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Dynamical Systems
Motivating Example
The Parametric Model Order Reduction Problem
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@ Introduction to Parametric Models

Parametric Dynamical Systems

| E(p)x(t;p)
p): { y(t; p)

f(t,x(t;p), u(t),p),  x(to) =x0, ()
g(t, x(t; p), u(t), p) (b)

with
o (generalized) states x(t; p) € R” (E € R"*"),
@ inputs u(t) € R",
o outputs y(t; p) € RY, (b) is called output equation,
o peQcCRYisa parameter vector, Q is bounded.
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@ Introduction to Parametric Models

Parametric Dynamical Systems

| E(p)x(t;p)
p): { y(t; p)

f(t,x(t;p), u(t),p),  x(to) =x0, ()
g(t, x(t; p), u(t), p) (b)

with
o (generalized) states x(t; p) € R” (E € R"*"),
@ inputs u(t) € R",
o outputs y(t; p) € RY, (b) is called output equation,
o peQcCRYisa parameter vector, Q is bounded.

Applications:
@ Repeated simulation for varying material or geometry parameters, boundary
conditions;
@ control, optimization and design;
@ of models, often generated by FE software (e.g., ANSYS, NASTRAN,...) or
automatic tools (e.g., Modelica).
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@ Introduction to Parametric Models

Parametric Dynamical Systems

| E(p)x(t;p)
p): { y(t; p)

f(t,x(t;p), u(t),p),  x(to) =x0, ()
g(t, x(t; p), u(t), p) (b)

with
o (generalized) states x(t; p) € R” (E € R"*"),
@ inputs u(t) € R",
o outputs y(t; p) € RY, (b) is called output equation,
o peQcCRYisa parameter vector, Q is bounded.

Underlying PDE and boundary conditions often not accessible!
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@ Introduction to Parametric Models

Parametric Dynamical Systems

(p) : { E(p)x(t:ip) = f(t.x(t:p),u(t),p), x(t)=>, (a)
y(tip) = g(t,x(t;p), u(t), p) (b)
with
o (generalized) states x(t; p) € R" (E € R"™*"),
o inputs u(t) € R™,
o outputs y(t; p) € RY, (b) is called output equation,
o pe QcCRYis a parameter vector, Q is bounded.

Underlying PDE and boundary conditions often not accessible!

Parametric discretized model often not available,
but matrices for certain parameter values can be extracted,
or output data for given u and p can be generated!
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E(p)x(t:p) =

A(p)x(t; p) + B(p)u(t), A(p), E(p) € R™",
C(p)x(t; p), B(p) € R™™ C(p) € RI*",
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E(p)x(t;p) = Alp)x(t:p) + B(p)u(t), A(p), E(p) € R™",
y(tip) = Cp)x(t; p), B(p) € R™™, C(p) € RT*".

Laplace Transformation / Frequency Domain

Application of Laplace transformation  (x(t; p) — x(s; p), x(t; p) — sx(s; p))
to linear system with x(0; p) = 0:

sE(p)x(s; p) = A(p)x(s; p) + B(p)u(s), y(sip) = C(p)x(s; p),
yields I/O-relation in frequency domain:

y(5:p) = ( C(P)(SE(P) = Ap))*B(p) ) us).

~~

—:G(sp)
G(s, p) is the parameter-dependent transfer function of X(p).
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E(p)x(t;p) = Alp)x(t:p) + B(p)u(t), A(p), E(p) € R™",
y(tip) = Cp)x(t; p), B(p) € R™™, C(p) € RT*".

Laplace Transformation / Frequency Domain

Application of Laplace transformation  (x(t; p) — x(s; p), x(t; p) — sx(s; p))
to linear system with x(0; p) = 0:

sE(p)x(s; p) = A(p)x(s; p) + B(p)u(s), y(sip) = C(p)x(s; p),
yields |/O-relation in frequency domain:
v(sip) = ( C(P)(SE(P) ~ Alp)) *BIp) ) u(s).
=:G(s,p)

G(s, p) is the parameter-dependent transfer function of X(p).

Goal: Fast evaluation of mapping (u, p) — y(s; p).
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Motivating Example:
Microsystems/MEMS Design

@ Applications:

o inertial navigation,
o electronic stability control
(ESP).

@ Voltage applied to electrodes induces vibration
of wings, resulting rotation due to Coriolis force
yields sensor data.

Sy

@ FE model of second order:
N =17.361 ~ n=34.722, m=1, q = 12.

@ Sensor for position control based on
acceleration and rotation.

