C
commute, then

X = —%B +(B2—4C):  if B2~ 4C has a matrix root.

~~ need numerical solution schemes!

B N.J. Higham and H.M. Kim. Numerical analysis of a quadratic matrix equation. INLA JOURNAL OF NUMERICAL ANALYSIS
20(4):499-519, 2000.
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@@ The Schur Method for UQME

Theorem ([HicHAM/Kim 2000])
Given A, B, C € R"™" consider the UQME AX2+ BX+C=0.
a) X € R™" solves the UQME if and only if
In
[ b ] X,

0 I, [ A ] l, 0
- -B|LX] |o A
(S ——— —_————
=:F =G
In mathematical terms, X defines an n-dimensional graph subspace of the
matrix pencil F — AG, corresponding to the eigenvalues A (X) C A(F, G).

B w~u Higham and H.M. Kim. Numerical analysis of a quadratic matrix equation. INIA JOURNAL OF NUMERICAL ANALYSIS
20(4):499-519, 2000.
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@@ The Schur Method for UQME

Theorem ([HicHAM/Kim 2000])

Given A, B, C € R"™" consider the UQME AX2+ BX+C=0.
b) Let

F=QzZ", G=QoZ", withy,¢=[Y]],

where @, Z € R™" are orthogonal (QTQ = ZTZ = I,), be the generalized
Schur decomposition of F — \G.

Then every solution X € R"" of the UQME has the form
X =2ZnZ;' = Quin® iyl
with Mj; denoting the blocks in a uniform 2 x 2-block partitioning of M.
Note: different solutions X correspond to different orderings of the eigenvalues of

F — \G, i.e., different orderings of the diagonal elements of ¥, ®.
B

N.J. Higham and H.M. Kim. Numerical analysis of a quadratic matrix equation. INIA JOURNAL OF NUMERICAL ANALYSIS
20(4):499-519, 2000.
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@ The Schur Method for UQME

The characterization of solutions leads directly to a numerical solution
method for the UQME:

1. Form the 2n x 2n-block matrices F, G.

2. Compute the generalized Schur decomposition of F — AG (e.g., using
the QZ algorithm in MATLAB via gz).

3. Re-order the diagonal elements/eigenvalues in the generalized Schur
form as needed.

4. Solve Xle == 221.

As

condz(Z11) < 14 || X2,

scaling X — X /p with p &~ X may improve the accuracy of the solution.

(© benner@mpi-magdeburg.mpg.de Numerical Solution of Matrix Equations Arising in DSGE Models


mailto:benner@mpi-magdeburg.mpg.de

The Schur Method for UQME

Properties of the Schur method

+ QZ algorithm [Mover/STEWART 1973] is numerically backward stable
and is implemented in LAPACK, the backbone of Intel's MKL, the
MATLAB Linear Algebra kernel, etc.

B B. Kagstrom and D. Kressner. Multishift variants of the QZ algorithm with aggressive early deflation. STAN JOURNAL ON
MATRIX ANALYSIS AND APPLICATIONS 29(1):199-227, 2008.
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and is implemented in LAPACK, the backbone of Intel's MKL, the
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The Schur Method for UQME

Properties of the Schur method

+ QZ algorithm [Mover/STEWART 1973] is numerically backward stable
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MATLAB Linear Algebra kernel, etc.

+ Thus, Schur method can be easily implemented, e.g., in MATLAB.

— Structure of matrices from DGSE models cannot be exploited, except,
maybe, for initial step (reduction to Hessenberg-triangular form).
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serial, communication-bound algorithm.
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The Schur Method for UQME

Properties of the Schur method

+ QZ algorithm [Mover/STEWART 1973] is numerically backward stable
and is implemented in LAPACK, the backbone of Intel's MKL, the
MATLAB Linear Algebra kernel, etc.

+ Thus, Schur method can be easily implemented, e.g., in MATLAB.

— Structure of matrices from DGSE models cannot be exploited, except,
maybe, for initial step (reduction to Hessenberg-triangular form).

— Data access pattern and data dependencies make the QZ algorithm a
serial, communication-bound algorithm.

— Therefore, QZ algorithm is notoriously difficult to parallelize. Hence,
it is not efficient on modern multicore architectures.

+ Recent performance improvement using block variant of QZ algorithm
[KAGsTROM/KRESSNER 2008], not yet included in LAPACK.

B B. Kagstrom and D. Kressner. Multishift variants of the QZ algorithm with aggressive early deflation. STAN JOURNAL ON
MATRIX ANALYSIS AND APPLICATIONS 29(1):199-227, 2008.
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The Schur Method for UQME

Preliminary Performance Results

@ Uniform (—1,1) random matrices
o Compute generalized Schur decomposition only
@ 2x8 core Intel Xeon Silver 4110, 192 GB RAM, Intel MKL 2018.1

|Dim. n|| LAPACK || KKQZ | Speed-up |

10000 9630s 1.71
20000 77935s || 48189s
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@ A Sign Function Approach to Solving UQMEs

Basic Idea: for solving UQME, only basis of subspace spanned by [)l(] is

needed, that is, a separation of the spectrum into 2 clusters rather than a
separation of all eigenvalues as in the generalized Schur decompostion.
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@ A Sign Function Approach to Solving UQMEs

Basic Idea: for solving UQME, only basis of subspace spanned by [)Q] is

needed, that is, a separation of the spectrum into 2 clusters rather than a
separation of all eigenvalues as in the generalized Schur decompostion.

