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Introduction to Parametric Model Order Reduction

Parametric Dynamical Systems

Dynamical Systems

[ E(pi(tp) = fltx(Ep)u(t)p), x(n)=x, (a)
Z(P)'{ ytip) = glt.x(t;p), u(t), p) (b)

with
o (generalized) states x(t; p) € R" (E € R™*"),
e inputs u(t) € R",
@ outputs y(t; p) € R, (b) is called output equation,
o pcQcCRYisa parameter vector, Q is bounded.

Applications:
o Repeated simulation for varying material or geometry parameters,
boundary conditions,
@ control, optimization and design,
o of models, often generated by FE software (e.g., ANSYS,
NASTRAN,...) or automatic tools (e.g., Modelica).
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Introduction to Parametric Model Order Reduction

Parametric Dynamical Systems

Dynamical Systems

[ E(px(tp) = F(tx(tp)u(t)p), x(t)=x, (a)
Z(")'{ y(tip) = g(t.x(t;p), u(t), p) (b)

with
o (generalized) states x(t; p) € R” (E € R™"),
e inputs u(t) € R™,
o outputs y(t; p) € R, (b) is called output equation,

o pcQcCRYisa parameter vector, Q is bounded.

PDE and boundary conditions often not accessible!
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Introduction to Parametric Model Order Reduction (€

Linear Parametric Systems

Linear, time-invariant (parametric) systems

E(p)x(t; p)
y(t; p)

A(p)x(t; p) + B(p)u(t), A(p), E(p) € R™",
C(p)x(t: p), B(p) € R™™, C(p) € RT*".
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Introduction to Parametric Model Order Reduction

Linear Parametric Systems
Linear, time-invariant (parametric) systems

E(p)x(t; p) A(p)x(t; p) + B(p)u(t), A(p), E(p) € R™",
y(t;p) C(p)x(t: p), B(p) € R™™, C(p) € RT™,

Laplace Transformation / Frequency Domain

Application of Laplace transformation  (x(t; p) — x(s; p), x(t; p) — sx(s; p))
to linear system with x(0; p) = 0:

sE(p)x(s: p) = A(p)x(s: p) + B(p)u(s), y(s:p) = C(p)x(s:p),
yields |/O-relation in frequency domain:

y(s;p) = ( C(p)(sE(p) — Ap)*B(p) ) u(s).

=:G(s,p)

G(s, p) is the parameter-dependent transfer function of X(p).

o
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Introduction to Parametric Model Order Reduction

Linear Parametric Systems

Linear, time-invariant (parametric) systems

E(p)x(t; p) A(p)x(t; p) + B(p)u(t), A(p), E(p) € R™",
y(t;p) C(p)x(t: p), B(p) € R™™, C(p) € RT™,

Laplace Transformation / Frequency Domain

Application of Laplace transformation  (x(t; p) — x(s; p), x(t; p) — sx(s; p))
to linear system with x(0; p) = 0:

sE(p)x(s: p) = A(p)x(s: p) + B(p)u(s), y(s:p) = C(p)x(s:p),
yields |/O-relation in frequency domain:

y(s;p) = ( C(p)(sE(p) — Ap)*B(p) ) u(s).

=:G(s,p)

G(s, p) is the parameter-dependent transfer function of X(p).
Goal: Fast evaluation of mapping (u,p) — y(s; p).

o
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Introduction to Parametric Model Order Reduction
Motivating Example: Microsystems/MEMS Design

Microgyroscope (butterfly gy

@ Applications:

o inertial navigation,
o electronic stability control
(ESP).

@ Voltage applied to electrodes induces
vibration of wings, resulting rotation due
to Coriolis force yields sensor data.

@ FE model of second order:

- %lmy
N =17.361 ~ n=34722, m=1, q = 12. N

@ Sensor for position control based on

acceleration and rotation. Emj“w‘*

Goriolis acc, Goriolis acc.

Source: MOR Wiki http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Gyroscope
v
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Introduction to Parametric Model Order Reduction
Motivating Example: Microsystems/MEMS Design

Microgyroscope (butterfly gyro)
Parametric FE model: M(d)x(t) + D(0,d, «, B)x(t) + T(d)x(t) = Bu(t).

w
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Introduction to Parametric Model Order Reduction
Motivating Example: Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Parametric FE model:

where

M(d)

D(67 d7 a7 /B)

with

T(d)

M(d)x(t) + D(6,d, o, B)x(t) + T(d)x(t) = Bu(t),

My + dMs,
0(D1 + dD>) + aM(d) + BT (d),

1
T1 + gTz + dTs,

@ width of bearing: d,

@ angular velocity: 6,

@ Rayleigh damping parameters: «, 3.
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Introduction to Parametric Model Order Reduction
Motivating Example: Microsystems/MEMS Design

Microgyroscope (butterfly g

Original. .. and reduced-order model.

w=0025 0=0025
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The Parametric Model Order Reduction (PMOR) Problem

Problem
Approximate the dynamical system

E(p)x = A(p)x+B(p)u,  E(p),A(p) € R™",
B(p) € R™m C(p) € RI*",

y = C(p)x,

by reduced-order system

E(px = A(p)x+B(p)u, E(p),A(p) e R,
9 = C% B(p) € R™™, &(p) € R,

of order r < n, such that
ly =9Il = |Gu — Gul| < |G — G| - ||u|| < tolerance - |u]| V¥ p € Q.