Source: MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Gyroscope
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http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Gyroscope

Motivating Example:
Microsystems/MEMS Design

Microgyroscope (butterfly gyro)
Parametric FE model: M(d)x(t) + D(0,d, a, B)x(t) + T(d)x(t) = Bu(t).
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), Motivating Example:
NS Microsystems/MEMS Design

Microgyroscope (butterfly gyro)
Parametric FE model:

M(d)x(t) + D(0,d, a, B)x(t) + T(d)x(t) = Bu(t),

where
M(d) = M+ dM.,

D(0,d,a,8) = 0(D1+ dDs) + aM(d)+ BT(d),
T(d) = T1+ %Tz + dTs,

with

@ width of bearing: d,
@ angular velocity: 6,

@ Rayleigh damping parameters: «, 3.
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Motivating Example:
Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Original. . . and reduced-order model.
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ﬂ.s @ The Parametric Model Order Reduction Problem

Problem

Approximate the dynamical system

E(p)x = A(p)x+ B(p)u,  E(p),A(p) € R™",
y = C(p)x, B(p) € R™™ C(p) € RI*",
by reduced-order system
E(px = A(p)x+B(p)u, E(p),A(p) e R,
y = Cp)x, B(p) € R™™, C(p) € R,

of order r < n, such that

ly =9l = ||Gu — @u|| <|IG - @|| -||ul| < tolerance - ||u|| ¥V p € Q.

© P. Benner, L. Feng, S. Grundel, Y. Yue
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ﬂ.s @ The Parametric Model Order Reduction Problem

Problem

Approximate the dynamical system

E(p)x = Alp)x+ B(p)u,  E(p),A(p) € R™",
y = C(p)x, B(p) € R™™, C(p) € RI*",

by reduced-order system

E(px = A(p)x+B(p)u, E(p),A(p) e R,
y = Cp)x, B(p) € R™™, C(p) € R,

of order r < n, such that
ly =9Il = |Gu— Gul| < |G — G| - ||u|| < tolerance - |u]| ¥ p € Q.

— Approximation problem:  min |G — G|
order (G)<r
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@ The Parametric Model Order Reduction Problem

Parametric System

[ E@X(Ep) = Alp)x(t:p) + B(pu(),
Z(P)'{ y(tip) = Clp)x(tip)
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‘\ @ The Parametric Model Order Reduction Problem

Parametric System

[ E@X(Ep) = Alp)x(t:p) + B(pu(),
=) { y(tip) = Clp)x(tip)

Appropriate parameter-affine representation:

(p) Eo +e(p)Er + .- + eqe(p) Eqe
(p) Ao+ a1(p)Ar + ... + ag,(p)Aqa,
B(p) = Bo+ bi(p)Bi+ ...+ by (p)Bass
(P) = G+alP)G+. ..+ cgp)Cec,

allows easy parameter preservation for projection based model reduction.

@© P. Benner, L. Feng, S. Grundel, Y. Yue
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“ @ The Parametric Model Order Reduction Problem

Parametric System

[ E@X(Ep) = Alp)x(t:p) + B(pu(),
z(p)'{ y(tip) = Clp)x(tip)

Appropriate parameter-affine representation:

Alp) = Aot a(p)Ar+ ...+ aq.(p)Aqgu:

allows easy parameter preservation for projection based model reduction.

W.l.o.g. may assume this affine representation:

@ Any system can be written in this affine form for some gx < n?, but for
efficiency, need gx < n! (X € {E,A,B,C})

o Empirical (operator) interpolation yields this structure for "smooth enough”
parameter functions. [BARRAULT/MADAY/NGUYEN/PATERA 2004]
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@ The Parametric Model Order Reduction Problem

Parametric System

[ E@X(Ep) = Alp)x(t:p) + B(pu(),
“m'{ y(tip) = Clp)x(t:p)

Parametric model reduction goal:

preserve parameters as symbolic quantities in reduced-order model:

f@y{EWme = A(p)2(t:p) + B(p)u(t),

A
y(tip) = C(p)x(t:p)

with states X(t; p) € R" and r < n.

@© P. Benner, L. Feng, S. Grundel, Y. Yue Computing Parametric ROMs from Projection and Data



2. PMOR by Projection
Ho-Optimal Model Reduction for Linear Systems
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@@ PMOR by Projection

Petrov-Galerkin-type projection
For given projection matrices V, W € R™" with WTV = I,
(~ (VWT)2 = VWT is projector), compute

E(p) = WTEV+ea(pWTEV+... +e,(p)WTE,V,
= B tea(p)bi+. ..+ ew(p)Eoe,

Alp) = WTAV +a(p)WTALV + ...+ ag,(p)WTA,V,
= Ao+ ai(p)A1 + ... + ag,(p)Aq;

B(p) = W'By +bi(p)WTB1 +...+ by (p)WT By,
= By+bi(p)Bi+ ...+ byy(p)Bys,

Clp) = GV + alp)GV +...+ Cqe(P)Coc Vs

= G+aP)a+...+ ce(p)Co.

