

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

Computing Parametric Reduced-Order Models using Projection and Data Peter Benner Lihong Feng Sara Grundel Yao Yue Workshop on Data-Driven Methods for Multi-Scale Physics and Complex Systems Rome, July 31 – August 5, 2017

Lihong Feng MPI Magdeburg, CSC team Leader "Model Order Reduction"

Sara Grundel MPI Magdeburg, CSC team Leader "Simulation of Energy Systems"

MPI Magdeburg, CSC PostDoc

Dynamical Systems Motivating Example The Parametric Model Order Reduction Problem

2. PMOR by Projection

 $\mathcal{H}_2\text{-}\mathsf{Optimal}$ Model Reduction for Linear Systems

- 3. (P)MOR from Data Black/Grey Box Modeling The Loewner Method
- 4. A Grey Box Method

An IRKA-Loewner Method Numerical Examples

 Interpolating Reduced-Order Models obtained from Data Discussion of several PMOR Methods ROM Interpolation under the Loewner Framework Numerical Results

Dynamical Systems Motivating Example The Parametric Model Order Reduction Problem

2. PMOR by Projection

- 3. (P)MOR from Data
- 4. A Grey Box Method
- 5. Interpolating Reduced-Order Models obtained from Data

Parametric Dynamical Systems

CSC

$$\Sigma(p): \begin{cases} E(p)\dot{x}(t;p) &= f(t,x(t;p),u(t),p), \quad x(t_0) = x_0, \quad (a) \\ y(t;p) &= g(t,x(t;p),u(t),p) \quad (b) \end{cases}$$

with

- (generalized) states $x(t; p) \in \mathbb{R}^n$ ($E \in \mathbb{R}^{n \times n}$),
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t; p) \in \mathbb{R}^q$, (b) is called output equation,
- $p \in \Omega \subset \mathbb{R}^d$ is a parameter vector, Ω is bounded.

Parametric Dynamical Systems

CSC

$$\Sigma(p): \begin{cases} E(p)\dot{x}(t;p) &= f(t,x(t;p),u(t),p), \quad x(t_0) = x_0, \quad (a) \\ y(t;p) &= g(t,x(t;p),u(t),p) \quad (b) \end{cases}$$

with

- (generalized) states $x(t; p) \in \mathbb{R}^n$ $(E \in \mathbb{R}^{n \times n})$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t; p) \in \mathbb{R}^q$, (b) is called output equation,
- $p \in \Omega \subset \mathbb{R}^d$ is a parameter vector, Ω is bounded.

Applications:

- Repeated simulation for varying material or geometry parameters, boundary conditions;
- control, optimization and design;
- of models, often generated by FE software (e.g., ANSYS, NASTRAN,...) or automatic tools (e.g., Modelica).

Parametric Dynamical Systems

CSC

$$\Sigma(p): \begin{cases} E(p)\dot{x}(t;p) &= f(t,x(t;p),u(t),p), \quad x(t_0) = x_0, \quad (a) \\ y(t;p) &= g(t,x(t;p),u(t),p) \quad (b) \end{cases}$$

with

- (generalized) states $x(t; p) \in \mathbb{R}^n$ $(E \in \mathbb{R}^{n \times n})$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t; p) \in \mathbb{R}^q$, (b) is called output equation,
- $p \in \Omega \subset \mathbb{R}^d$ is a parameter vector, Ω is bounded.

Underlying PDE and boundary conditions often not accessible!

Parametric Dynamical Systems

CSC

$$\Sigma(p): \begin{cases} E(p)\dot{x}(t;p) &= f(t,x(t;p),u(t),p), \quad x(t_0) = x_0, \quad (a) \\ y(t;p) &= g(t,x(t;p),u(t),p) \quad (b) \end{cases}$$

with

- (generalized) states $x(t; p) \in \mathbb{R}^n$ $(E \in \mathbb{R}^{n \times n})$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t; p) \in \mathbb{R}^q$, (b) is called output equation,
- $p \in \Omega \subset \mathbb{R}^d$ is a parameter vector, Ω is bounded.

Underlying PDE and boundary conditions often not accessible! Parametric discretized model often not available, but matrices for certain parameter values can be extracted, or output data for given *u* and *p* can be generated!

Linear, Time-Invariant (Parametric) Systems

$$\begin{array}{rcl} E(p)\dot{x}(t;p) &=& A(p)x(t;p) + B(p)u(t), & A(p), E(p) \in \mathbb{R}^{n \times n}, \\ y(t;p) &=& C(p)x(t;p), & B(p) \in \mathbb{R}^{n \times m}, C(p) \in \mathbb{R}^{q \times n}. \end{array}$$

Linear, Time-Invariant (Parametric) Systems

$$\begin{array}{rcl} E(p)\dot{x}(t;p) &=& A(p)x(t;p) + B(p)u(t), & A(p), E(p) \in \mathbb{R}^{n \times n}, \\ y(t;p) &=& C(p)x(t;p), & B(p) \in \mathbb{R}^{n \times m}, C(p) \in \mathbb{R}^{q \times n}. \end{array}$$

Laplace Transformation / Frequency Domain

Application of Laplace transformation $(x(t; p) \mapsto x(s; p), \dot{x}(t; p) \mapsto sx(s; p))$ to linear system with $x(0; p) \equiv 0$:

$$sE(p)x(s;p) = A(p)x(s;p) + B(p)u(s), \quad y(s;p) = C(p)x(s;p),$$

yields I/O-relation in frequency domain:

$$y(s;p) = \left(\underbrace{C(p)(sE(p) - A(p))^{-1}B(p)}_{=:G(s,p)}\right)u(s).$$

G(s, p) is the parameter-dependent transfer function of $\Sigma(p)$.

CSC

Linear, Time-Invariant (Parametric) Systems

$$\begin{array}{rcl} E(p)\dot{x}(t;p) &=& A(p)x(t;p) + B(p)u(t), & A(p), E(p) \in \mathbb{R}^{n \times n}, \\ y(t;p) &=& C(p)x(t;p), & B(p) \in \mathbb{R}^{n \times m}, C(p) \in \mathbb{R}^{q \times n}. \end{array}$$

Laplace Transformation / Frequency Domain

Application of Laplace transformation $(x(t; p) \mapsto x(s; p), \dot{x}(t; p) \mapsto sx(s; p))$ to linear system with $x(0; p) \equiv 0$:

$$sE(p)x(s;p) = A(p)x(s;p) + B(p)u(s), \quad y(s;p) = C(p)x(s;p),$$

yields I/O-relation in frequency domain:

$$y(s;p) = \left(\underbrace{C(p)(sE(p) - A(p))^{-1}B(p)}_{=:G(s,p)}\right)u(s).$$

G(s, p) is the parameter-dependent transfer function of $\Sigma(p)$.

Goal: Fast evaluation of mapping $(u, p) \rightarrow y(s; p)$.

CSC

Microgyroscope (butterfly gyro)

- Voltage applied to electrodes induces vibration of wings, resulting rotation due to Coriolis force yields sensor data.
- FE model of second order:
 N = 17.361 → n = 34.722, m = 1, g = 12.
- Sensor for position control based on acceleration and rotation.