(@© P. Benner, PMOR: Survey and Recent Advances 6/33
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The Parametric Model Order Reduction (PMOR) Problem

Problem
Approximate the dynamical system

E(p)x = A(p)x+B(p)u,  E(p),A(p) € R™",
B(p) € R™m C(p) € RI*",

y = C(p)x,

by reduced-order system

E(px = A(p)x+B(p)u, E(p),A(p) e R,
9 = C% B(p) € R™™, &(p) € R,

of order r < n, such that
ly =9Il = |Gu — Gul| < |G — G| - ||u|| < tolerance - |u]| V¥ p € Q.

= Approximation problem: min |G — Gl
order (G)<r

(@© P. Benner, PMOR: Survey and Recent Advances 6/33
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PMOR <— Multivariate Function Approximation

o Approximate (for fast evaluation) function G, defined on C x €.
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PMOR <— Multivariate Function Approximation

o Approximate (for fast evaluation) function G, defined on C x Q.
o But:

G:CxQ — C™" Q=Jag,B]x...X[aqg, B4,
G(S; plv"'apd) € caxm.
~» Variables s and p; have different “meaning” for G.

Dynamical system is in the background!
~~ Matrix-valued function, require matrix- not entry-wise approximation!
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PMOR <— Multivariate Function Approximation

o Approximate (for fast evaluation) function G, defined on C x €.
o But:

G:CxQ — C™" Q=Jag,B]x...X[aqg, B4,
G(S; plv"'apd) € caxm.

~» Variables s and p; have different “meaning” for G.
Dynamical system is in the background!
~~ Matrix-valued function, require matrix- not entry-wise approximation!
o G is rational in s, n ~ degree of denominator polynomial.
~~ Require approximation to be rational in s.
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PMOR <— Multivariate Function Approximation

o Approximate (for fast evaluation) function G, defined on C x €.
o But:

G:CxQ — C™" Q=Jag,B]x...X[aqg, B4,
G(S; pla"'apd) € caxm.

~ Variables s and p; have different “meaning” for G.
Dynamical system is in the background!
~~ Matrix-valued function, require matrix- not entry-wise approximation!
o G is rational in s, n ~ degree of denominator polynomial.
~~ Require approximation to be rational in s.

@ Require structure-preserving approximation, e.g., for control design.
~> Need realization as linear parametric system!
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PMOR <— Multivariate Function Approximation

o Approximate (for fast evaluation) function G, defined on C x €.
o But:

G:CxQ — C™" Q=Jag,B]x...X[aqg, B4,
G(S; pla"'apd) € caxm.

~ Variables s and p; have different “meaning” for G.
Dynamical system is in the background!
~~ Matrix-valued function, require matrix- not entry-wise approximation!

o G is rational in s, n ~ degree of denominator polynomial.
~~ Require approximation to be rational in s.

@ Require structure-preserving approximation, e.g., for control design.
~> Need realization as linear parametric system!

o Also would like to be able to reproduce system dynamics (stability,
passivity).
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PMOR Methods — a Survey

Model Reduction for Linear Parametric Systems

Parametric System

A(p)x(t; p) + B(p)u(t),

X(p): { At C(p)x(t; p)-

y(t; p)
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PMOR Methods — a Survey

Model Reduction for Linear Parametric Systems

Parametric System

| E(p)x(t:p) A(p)x(t; p) + B(p)u(t),
):(p).{ y(tip) = Cp)x(t:p).

Appropriate parameter-affine representation:

E(p) Eo+ei(p)Er + ... + eqe(p)Eqe,
Alp) = Ao+a(p)AL+...+ aq(p)Aq,
B(p) = Bo+bi(p)Bi+ ...+ by, (p)Bass
C(p) Co+alp)G+ ...+ cge(pP)Cyes

allows easy parameter preservation for projection based model reduction.
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PMOR Methods — a Survey

Model Reduction for Linear Parametric Systems

Parametric System

A(p)x(t; p) + B(p)u(t),

X(p): { At C(p)x(t; p).

y(t: p)

Appropriate parameter-affine representation:

A(p) = AO + 81(P)A1 +...+ an(p)ACIAV

allows easy parameter preservation for projection based model reduction.

W.l.o.g. may assume this affine representation:

o Any system can be written in this affine form for some gx < n?, but
for efficiency, need gx < n! (X € {E, A, B, C})

o Empirical (operator) interpolation yields this structure for "smooth
enough” nonlinearities [BARRAULT/MADAY /NGUYEN/PATERA 2004].
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Model Reduction for Linear Parametric Systems

Parametric System

| E(p)x(t:p) A(p)x(t; p) + B(p)u(t),
):(p).{ y(tip) = Cp)x(t:p).

Appropriate parameter-affine representation:

A(p) = AO -+ 81(P)A1 +...+ an(p)ACIAV

allows easy parameter preservation for projection based model reduction.