~~ affine parameter structure is preserved!
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@@ PMOR by Projection

Petrov-Galerkin-type projection
For given projection matrices V, W € R™" with WTV = I,
(~ (VWT)2 = VWT is projector), compute

E(p) = WTEV+ea(@WTEV+... +e,(p)WTE,V,
= E+ el(p)El +...+ qu(p)EqE7

Alp) = WTAV +ai(p)WTAV + ...+ ag,(p)WTA,V,
= Ao+ ai(p)Ar + ... + ag,(p)Aq,,

B(p) = WTBy +bi(p)WTB1 ...+ by (p)WT By,
= By+ bi(p)By+ ...+ by (p)Bys,

Clp) = GV+  a@)GaV+...+  c(p)CV,

= G+alp)G+...+ coe(p)Coc-

~~ affine parameter structure is preserved!
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o Rational interpolation, based on
o multi-moment matching [B., DaNIEL, Dyczi-EDLINGER, FARLE, FENG,
GALLIVAN, GUNUPUDI, KORVINK, NAKHLA, RUDNYI, WEILE, ...]
o tangential interpolation and H> optimization [BAUR, BEATTIE, B., BREITEN,
BRUNS, GUGERCIN, ... |
o Transfer function interpolation (= output interpolation in frequency domain)
[Baur, B., ...]
@ Matrix interpolation [AmsaLLaM, BRUNSCH, EiD, GEUSS, FARHAT, LOHMANN,
MOHRING, PANZER, WOLF, ...]
@ Manifold interpolation [AmsaLLam, BRUNS, CARLBERG, FARHAT, SON, STYKEL, . .. |
@ Snapshot-based methods, like
o Proper orthogonal/generalized decomposition (POD/PGD) [CARLBERG,
CHINESTA, CUETO, HINZE, HUERTA, KUNISCH, NouYy, WILLCOX, VOLKWEIN, ... |
o Reduced basis method (RBM) [GrEPL, HAASDONK, HESS, HESTHAVEN, MADAY,
QUARTERONI, PATERA, PRUD’HOMME, OHLBERGER, R0ZzA, STAMM, URBAN,
VEROY, ...]
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@ ‘H,-Optimal Model Reduction for Linear Systems

Consider stable (i.e. A(A) C C7) linear systems X,

x(t) = Ax(t) + Bu(t), y(t) = Cx(t) =~ y(s) = C(sl — A" B u(s)

System norms

Two common system norms for measuring approximation quality:
1

o Hamnorm, [l = (2 J37 tr (6T (—w)G(w)) dw)”,
© Hog-norm, [|X|3, = sup omax (G(w)).
w€eR

where
G(s)= C(sl — A)'B.

Note: Hoo-norm approximation ~» balanced truncation, Hankel norm approximation.
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@ ‘H,-Optimal Model Reduction for Linear Systems

Error system and H,-Optimality [MEIER /LUENBERGER 1967]

In order to find an H,-optimal reduced system, consider the error system
G(s) — G(s) = C(sl, — A)"*B — C(sl, — A)"'B
which can be realized by

A 0

err __ ~
A _[0 A

err B err A~
], B :[é], cr=[c -C].
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“ @ H,-Optimal Model Reduction for Linear Systems

Error system and H,-Optimality [MEIER /LUENBERGER 1967]

In order to find an Hj,-optimal reduced system, consider the error system
G(s) — G(s) = C(sl, — A)"*B — C(sl, — A)"'B

which can be realized by

err __ A 0 err __ B err __ ~
P R )

Assuming a coordinate system in which Als diagonal and taking derivatives of

1G(.) = G5,

with respect to free parameters in diag(A), B, C ~

First-order necessary H>-optimality conditions (SISO)

G(—X;) = G(—=N), G' (=) = G'(-3),

where ; are the poles of 3. " Hermite interpolation at mirror poles’
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@ ‘H,-Optimal Model Reduction for Linear Systems

Error system and Hp-Optimality [MetER/LUENBERGER 1967]
In order to find an H,-optimal reduced system, consider the error system
G(s) — G(s) = C(sl, — A)"*B — C(sl, — A)"'B

which can be realized by

err __ A 0 err __ B err __ ~
A _[0 2\]’ B _[é], cr=[c -CJ.

First-order necessary H»-optimality conditions (MIMO)

G(—j\,’)éi = é —:\;)é;, for i = ].7 coogqlly
CTG(=X\) = CTG(-\), fori=1,...,r,
CTG' (=3B = CTG'(-X)B; fori=1,...,r,

where A = RAR1 Is the spectral decomposition of the reduced system
and B=BTR"!, C=CR. " Tangential interpolation at mirror poles’
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@ ‘H,-Optimal Model Reduction for Linear Systems

Interpolation of the Transfer Function [GrivmE 1997]

Construct reduced transfer function by Petrov-Galerkin projection P = VW | i.e.