Therefore, need Q,Z € R"*" (orthogonal) such that

F F G G
QF -2G)Z — R 11 G
F2 &
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@ A Sign Function Approach to Solving UQMEs

Basic Idea: for solving UQME, only basis of subspace spanned by [)Q] is

needed, that is, a separation of the spectrum into 2 clusters rather than a
separation of all eigenvalues as in the generalized Schur decompostion.

Therefore, need Q,Z € R"*" (orthogonal) such that

F F G G
QF -2G)Z — R 11 G
F2 &

RIRGE

O O

i.e., block-triangular decomposition!
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@ A Sign Function Approach to Solving UQMEs

Basic Idea: for solving UQME, only basis of subspace spanned by [)Q] is

needed, that is, a separation of the spectrum into 2 clusters rather than a
separation of all eigenvalues as in the generalized Schur decompostion.

Therefore, need Q,Z € R"*" (orthogonal) such that

F F G G
QF -2G)Z — R 11 G
F2 &

RIRGE

O O

i.e., block-triangular decomposition!
Then X = 22121_11 and @ is not even needed!
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Basic Idea: for solving UQME, only basis of subspace spanned by [)Q] is

needed, that is, a separation of the spectrum into 2 clusters rather than a
separation of all eigenvalues as in the generalized Schur decompostion.

Therefore, need Q,Z € R"*" (orthogonal) such that

F2 &

RIRGE

Fi1 F Gi1 G
QF—2G)Z — l 11 12‘|_/\ 11 12]

O O

i.e., block-triangular decomposition!
Then X = 22121_11 and @ is not even needed!

This can be computed by spectral projection methods like (generalized)
sign and disk function methods.
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@&, @ The Sign Function Method

Definition [ROBERTS 1971]

Definition (Matrix sign function)

Given Z € R"*" with k / n — k eigenvalues in the open left / right half of the
complex plane and Jordan decomposition

J= 0
Z=S st
0 Jt
where the Jordan blocks corresponding to the eigenvalues

@ in the open left half plane are collected in J= € Ck*K,
@ in the open right half plane are collected in J* € C"—**n=k,

Then
I, 0

sign(Z) = 5[ .
n—k

and range (I, — sign (Z)) is the Z-invariant subspace corresponding to J~.
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4\5

@ The Sign Function Method

Computation [ROBERTS 1971]

Computing the matrix sign function

Applying Newton's method to F(Z) = Z? — | with Zy := Z yields

1 _ .
Zo(—Z, ZJ+1<—Z(ZJ+CfZJ 1), JZO,l,...,
with lim;_, o Z; = sign (Z) and where ¢; is a scaling factor accelerating
convergence.

Stable Z-invariant subspace can be computed using pivoted QR decomposition of
SVD applied to | —sign (Z).
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The Sign Function Method

Computation for matrix pencils [GARDINER/LAUB 1986]

Computing the matrix sign function

Applying Newton's method to F(Z) = Z? — | with Zy := Z yields

1 — .
Zy + Z, ZJ+1(—Z(ZJ+CJZJ ), j=0,1,...,

with lim;_, o Z; = sign (Z) and where ¢; is a scaling factor accelerating
convergence.

Stable Z-invariant subspace can be computed using pivoted QR decomposition of
SVD applied to | —sign (Z).

Application to matrix pencils F — \G: apply sign function iteration implicitly to
Z := G~'F, leading to

1 o .
Fo < F, ﬁ+1FE(ﬁ+CjGﬁ G), J=01...,

and range (limj_, Fj — G) provides stable "deflating” subspace.

1
Note: Usually, ¢; = (||:eett((€))||) "

(© benner@mpi-magdeburg.mpg.de Numerical Solution of Matrix Equations Arising in DSGE Models


mailto:benner@mpi-magdeburg.mpg.de

<

\I

The Sign Function Method

Computation for matrix pencils [GARDINER/LAUB 1986]

Algorithm 1 Generalized Sign Function Method

Input: A matrix pencil F — \G, F,G € R™" with no eigenvalues on the
imaginary axis.
Output: generalized sign function Fo, — AG.
1: Set Fo = F, g = | det G|
2: for j =0,1,... until convergence do
3: FJ = |_|TLU {LU factorization: L/U lower/upper triangular, T permutation}
4 G = (HZ:I |Ukk|%> /&
5. Solve LW = TG by forward substitution.
6: Solve UX = W by backward substitution.
T F o= 5cF+ 36X
8: end for
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@@ A Sign Function Approach to Solving UQMEs

Preliminary Performance Results [KOHLER 2019]

Set-up:
@ Uniform (—1,1) random matrices
@ 2x8 core Intel Xeon Silver 4110, 192 GB RAM, Intel MKL 2018.1

@ sign function run to compute generalized Schur form (not block-triangular
form!)

| Dim. m || LAPACK | KKQZ | sign fct.

10000
20000

QAsZT|| ||B— QBsZTII}

1 [|A—
max{ A 8]
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@ A Sign Function Approach to Solving UQMEs

o For DSGE models, want solution X = [2 g] with p(hy) < 1.
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@ A Sign Function Approach to Solving UQMEs

o For DSGE models, want solution X = [2 g] with p(hy) < 1.

@ As A(X) = A(hy) U {0}, need solution X with p(X) < 1; i.e., invariant
"deflating” subspace corresponding to eigenvalues inside unit circle.
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@ A Sign Function Approach to Solving UQMEs

o For DSGE models, want solution X = [2 g] with p(hy) < 1.

@ As A(X) = A(hy) U {0}, need solution X with p(X) < 1; i.e., invariant
"deflating” subspace corresponding to eigenvalues inside unit circle.