Parametric model reduction goal:

preserve parameters as symbolic quantities in reduced-order model:

= . [ E(p)k(t:p)
z(p).{ y(t; p)

|
g
T O
3 %
—_~
S &P
IS
+
o>
—~
o
N—r
<
—
=

with states X(t; p) € R" and r < n.
@© P. Benner, PMOR: Survey and Recent Advances 8/33
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Model Reduction for Linear Parametric Systems

Structure-Preservation

Petrov-Galerkin-type projection

For given projection matrices V, W € R"*" with WTV = |,

(~ (VWWT)2 = VWT is projector), compute
E(p) = WEV+ea(PW EV+.. +e(p)W'E,V,
A(p) i WT AV + ai(p)WT ALV + ... + ag(p)WT A, V,
B(p) ; WTBy +bi(p)W'B1 +...+ by (p)W' By,
C(p) ; GV+  aP)aV+...+  ce(p)CocV,

Max Planck Institute Magdeburg (@© P. Benner, PMOR: Survey and Recent Advances 9/33



Model Reduction for Linear Parametric Systems

Structure-Preservation

Petrov-Galerkin-type projection

For given projection matrices V, W € R"*" with WTV = |,
(~ (VWWT)2 = VWT is projector), compute

E(p)

= B+ea(p)b+. ..+ eelp)Ee,
Alp) =

= Ao+ a(p)Ai+ ...+ ag(p)Aq,,
Bp) =

= Bot+bi(p)Bi+ ... + bas (P)Bas,
Clp) =

= G+aP)b+...+ce(p)Co.
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PMOR Methods — a Survey :

A Short Introduction to Interpolatory Model Reduction

Computation of reduced-order model by projection

Given a linear (descriptor) system Ex = Ax+ Bu, y = Cx  with transfer
function G(s) = C(sE — A)~'B, a reduced-order model is obtained using
truncation matrices V, W € R™" with W™V = I,
(~ (VWWT)2 = VWT is projector) by computing

E=WTEV, A=W"AV, B=W"B, €= CV.

Petrov-Galerkin-type (two-sided) projection: W # V,
Galerkin-type (one-sided) projection: W = V.
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PMOR Methods — a Survey

A Short Introduction to Interpolatory Model Reduction

Computation of reduced-order model by projection
Given a linear (descriptor) system Ex = Ax+ Bu, y = Cx

function G(s) = C(sE — A)~'B, a reduced-order model is obtained using

truncation matrices V, W € R™" with W'V = |,
(~ (VWWT)2 = VWT is projector) by computing

E=WTEV, A=W"AV, B=W"B, €= CV.

Petrov-Galerkin-type (two-sided) projection: W # V,
Galerkin-type (one-sided) projection: W = V.

y

with transfer

Rational Interpolation/Moment-Matching
Choose V/, W such that
G(s)=G(s), j=1,....k

and
G(SJ)_ G(SJ) i:17"'7l<j7 j:17"'7

k.

v
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A Short Introduction to Interpolatory Model Reduction

Theorem (simplified) [GriMME 97, VILLEMAGNE/SKELTON '87]

span {(s1E — A)"'B,...,(skE — A)"'B} C Ran(V),
span {(siE —A)"TCT,....(skE—A)"TC"} < Ran(W),

then

- d d , .
G(sj) = G(sj), EG(SJ‘) = EG(SJ'), forj=1,..., k.
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PMOR Methods — a Survey :

A Short Introduction to Interpolatory Model Reduction

Theorem (simplified) [GriMME 97, VILLEMAGNE/SKELTON '87]

span {(s1E — A)"'B,...,(skE — A)"'B} C Ran(V),
span {(s1E —A)"TCT,...,(skE—-A)"TCT} < Ran(W),

then

5 d d , .
G(sj) = G(sj), EG(SJ) = EG(sj)’ forj=1,..., k.

Remarks:
computation of V, W from rational Krylov subspaces, e.g.,
— dual rational Arnoldi/Lanczos [GRIMME *97],

— lIter. Rational Krylov-Alg. (IRKA) [ANTOULAS/BEATTIE/ GUGERCIN ’06/°08].
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A Short Introduction to Interpolatory Model Reduction

Theorem (simplified) [GriMME 97, VILLEMAGNE/SKELTON '87]

span {(s1E — A)"'B,...,(skE — A)"'B} C Ran(V),
span {(s1E —A)"TCT,...,(skE—-A)"TCT} < Ran(W),

then

5 d d , .
G(sj) = G(sj), EG(SJ):d_ (s)), forj=1,... k.

Remarks:

using Galerkin /one-sided projection (W = V) yields G(s;) = G(s;), but in
general

7G(SJ) s G(SJ)
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PMOR Methods — a Survey

A Short Introduction to Interpolatory Model Reduction

Theorem (simplified) [GriMME 97, VILLEMAGNE/SKELTON '87]

span {(s1E — A)"'B,...,(skE — A)"'B} C Ran(V),
span {(s1E —A)"TCT,...,(skE—-A)"TCT} < Ran(W),

then

q

ds@(sj), forj=1,... k.