G(s) = CV (sl — WTAV) ' WTB,
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@ ‘H,-Optimal Model Reduction for Linear Systems

Interpolation of the Transfer Function [GrivmE 1997]

Construct reduced transfer function by Petrov-Galerkin projection P = VW | i.e.
G(s) = CV (sl — WTAV) ' WTB,
where V and W are given as
V= [(—ml—A)'B,....(—u ! — A)'B],
W= [(—pal —AT)ICT, .. (=l = AT)TECTT.
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@ ‘H,-Optimal Model Reduction for Linear Systems

Interpolation of the Transfer Function [GrivmE 1997]

Construct reduced transfer function by Petrov-Galerkin projection P = VW | i.e.
G(s) = CV (sl — WTAV) ' WTB,
where V and W are given as

V= [(—ml—A)'B,....(—u ! — A)'B],
W= [(—pal —AT)ICT, .. (=l = AT)TECTT.

G(—pi) = G(—p) and G'(—p) = G'(—m),
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@ ‘H,-Optimal Model Reduction for Linear Systems

Interpolation of the Transfer Function [GrivmE 1997]

Construct reduced transfer function by Petrov-Galerkin projection P = VW | i.e.
G(s) = CV (sl — WTAV) ' WTB,

where V and W are given as

V= [(—ml—A)'B,....(—u ! — A)'B],

W= [(—pal —AT)ICT, .. (=l = AT)TECTT.
Then . .

G(—pi) = G(—w) and  G'(—p;) = G'(—p),

fori=1,...,r.

Starting with an initial guess for A and setting p; = Xi ~ iterative algorithms
(IRKA/MIRIAm) that yield H,-optimal models.

[GUGERCIN ET AL. 2006/08], [BUNSE-GERSTNER ET AL. 2007],
[VAN DOOREN ET AL. 2008]
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@ ‘H,-Optimal Model Reduction for Linear Systems

The Basic IRKA Algorithm

Algorithm 1 IRKA (MIMO version/MIRIAm)

Require: A stable, B, C, A stable, é, 6, 6> 0.
Ensure: A°Pt, Bopt (opt,

._,old
1: while (maxj=1,.., { \mmu‘, l} > ) do

2:  dia {ul,...,ur} = T-YAT = spectral decomposition,
B=BHT-T,C=CT.

V= [(—ui — A) 1Bb1,...,(—u,l—A)—1Bl3,]

W= [(—ml —AT)1CT&,...,(—ud — AT)1CTE]
V = orth(V), W = orth(W), W= W(vTw)-?
A=WTAV, B=WTB, C=cCV

8 APt = A B¥ =B, C¥ =C.
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@ @ PMOR by Projection

Interpretation as " White Box Model”

nputy | whiteso | [ outputy

.

Reduced
*®
Input u ﬁ Order Model E Outputy

@ Known behavior from input to output,
o typically given by a (discretized) PDE model, or directly as ODE,
o matrices are available ~ projection-based (P)MOR techniques can be used.
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3. (P)MOR from Data
Black/Grey Box Modeling
The Loewner Method
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@ (P)MOR from Data

Input u Black Box ; Output y

Surrogate

Input u Model from ; Output y*

Data

o We have input/output data or we can produce input/output data.

o Surrogate model by interpolation (Loewner, Kriging, radial basis functions,
kernel methods, ...) or data fitting (vector fitting, DMD, ...).
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Grey B
pute | Y| D ouputy

-

Data-Dri

o Approximate model available (e.g., unknown or uncertain parameters,
simplified model, ...)

o Experimental and/or computational data available, as well as model
structure.

Grundel, Y. Yue Computing etric ROMs from Projection and Data



@ (Reduced) Models from Data

The Loewner Method . [Mayo/ANTouLAS 2007]
Given frequencies together with the values (measurements) of the transfer
function at those frequencies, the Loewner method is a data driven approach to

create a state space system which interpolates there.
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@ (Reduced) Models from Data

The Loewner Method ~ [MAYO/ANTOULAS 2007]
Given frequencies together with the values (measurements) of the transfer
function at those frequencies, the Loewner method is a data driven approach to

create a state space system which interpolates there.

The Basic Method (SISO case, for simplicity of exposition)

Given the interpolation points (&1, ...,&n,01,...,0:), and the associated function values
VT =[G(&),...,G(én)] and W = [G(a1), ..., G(o,)], we can define the Loewner and
shifted Loewner matrices I, s as the divided differences matrices

_Vi-W

Lj:=— : ——Eivi_ajM/j.
& —oj

Ls,:,':—
v (L) 6o
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S 4 @ (Reduced) Models from Data

The Loewner Method ~  [Mavo/ANTOULAS 2007]
Given frequencies together with the values (measurements) of the transfer
function at those frequencies, the Loewner method is a data driven approach to

create a state space system which interpolates there.