@ Natural splitting of eigenvalues computed by (generalized) sign function is
w.r.t. imaginary axis. Thus, apply sign function method to

—In In In In

—C A-B —C —(A+B)

ﬁ(—F—G:[ ], G+ F+G=
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@ A Sign Function Approach to Solving UQMEs

o For DSGE models, want solution X = [2 g] with p(hy) < 1.

@ As A(X) = A(hy) U {0}, need solution X with p(X) < 1; i.e., invariant
"deflating” subspace corresponding to eigenvalues inside unit circle.

@ Natural splitting of eigenvalues computed by (generalized) sign function is
w.r.t. imaginary axis. Thus, apply sign function method to

~ _In In ~ /n In
F+F—-G= , G+~ F+G= .
-C A-B —-C —(A+B)
@ Potential computational savings: matrix product with G:
- In In My M
GM =
-C —(A + B) My Mo
M1 + Moy Mz + Mo
[—No,O]Mll —(A+B)M21 [—No,O]M12—(A—|—B)M22

Implementing this efficiently requires 4n(n + n,) flops instead of 16n3; this
should save ~ 50% of the operations/time per iteration!
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@ A Sign Function Approach to Solving UQMEs

o For DSGE models, want solution X = [2 g] with p(hy) < 1.

@ As A(X) = A(hy) U {0}, need solution X with p(X) < 1; i.e., invariant
"deflating” subspace corresponding to eigenvalues inside unit circle.

@ Natural splitting of eigenvalues computed by (generalized) sign function is
w.r.t. imaginary axis. Thus, apply sign function method to

~ _In In ~ /n In
F+F—-G= , G+~ F+G= .
-C A-B —-C —(A+B)
@ Potential computational savings: matrix product with G:
- In In My M
GM =
-C —(A + B) My Mo
M1 + Moy Mz + Mo
[—No,O]Mll —(A+B)M21 [—No,O]M12—(A—|—B)M22

Implementing this efficiently requires 4n(n + n,) flops instead of 16n3; this
should save ~ 50% of the operations/time per iteration!
@ No re-ordering needed as in Schur method!
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@ The Unilateral Quadratic Matrix Equation

Alternative Approaches

o (Quasi-)Newton's method for 0 = Q(X) = AX? + BX + C:
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The Unilateral Quadratic Matrix Equation

Alternative Approaches

o (Quasi-)Newton's method for 0 = Q(X) = AX? + BX + C:
1. Solve Sylvester equation

AN Xy + (AXk + B)Ak = _Q(Xk)

for Ay.
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The Unilateral Quadratic Matrix Equation

Alternative Approaches

o (Quasi-)Newton's method for 0 = Q(X) = AX? + BX + C:
1. Solve Sylvester equation

AN Xy + (AXk + B)Ak = _Q(Xk)

for Ay.
2. Set Xxy1 = Xk + teAk. (Step length t, = 1 for Newton's method.)
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The Unilateral Quadratic Matrix Equation

Alternative Approaches

o (Quasi-)Newton's method for 0 = Q(X) = AX? + BX + C:
1. Solve Sylvester equation

AN Xy + (AXk + B)Ak = _Q(Xk)

for Ay.
2. Set Xxy1 = Xk + teAk. (Step length t, = 1 for Newton's method.)

o Functional iterations, e.g., Bernoulli iteration
Xer1 = —AHB+ CX. ).

Not applicable for DSGE models, as A is singular.

(© benner@mpi-magdeburg.mpg.de Numerical Solution of Matrix Equations g in DSGE Models


mailto:benner@mpi-magdeburg.mpg.de

The Unilateral Quadratic Matrix Equation

Alternative Approaches

o (Quasi-)Newton's method for 0 = Q(X) = AX? + BX + C:
1. Solve Sylvester equation

AN Xy + (AXk + B)Ak = _Q(Xk)

for Ay.
2. Set Xxy1 = Xk + teAk. (Step length t, = 1 for Newton's method.)

o Functional iterations, e.g., Bernoulli iteration
Xer1 = —AHB+ CX. ).
Not applicable for DSGE models, as A is singular.

o Cyclic reduction — numerical stability is not guaranteed.
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2. Linear Matrix Equations
Linear Matrix Equations in DGSE Models
Classification of Linear Matrix Equations
Existence and Uniqueness of Solutions
Some Applications
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@ Linear Matrix Equations in DGSE Models

The following linear matrix equations occur in the recursive solution of DSGE
models using perturbation methods [HARDING "19]:

Generalized Sylvester Equation

AY +AYC, +Py+ P,C, =0,

where
@ A Ay e R™" C, e R"™=%"= Py P; € R™",

@ and Y € R™ " is the unknown matrix.
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s‘@ Linear Matrix Equations in DGSE Models

The following linear matrix equations occur in the recursive solution of DSGE
models using perturbation methods [HARDING "19]:

Generalized Sylvester Equation

AY +AYC, + Py + P.C, =0,

where
@ A Ay e R™" C, e R"™=%"= Py P; € R™",

@ and Y € R™ " is the unknown matrix.

This can be transformed to a smaller Sylvester equation:

Sylvester Equation

TZ+ZC,+W=0, T,WeR®*"

where Z € R"2%"z s the unknown matrix.
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Classification of Linear Matrix Equations

Linear Matrix Equations/Men with Beards

Sylvester equation

James Joseph Sylvester
(September 3, 1814 — March 15, 1897)

AX + XB = C.
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Classification of Linear Matrix Equations

w Linear Matrix Equations/Men with Beards

Sylvester equation Lyapunov equation

\ Rl

James Joseph Sylvester Alexander Michailowitsch Ljapunow
(September 3, 1814 — March 15, 1897) (June 6, 1857 — November 3, 1918)
AX + XB = C. AX+XAT=c, c=c'.
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Generalized Sylvester equation:

AXD + EXB = C.