- inertial navigation,
- electronic stability control (ESP).

Source: MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Gyroscope

Microgyroscope (butterfly gyro)

Parametric FE model: $M(d)\ddot{x}(t) + D(\theta, d, \alpha, \beta)\dot{x}(t) + T(d)x(t) = Bu(t)$.

© P. Benner, L. Feng, S. Grundel, Y. Yue

Microgyroscope (butterfly gyro)

Parametric FE model:

$$M(d)\ddot{x}(t) + D(\theta, d, \alpha, \beta)\dot{x}(t) + T(d)x(t) = Bu(t),$$

where

$$\begin{array}{lll} M(d) &=& M_1 + dM_2, \\ D(\theta, d, \alpha, \beta) &=& \theta(D_1 + dD_2) + \alpha M(d) + \beta T(d), \\ T(d) &=& T_1 + \frac{1}{d} T_2 + dT_3, \end{array}$$

with

- width of bearing: *d*,
- angular velocity: θ ,
- Rayleigh damping parameters: α, β .

Microgyroscope (butterfly gyro)

Original...

and reduced-order model.

Problem

Approximate the dynamical system

$$E(p)\dot{x} = A(p)x + B(p)u,$$

$$y = C(p)x,$$

$$\begin{aligned} & E(p), A(p) \in \mathbb{R}^{n \times n}, \\ & B(p) \in \mathbb{R}^{n \times m}, \, C(p) \in \mathbb{R}^{q \times n}, \end{aligned}$$

by reduced-order system

CSC

$$\begin{array}{rcl} \hat{E}(p)\dot{\hat{x}} &=& \hat{A}(p)\hat{x} + \hat{B}(p)u, & \hat{E}(p), \hat{A}(p) \in \mathbb{R}^{r \times r}, \\ \hat{y} &=& \hat{C}(p)\hat{x}, & \hat{B}(p) \in \mathbb{R}^{r \times m}, \hat{C}(p) \in \mathbb{R}^{q \times r}, \end{array}$$

of order $r \ll n$, such that

$$\|y - \hat{y}\| = \|\mathcal{G}u - \hat{\mathcal{G}}u\| \le \|\mathcal{G} - \hat{\mathcal{G}}\| \cdot \|u\| < ext{tolerance} \cdot \|u\| \quad orall \ p \in \Omega.$$

Problem

Approximate the dynamical system

$$E(p)\dot{x} = A(p)x + B(p)u,$$

$$y = C(p)x,$$

$$\begin{aligned} & E(p), A(p) \in \mathbb{R}^{n \times n}, \\ & B(p) \in \mathbb{R}^{n \times m}, C(p) \in \mathbb{R}^{q \times n}, \end{aligned}$$

by reduced-order system

CSC

$$\begin{array}{rcl} \hat{E}(p)\dot{\hat{x}} &=& \hat{A}(p)\hat{x} + \hat{B}(p)u, & \hat{E}(p), \hat{A}(p) \in \mathbb{R}^{r \times r}, \\ \hat{y} &=& \hat{C}(p)\hat{x}, & \hat{B}(p) \in \mathbb{R}^{r \times m}, \hat{C}(p) \in \mathbb{R}^{q \times r}, \end{array}$$

of order $r \ll n$, such that

$$\|y - \hat{y}\| = \|Gu - \hat{G}u\| \le \|G - \hat{G}\| \cdot \|u\| < \text{tolerance} \cdot \|u\| \quad \forall \ p \in \Omega.$$

Approximation problem:
$$\min_{\substack{\text{order}(\hat{G}) \le r}} \|G - \hat{G}\|.$$

Parametric System

CSC

$$\Sigma(p): \begin{cases} E(p)\dot{x}(t;p) = A(p)x(t;p) + B(p)u(t), \\ y(t;p) = C(p)x(t;p). \end{cases}$$

Parametric System

CSC

$$\Sigma(p): \begin{cases} E(p)\dot{x}(t;p) = A(p)x(t;p) + B(p)u(t), \\ y(t;p) = C(p)x(t;p). \end{cases}$$

Appropriate parameter-affine representation:

$$\begin{split} E(p) &= E_0 + e_1(p)E_1 + \ldots + e_{q_E}(p)E_{q_E}, \\ A(p) &= A_0 + a_1(p)A_1 + \ldots + a_{q_A}(p)A_{q_A}, \\ B(p) &= B_0 + b_1(p)B_1 + \ldots + b_{q_B}(p)B_{q_B}, \\ C(p) &= C_0 + c_1(p)C_1 + \ldots + c_{q_C}(p)C_{q_C}, \end{split}$$

allows easy parameter preservation for projection based model reduction.

Parametric System

CSC

$$\Sigma(p): \begin{cases} E(p)\dot{x}(t;p) = A(p)x(t;p) + B(p)u(t), \\ y(t;p) = C(p)x(t;p). \end{cases}$$

Appropriate parameter-affine representation:

$$A(p) = A_0 + a_1(p)A_1 + \ldots + a_{q_A}(p)A_{q_A}, \ldots$$

allows easy parameter preservation for projection based model reduction.

W.l.o.g. may assume this affine representation:

- Any system can be written in this affine form for some $q_X \le n^2$, but for efficiency, need $q_X \ll n! \ (X \in \{E, A, B, C\})$
- Empirical (operator) interpolation yields this structure for "smooth enough" parameter functions. [BARRAULT/MADAY/NGUYEN/PATERA 2004]

Parametric System

CSC

$$\Sigma(p): \begin{cases} E(p)\dot{x}(t;p) = A(p)x(t;p) + B(p)u(t), \\ y(t;p) = C(p)x(t;p). \end{cases}$$

Parametric model reduction goal:

preserve parameters as symbolic quantities in reduced-order model:

$$\hat{\Sigma}(p): \begin{cases} \hat{E}(p)\dot{\hat{x}}(t;p) = \hat{A}(p)\hat{x}(t;p) + \hat{B}(p)u(t), \\ \hat{y}(t;p) = \hat{C}(p)\hat{x}(t;p) \end{cases}$$

with states $\hat{x}(t; p) \in \mathbb{R}^r$ and $r \ll n$.