6(s) = bls), 2 6(s)=

Remarks:
k =1, standard Krylov subspace(s) of dimension K:

range (V) = Kk ((si/ — A) "%, (s1/ — A)"'B).
~» moment-matching methods/Padé approximation,

d’ d . .
P G(S1)— EG(&), I—O,...,K—l(—l—K).
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Interpolatory Model Reduction

#H>-Model Reduction for Linear Systems

Consider stable (i.e. A(A) C C™) linear systems X,
x(t) = Ax(t) + Bu(t), y(t) = Cx(t) =~ Y(s)= C(sl — A)~*BU(s)
—_———

=:G(s)

Two common system norms for measuring approximation quality:
1

o Ho-norm, || X|l%, = (% OZﬁtr((GT(—jw)G(]w))) dw)i,

0 Hoo-norm, ||Z||%.. = sup omax (G(3w)),
weR

where
G(s) = C(sl — A ' B.

Note: Hoo-norm approximation ~~ balanced truncation, Hankel norm
approximation.
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Interpolatory Model Reduction ‘

Error system and H>-Optimality [Meier/Luenberger 1967]

In order to find an H,-optimal reduced system, consider the error system
G(s) — G(s) which can be realized by

err __ A0 err __ B err __ A
A _[o 2\]’ B _[é], cr=[c -C].
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Interpolatory Model Reduction

Error system and H>-Optimality [Meier/Luenberger 1967]

In order to find an Hy-optimal reduced system, consider the error system
G(s) — G(s) which can be realized by

err __ A0 err __ B err __ A
A _[o 2\]’ B _[B]’ cr=[c -C].

Assuming a coordinate system in which Als diagonal and taking

derivatives of .
1G(-) = G( )3

with respect to free parameters in A (/2\), B, C ~ first-order necessary
‘H»-optimality conditions (SISO)

i)
i)
where }; are the poles of the reduced system 5.

Max Planck Institute Magdeburg (@© P. Benner, PMOR: Survey and Recent Advances 12/33
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Interpolatory Model Reduction

Error system and H>-Optimality

[Meier/Luenberger 19 7]

In order to find an H,-optimal reduced system, consider the error system
G(s) — G(s) which can be realized by

err __ A0 err __ B err __ A
A _[o 2\]’ B _[é], cr=[c -C].

First-order necessary 7{,-optimality conditions (MIMO):
G(—:\;)éi = CA; —:\,‘)é,', for i = 1, ey ﬁ,
i) fori=1,...,A,

fori=1,...,A,

where A = RAR™T is the spectral decomposition of the reduced system
and B=BTR™T, C=CR.
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Interpolatory Model Reduction

Error system and H>-Optimality [Meier/Luenberger 1967]

In order to find an H,-optimal reduced system, consider the error system
G(s) — G(s) which can be realized by

err __ A0 err __ B err __ A
A _[o 2\]’ B _[é], cr=[c -C].

First-order necessary 7{,-optimality conditions (MIMO):

G(—:\;)éi = CA; —5\,)3,, for i = 1, ey ﬁ,
CTG(—=X\) = CTG(=X\), fori=1,...,A,
CiTHI(—S\,')E,' = ~I-Té/(—3\,')é,' for i = 17 ey ﬁ,

& vec(ly)" (eje,»T ® C) AR~ ® A) B (ET ® B) vec (Im)
(

(
=vec(l)" (ge] © ¢) (~Ao i~ e 2\)_1 (B @ B) vec (1n),

. A .
fori=1,...;Aand j=1,...,q.
@© P. Benner, PMOR: Survey and Recent Advances
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Interpolatory Model Reduction

Interpolation of the Transfer Function [Grimme 1997]

Construct reduced transfer function by Petrov-Galerkin projection
P=VWT ie.

G(s) = CV (sl — WTAV) ' WTB,
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Interpolatory Model Reduction (

Interpolation of the Transfer Function [Grimme 1997]

Construct reduced transfer function by Petrov-Galerkin projection
P=VWT ie.

G(s) = CV (sl — WTAV) ' WTB,
where V and W are given as

V= [(—ml—A)'B,....(—u! — A)'B],
W= [(—pal —AT)ICT, . (=l — AT)ICT]
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Interpolatory Model Reduction

Interpolation of the Transfer Function [Grimme 1997]

Construct reduced transfer function by Petrov-Galerkin projection
P=VWT ie.

G(s) = CV (sl — WTAV) ' WTB,
where V and W are given as
V= [(—ml—A)'B,....(—u! — A)'B],
W= [(—pal —AT)ICT, . (=l — AT)ICT]

Then
G

fori=1,...,r.

—pi) = G(—pi) and  G'(—pi) = G'(—w),

—~
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Interpolatory Model Reductlon

Interpolation of the Transfer Function [Grimme 1997]

Construct reduced transfer function by Petrov-Galerkin projection
P=VWT ie.
G(s)=CV (sl - WTAV) ' WTB,

where V and W are given as

V= [(—ml—A)'B,....(—u! — A)'B],

W= [(—pal —AT)ICT, . (=l — AT)ICT]
Then

G

fori=1,...r
Starting with an initial guess for A and setting p; = A; ~~ iterative
algorithms (IRKA/MIRIAm) that yield Hs-optimal models.

—wi) = G(—p) and G'(—w) = G'(—w),

—

[GUGERCIN ET AL. 2006/08], [BUNSE-GERSTNER ET AL. 2007],
[VAN DOOREN ET AL. 2008]
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Interpolatory Model Reductlon

The Basic IRKA Algorithm

Algorithm 1 IRKA (MIMO version/MIRIAm)

Input: A stable, B, C, A stable, B, C, § > 0.
Output: A°Pt Bort (ort

ol
1. while (maxj=1,.., {IMJ—”J} > §) do

]

2: diag{ul,...,ur} = T-LAT = spectral decomposition,
B=BHT-T,C=CT.