Classification of Linear Matrix Equations

Generalizations of Sylvester and Lyapunov Equations
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Classification of Linear Matrix Equations

Generalizations of Sylvester and Lyapunov Equations

Generalized Sylvester equation:

AXD + EXB = C.

Generalized Lyapunov equation:

AXET + EXAT =C, c=cC'.
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Classification of Linear Matrix Equations

Generalizations of Sylvester and Lyapunov Equations

Generalized Sylvester equation:
AXD + EXB = C.
Generalized Lyapunov equation:
AXET + EXAT =C, c=cC'.

Stein equation:
X —AXB = C.
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Generalized Sylvester equation:

AXD + EXB = C.

Classification of Linear Matrix Equations

Generalizations of Sylvester and Lyapunov Equations

Generalized Lyapunov equation:
AXET + EXAT =C, c=cC'.

Stein equation:
X —AXB = C.

(Generalized) discrete Lyapunov/Stein equation:

EXET —AXAT =cC, c=cCT".
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=\ Classification of Linear Matrix Equations

<3
v g Generalizations of Sylvester and Lyapunov Equations

Generalized Sylvester equation:

AXD + EXB = C.

Generalized Lyapunov equation:
AXET + EXAT =C, c=cC'.
Stein equation:
X —AXB = C.
(Generalized) discrete Lyapunov/Stein equation:
EXET —AXAT =cC, c=cC".
Note:

@ Consider only regular cases, having a unique solution!

@ Solutions of symmetric cases are symmetric, X = XT € R"™": otherwise,
X € R"™* with n # /£ in general.
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Classification of Linear Matrix Equations

Generalizations of Sylvester and Lyapunov Equations

Bilinear Lyapunov equation/Lyapunov-plus-positive equation:

AX + XAT +> NXN] =c, c=cCT.
k=1
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Classification of Linear Matrix Equations

Generalizations of Sylvester and Lyapunov Equations

Bilinear Lyapunov equation/Lyapunov-plus-positive equation:

AX + XAT +> NXN] =c, c=cCT.
k=1

Bilinear Sylvester equation:

AX + XB + Z N XM = C.
k=1
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A, Classification of Linear Matrix Equations

\I'

Bilinear Lyapunov equation/Lyapunov-plus-positive equation:

Generalizations of Sylvester and Lyapunov Equations

AX + XAT +> NXN] =c, c=cCT.
k=1

Bilinear Sylvester equation:

AX + XB + Z N XM = C.
k=1

(Generalized) discrete bilinear Lyapunov/Stein-minus-positive eq.:

EXET — AXAT =Y "N XN] =C, Cc=cCT.
k=1

Note: Again consider only regular cases, symmetric equations have symmetric
solutions.
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Linear Matrix Equations

Existence and Uniqueness of Solutions

Exemplarily, consider the generalized Sylvester equation

AXD + EXB = C. (1)
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Linear Matrix Equations

Existence and Uniqueness of Solutions

Exemplarily, consider the generalized Sylvester equation
AXD + EXB = C. (1)
Vectorization (using Kronecker product) ~- representation as linear system:

(DT @A+ BT ® E)vec(X) =vec(C) = Ax=c.

=A =:x =:c
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Linear Matrix Equations

Existence and Uniqueness of Solutions

Exemplarily, consider the generalized Sylvester equation
AXD + EXB = C. (1)
Vectorization (using Kronecker product) ~- representation as linear system:

(DT @A+ BT ® E)vec(X) =vec(C) = Ax=c.

=A =:x =:c

= "(1) has a unique solution <= A is nonsingular”
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Linear Matrix Equations

Existence and Uniqueness of Solutions

Exemplarily, consider the generalized Sylvester equation
AXD + EXB = C. (1)
Vectorization (using Kronecker product) ~- representation as linear system:

(DT @A+ BT ® E)vec(X) =vec(C) = Ax=c.

=A =:x =:c

= "(1) has a unique solution <= A is nonsingular”

A(A) = {oj + B | & € N(AE), B € N(B, D)}
Hence, (1) has unique solution <= A (A, E)N —A(B,D) = 0.
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Linear Matrix Equations

Existence and Uniqueness of Solutions
Exemplarily, consider the generalized Sylvester equation
AXD + EXB = C. (1)
Vectorization (using Kronecker product) ~- representation as linear system:

(DT @A+ BT ® E)vec(X) =vec(C) = Ax=c.

=A =:x =:c

= "(1) has a unique solution <= A is nonsingular”
N(A) ={aj+ Bk | aj € N(AE), Bk € N(B,D)}.
Hence, (1) has unique solution <= A (A, E)N —A(B,D) = 0.

Example: Lyapunov equation AX + XAT = C has unique solution
<= BueC: +uch(A).
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Linear Matrix Equations

The Classical Lyapunov Theorem

Theorem (Lyapunov 1892)

Let A € R"™" and consider the Lyapunov operator L : X — AX + XAT.

Then the following are equivalent:

(a) VY >0: IX > 0: L(X)=-Y,

(b) Y >0: 3X > 0: L(X)=-Y,

(c) N(A) Cc C :={ze C|Rz <0}, i.e., A is (asymptotically) stable or
Hurwitz.

B aAawm Lyapunov. The General Problem of the Stability of Motion (in Russian). Doctoral dissertation, Univ. Kharkov 1892.
English translation: Stability of Motion, Academic Press, New-York & London, 1966.