The Basic Method (SISO case, for simplicity of exposition)

Given the interpolation points (&1, ...,&n,01,...,0:), and the associated function values
= [G(&),...,G(&n)] and W = [G(01), ..., G(o/)], we can define the Loewner and
shifted Loewner matrices I, s as the divided differences matrices

Vi - W, &V
g Ls)ji= >
§&i—oj (L) §&i—oj

If r = N and N equals the McMillan degree of the underlying linear system, (Ls,LL) is a
regular matrix pair with all its eigenvalues distinct from &;, oj, then

Lijpi=———

G(s) = W(Ls — sL) 'V

is a minimal realization of a linear time-invariant system that produces the given data.
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W@ (Reduced) Models from Data

The Loewner Method ~  [Mavo/ANTOULAS 2007]
Given frequencies together with the values (measurements) of the transfer
function at those frequencies, the Loewner method is a data driven approach to

create a state space system which interpolates there.

The Basic Method (SISO case, for simplicity of exposition)

Given the interpolation points (&1, ...,&n,01,...,0:), and the associated function values
VT =[G(&),...,G(én)] and W = [G(a1), ..., G(o,)], we can define the Loewner and
shifted Loewner matrices I, s as the divided differences matrices

_vi-w

Lj:=— : _7‘5;\/;—0,‘\/%"
& —aj

]Ls,:,':—
N ) g

In case of redundant data (rank (L) < N), we obtain an approximate (reduced) model
from the (truncated) SVDs

[L, L] = YS.X", [ s ] — ¥s,x"
as G(s) = C(sE — A)~1B, where
E.=-Y"LX, A:=-Y"LX, B:=Y"v, C:=wx.
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4. A Grey Box Method
An IRKA-Loewner Method
Numerical Examples
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@ A Grey Box Method

Assumptions

@ The model —a linear parametric system— is available only at a certain
parameter point p*.

o Moreover, we can collect frequency response data G(¢&;) for the system at
certain frequencies &1, ..., &y for other parameter configurations p # p*.

The set-up could be:

o Black box with these input-output data (or infinite dimensional system), and
a particular discretization for p = p*.

o Want to create a reduced parametric linear system that is a good
approximation of the true system.
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@ A Grey Box Method

Assumptions

@ The model —a linear parametric system— is available only at a certain
parameter point p*.

o Moreover, we can collect frequency response data G(¢&;) for the system at
certain frequencies &1, ...,&y for other parameter configurations p # p*.

The set-up could be:

o Black box with these input-output data (or infinite dimensional system), and
a particular discretization for p = p*.

o Want to create a reduced parametric linear system that is a good
approximation of the true system.

[B./GRUNDEL, AML 39:1-6, 2015]

Obtain reduced parametric model from Ha-optimal reduced model at p* (with
optimal interpolation points o1, ...,0,) and Loewner interpolation at frequency
response data.
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@ A Grey Box Method

First, consider the case N = r and recall the Loewner pair (IL, ;) with the
associated transfer function

G(s) = W(Ls — sL)7tV,

where V, W contain the interpolation data.
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@ A Grey Box Method

First, consider the case N = r and recall the Loewner pair (IL, ;) with the
associated transfer function

G(s) = W(Ls — sL)7tV,

where V, W contain the interpolation data.

We will now look at this problem as a rational interpolation problem in the set-up
of barycentric interpolation.
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@ A Grey Box Method

First, consider the case N = r and recall the Loewner pair (IL, ;) with the
associated transfer function

G(s) = W(Ls — sL)7tV,

where V., W contain the interpolation data.

We will now look at this problem as a rational interpolation problem in the set-up
of barycentric interpolation.

Here we know that the transfer function
Zr a Wi
k=1 s—oy

A(s) = <o
kls +1

is a strictly proper rational function that interpolates G at oy for all aq, ..., ax,
as long as they are not all zero.

Lemma

The two transfer functions G and H are identical exactly when La + V = 0.
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& @ A Grey Box Method

The Barycentric Loewner Method

Consider now the case N > r.
The strictly proper rational function in barycentric form, interpolating at o:

: Y1 S50t
H(s) = r——sak. 1
(s) S i (1)

We want to pick a such that H(&) ~ G(&;), i.e., such that the difference

. y_ (La—V)
Yhergt, 1 Y g+
is small (in a least-squares sense).

A state space system that has the transfer function H as in (1) with
LHLa +1LHV = 0 is given by (Z contains the first r left singular vectors of LL):

A&) - G(&) = (2)

E=-ZML, A=-z9L,, C=w, B=2Z7"v.
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4}!@ A Grey Box Method

The IRKA-Loewner Algorithm

(for computing a state-space realization of the system at p = p.)

Offline Phase

@ Compute Ho-optimal interpolation points o1, ..., o, for the given model at p*.
Recommendation: choose center point of parameter domain if possible.

Online Phase

INPUT: reduced order r, parameter p, interpolation points o1,...,0, (from offline
phase).