2. PMOR by Projection \mathcal{H}_2 -Optimal Model Reduction for Linear Systems

3. (P)MOR from Data

- 4. A Grey Box Method
- 5. Interpolating Reduced-Order Models obtained from Data

🐟 csc PMOR by Projection

Petrov-Galerkin-type projection

For given projection matrices
$$V, W \in \mathbb{R}^{n \times r}$$
 with $W^T V = I_r$
 $(\rightsquigarrow (VW^T)^2 = VW^T$ is projector), compute

$$\hat{E}(p) = W^{T} E_{0} V + e_{1}(p) W^{T} E_{1} V + \dots + e_{q_{E}}(p) W^{T} E_{q_{E}} V,$$

$$= \hat{E}_{0} + e_{1}(p) \hat{E}_{1} + \dots + e_{q_{E}}(p) \hat{E}_{q_{E}},$$

$$\hat{A}(p) = W^{T} A_{0} V + a_{1}(p) W^{T} A_{1} V + \dots + a_{q_{A}}(p) W^{T} A_{q_{A}} V,$$

$$= \hat{A}_{0} + a_{1}(p) \hat{A}_{1} + \dots + a_{q_{A}}(p) \hat{A}_{q_{A}},$$

$$\hat{B}(p) = W^{T} B_{0} + b_{1}(p) W^{T} B_{1} + \dots + b_{q_{B}}(p) W^{T} B_{q_{B}},$$

$$= \hat{B}_{0} + b_{1}(p) \hat{B}_{1} + \dots + b_{q_{B}}(p) \hat{B}_{q_{B}},$$

$$\hat{C}(p) = C_{0} V + c_{1}(p) C_{1} V + \dots + c_{q_{C}}(p) C_{q_{C}} V,$$

$$= \hat{C}_{0} + c_{1}(p) \hat{C}_{1} + \dots + c_{q_{C}}(p) \hat{C}_{q_{C}}.$$

→ affine parameter structure is preserved!

🐟 csc PMOR by Projection

Petrov-Galerkin-type projection

For given projection matrices
$$V, W \in \mathbb{R}^{n \times r}$$
 with $W^T V = I_r$
 $(\rightsquigarrow (VW^T)^2 = VW^T$ is projector), compute

$$\hat{E}(p) = W^{T} E_{0} V + e_{1}(p) W^{T} E_{1} V + \dots + e_{q_{E}}(p) W^{T} E_{q_{E}} V,$$

$$= \hat{E}_{0} + e_{1}(p) \hat{E}_{1} + \dots + e_{q_{E}}(p) \hat{E}_{q_{E}},$$

$$\hat{A}(p) = W^{T} A_{0} V + a_{1}(p) W^{T} A_{1} V + \dots + a_{q_{A}}(p) W^{T} A_{q_{A}} V,$$

$$= \hat{A}_{0} + a_{1}(p) \hat{A}_{1} + \dots + a_{q_{A}}(p) \hat{A}_{q_{A}},$$

$$\hat{B}(p) = W^{T} B_{0} + b_{1}(p) W^{T} B_{1} + \dots + b_{q_{B}}(p) W^{T} B_{q_{B}},$$

$$= \hat{B}_{0} + b_{1}(p) \hat{B}_{1} + \dots + b_{q_{B}}(p) \hat{B}_{q_{B}},$$

$$\hat{C}(p) = C_{0} V + c_{1}(p) C_{1} V + \dots + c_{q_{C}}(p) C_{q_{C}} V,$$

$$= \hat{C}_{0} + c_{1}(p) \hat{C}_{1} + \dots + c_{q_{C}}(p) \hat{C}_{q_{C}}.$$

→ affine parameter structure is preserved!

🐟 csc PMOR by Projection

Methods

- Rational interpolation, based on
 - multi-moment matching [B., DANIEL, DYCZIJ-EDLINGER, FARLE, FENG, GALLIVAN, GUNUPUDI, KORVINK, NAKHLA, RUDNYI, WEILE, ...]
 - tangential interpolation and *H*₂ optimization [BAUR, BEATTIE, B., BREITEN, BRUNS, GUGERCIN, ...]
- Transfer function interpolation (= output interpolation in frequency domain) $[B_{AUR}, B_{.}, ...]$
- Matrix interpolation [Amsallam, Brunsch, Eid, Geuss, Farhat, Lohmann, Mohring, Panzer, Wolf, ...]
- Manifold interpolation [Amsallam, Bruns, Carlberg, Farhat, Son, Stykel, ...]
- Snapshot-based methods, like
 - Proper orthogonal/generalized decomposition (POD/PGD) [CARLBERG, CHINESTA, CUETO, HINZE, HUERTA, KUNISCH, NOUY, WILLCOX, VOLKWEIN, ...]
 - Reduced basis method (RBM) [Grepl, Haasdonk, Hess, Hesthaven, Maday, Quarteroni, Patera, Prud'homme, Ohlberger, Rozza, Stamm, Urban, Veroy, ...]

Consider stable (i.e. $\Lambda(A) \subset \mathbb{C}^-$) linear systems Σ ,

 $\dot{x}(t) = Ax(t) + Bu(t), \ y(t) = Cx(t) \qquad \simeq \quad y(s) = \underbrace{C(sI - A)^{-1}B}_{=:G(s)} u(s)$

System norms

Two common system norms for measuring approximation quality:

•
$$\mathcal{H}_2$$
-norm, $\|\Sigma\|_{\mathcal{H}_2} = \left(\frac{1}{2\pi}\int_0^{2\pi} \operatorname{tr}\left(\left(\mathcal{G}^{\mathsf{T}}(-\jmath\omega)\mathcal{G}(\jmath\omega)\right)\right)d\omega\right)^{\frac{1}{2}}$,

•
$$\mathcal{H}_{\infty}$$
-norm, $\|\Sigma\|_{\mathcal{H}_{\infty}} = \sup_{\omega \in \mathbb{R}} \sigma_{\max}(\mathcal{G}(\jmath \omega)),$

where

$$G(s) = C \left(sI - A \right)^{-1} B.$$

Note: \mathcal{H}_{∞} -norm approximation \rightsquigarrow balanced truncation, Hankel norm approximation.

Error system and \mathcal{H}_2 -Optimality

[Meier/Luenberger 1967]

In order to find an \mathcal{H}_2 -optimal reduced system, consider the error system

$$G(s) - \hat{G}(s) = C(sI_n - A)^{-1}B - \hat{C}(sI_r - \hat{A})^{-1}\hat{B}$$

 \mathcal{H}_2 -Optimal Model Reduction for Linear Systems

which can be realized by

CSC

$$A^{err} = \begin{bmatrix} A & 0 \\ 0 & \hat{A} \end{bmatrix}, \quad B^{err} = \begin{bmatrix} B \\ \hat{B} \end{bmatrix}, \quad C^{err} = \begin{bmatrix} C & -\hat{C} \end{bmatrix}.$$

Error system and \mathcal{H}_2 -Optimality

[Meier/Luenberger 1967]

In order to find an $\mathcal{H}_2\text{-optimal}$ reduced system, consider the error system

$$G(s) - \hat{G}(s) = C(sI_n - A)^{-1}B - \hat{C}(sI_r - \hat{A})^{-1}\hat{B}$$

which can be realized by

$$A^{err} = \begin{bmatrix} A & 0 \\ 0 & \hat{A} \end{bmatrix}, \quad B^{err} = \begin{bmatrix} B \\ \hat{B} \end{bmatrix}, \quad C^{err} = \begin{bmatrix} C & -\hat{C} \end{bmatrix}.$$

Assuming a coordinate system in which \hat{A} is diagonal and taking derivatives of $\|G(.) - \hat{G}(.)\|_{\mathcal{H}_2}^2$

with respect to free parameters in ${\rm diag}(\hat{A}), \hat{B}, \hat{C} \rightsquigarrow$

First-order necessary H_2 -optimality conditions (SISO)

$$G(-\hat{\lambda}_i) = \hat{G}(-\hat{\lambda}_i), \qquad G'(-\hat{\lambda}_i) = \hat{G}'(-\hat{\lambda}_i),$$

where $\hat{\lambda}_i$ are the poles of $\hat{\Sigma}$.