B P. Lancaster, M. Tismenetsky. The Theory of Matrices (2nd edition). Academic Press, Orlando, FL, 1985. [Chapter 13]
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Linear Matrix Equations
%
m The Classical Lyapunov Theorem

Theorem (Lyapunov 1892)

Let A € R"™" and consider the Lyapunov operator L : X — AX + XAT.

Then the following are equivalent:

(a) VY >0: 3X > 0: L(X)=-Y,

(b) Y >0: 3X > 0: L(X)=-Y,

(c) N(A) Cc C :={ze C|Rz <0}, i.e., A is (asymptotically) stable or
Hurwitz.

The proof (c) = (a) is trivial from the necessary and sufficient condition for

existence and uniqueness, apart from the positive definiteness. The latter is shown
by studying z" Yz for all eigenvectors z of A.

B awm Lyapunov. The General Problem of the Stability of Motion (in Russian). Doctoral dissertation, Univ. Kharkov 1892.
English translation: Stability of Motion, Academic Press, New-York & London, 1966.

B P Lancaster, M. Tismenetsky. The Theory of Matrices (2nd edition). Academic Press, Orlando, FL, 1985. [Chapter 13]
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Linear Matrix Equations
%
m The Classical Lyapunov Theorem

Theorem (Lyapunov 1892)

Let A € R"™" and consider the Lyapunov operator L : X — AX + XAT.

Then the following are equivalent:

(a) VY >0: 3X > 0: L(X)=-Y,

(b) Y >0: 3X > 0: L(X)=-Y,

(c) N(A) Cc C :={ze C|Rz <0}, i.e., A is (asymptotically) stable or
Hurwitz.

Important in applications: the nonnegative case:

LIX)=AX +XAT = —WWT,  where W cR™™ ny < n.

A Hurwitz = 3 unique solution X = ZZ7 for Z € R™"™ with 1 < nx < n.

B awm Lyapunov. The General Problem of the Stability of Motion (in Russian). Doctoral dissertation, Univ. Kharkov 1892.
English translation: Stability of Motion, Academic Press, New-York & London, 1966.

B P Lancaster, M. Tismenetsky. The Theory of Matrices (2nd edition). Academic Press, Orlando, FL, 1985. [Chapter 13]
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Some Applications

Classical Stability Theory

From Lyapunov’s theorem, one immediately obtains a characterization of
asymptotic stability of linear dynamical systems

x(t) = Ax(t). (2)

Theorem (Lyapunov)

The following are equivalent:
@ For (2), the zero state is asymptotically stable.
o The Lyapunov equation AX + XAT =Y has a unique solution
X=XT>0forall Y=YT <0.

o A is Hurwitz.

B awm Lyapunov. The General Problem of the Stability of Motion (In Russian). Doctoral dissertation, Univ. Kharkov 1892.
English translation: Stability of Motion, Academic Press, New-York & London, 1966.
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“, Some Applications
W Algebraic Riccati Equations (ARE)

Solving AREs by Newtons’s Method

Feedback control design often involves solution of
ATX+XA—XGX+H=0, G=G',H=H".
~> In each Newton step, solve Lyapunov equation

(A~ GX)TXpi1 + Xpia(A— GX;) = ~X;GX; — H.
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Some Applications
Algebraic Riccati Equations (ARE)

Solving AREs by Newtons’s Method

Feedback control design often involves solution of

ATX+XA—XGX+H=0, G=G',H=H".

~> In each Newton step, solve Lyapunov equation

(A~ GX)TXpi1 + Xpia(A— GX;) = ~X;GX; — H.

Decoupling of dynamical systems, e.g., in slow/fast modes, requires solution of
nonsymmetric ARE
AX + XF — XGX + H = 0.

~> In each Newton step, solve Sylvester equation
(A= XiG)Xji1 + Xj1a(F — GXj) = =X;GX; — H.

Also occurs in solving DSGE models, but how to compute desired solution?
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Some Applications
Model Reduction

Model Reduction via Balanced Truncation

For linear dynamical system

x(t) = Ax(t) + Bu(t), y(t) = Cx(t), x(t) e R”
find reduced-order system
Xr(t) = Arxe(t) + Bru(t), yr(t) = CGx(2), x(t)eR", r<n

such that [ly(t) — y,(t)]| < é.

The popular method balanced truncation requires the solution of the dual
Lyapunov equations

AX + XAT + BBT =0, ATY + YA+ C'C=0.
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3. Solving Large-Scale Sylvester and Lyapunov Equations
Some Basics

The Sign Function Method for Sylvester Equations
LR-ADI Derivation

Numerical Performance
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Solving Large-Scale Sylvester and Lyapunov Equations

Some Basics

Sylvester equation AX — XB = C is equivalent to linear system of equations

(Iln®A— BT ®1,) vec(X) = vec(C).
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Solving Large-Scale Sylvester and Lyapunov Equations

Some Basics

Sylvester equation AX — XB = C is equivalent to linear system of equations
(Iln®A— BT ®1,) vec(X) = vec(C).
This cannot be used for numerical solutions unless nm < 100 (or so), as

@ direct solver requires O(n*m?) of storage and O(n*m?) flops;
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Solving Large-Scale Sylvester and Lyapunov Equations

Some Basics

Sylvester equation AX — XB = C is equivalent to linear system of equations
(Iln®A— BT ®1,) vec(X) = vec(C).
This cannot be used for numerical solutions unless nm < 100 (or so), as

@ direct solver requires O(n*m?) of storage and O(n*m?) flops;
@ (potential) low (tensor-)rank of right-hand side is ignored,;
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Solving Large-Scale Sylvester and Lyapunov Equations

Some Basics

Sylvester equation AX — XB = C is equivalent to linear system of equations
(Iln®A— BT ®1,) vec(X) = vec(C).
This cannot be used for numerical solutions unless nm < 100 (or so), as

@ direct solver requires O(n*m?) of storage and O(n*m?) flops;
@ (potential) low (tensor-)rank of right-hand side is ignored,;
@ in Lyapunov case, symmetry and possible definiteness are not respected.