1. Obtain data for p = p: &1, ..., ¢én, G(&1),--., G(&n).
2. Compute Vi = G(&), Wi =G(o)), Ly =g, (Le)y = =20

§i—oj
3. Compute the SVD L= UXV'.
4. Set Z=U(:;,1:r).
5. A=-Z"L, E=-Z"L,, B=w, C=2Z"v.
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@ Numerical Examples

A Beam Example

T \\\HH‘ T \\\HH‘ T TTTITIT T T TTTTIT
—p=1.14
=50 — p=l
-
_ =
o FEM of a 3D cantilever =
Timoshenko beam. g?; —100 .
@ parameter is the length of the é
beam p € [0.8,1.2].
o n = 240. _150 1 |
Lol Lol Ll IR
10! 102 103 104 10°
frequency

Figure: Bode plots for varying p
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@ Numerical Examples

A Beam Example

‘Ho-error for the data driven approach: r = 4, 100 data points.

10~*

1075

10-¢

! ! ! ! ! !
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

1077

Hermite interpolant at p = 1 — IRKA-Loewner model — optimal #- at all p
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‘\ @ Numerical Examples

A UQ Example

MATLAB Code

function [A,B,C,D,E]=UQexample(Q)

%Q - a fixed random orthogonal matrix

n=100;

A=Q*diag(-10*rand(n,1))*Q’; B=ones(n,1); C=ones(1l,n); D=0; E=eye(n);

r N IRKA IRKA-Loewner Hermite Loewner

err # | err # err # | err #(C™) #
4 8 |0.01 142 | 0.02 12 0.02 8 |10 (5) 8
4 16 | 0.01 142 | 0.01 20 0.02 8 |02 (5) 16
6 12 | 2E-5 134 | 5E-5 18 2E-4 12 | 15 (4) 12
6 24 | 2E-5 134 | 3E-5 30 2E-4 12 | 4E-3 (5) 24
10 20 | 2E-11 151 | 2E-10 30 2E-5 20 | - (0) 20
10 40 | 2E-11 151 | 1E-10 50 2E-5 20 | 2E-6 (1) 40

Table: Average over 5 runs.
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5. Interpolating Reduced-Order Models obtained from Data
Discussion of several PMOR Methods
ROM Interpolation under the Loewner Framework
Numerical Results
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@ Interpolating Reduced-Order Models obtained from Data

Method 1. Projection Using Common Bases

To reduce the parametric full-order model (FOM):

E(p)x = A(p)x + B(p),
y = C(p)x
where E(p), A(p) € R™", B(p) € R™™, C(p) € R™*",

@ these methods build common bases W,V € R"*" by assembling global information,
e.g., (multi-)moments of the frequency domain system, snapshots, etc., at different
values of p;

@ approximate x &~ VX in the range of V (X € R");

@ force the residual to be orthogonal to the range of W, i.e.,

W7 (E(p)VX — A(p) V% — B(p)) = 0.

@ obtain the parametric reduced-order model (pPROM):

E(p)% = A(p)x + B(p),

where [E(p), A(p)] = W"[E(p), A(p)]V, B(p) = W"B(p) and C(p) = C(p)V.
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@ Interpolating Reduced-Order Models obtained from Data

@ Case 1. Explicit Parameter Dependency:

np
M(P):ZMI¢:‘(P)~ (M=E,AB, or C)
i=1
The reduced operator can be efficiently pre-computed, e.g.,

WHA(p)V = Zp: (W”A,- v) :(p)-

@ Case 2. Implicit Parameter Dependency:
o Interpolate the FOM and then Reduce
is equivalent to
Reduce and then Interpolate the ROMs because

(o) = W M)V = D eI, 6(e) = by, My = ()

o If the parameter dependency of the FOM can be well captured by a certain
interpolation method, interpolating the ROMs directly will also work well
(thanks to the common bases used).
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@ Interpolating Reduced-Order Models obtained from Data

Method 2. Projection Using Individual Bases

@ The bases V and W are functions of p:

[E(p). A(p)] = W(p)"[E(p), A(p)]V(p),
B(p) = W"(p)B(p), C(p) = C(p)V(p).

@ Question: How to interpolate V(p) and W(p)?

Py

Direct interpolation does not preserve

the orthonormality of V' and W as in

general, the interpolant will not be on P
the Stiefel manifold of rank-r isometries. 2

Computing Parametric ROMs from Projection and Data
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@ Interpolating Reduced-Order Models obtained from Data

To preserve a desired property for the interpolated matrix:
1. Find the manifold corresponding to the desired property.

o Grassmann manifold G(k, n): set of subspaces of dimension k in R".
o Stiefel manifold ST (k, n): set of all n x k orthonormal matrices in R".

2. Choose a reference point to determine the tangent space.
3. The Log map: map all points relevant to the interpolation to the tangent space.

4. Interpolate on the tangent space. We must choose a interpolation algorithm so that
the interpolant lies also on the tangent space.