"Hermite interpolation at mirror poles"

© P. Benner, L. Feng, S. Grundel, Y. Yue

Error system and \mathcal{H}_2 -Optimality

[Meier/Luenberger 1967]

In order to find an $\mathcal{H}_2\text{-optimal}$ reduced system, consider the error system

$$G(s) - \hat{G}(s) = C(sI_n - A)^{-1}B - \hat{C}(sI_r - \hat{A})^{-1}\hat{B}$$

which can be realized by

$$A^{err} = \begin{bmatrix} A & 0 \\ 0 & \hat{A} \end{bmatrix}, \quad B^{err} = \begin{bmatrix} B \\ \hat{B} \end{bmatrix}, \quad C^{err} = \begin{bmatrix} C & -\hat{C} \end{bmatrix}.$$

First-order necessary \mathcal{H}_2 -optimality conditions (MIMO)

$$G(-\hat{\lambda}_i)\tilde{B}_i = \hat{G}(-\hat{\lambda}_i)\tilde{B}_i, \qquad \text{for } i = 1, \dots, r,$$

$$\tilde{C}_i^T G(-\hat{\lambda}_i) = \tilde{C}_i^T \hat{G}(-\hat{\lambda}_i), \qquad \text{for } i = 1, \dots, r,$$

$$\tilde{C}_i^T G'(-\hat{\lambda}_i)\tilde{B}_i = \tilde{C}_i^T \hat{G}'(-\hat{\lambda}_i)\tilde{B}_i \qquad \text{for } i = 1, \dots, r,$$

where $\hat{A} = R\hat{A}R^{-1}$ is the spectral decomposition of the reduced system and $\tilde{B} = \hat{B}^T R^{-1}$, $\tilde{C} = \hat{C}R$. "Tangential interpolation at mirror poles"

Interpolation of the Transfer Function [GRIMME 1997]

Construct reduced transfer function by Petrov-Galerkin projection $\mathcal{P} = VW^T$, i.e.

$$\hat{G}(s) = CV \left(sI - W^{T}AV \right)^{-1} W^{T}B,$$

Interpolation of the Transfer Function [GRIMME 1997]

Construct reduced transfer function by Petrov-Galerkin projection $\mathcal{P} = VW^T$, i.e.

$$\hat{G}(s) = CV \left(sI - W^{T}AV \right)^{-1} W^{T}B,$$

where V and W are given as

$$V = \left[(-\mu_1 I - A)^{-1} B, \dots, (-\mu_r I - A)^{-1} B \right],$$

$$W = \left[(-\mu_1 I - A^T)^{-1} C^T, \dots, (-\mu_r I - A^T)^{-1} C^T \right].$$

Interpolation of the Transfer Function [GRIMME 1997]

Construct reduced transfer function by Petrov-Galerkin projection $\mathcal{P} = VW^T$, i.e.

$$\hat{G}(s) = CV \left(sI - W^{T} AV \right)^{-1} W^{T} B,$$

where V and W are given as

$$V = \left[(-\mu_1 I - A)^{-1} B, \dots, (-\mu_r I - A)^{-1} B \right],$$

$$W = \left[(-\mu_1 I - A^T)^{-1} C^T, \dots, (-\mu_r I - A^T)^{-1} C^T \right].$$

Then

$$G(-\mu_i) = \hat{G}(-\mu_i)$$
 and $G'(-\mu_i) = \hat{G}'(-\mu_i)$,

for i = 1, ..., r.

Interpolation of the Transfer Function [GRIMME 1997]

Construct reduced transfer function by Petrov-Galerkin projection $\mathcal{P} = VW^T$, i.e.

$$\hat{G}(s) = CV \left(sI - W^{T}AV \right)^{-1} W^{T}B,$$

where V and W are given as

$$V = \left[(-\mu_1 I - A)^{-1} B, \dots, (-\mu_r I - A)^{-1} B \right],$$

$$W = \left[(-\mu_1 I - A^T)^{-1} C^T, \dots, (-\mu_r I - A^T)^{-1} C^T \right].$$

Then

$$G(-\mu_i) = \hat{G}(-\mu_i)$$
 and $G'(-\mu_i) = \hat{G}'(-\mu_i)$,

for i = 1, ..., r.

Starting with an initial guess for $\hat{\Lambda}$ and setting $\mu_i \equiv \hat{\lambda}_i \rightsquigarrow$ iterative algorithms (IRKA/MIRIAm) that yield \mathcal{H}_2 -optimal models.

[Gugercin et al. 2006/08], [Bunse-Gerstner et al. 2007], [Van Dooren et al. 2008]

The Basic IRKA Algorithm

Algorithm 1 IRKA (MIMO version/MIRIAm)

Require: A stable, B, C, \hat{A} stable, \hat{B} , \hat{C} , $\delta > 0$. **Ensure:** A^{opt} , B^{opt} , C^{opt} .

1: while
$$(\max_{j=1,...,r} \left\{ \frac{|\mu_j - \mu_j^{\text{old}}|}{|\mu_j|} \right\} > \delta)$$
 do

2: diag
$$\{\mu_1, \dots, \mu_r\} := T^{-1} \hat{A} T$$
 = spectral decomposition,
 $\tilde{B} = \hat{B}^H T^{-T}, \ \tilde{C} = \hat{C} T.$

3:
$$V = \left[(-\mu_1 I - A)^{-1} B \tilde{b}_1, \dots, (-\mu_r I - A)^{-1} B \tilde{b}_r \right]$$

4:
$$W = [(-\mu_1 I - A^T)^{-1} C^T \tilde{c}_1, \dots, (-\mu_r I - A^T)^{-1} C^T \tilde{c}_r]$$

5: $V = \operatorname{orth}(V), W = \operatorname{orth}(W), W = W(V^T W)^{-1}$

5:
$$V = \operatorname{ortn}(V), VV = \operatorname{ortn}(V), VV = VV(V \cdot V)$$

6: $\hat{A} = W^T A V, \hat{B} = W^T B, \hat{C} = CV$

7: end while

8:
$$A^{opt} = \hat{A}, \ B^{opt} = \hat{B}, \ C^{opt} = \hat{C}$$

Interpretation as "White Box Model"

- Known behavior from input to output,
- typically given by a (discretized) PDE model, or directly as ODE,
- matrices are available \rightsquigarrow projection-based (P)MOR techniques can be used.

- 1. Introduction to Parametric Models
- 2. PMOR by Projection
- 3. (P)MOR from Data Black/Grey Box Modeling The Loewner Method
- 4. A Grey Box Method
- 5. Interpolating Reduced-Order Models obtained from Data

Black Box / System Identification

- We have input/output data or we can produce input/output data.
- Surrogate model by interpolation (Loewner, Kriging, radial basis functions, kernel methods, ...) or data fitting (vector fitting, DMD, ...).