Numerical Solution of Matrix Equations Arising in DSGE Models
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Solving Large-Scale Sylvester and Lyapunov Equations

Some Basics

Sylvester equation AX — XB = C is equivalent to linear system of equations
(Iln®A— BT ®1,) vec(X) = vec(C).
This cannot be used for numerical solutions unless nm < 100 (or so), as

@ direct solver requires O(n’m?) of storage and O(n*m?) flops;
@ (potential) low (tensor-)rank of right-hand side is ignored,;
@ in Lyapunov case, symmetry and possible definiteness are not respected.

Possible solvers:

@ Hessenberg-Schur or Bartels-Stewart method [BARTELS/STEWART '72,
GoLuB/NasH/VAN LOAN ’79]

@ Sign function method [ROBERTS '71, B '04]

@ Krylov subspace solvers in operator from [HHOCHBRUCK, STARKE, REICHEL, ... |

@ Block-Tensor-Krylov subspace methods with truncation [KRESSNER/TOBLER,
BOLLHOFER/EPPLER, B./BREITEN, ...]

@ Galerkin-type methods based on (extended, rational) Krylov subspace methods
[JAIMOUKHA, KASENALLY, JBILOU, SIMONCINI, DRUSKIN, KNIZHERMANN,. . .|

@ ADI methods [WACHSPRESS, REICHEL, L1?, PENZL, B, SAAK, KURSCHNER, TRUHAR,
TOMLJANOVIC. . . |
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Solving Large-Scale Sylvester and Lyapunov Equations
The Low-Rank Structure

Sylvester Equations

Find X € R"*™ solving

AX —XB = FGT,
where A € R"™" B ¢ R™M F c R"™" G e R™*",

singular values of 1600 x 900 example
If n,m large, but r < n,m

. 0 1
~~ X has a small numerical rank. 10 —o(X)
[PENZL 1999, GRASEDYCK 2004,
ANTOULAS/SORENSEN/ZHOU 2002] 10-10 |- |
0155 ~ U
rank(X,7) = f < min(n, m) U ——— —

| |
300 600 900
~~ Compute low-rank solution factors Z € R"™f Y ¢ R™*f,
D € RF*f, such that X ~ ZDY T with f < min(n, m).

(© benner@mpi-magdeburg.mpg.de Numerical Solution of Matrix Equations Arising in DSGE Models


mailto:benner@mpi-magdeburg.mpg.de

Solving Large-Scale Sylvester and Lyapunov Equations
The Low-Rank Structure

Lyapunov Equations

Find X € R"*" solving

AX+XAT = —FFT,
where A € R™" F ¢ R"*r,

singular values of 1600 x 900 example

If n large, but r < n

. 0 1
~~ X has a small numerical rank. 10 —o(X)
[PENZL 1999, GRASEDYCK 2004,
ANTOULAS/SORENSEN/ZHOU 2002] 10-10 |- |
J155 =~ U
rank(X,7) =f < n U —— —

| |
300 600 900

~~ Compute low-rank solution factors Z € R"*f,
D € RF*f such that X ~ ZDZ " with f < n.
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@&!@ The Sign Function Method for Sylvester Equations

Consider AX — XB + FGT = 0 with A(A) C C~ and A(B) C C*.

Recall: the matrix sign function of M € R"*" with no purely imaginary

eigenvalues is
0
sign (M) =sign | T

0 J 0 I

—1 O]T_l

T‘1> =T

with Ji containing all Jordan blocks of M corresponding to eigenvalues with
positive/negative real parts.
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@ﬁ@ The Sign Function Method for Sylvester Equations

Consider AX — XB + FGT = 0 with A(A) C C~ and A(B) C C*.

Definition
Recall: the matrix sign function of M € R"*" with no purely imaginary

eigenvalues is

0
sign (M) = sign (T

Iy

-]
0 I

T—l) =T

with Ji containing all Jordan blocks of M corresponding to eigenvalues with
positive/negative real parts.

Observations

L ([65]) =[5 %]

2. sign (M) = limy_s oo M) with Mk+1 = %(Mk aF Mk_l) if Mog= M.
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@ The Sign Function Method for Sylvester Equations

Consider AX — XB + FGT = 0 with A(A) C C~ and A(B) C C*.

Lo A FGT _ | =1 2x
.sign{|y g =% 7|

2. sign (M) = limy_00 My with Miy1 = 3(My + M 1) if Mo = M.

Sign function iteration for solving Sylvester equations

_[A RG] _ [A FGT : ; A ices:
My = o B |=1o B , and inversion formula for block-triangular matrices:

1 _ 1 _
Akt1 E(Ak+Ak1), Bit1 §(Bk+Bk1)7

1 N B 1 N N
Fis1Gli1 E(FkaT+Ak1FkaTBk1):E[Fk, ARG, BY TG,

so that F, G, — 2X.
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@ The Sign Function Method for Sylvester Equations

Consider AX — XB + FGT = 0 with A(A) C C~ and A(B) C C*.