5. The Exp map: Map the interpolant back to the manifold.

Tangent Spice

Manifold Alert: This procedure requires

“continuity” in V(p) and W(p).
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@ Interpolating Reduced-Order Models obtained from Data

Method 3. Interpolating “Given” ROMs

If we are simply “given” some ROMs valid at different parameter values p:
@ Direct interpolation normally does not work:

o Different realizations (coordinate systems) of ROMs;
o simply exchanging rows of one ROM breaks “continuity”.

@ If we know the bases V; and W;, we can build
Va//: [V17V27"-7VPn]7 Wal/:[W17W27"'7WPn]7

perform SVD, and use the dominant components to assemble the common bases V
and W. Then, the ROMs can be represented using the common realization.

@ Sometimes, we do not even know V; and W;!

o For example, ROMs built under the Loewner framework.

o There also exists methods that interpolate on specific matrix manifold, e.g.,
the manifold of nonsingular r x r matrices (the general linear group GL(r)),
and the manifold of symmetric positive definite matrices.

o Heuristic methods that attempt to render the bases " consistent”.
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@ ROM Interpolation under the Loewner Framework

Recall: The Loewner Framework

Dynamical System (Unknown) FRF (Only known as a whole operater)
(sE —A)x = Bu, - RN
{ P — H(s) = C(sE — A)" 'B.

Step 1: Collect data: (V, W are not bases: composed of tangential directions!)

@ “Right Data”: (\j, ri, w;) satisfying H(A\i)ri = w;;
o ‘“Left Data”: (uj,¥;,v;) satisfying £;H(u;) = v;.

Step 2: Compute the Loewner matrix I and the shifted Loewner matrix Ls.

Vit — Liwi wiviri — Liwi\;
L), = 45— L.)., = MVl = HiWiA;

Step 3: Compute the reduced model:
o If the matrix pencil (Ls, L) is regular, the reduced model is: E=-L, A= —Ls,
B=V, C=w.
o If the matrix pencil (Ls,L) is (numerically) singular:
1. Compute rank-revealing SVD: sL — Ls = YIxH ~ YrZ,X,H;

(s € AU} ) ) )
2. Compute £ = —YHLX,, A= —YHL:X,, B=Y!1V, C=WX,.

Computing Parametric ROMs from Project
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@ ROM Interpolation under the Loewner Framework

Computing Parametric Models using the Loewner Framework

@ In summary, we consider two representations:
o The “Original” Representation.
0o =L A=-L, B=V, C=Ww. o
o Very likely to produce a numerically singular pair (A, E)!
o The “Compressed” Representation.
o E=—YHLX,, A= —YHL.X,, B=YHV, €= WX,
o Yields regular matrix pair (A, E).

How to interpolate the ROMs built by the Loewner Framework?

@ There is no “FOM" in the Loewner Framework, and no bases V; and W; like in the
projection-based methods.
@ The Loewner Framework has been extended for PMOR in [IONITA/ANTOULAS '14]

~~ PMOR-L.
This talk explores another possibility: interpolating nonparametric ROMs built
under the Loewner Framework.
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@ Interpolating Reduced-Order Models obtained from Data

Interpolating the “Original’ Representation

@ Assume that the system is parameterized with parameter p.
@ Assume that we use the same frequencies and the same left/right input vectors.
@ In Hy(A\i)ri = wi(p), A\i and r; are independent of p, 1 < i <R"™.
@ In {jHy(p;) = vj(p), pj and ¢; are independent of p, 1 < j < R"™.
@ Interpolating L(p) and Ls(p)
is equivalent to
Interpolating V/(p) and W(p) and using the Loewner framework:

(L) =3 <u,~v,-(pq)rj'—§vv,-(pq)xj) \ = Lol = (o)
i pi = Aj Hi = Aj

@ In the “Original Representation”: )
E(p) = —L(p). A(p) = —Ls(p). B(p)=V(p). C(p)= W(p).
o They are all linear functions of V/(p) and W(p).
o Can be directly interpolated: equivalent to interpolating the transfer functions.
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@ Interpolating Reduced-Order Models obtained from Data

Interpolating “Compressed” Representation

@ If we store all the “Original” Representations, too much storage are required.

@ The ultimate goal is to interpolate the “Compressed” Representation.

@ The bases used to “compress” the “Original”’ Representation vary with parameters
(with additional freedom in s;): | sLi — Ls; = Y5, X! ~ Yi Xk X/} | Here Yiis a
generalized observability matrix and Xj is a generalized controllability matrix.

@ Idea 1: To preserve the property for interpolation of the original representation
(—Lj, —Ls;, Vi, W;), use common bases Y and X to reduce them.