V= [(—ml — A~ 1Bb1,...,(—,u,I—A)—1BB,}

W= [( ,ull—AT) 1CTe, . (—pel — AT ICTE,]

V =orth(V), W = orth(W), W = W(VHw)~1

A=wWHAV, B=WHB, C=cVv

8 A% = A B¥ =B, Cr =

Max Planck Institute Magdeburg (@© P. Benner, PMOR: Survey and Recent Advances 14/33



PMOR Methods — a Survey
®0

PMOR based on Multi-Moment Matching

Idea: choose appropriate frequency parameter § and parameter vector p,
expand into multivariate power series about (3, p) and compute
reduced-order model, so that

G(s,p) = G(s,p) + O (Is = 81" + llp — plI* +Is = 3" |p — AI)

i.e., first K, L k+ ¢ (mostly: K= L= k~+¢) coefficients (multi-moments)
of Taylor/Laurent series coincide.
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PMOR Methods — a Survey

000

PMOR based on Multi-Moment Matching

Idea: choose appropriate frequency parameter § and parameter vector p,
expand into multivariate power series about (3, p) and compute
reduced-order model, so that

G(s,p) = G(s,p) + O (Is = 81" + llp — plI* +Is = 3" |p — AI)

i.e., first K, L k+ £ (mostly: K =L = k + £) coefficients (multi-moments)
of Taylor/Laurent series coincide.

Algorithms:

@ [DANIEL ET AL. 2004]: explicit computation of moments, numerically
unstable.

@ [FARLE ET AL. 2006/07]: Krylov subspace approach, only polynomial
parameter-dependance, numerical properties not clear, but appears
to be robust.

@ [FEnG/B. 2007/14]: Arnoldi-MGS method, employ recursive
dependance of multi-moments, numerically robust, r often larger as
with [FARLE ET AL.].
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PMOR based on Multi-Moment Matching

Numerical Examples

Electro-chemical SEM:
compute cyclic voltammogram based on FEM model

Ex(t) = (Ao + p1A1 + p2A2)x(t) + Bu(t), y(t) = c'x(t),
where n = 16,912, m = 3, A;, A, diagonal.

=Ll=k+/l=4 = r=20@K=L=k+(=9 = r=286

—full simulation, n=16912
——=reduced order 26

——full simulation, n=16912
—==reduced order 86

current, nA

5 0 05
voltage u(t), alpha=0.5

5 0 05
voltage u(t), alpha=0.5
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PMOR Methods — a Survey
[ Jelelele]e)

PMOR based on Rational Interpolation

Theory: Interpolation of the Transfer Function

Theorem 1 [BAUR/BEATTIE/B./GUGERCIN 2007/2011]

Let — G(s,p) = C(p)(sE(p) —A(p)) 'B(p)
= C(p)V(sWTE(p)V — WTA(p)V) ' WT'B(p).
Suppose p = [p1, ... ”y] and 5 & C are chosen such that both
SE(p) — A(p) and sE( ) — A(p) are invertible.
If
(3 E(p) — A(p)) ™" B(p) € Ran(V)
or

(ce)GE®) ~ AB) ™) € Ran(w),
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PMOR Methods — a Survey
[ Jelelele]e)

PMOR based on Rational Interpolation

Theory: Interpolation of the Transfer Function

Theorem 1 [BAUR/BEATTIE/B./GUGERCIN 2007/2011]

Let  G(s,p) = C(p)(sE(p) — A(p)) ' B(p)
= C(p)V(sWTE(p)V — WTA(p)V) ' WT'B(p).

Suppose p = [p1, ... “y] and 5 & C are chosen such that both
SE(p) — A(p) and sE( ) — A(p) are invertible.

If
(3E(p) — A(p)) " B(p) € Ran(V)
or

(ce)GE®) ~ AB) ™) € Ran(w),

then G(3,p) = G(5,p).

Note: result extends to MIMO case using tangential interpolation:
Let 0 # b € R", 0 # ¢ € RY be arbitrary.

a) If (BE(p) — A(p)) "t B(p)b € Ran(V), then G(3, p)b = G(5, p)b;

b) If (c"C(p)(5E(p) — A(p))~ 1) € Ran(W), then ¢ G(3,p) = ¢ G(3, p).
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PMOR Methods — a Survey
O@0000

PMOR based on Rational Interpolation

Theory: Interpolation of the Parameter Gradient

Theorem 2 [BAUR/BEATTIE/B./GUGERCIN '07/°09]

Suppose that £(p), A(p), B(p), C(p) are Clin a neighborhood of
= [p1..... ba])” and that both & £(p) — A(p) and 3 E(p) — A(p) are
invertible. If .
(SE(P) — A(p))  B(P) € Ran(V)
and -
(c(p) (8 E(R) —A®) ") € Ran(w),

then
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PMOR Methods — a Survey
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PMOR based on Rational Interpolation

Theory: Interpolation of the Parameter Gradient

Theorem 2 [BAUR/BEATTIE/B./GUGERCIN '07/°09]