Grey Box

- Approximate model available (e.g., unknown or uncertain parameters, simplified model, ...)
- Experimental and/or computational data available, as well as model structure.

🐟 宽 (Reduced) Models from Data

The Loewner Method

[Mayo/Antoulas 2007]

Given **frequencies** together with the **values (measurements)** of the transfer function at those frequencies, the Loewner method is a data driven approach to create a state space system which interpolates there.

😪 (Reduced) Models from Data

The Loewner Method

[Mayo/Antoulas 2007]

Given **frequencies** together with the **values (measurements)** of the transfer function at those frequencies, the Loewner method is a data driven approach to create a state space system which interpolates there.

The Basic Method (SISO case, for simplicity of exposition)

Given the interpolation points $(\xi_1, \ldots, \xi_N, \sigma_1, \ldots, \sigma_r)$, and the associated function values $V^T = [G(\xi_1), \ldots, G(\xi_N)]$ and $W = [G(\sigma_1), \ldots, G(\sigma_r)]$, we can define the Loewner and shifted Loewner matrices \mathbb{L}, \mathbb{L}_s as the divided differences matrices

$$\mathbb{L}_{ij} := \frac{V_i - W_j}{\xi_i - \sigma_j}, \qquad (\mathbb{L}_s)_{ij} := \frac{\xi_i V_i - \sigma_j W_j}{\xi_i - \sigma_j}.$$

😪 😪 (Reduced) Models from Data

The Loewner Method

[Mayo/Antoulas 2007]

Given **frequencies** together with the **values (measurements)** of the transfer function at those frequencies, the Loewner method is a data driven approach to create a state space system which interpolates there.

The Basic Method (SISO case, for simplicity of exposition)

Given the interpolation points $(\xi_1, \ldots, \xi_N, \sigma_1, \ldots, \sigma_r)$, and the associated function values $V^T = [G(\xi_1), \ldots, G(\xi_N)]$ and $W = [G(\sigma_1), \ldots, G(\sigma_r)]$, we can define the Loewner and shifted Loewner matrices \mathbb{L}, \mathbb{L}_s as the divided differences matrices

$$\mathbb{L}_{ij} := \frac{V_i - W_j}{\xi_i - \sigma_j}, \qquad (\mathbb{L}_s)_{ij} := \frac{\xi_i V_i - \sigma_j W_j}{\xi_i - \sigma_j}.$$

If r = N and N equals the McMillan degree of the underlying linear system, $(\mathbb{L}_s, \mathbb{L})$ is a regular matrix pair with all its eigenvalues distinct from ξ_i, σ_j , then

$$\tilde{G}(s) = W(\mathbb{L}_s - s\mathbb{L})^{-1}V$$

is a minimal realization of a linear time-invariant system that produces the given data.

😪 (Reduced) Models from Data

The Loewner Method

[Mayo/Antoulas 2007]

Given **frequencies** together with the **values (measurements)** of the transfer function at those frequencies, the Loewner method is a data driven approach to create a state space system which interpolates there.

The Basic Method (SISO case, for simplicity of exposition)

Given the interpolation points $(\xi_1, \ldots, \xi_N, \sigma_1, \ldots, \sigma_r)$, and the associated function values $V^T = [G(\xi_1), \ldots, G(\xi_N)]$ and $W = [G(\sigma_1), \ldots, G(\sigma_r)]$, we can define the Loewner and shifted Loewner matrices \mathbb{L}, \mathbb{L}_s as the divided differences matrices

$$\mathbb{L}_{ij} := rac{V_i - W_j}{\xi_i - \sigma_j}, \qquad (\mathbb{L}_s)_{ij} := rac{\xi_i V_i - \sigma_j W_j}{\xi_i - \sigma_j}.$$

In case of *redundant data* (rank (L) < N), we obtain an approximate (reduced) model from the (truncated) SVDs

$$\begin{bmatrix} \mathbb{L}, \mathbb{L}_s \end{bmatrix} = YS_{\ell}\tilde{X}^H, \qquad \begin{bmatrix} \mathbb{L} \\ \mathbb{L}_s \end{bmatrix} = \tilde{Y}S_rX^H$$

as $\hat{G}(s) = \hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B}$, where $\hat{E} := -Y^{H}\mathbb{L}X, \quad \hat{A} := -Y^{H}\mathbb{L}_{s}X, \quad \hat{B} := Y^{H}V, \quad \hat{C} := WX.$

© P. Benner, L. Feng, S. Grundel, Y. Yue

- 1. Introduction to Parametric Models
- 2. PMOR by Projection
- 3. (P)MOR from Data
- 4. A Grey Box Method An IRKA-Loewner Method Numerical Examples
- 5. Interpolating Reduced-Order Models obtained from Data

🐟 宽 A Grey Box Method

Assumptions

- The model —a linear parametric system— is available only at a certain parameter point *p**.
- Moreover, we can collect frequency response data G(ξ_i) for the system at certain frequencies ξ₁,..., ξ_N for other parameter configurations p ≠ p*.

The set-up could be:

- Black box with these input-output data (or infinite dimensional system), and a particular discretization for $p = p^*$.
- Want to create a reduced parametric linear system that is a good approximation of the true system.

🐟 宽 A Grey Box Method

Assumptions

- The model —a linear parametric system— is available only at a certain parameter point *p*^{*}.
- Moreover, we can collect frequency response data G(ξ_i) for the system at certain frequencies ξ₁,..., ξ_N for other parameter configurations p ≠ p*.

The set-up could be:

- Black box with these input-output data (or infinite dimensional system), and a particular discretization for $p = p^*$.
- Want to create a reduced parametric linear system that is a good approximation of the true system.

[B./GRUNDEL, AML 39:1-6, 2015]

Obtain reduced parametric model from H_2 -optimal reduced model at p^* (with optimal interpolation points $\sigma_1, \ldots, \sigma_r$) and Loewner interpolation at frequency response data.

Idea

Sc A Grey Box Method

First, consider the case N = r and recall the Loewner pair $(\mathbb{L}, \mathbb{L}_s)$ with the associated transfer function

$$\tilde{G}(s) = W(\mathbb{L}_s - s\mathbb{L})^{-1}V,$$

where V, W contain the interpolation data.

Sc A Grey Box Method

First, consider the case N = r and recall the Loewner pair $(\mathbb{L}, \mathbb{L}_s)$ with the associated transfer function

$$\tilde{G}(s) = W(\mathbb{L}_s - s\mathbb{L})^{-1}V,$$

where V, W contain the interpolation data.

We will now look at this problem as a rational interpolation problem in the set-up of barycentric interpolation.

Sc A Grey Box Method

First, consider the case N = r and recall the Loewner pair $(\mathbb{L}, \mathbb{L}_s)$ with the associated transfer function

$$\tilde{G}(s) = W(\mathbb{L}_s - s\mathbb{L})^{-1}V,$$

where V, W contain the interpolation data.