@ ldea 2a: Y should contain the dominant components of all observability matrices
Y;. So we compute Y by the following SVD:

[sils =Lt | sole =Lz | oo | soLng = L, | = YEW X &~ YEw X3

@ ldea 2b: X should contain the dominant components of all controllability matrices
Xi. So we compute X by the following SVD:

s1lly — Ly
52]LZ B ]L52 = \_/\/iv)_(H ~ Y\/ZvXH.
an]an - IL‘Snp
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@ Interpolating Reduced-Order Models obtained from Data

@ Observation: colspan{Y;} C colspan{Y}, rowspan{X;} C rowspan{X}, V i.
@ Therefore, X, Y from truncated SVD include the dominant controllable and
observable components for all states corresponding to parameter samples.

Algorithm 2 Interpolation of Loewner ROMs in the Compressed Representation
1: Build the common bases Y by computing the truncated SVD of

o= oH
[51L1 Ly | sl — Ly | . | SnqLng — Lsn, ] Ve X ~ yEuxL.
2: Build the common bases X by computing the truncated SVD of
s1ly — Ly
sollo — Lsy,

=7 5X" ~ vuzyxt.
SnQ]an - I[‘Snp
3: Build the “Compressed” Representations using the common bases:
E =-Y'LXx, A=-Y"L,,x, B=Y"v, ¢&=wx.

4: Given an interpolation operator, the interpolated ROM at p is given by

"p
M(p) = Z Mi1(p), M e {E A B,CY}.
I=1
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@ Numerical Results

A Microthruster Model

@ A propulsive MEMS (micro-electro-mechanical)
device.

@ We consider a single-input single-output
sub-model, n = 4,257.

@ Pretend that only Input/Output information is

Si-substrate available.

@ We consider the single parameter: the film
coefficient (boundary heat transfer coefficient).
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@ Numerical Results

The Convergence of the Loewner Approach

o For the Loewner framework, we take 100 A and 100 p samples.
@ The magnitude of the transfer function is shown for the parameter value
p = 268.27.

240

ROM: k=5
ROM: k=10
ROM:z k=15
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@ Numerical Results

Existing Method: Manifold Interpolation on GL(r) [AMSALLEM/FARHAT '11]
300
FoM
260 ROM q
pROM: manifold
220 q
180 q
140 4
100 .
5 15 25 35 45

@ Values of p used in interpolation: p; = 10, p, = 268.3, ps = 7197.
@ To be interpolated at p = 65.51. Reference point for tangent space: 268.3.
@ Order of the reduced model r = 10.
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=10
18¢ 1
pROM
FOH
121 1
06 1
0 . .
5 15 25 35 45

0]

@ Order of the reduced model: r = 11.
@ Does not converge any more.
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@ Numerical Results

Method 1: Interpolating the “Original” Representation

250) .
— FM
PROM
——— RM
210 - ROM at p_ [T
1
—— ROH at p
160 | E
110 L L .
5 15 5 5 45
[0}

o First interpolate (shifted) Loewner matrices, then reduce.
o All reduced models are of order 21.
@ The pROM approximates the FOM very well.
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@ Numerical Results

Method 2: Interpolating the “Compressed” Representation

240 240 240
[—FOM [—FOM —FOM
[—pROM [—pROM [—pROM
200 200 200
160 160 160
120 120 120
o 10 20 30 40 50 o 10 20 30 40 50 o 10 20 30 40 50
omega omega omega
s=MAog=—7.6i s = Mo = —13.5i s = Agg = —29.2i
240 240 240
[—FOM [—FOM —FOM
[—pROM [—pROM [—pROM
200 200 200
160 160 160
120 120 120
0 10 20 30 40 50 0 10 20 30 40 50 o 10 20 30 40 50
omega omega omega
s = p10 = —51.9/ s = 4o = —92.2i s = ugo = —198.7/
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Numerical Results

Interpolating “Compressed” ROMs Generated with Individual Bases
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@ Numerical Results

0
0 50 100 150 200 250 300 6000 4000 2000

s P

Figure: Response Surface and the Absolute Error
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@ @ Concluding Remarks

@ We have introduced two models to obtain parametric reduced models from data:
1. A grey box approach: the IRKA-Loewner method can efficiently compute an
accurate realization of a linear system at any parameter in parameter space, given
— an Hp-optimal reduced-order model for a reference parameter p*, and
— that at other parameters, frequency response data can be collected.

2. A black box approach: obtain a parametric reduced-order model from data without
access to the original model matices, but to frequency response data for a number of
parameter values. Affine parameter structure not necessary, insensitive to dimension
of parameter space. Use of "common basis” approach gives good results for
"smooth"” transfer functions.

@ The parametric Loewner model suffers from the same drawback as transfer function
interpolation: spurious peaks in the frequency response may be introduced.

o If applicable, the PMOR-L approach may give slightly more accurate results than
the parametric Loewner approach at the same reduced order, but the latter is more
efficient in the offline phase and allows for a full parametric ROM (p in all system
matrices).

@ Need more experiments to identify shortcomings, and test potential remedies for
those.
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