Suppose that £(p), A(p), B(p), C(p) are C* in a neighborhood of
p=[p1,..., P4]T and that both 3 E(p) — A(p) and $ E(p) — A(p) are
invertible. If

(3 E(p) — A(p)) " B(p) € Ran(V)

and
() EERE - AN ™) € Ran(w)

then 9 9
va(g, II)) = VPG,(§, f))7 aG(gv II)) = a2

Note: result extends to MIMO case using tangential interpolation:

Let 0 # b € R™, 0 # c € RY be arbitrary. If (§ E(p) — A(p)) "' B(p)b € Ran(V) and
T N

(cTC(ﬁ) (SE(p) — A(,s))*l) € Ran(W), then V,c7 G(§, p)b = V,c7 &(8, p)b.
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PMOR Methods — a Survey
O@0000

PMOR based on Rational Interpolation

Theory: Interpolation of the Parameter Gradient

Theorem 2 [BAUR/BEATTIE/B./GUGERCIN '07/°09]

Suppose that £(p), A(p), B(p), C(p) are Clin a neighborhood of
B = [pr..... ps]” and that both & £(p) — A(p) and s £(p) — A(p) are
invertible. If .
(SE(P) — A(p))  B(P) € Ran(V)
and -
(c(p) (8 E(R) —A®) ") € Ran(w),

then

va(g, II)) = VPG,(§, f))7 _G(gv II)) =

@ Assertion of theorem satisfies necessary conditions for surrogate models in trust
region methods [ALEXANDROV/DENNIS/LEWIS/TORCZON '98].

@ Approximation of gradient allows use of reduced-order model for sensitivity
analysis.
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PMOR Methods — a Survey
[e]e] lele]e)
ZA\

PMOR based on Rational Interpolation
Algorithm

Generic implementation of interpolatory PMOR

Define A(s, p) := sE(p) — A(p).
© Select “frequencies” si,..., sk € C and parameter vectors
p(l), e ,p(e) € R,
@ Compute (orthonormal) basis of

v = span {A(s1, o) B(60). ... (s, o) B .

© Compute (orthonormal) basis of
W = span {A(sl,p(l))_TC(p(l))T, .. ,A(sk,p(e))_TC(p(e))T}.

Q Set V:=[wvi,...,vie], W:=[wi,...,wk], and W := W(WT V)"
(Note: r = k).
sl N T A
O Compute {\(P) = WTA(p)V, ?(p)
C(p) =W'C(p)V, E(p)

Max Planck Institute Magdeburg

WTB(p)V,
=WTE(p)V.

y
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PMOR Methods — a Survey
[e]e]e] le]e)

PMOR based on Rational Interpolation

Remarks

o If directional derivatives w.r.t. p are included in Ran(V'), Ran(W),
then also the Hessian of G(8, p) is interpolated by the Hessian of

G(3.p).
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PMOR based on Rational Interpolation

Remarks

o If directional derivatives w.r.t. p are included in Ran(V'), Ran(W),
then also the Hessian of G(5,p) is interpolated by the Hessian of
G(5,p).

@ Choice of optimal interpolation frequencies s, and parameter vectors
p%) in general is an open problem.
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PMOR Methods — a Survey
[e]e]e] le]e)

PMOR based on Rational Interpolation

Remarks

o If directional derivatives w.r.t. p are included in Ran(V'), Ran(W),
then also the Hessian of G(8, p) is interpolated by the Hessian of
G(5,p).

@ Choice of optimal interpolation frequencies s, and parameter vectors
p%) in general is an open problem.

o For prescribed parameter vectors p(k), we can use corresponding
Ho-optimal frequencies s, o, £ = 1,...,r, computed by IRKA, i.e.,
reduced-order systems Cﬁk) so that

16(.p%) = 690l = _min [16(,p%) = EX( )]s

order(G)=ry
G stable

I6he = ([ lstllis)

where
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PMOR Methods — a Survey
[e]e]e] le]e)

PMOR based on Rational Interpolation

Remarks

o If directional derivatives w.r.t. p are included in Ran(V'), Ran(W),
then also the Hessian of G(8, p) is interpolated by the Hessian of
G(5,p).

@ Choice of optimal interpolation frequencies s, and parameter vectors
p%) in general is an open problem.

o For prescribed parameter vectors p(k), we can use corresponding
Ho-optimal frequencies s, o, £ = 1,...,r, computed by IRKA, i.e.,
reduced-order systems Cﬁk) so that

16(.p%) = 690l = _min [16(,p%) = EX( )]s

order(G)=ry
G stable

I6he = ([ lstllis)

o Optimal choice of interpolation frequencies s, and parameter vectors
p¥) possible for special cases.

Max Planck Institute Magdeburg (@© P. Benner, PMOR: Survey and Recent Advances 20/33
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PMOR Methods — a Survey PMOR via Bilinearizatiol Conclusions and Outlook

O00000e00

PMOR based on Rational Interpolatlon

Numerical Example: Thermal Conduction in a Semiconductor Chip

@ Important requirement for a compact model of thermal conduction is
boundary condition independence.

@ The thermal problem is modeled by the heat equation, where heat
exchange through device interfaces is modeled by convection boundary
conditions containing film coefficients {p;};_;, to describe the heat
exchange at the ith interface.