We will now look at this problem as a rational interpolation problem in the set-up of barycentric interpolation.

Here we know that the transfer function

$$ilde{H}(s) = rac{\sum_{k=1}^r rac{lpha_k W_k}{s-\sigma_k}}{\sum_{k=1}^r rac{lpha_k}{s-\sigma_k}+1}$$

is a strictly proper rational function that interpolates G at σ_k for all $\alpha_1, \ldots, \alpha_k$, as long as they are not all zero.

Lemma

The two transfer functions \tilde{G} and \tilde{H} are identical exactly when $\mathbb{L}\alpha + V = 0$.

🐟 宽 A Grey Box Method

The Barycentric Loewner Method

Consider now the case N > r.

The strictly proper rational function in barycentric form, interpolating at σ_k :

$$\tilde{H}(s) = \frac{\sum_{k=1}^{r} \frac{\alpha_k W_k}{s - \sigma_k}}{\sum_{k=1}^{r} \frac{\alpha_k}{s - \sigma_k} + 1}.$$
(1)

We want to pick α such that $\tilde{H}(\xi_i) \approx G(\xi_i)$, i.e., such that the difference

$$\tilde{H}(\xi_i) - G(\xi_i) = \frac{\sum_{k=1}^r \frac{\alpha_k W_k}{\xi_i - \sigma_k}}{\sum_{k=1}^r \frac{\alpha_k}{\xi_i - \sigma_k} + 1} - V_i = \frac{(-\mathbb{L}\alpha - V)_i}{\sum_{k=1}^r \frac{\alpha_k}{\xi_i - \sigma_k} + 1}$$
(2)

is small (in a least-squares sense).

Lemma

A state space system that has the transfer function \tilde{H} as in (1) with $\mathbb{L}^{H}\mathbb{L}\alpha + \mathbb{L}^{H}V = 0$ is given by (Z contains the first r left singular vectors of \mathbb{L}):

$$ilde{\mathsf{E}} = -Z^H \mathbb{L}, \quad ilde{\mathsf{A}} = -Z^H \mathbb{L}_s, \quad ilde{\mathsf{C}} = W, \quad ilde{\mathsf{B}} = Z^H V.$$

🐟 宽 A Grey Box Method

The IRKA-Loewner Algorithm

(for computing a state-space realization of the system at $p = \bar{p}$.)

Offline Phase

Compute *H*₂-optimal interpolation points *σ*₁,..., *σ*_r for the given model at *p*^{*}.
 Recommendation: choose center point of parameter domain if possible.

Online Phase

- INPUT: reduced order r, parameter \bar{p} , interpolation points $\sigma_1, \ldots, \sigma_r$ (from offline phase).
 - 1. Obtain data for $p = \overline{p}$: $\xi_1, \ldots, \xi_N, G(\xi_1), \ldots, G(\xi_N)$.
 - 2. Compute $V_i = G(\xi_i)$, $W_j = G(\sigma_j)$, $\mathbb{L}_{ij} = \frac{V_i W_j}{\xi_i \sigma_j}$, $(\mathbb{L}_s)_{ij} = \frac{\xi_i V_i \sigma_j W_j}{\xi_i \sigma_j}$.
 - 3. Compute the SVD $\mathbb{L} = U\Sigma V^T$.
 - 4. Set Z = U(:, 1 : r).
 - 5. $\hat{A} = -Z^H \mathbb{L}$, $\hat{E} = -Z^H \mathbb{L}_s$, $\hat{B} = W$, $\hat{C} = Z^H V$.

A Beam Example

- FEM of a 3D cantilever Timoshenko beam.
- parameter is the length of the beam p ∈ [0.8, 1.2].

• *n* = 240.

Figure: Bode plots for varying *p*

A Beam Example

 \mathcal{H}_2 -error for the data driven approach: r = 4, 100 data points.

A UQ Example

MATLAB Code

function [A,B,C,D,E]=UQexample(Q)
%Q - a fixed random orthogonal matrix

n=100;

A=Q*diag(-10*rand(n,1))*Q'; B=ones(n,1); C=ones(1,n); D=0; E=eye(n);

r	Ν	IRKA		IRKA-Loewner		Hermite		Loewner		
		err	#	err	#	err	#	err	$\#(\mathbb{C}^-)$	#
4	8	0.01	142	0.02	12	0.02	8	10	(5)	8
4	16	0.01	142	0.01	20	0.02	8	0.2	(5)	16
6	12	2E-5	134	5E-5	18	2E-4	12	15	(4)	12
6	24	2E-5	134	3E-5	30	2E-4	12	4E-3	(5)	24
10	20	2E-11	151	2E-10	30	2E-5	20	_	(0)	20
10	40	2E-11	151	1E-10	50	2E-5	20	2E-6	(1)	40

Table: Average over 5 runs.

- 1. Introduction to Parametric Models
- 2. PMOR by Projection
- 3. (P)MOR from Data
- 4. A Grey Box Method
- Interpolating Reduced-Order Models obtained from Data Discussion of several PMOR Methods ROM Interpolation under the Loewner Framework Numerical Results

Method 1. Projection Using Common Bases

To reduce the parametric full-order model (FOM):

$$E(p)\dot{x} = A(p)x + B(p),$$

$$y = C(p)x$$

where $E(p), A(p) \in \mathbb{R}^{n \times n}$, $B(p) \in \mathbb{R}^{n \times m_i}$, $C(p) \in \mathbb{R}^{m_o \times n}$,

- these methods build common bases W, V ∈ ℝ^{n×r} by assembling global information, e.g., (multi-)moments of the frequency domain system, snapshots, etc., at different values of p;
- approximate $x \approx V\hat{x}$ in the range of V ($\hat{x} \in \mathbb{R}^r$);
- force the residual to be orthogonal to the range of W, i.e.,

$$W^{H}(E(p)V\dot{\hat{x}}-A(p)V\hat{x}-B(p))=0.$$

• obtain the parametric reduced-order model (pROM):

$$\begin{split} \hat{E}(p)\dot{\hat{x}} &= \hat{A}(p)x + \hat{B}(p), \\ \hat{y} &= \hat{C}(p)\hat{x}. \end{split}$$

where $[\hat{E}(p), \hat{A}(p)] = W^{H}[E(p), A(p)]V$, $\hat{B}(p) = W^{H}B(p)$ and $\hat{C}(p) = C(p)V$.

Method 1. Projection Using Common Bases (Continued)

• Case 1. Explicit Parameter Dependency:

$$M(p) = \sum_{i=1}^{n_p} M_i \phi_i(p).$$
 (*M* = *E*, *A*, *B*, or *C*)

The reduced operator can be efficiently pre-computed, e.g.,

$$W^{H}A(p)V = \sum_{i=1}^{n_{p}} \left(W^{H}A_{i}V\right)\phi_{i}(p).$$

- Case 2. Implicit Parameter Dependency:
 - Interpolate the FOM and then Reduce

is equivalent to

Reduce and then Interpolate the ROMs because

$$\hat{M}(p) = W^{H} \big(\sum_{i=1}^{n_{p}} f_{j}(p) M_{j} \big) V = \sum_{i=1}^{n_{p}} f_{j}(p) \hat{M}_{j}, \qquad f_{j}(p_{i}) = \delta_{ij}, M_{j} = M(p_{j}).$$

• If the parameter dependency of the FOM can be well captured by a certain interpolation method, interpolating the ROMs directly will also work well (thanks to the common bases used).