Factored sign function iteration for Sylvester equations [B. 2004]

1 _ 1 _
Akr1 §(Ak+Ak1)a Bit1 E(Bk—i_BkI)v

1
Fri1 x Fxls Gryn

1
—_[F, A
Vol

Problem: number of columns in Fy, G, doubles each iteration!
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@ﬁ@ The Sign Function Method for Sylvester Equations

Consider AX — XB + FGT = 0 with A(A) C C~ and A(B) C C*.

Factored sign function iteration for Sylvester equations [B. 2004]

1 _ 1 _
Akr1 E(Ak-i-Akl)a Bit1 E(Bk—'_Bkl)v

1
Fryr « Fxl, Gy <

%[ Fi, A
Problem: number of columns in Fy, G, doubles each iteration!
Cure: truncation operator

1
V2

with, e.g., Tc returning the scaled left singular vectors of the truncated SVD w.r.t.
the numerical rank tolerance ¢, similar for Gy1.

Frr1 < T2 < [Fk, Alek]>
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o Solving Large-Scale Sylvester and Lyapunov Equations
<X
NS LR-ADI Derivation

Sylvester and Stein equations

Let « # 5 witha ¢ A(B), 8 ¢ A(A), then

AX—XB=FG"T & X=AXB +(8 —a)Fg"

Sylvester equation Stein equation

with the Cayley like transformations

A=A-B8L)YA-al), B i=(0B-al)(B-8 )
F =(A=8 I)7LF, G =B-al, "G

~~ fix point iteration
X = A X_1B +(ﬁ —« ).F g H
for k > 1, Xp € R™m,
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Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Sylvester and Stein equations

Let ay 75 Bk with ay ¢ /\(B), Bk ¢ /\(A), then

AX-XB=FGT & X=AXB+(Bk— o) FGi”

Sylvester equation Stein equation

with the Cayley like transformations

Ay = (A - ﬁk/n)_l(A - ak’n)a By = (B - aklm)—l(B B 'Bklm)’
Fi= (A= Bin) *F, G = (B — axlm) 6.

~- alternating directions implicit (ADI) iteration
X = AXi—1Bx + (B — o) FiGi !
for k> 1, Xo € R™™, [WACHSPRESS 1988]
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Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Sylvester ADI iteration [WACHSPRESS 1988]

Xic = ArXi—1Br + (Bk — o) FiGf
A = (A= Bihn) (A= akly), By == (B — aklm) (B = Bilm),
Fioi=(A—Bil) tF €R™", Gy = (B — axlm) "G e C™*".

Now set Xy = 0 and find factorization X, = Z, Dy YkH

X1 = A1 XoB1 + (81 — a1)F1Gy
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Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Sylvester ADI iteration [WACHSPRESS 1988]

Xic = ArXi—1Br + (Bk — o) FiGf
A = (A= Bihn) (A= akly), By == (B — aklm) (B = Bilm),
Fioi=(A—Bil) tF €R™", Gy = (B — axlm) "G e C™*".

Now set Xy = 0 and find factorization X, = Z, Dy YkH

X1 = (1 —a1)(A=Bil) " tFGT(B — aily,)™?
= V=2 =(A-B1l) " tF eR™", Dy = (1 —aq1)l, e R,
Wi =Y:=(B—ailn) "G eCm™.
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Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Sylvester ADI iteration [WACHSPRESS 1988]

Xic = ArXi—1Br + (Bk — o) FiGf
A = (A= Bihn) (A= akly), By == (B — aklm) (B = Bilm),
Fioi=(A—Bil) tF €R™", Gy = (B — axlm) "G e C™*".

Now set Xy = 0 and find factorization X, = Z, Dy YkH

Xo = oXiBo+ (B2 — a2) FaGh = ... =

Vo = Vi + (B2 — a1)(A+ Bal) tVy € R™,

Wo = Wi + (o — B1)(B + axl)"HWy e R™*T,
Zy=[Z1, Vo], D2 = diag (D1, (B2 — a2)ly),
Yo = [Y1, Wal.

(© benner@mpi-magdeburg.mpg.de Numerical Solution of Matrix Equations Arising in DSGE Models


mailto:benner@mpi-magdeburg.mpg.de

Solving Large-Scale Sylvester and Lyapunov Equations

LR-ADI Algorithm [B. 2005, L1i/TRUHAR 2008, B./Li/TRUHAR 2009]

Algorithm 2 Low-rank Sylvester ADI / factored ADI (fADI)

Input: Matrices defining AX — XB = FG' and shift parameters

{ar, o kb {81 - Bhmac }-
Output: Z, D, Y such that ZDYH =~ X.

Z1 =V = (A — ﬂlln)_lF.
Yi=W; = (B — allm)_HG.
Dy = (p1 — a1)lr
for k =2,..., kmax do
Vi = Vi1 4 (Bk — ak—1)(A = Biln) "t Vi1
Wi = Wi—1 + (ak — Bk—1)(B — akly) " HW_1.
Update solution factors
Zk = [Zk—1, V], Yk = [Yi—1, Wi], Dy = diag (Dy—1, (Bxk—ax)lr) -
8: end for

Noa kN
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y ¥ LR-ADI Derivation
S ADI Shifts

Optimal Shifts

Solution of rational optimization problem

. — a_j) M= ﬁJ)
min max
ajeC AeA(A)H‘ A= B)(p—aj) |’
B;€C pen(B)?

for which no analytic solution is known in general.
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y ¥ LR-ADI Derivation
S ADI Shifts

Optimal Shifts

Solution of rational optimization problem

. _O‘J).U ﬁj)
min max
a,eCAeA(A)H‘ A= B)(p—aj) |’
BJECILEA(B)

for which no analytic solution is known in general.