@ Spatial semi-discretization leads to
3
Ex(t) = (Ao + > piA)x(t) + bu(t), y(t)=c x(t),
i=1
where n = 4,257, A;, i = 1,2,3, are diagonal.
Source: C.J.M Lasance, Two benchmarks to facilitate the study of compact thermal

modeling phenomena, |IEEE. Trans. Components and Packaging Technologies,
Vol. 24, No. 4, pp. 559-565, 2001.
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PMOR based on Rational Interpolation

Numerical Example: Thermal Conduction in a Semiconductor Chip

Choose 2 interpolation points for parameters (“important” configurations), 8/7
interpolation frequencies are picked H, optimal by IRKA. = k=2,¢=28,7,
hence r = 15.

ps =1, p1,ps € [1,10%].

Relative H_ error for p, = 1

L
IS

_8 -16

I s

=8 -2

]I: 22

T

= 24

=

o -26
-28
4

log (p,)
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PMOR Methods — a Survey @

Other Approaches

AN

o Transfer function interpolation (= output interpolation in
frequency domain) [B./BAUR 2008]
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Other Approaches

o Transfer function interpolation (= output interpolation in
frequency domain) [B./BAUR 2008]

o Matrix interpolation
[PANZER/MOHRING /EID/LOHMANN 2010, AMSALLAM/FARHAT 2011]
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Other Approaches

o Transfer function interpolation (= output interpolation in
frequency domain) [B./BAUR 2008]

o Matrix interpolation
[PANZER/MOHRING /EID/LOHMANN 2010, AMSALLAM/FARHAT 2011]

@ Manifold interpolation [AMSALLAM/FARHAT/. .. 2008]
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Other Approaches

o Transfer function interpolation (= output interpolation in
frequency domain) [B./BAUR 2008]

o Matrix interpolation
[PANZER/MOHRING /EID/LOHMANN 2010, AMSALLAM/FARHAT 2011]

@ Manifold interpolation [AMSALLAM/FARHAT/. .. 2008]
o Proper orthogonal/generalized decomposition (POD/PGD)

[KuniscH/VOLKWEIN, HINZE, WILLCOX, Nouy, ...]
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PMOR Methods — a Survey

Other Approaches

o Transfer function interpolation (= output interpolation in
frequency domain) [B./BAUR 2008]

Matrix interpolation
[PANZER/MOHRING /EID/LOHMANN 2010, AMSALLAM/FARHAT 2011]

Manifold interpolation [AMSALLAM/FARHAT/. .. 2008]

Proper orthogonal/generalized decomposition (POD/PGD)

[KuniscH/VOLKWEIN, HINZE, WILLCOX, Nouy, ...]

o Reduced basis method (RBM)

[HAASDONK, MADAY, PATERA, PRUD’HOMME, R0zzA, URBAN, ...]
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PMOR via Bilinearization
[ Je]

Parametric Systems as Bilinear Systems

Linear Parametric Systems — An Alternative Interpretation

Consider bilinear control systems:

X(t) = Ax(t) + Y Ax(t)ui(t) + Bu(t),

i=1
y(t) = Cx(t), x(0) = xo,
where A, A; € R™*1 B € R7™XM C ¢ RIXN,
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PMOR via Bilinearization
[ Je]

Parametric Systems as Bilinear Systems

Linear Parametric Systems — An Alternative Interpretation

Consider bilinear control systems:

X(t) = Ax(t) + Y Ax(t)ui(t) + Bu(t),

i=1
y(t) = Cx(t), x(0) = xo,
where A, A; € R™*1 B € R7™XM C ¢ RIXN,

Key Observation [B./BREITEN 2011]

Consider parameters as additional inputs, a linear parametric system
Mp
X(t) = Ax(t) + > ai(p)Aix(t) + Bouo(t), y(t) = Cx(t)
i=1
with By € R"*™ can be interpreted as bilinear system:

u(t) == [a(p) .. am(p) w(t)],
B:=[0 ... 0 By eR™™ m=mp,+ my.

y
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Parametric Systems as Bilinear Systems

Linear Parametric Systems — An Alternative Interpretation

Linear parametric systems can be interpreted as bilinear systems.

Max Planck Institute Magdeburg (@© P. Benner, PMOR: Survey and Recent Advances 25/33



PMOR via Bilinearization
oe

Parametric Systems as Bilinear Systems

Linear Parametric Systems — An Alternative Interpretation

Linear parametric systems can be interpreted as bilinear systems.

Consequence

Model order reduction techniques for bilinear systems can be applied to
linear parametric systems!

Here:
o Balanced truncation,

o ‘Hy optimal model reduction.
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H,-Model Reduction for Bilinear Systems @

Some background

Consider bilinear system (m =1, i.e. SISO)

Y {x(t) = Ax(t) + Aux(t)u(t) + Bu(t), y(t) = Cx(t).
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H>-Model Reduction for Bilinear Systems (

Some background

Consider bilinear system (m =1, i.e. SISO)

Y {x(t) = Ax(t) + Aux(t)u(t) + Bu(t), y(t) = Cx(t).