© P. Benner, L. Feng, S. Grundel, Y. Yue

Method 2. Projection Using Individual Bases

• The bases V and W are functions of p:

$$[\hat{E}(p), \hat{A}(p)] = W(p)^{H}[E(p), A(p)]V(p),$$

$$\hat{B}(p) = W^{H}(p)B(p), \quad \hat{C}(p) = C(p)V(p).$$

• Question: How to interpolate V(p) and W(p)?

Direct interpolation does not preserve the orthonormality of V and W as in general, the interpolant will not be on the Stiefel manifold of rank-r isometries.

Method 2. Projection Using Individual Bases (Continued)

To preserve a desired property for the interpolated matrix:

- $1. \ \mbox{Find}$ the manifold corresponding to the desired property.
 - Grassmann manifold $\mathcal{G}(k, n)$: set of subspaces of dimension k in \mathbb{R}^n .
 - Stiefel manifold ST(k, n): set of all $n \times k$ orthonormal matrices in \mathbb{R}^n .
- 2. Choose a reference point to determine the tangent space.
- 3. The Log map: map all points relevant to the interpolation to the tangent space.
- 4. Interpolate on the tangent space. We must choose a interpolation algorithm so that the interpolant lies also on the tangent space.
- 5. The Exp map: Map the interpolant back to the manifold.

Tangent Space

Alert: This procedure requires "continuity" in V(p) and W(p).

Method 3. Interpolating "Given" ROMs

If we are simply "given" some ROMs valid at different parameter values p:

- Direct interpolation normally does not work:
 - Different realizations (coordinate systems) of ROMs;
 - simply exchanging rows of one ROM breaks "continuity".
- If we know the bases V_i and W_i , we can build

 $V_{all} = [V_1, V_2, \dots, V_{p_n}], \quad W_{all} = [W_1, W_2, \dots, W_{p_n}],$

perform SVD, and use the dominant components to assemble the common bases V and W. Then, the ROMs can be represented using the common realization.

- Sometimes, we do not even know V_i and W_i !
 - For example, ROMs built under the Loewner framework.
 - There also exists methods that interpolate on specific matrix manifold, e.g., the manifold of nonsingular $r \times r$ matrices (the general linear group GL(r)), and the manifold of symmetric positive definite matrices.
 - Heuristic methods that attempt to render the bases "consistent".

Recall: The Loewner Framework

Dynamical System (Unknown)

 $\begin{cases} (sE - A)x &= Bu, \\ y &= Cx. \end{cases} \longrightarrow H(s) = C(sE - A)^{-1}B.$

FRF (Only known as a whole operater)

Step 1: Collect data: (V, W are not bases: composed of tangential directions!)

- "Right Data": (λ_i, r_i, w_i) satisfying $H(\lambda_i)r_i = w_i$;
- "Left Data": (μ_j, ℓ_j, v_j) satisfying $\ell_j H(\mu_j) = v_j$.

Step 2: Compute the Loewner matrix \mathbb{L} and the shifted Loewner matrix \mathbb{L}_s .

$$(\mathbb{L})_{ij} = \frac{\mathbf{v}_i \mathbf{r}_j - \ell_i \mathbf{w}_j}{\mu_i - \lambda_j}, \qquad (\mathbb{L}_s)_{ij} = \frac{\mu_i \mathbf{v}_i \mathbf{r}_j - \ell_i \mathbf{w}_j \lambda_j}{\mu_i - \lambda_j}$$

Step 3: Compute the reduced model:

- If the matrix pencil $(\mathbb{L}_s, \mathbb{L})$ is regular, the reduced model is: $\hat{E} = -\mathbb{L}$, $\hat{A} = -\mathbb{L}_s$, $\hat{B} = V$, $\hat{C} = W$.
- If the matrix pencil $(\mathbb{L}_s, \mathbb{L})$ is (numerically) singular:
 - 1. Compute rank-revealing SVD: $s\mathbb{L} \mathbb{L}_s = Y\Sigma X^H \approx Y_r\Sigma_r X_r^H$; $(s \in \{\lambda_i\} \cup \{\mu_j\})$
 - 2. Compute $\hat{E} = -Y_r^H \mathbb{L} X_r$, $\hat{A} = -Y_r^H \mathbb{L}_s X_r$, $\hat{B} = Y_r^H V$, $\hat{C} = W X_r$.

Computing Parametric Models using the Loewner Framework

• In summary, we consider two representations:

• The "Original" Representation.

•
$$\hat{E} = -\mathbb{L}$$
, $\hat{A} = -\mathbb{L}_s$, $\hat{B} = V$, $\hat{C} = W$.

- Very likely to produce a numerically singular pair $(\hat{A}, \hat{E})!$
- The "Compressed" Representation.

•
$$\hat{E} = -Y_r^H \mathbb{L} X_r$$
, $\hat{A} = -Y_r^H \mathbb{L}_s X_r$, $\hat{B} = Y_r^H V$, $\hat{C} = W X_r$.

• Yields regular matrix pair (\hat{A}, \hat{E}) .

How to interpolate the ROMs built by the Loewner Framework?

- There is no "FOM" in the Loewner Framework, and no bases V_i and W_i like in the projection-based methods.
- The Loewner Framework has been extended for PMOR in [IONITA/ANTOULAS '14] → PMOR-L.

This talk explores another possibility: interpolating nonparametric ROMs built under the Loewner Framework.

Interpolating the "Original" Representation

- Assume that the system is parameterized with parameter *p*.
- Assume that we use the same frequencies and the same left/right input vectors.
- In $H_p(\lambda_i)r_i = w_i(p)$, λ_i and r_i are independent of p, $1 \le i \le \mathbb{R}^{n_p}$.
- In $\ell_j H_p(\mu_j) = v_j(p)$, μ_j and ℓ_j are independent of p, $1 \le j \le \mathbb{R}^{n_p}$.
- Interpolating L(p) and L_s(p)
 is equivalent to

Interpolating V(p) and W(p) and using the Loewner framework:

$$\begin{split} \left(\tilde{\mathbb{L}}(p)\right)_{ij} &= \sum_{q=1}^{n_p} \left(\frac{v_i(p_q)r_j - \ell_i w_j(p_q)}{\mu_i - \lambda_j}\right) \phi_q = \frac{\tilde{v}_i(p)r_j - \ell_i \tilde{w}_j(p)}{\mu_i - \lambda_j} \\ \left(\tilde{\mathbb{L}}_s(p)\right)_{ij} &= \sum_{q=1}^{n_p} \left(\frac{\mu_i v_i(p_q)r_j - \ell_i w_j(p_q)\lambda_j}{\mu_i - \lambda_j}\right) \phi_q = \frac{\mu_i \tilde{v}_i(p_q)r_j - \ell_i \tilde{w}_j(p_q)\lambda_j}{\mu_i - \lambda_j} \end{split}$$

• Can be directly interpolated: equivalent to interpolating the transfer functions.