Some shift generation approaches:
@ generalized Bagby points, [LEVENBERG/REICHEL 1993]
@ adaption of Penzl's cheap heuristic approach available

[PENZL 1999, L1/TRUHAR 2008]
~ approximate A(A), A(B) by small number of Ritz values w.r.t. A, A7,
B, B~ via Arnoldi,

@ just taking these Ritz values alone also works well quite often.
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Solving Large-Scale Sylvester and Lyapunov Equations

Low-rank ADI Development

Disadvantages of Low-Rank ADI as of 2012:

1. No efficient stopping criteria:
o Difference in iterates ~~ norm of added columns/step: not reliable,

stops often too late.
o Residual is a full dense matrix, can not be calculated as such.

2. Requires complex arithmetic for real coefficients when complex shifts
are used.

3. Expensive (only semi-automatic) set-up phase to precompute ADI
shifts.

Numerical Solution of Matrix Equations Arising in DSGE Models
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Solving Large-Scale Sylvester and Lyapunov Equations

Low-rank ADI Development

Disadvantages of Low-Rank ADI as of 2012:

1. No efficient stopping criteria:
o Difference in iterates ~~ norm of added columns/step: not reliable,

stops often too late.
o Residual is a full dense matrix, can not be calculated as such.

2. Requires complex arithmetic for real coefficients when complex shifts
are used.

3. Expensive (only semi-automatic) set-up phase to precompute ADI
shifts.

None of these disadvantages exists as of today
— speed-ups old vs. new LR-ADI can be up to 20!

Numerical Solution of Matrix Equations Arising in DSGE Models
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Projection-Based Lyapunov Solvers. ..

... for Lyapunov equation 0 = AX + XA™ + BB"

Projection-based methods for Lyapunov equations with A+ AT < 0:
1. Compute orthonormal basis range (Z), Z € R™*", for subspace Z C R”,
dmZ =r.
2. Set A:=Z2TAZ, B:=Z7"B.
3. Solve small-size Lyapunov equation AX + XAT + BBT = 0.
4. Use X ~ ZXZT.
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Projection-Based Lyapunov Solvers. ..

... for Lyapunov equation 0 = AX + XA™ + BB"

Projection-based methods for Lyapunov equations with A+ AT < 0:
1. Compute orthonormal basis range (Z), Z € R™*", for subspace Z C R”,
dmZ =r.
2. Set A:=ZTAZ B:=Z"B.
3. Solve small-size Lyapunov equation AX + XAT + BBT = 0.
4. Use X ~ ZXZT.

Examples:
o Krylov subspace methods, i.e., for m = 1:

Z =K(A,B,r) =span{B,AB,A’B, ..., A" !B}

[SAAD 1990, JAIMOUKHA /KASENALLY 1994, JBILOU 2002-2008].
o Extended Krylov subspace method (EKSM) [Smvoncint 2007],

Z=K(A B, r)UKAL B,r).

@ Rational Krylov subspace methods (RKSM) [Druskin/Sivmoncint 2011].
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Numerical Performance

Example: an ocean circulation problem[VAN GIJZEN ET AL. 1998]

o FEM discretization of a simple 3D ocean circulation model
(barotropic, constant depth) ~ stiffness matrix —A with n = 42, 249,
choose artificial constant term B = rand(n,5).
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Numerical Performance

Example: an ocean circulation problem[VAN GIJZEN ET AL. 1998]

o FEM discretization of a simple 3D ocean circulation model
(barotropic, constant depth) ~ stiffness matrix —A with n = 42, 249,
choose artificial constant term B = rand(n,5).

o Convergence history:

LR-ADI with adaptive shifts vs. EKSM

10°

--+-LR-ADI
—=— EKSM

1075 |-

IRII/IBT B

LI
10710

| | | |
0 100 200 300 400 500
coldim(Z)
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Numerical Performance

Example: an ocean circulation problem[VAN GIJZEN ET AL. 1998]

o FEM discretization of a simple 3D ocean circulation model
(barotropic, constant depth) ~ stiffness matrix —A with n = 42, 249,
choose artificial constant term B = rand(n,5).

o Convergence history:

LR-ADI with adaptive shifts vs. EKSM

100 T
_ -e-LR-ADI
- —=— EKSM
D 10-5|
=
E TOL|---mmm e TR
10-10 | | | |
0 100 200 300 400 500

coldim(Z)
o CPU times: LR-ADI ~ 110 sec, EKSM = 135 sec.
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Solving Large-Scale Sylvester and Lyapunov Equations

Summary & Outlook

o Numerical enhancements of low-rank ADI for large
Sylvester/Lyapunov equations:
1. low-rank residuals, reformulated implementation,
2. compute real low-rank factors in the presence of complex shifts,
3. self-generating shift strategies (quantification in progress).

For diffusion-convection-reaction example:
332.02 sec. down to 17.24 sec. ~- acceleration by factor almost 20.

o Generalized version enables derivation of low-rank solvers for various
generalized Sylvester equations.
@ Ongoing work:
o Apply LR-ADI in Newton methods for algebraic Riccati equations

D(X) = AXAT — EXET + GGT + ATXF(I, + FTXF)"'FTXA=0.

@ For nonlinear AREs see

P. Benner, P. Kiirschner, J. Saak. Low-rank Newton-ADI methods for large
nonsymmetric algebraic Riccati equations. J. Franklin Inst., 353(5):1147-1167, 2016.
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