Interpolating "Compressed" Representation

- If we store all the "Original" Representations, too much storage are required.
- The ultimate goal is to interpolate the "Compressed" Representation.
- The bases used to "compress" the "Original" Representation vary with parameters (with additional freedom in s_i): $s_i \mathbb{L}_i \mathbb{L}_{s_i} = Y_i \Sigma_i X_i^H \approx Y_{i,k} \Sigma_{i,k} X_{i,k}^H$. Here Y_i is a generalized observability matrix and X_i is a generalized controllability matrix.
- Idea 1: To preserve the property for interpolation of the original representation $(-\mathbb{L}_i, -\mathbb{L}_{s_i}, V_i, W_i)$, use common bases Y and X to reduce them.
- Idea 2a: Y should contain the dominant components of all observability matrices Y_i. So we compute Y by the following SVD:

$$\left| s_1 \mathbb{L}_1 - \mathbb{L}_{s1} \right| \left| s_2 \mathbb{L}_2 - \mathbb{L}_{s2} \right| \dots \left| s_{n_q} \mathbb{L}_{n_q} - \mathbb{L}_{sn_p} \right] = \overline{Y} \overline{\Sigma}_W \overline{X}_W^H \approx Y \Sigma_W X_W^H.$$

• Idea 2b: X should contain the dominant components of all controllability matrices X_i. So we compute X by the following SVD:

$$\begin{bmatrix} s_1 \mathbb{L}_1 - \mathbb{L}_{s_1} \\ s_2 \mathbb{L}_2 - \mathbb{L}_{s_2} \\ \vdots \\ s_{n_q} \mathbb{L}_{n_q} - \mathbb{L}_{s_{n_p}} \end{bmatrix} = \overline{Y}_V \overline{\Sigma}_V \overline{X}^H \approx Y_V \Sigma_V X^H.$$

Interpolating "Compressed" Representation (Continued)

- **Observation**: colspan $\{Y_i\} \subseteq$ colspan $\{\overline{Y}\}$, rowspan $\{X_i\} \subseteq$ rowspan $\{\overline{X}\}$, $\forall i$.
- Therefore, X, Y from truncated SVD include the dominant controllable and observable components for all states corresponding to parameter samples.

Algorithm 2 Interpolation of Loewner ROMs in the Compressed Representation

1: Build the common bases Y by computing the truncated SVD of

$$s_{1}\mathbb{L}_{1} - \mathbb{L}_{s_{1}} \mid s_{2}\mathbb{L}_{2} - \mathbb{L}_{s_{2}} \mid \ldots \mid s_{n_{q}}\mathbb{L}_{n_{q}} - \mathbb{L}_{s_{n_{p}}} \mid = \overline{Y}\overline{\Sigma}_{W}\overline{X}_{W}^{H} \approx Y\Sigma_{W}\overline{X}_{W}^{H}$$

2: Build the common bases X by computing the truncated SVD of

$$\begin{bmatrix} s_{1}\mathbb{L}_{1} - \mathbb{L}_{s_{1}} \\ s_{2}\mathbb{L}_{2} - \mathbb{L}_{s_{2}} \\ \vdots \\ s_{n_{q}}\mathbb{L}_{n_{q}} - \mathbb{L}_{s_{n_{p}}} \end{bmatrix} = \overline{Y}_{V}\overline{\Sigma}_{V}\overline{X}^{H} \approx Y_{V}\Sigma_{V}X^{H}.$$

3: Build the "Compressed" Representations using the common bases:

$$\hat{E}_l = -Y^H \mathbb{L}_l X, \quad \hat{A}_l = -Y^H \mathbb{L}_{\sigma,l} X, \quad \hat{B}_l = Y^H V_l, \quad \hat{C}_l = W_l X.$$

4: Given an interpolation operator, the interpolated ROM at p is given by

$$\hat{M}(p) = \sum_{l=1}^{n_p} \hat{M}_l \phi_l(p), \qquad \hat{M} \in \{\hat{E}, \hat{A}, \hat{B}, \hat{C}\}.$$

© P. Benner, L. Feng, S. Grundel, Y. Yue

A Microthruster Model

PolySi	SOG
SiNx	
SiO2	
Fuel	Si-substrate

- A propulsive MEMS (micro-electro-mechanical) device.
- We consider a single-input single-output sub-model, *n* = 4, 257.
- Pretend that only Input/Output information is available.
- We consider the single parameter: the film coefficient (boundary heat transfer coefficient).

The Convergence of the Loewner Approach

- $\bullet\,$ For the Loewner framework, we take 100 λ and 100 μ samples.
- The magnitude of the transfer function is shown for the parameter value p = 268.27.

Numerical Results CSC

Existing Method: Manifold Interpolation on GL(r) [AMSALLEM/FARHAT '11]

- Values of p used in interpolation: $p_1 = 10$, $p_2 = 268.3$, $p_3 = 7197$.
- To be interpolated at p = 65.51. Reference point for tangent space: 268.3.
- Order of the reduced model r = 10.

Numerical Results

Existing Method: Manifold Interpolation on GL(r) [Amsallem/Farhat '11]

• Order of the reduced model: r = 11.

Does not converge any more.

CSC

Method 1: Interpolating the "Original" Representation

- First interpolate (shifted) Loewner matrices, then reduce.
- All reduced models are of order 21.
- The pROM approximates the FOM very well.

🐼 宽 Numerical Results

Method 2: Interpolating the "Compressed" Representation

CSC Numerical Results

No good: Interpolating "Compressed" ROMs Generated with Individual Bases

© P. Benner, L. Feng, S. Grundel, Y. Yue

Method 2: Interpolating the "Compressed" Representation

Figure: Response Surface and the Absolute Error

- We have introduced two models to obtain parametric reduced models from data:
 - 1. A grey box approach: the IRKA-Loewner method can efficiently compute an accurate realization of a linear system at any parameter in parameter space, given
 - an H_2 -optimal reduced-order model for a reference parameter p^* , and
 - that at other parameters, frequency response data can be collected.
 - 2. A black box approach: obtain a parametric reduced-order model from data without access to the original model matices, but to frequency response data for a number of parameter values. Affine parameter structure not necessary, insensitive to dimension of parameter space. Use of "common basis" approach gives good results for "smooth" transfer functions.
- The parametric Loewner model suffers from the same drawback as transfer function interpolation: spurious peaks in the frequency response may be introduced.
- If applicable, the PMOR-L approach may give slightly more accurate results than the parametric Loewner approach at the same reduced order, but the latter is more efficient in the offline phase and allows for a full parametric ROM (*p* in all system matrices).
- Need more experiments to identify shortcomings, and test potential remedies for those.