Output Characterization (SISO): Volterra series

© t rty te—1
:Z/ / / K(ty,. .., t)u(t—ti—. ..—ty) - u(t—t)dty - - - dty,
= Jo Jo 0

with kernels K(t1,...,tx) = CekA; --- e A1 et B.
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H,-Model Reduction for Bilinear Systems "

Some background

Consider bilinear system (m =1, i.e. SISO)

Y {x(t) = Ax(t) + Aux(t)u(t) + Bu(t), y(t) = Cx(t).

Output Characterization (SISO): Volterra series

// / K(t1, ..., te)u(t—ti—...—tx) - - u(t—ti)dty - - - dty,

with kernels K(t1,...,tx) = CekA; --- e A1 et B.

Multivariate Laplace-transform:

Gk(Sl, . ,Sk) = C(Sk/ — A)_lAl s (52/ — A)_lAl(Sll — A)_IB.
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H>-Model Reduction for Bilinear Systems

Some background

Consider bilinear system (m =1, i.e. SISO)

Y {x(t) = Ax(t) + Aux(t)u(t) + Bu(t), y(t) = Cx(t).

Output Characterization (SISO): Volterra series

// / K(ty, ..., t)u(t—ti—...—tx) - u(t—tx)dty - - - dty,

with kernels K(t1,...,tx) = CekA; --- e A1 et B.
Multivariate Laplace-transform:
Gk(Sl7 . ,Sk) = C(Sk/ — A)_lAl s (52/ — A)_lAl(Sll — A)_IB.

Bilinear Hy-norm: [ZHANG/LAM 2002]

ISl = (u((Z/ / o )k Gk(,wl,...,iwk)c[(iwl,...,iwk)») .
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‘H,-Model Reduction for Bilinear Systems

Measuring the Approximation Error

[B./BREITEN 2012]

Let > denote a bilinear system. Then, the Hy-norm is given as:

I -1
IZ113,, = (vec(lg))T (C® C) (—A RI-IRA-D A® A,~> (B ® B) vec(Im).
i=1
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H>-Model Reduction for Bilinear Systems

Measuring the Approximation Error

[B./BREITEN 2012]

Let > denote a bilinear system. Then, the Hy-norm is given as:

I -1
IZ113,, = (vec(lg))T (C® C) (—A RI-IRA-D A® A,> (B ® B) vec(Im).
i=1

In order to find an H,-optimal reduced system, define the error system
Y =% — ) as follows:

Aer — |:A 0:| : A?” _ |:A; 9:| , Ber — [g] 7 cer — [C _é] .

0 A 0 A
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H,-Model Reduction .

7H>-Optimality Conditions

AssAume S is given in coordinate system induced by eigenvalue decomposition
of A: B ~ B
A=RAR™', A =R'AR, B=R'B, C=CR.
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H,-Model Reduction .

7H>-Optimality Conditions

Assume ¥ is given in coordinate system induced by eigenvalue decomposition
of A:

A=RAR™', A =R'AR, B=R'B, C=CR.
Using A, Ai, B, € as optimization parameters, we can derive necessary
conditions for H2-optimality, e.g.:
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H--Model Reduction

7H>-Optimality Conditions

Assume ¥ is given in coordinate system induced by eigenvalue decomposition
of A:

A=RAR™', A =R'AR, B=R'B, C=CR.
Using A, Ai, B, € as optimization parameters, we can derive necessary
conditions for H2-optimality, e.g.:

(vec(lg))T (eje[ ® c) <—/\ Dl — Iy @A— ijl\,- ® A,-) - (B ® B) vec(/m)
i=1

(et (47 ) (—/\ Sh—hoA-3 Ae 2\,-) - (8 &) vecn).
i=1
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H--Model Reduction

7H>-Optimality Conditions

Assume ¥ is given in coordinate system induced by eigenvalue decomposition
of A:

A=RAR™', A =R'AR, B=R'B, C=CR.
Using A, Ai, B, € as optimization parameters, we can derive necessary
conditions for H2-optimality, e.g.:

(vec(lg))T (eje[ ® c) <—/\ Dl — Iy @A— zmjl\,- ® A,-) - (B ® B) vec(/m)
i=1

= (vec(lg))" (ejeeT ® C) <—/\ Qlp— Iy ® A — 2’": A ® /2\,-> - (é ® é) vec(Im).

Connection to interpolation of transfer functions?
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H--Model Reduction

7H>-Optimality Conditions

Assume ¥ is given in coordinate system induced by eigenvalue decomposition
of A:

A=RAR™', A =R'AR, B=R'B, C=CR.
Using A, Ai, B, € as optimization parameters, we can derive necessary
conditions for H2-optimality, e.g.:

(vec(lg))T (eje[ ® c) <—/\ Dl — Iy @A— zmjl\,- ® A,-) - (B ® B) vec(/m)
i=1

/2\,-> B (é ® é) vec(Im).

R
®

= (vec(lg)) (eje[ ® C‘) (-/\ Qhh—lh®A-
For A; = 0, this is equivalent to
G(—=\)B] = G(—\)B/

~» tangential interpolation at mirror images of reduced system poles!
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H--Model Reduction

7H>-Optimality Conditions

Assume ¥ is given in coordinate system induced by eigenvalue decomposition
of A:

A=RAR™', A =R'AR, B=R'B, C=CR.
Using A, Ai, B, € as optimization parameters, we can derive necessary
conditions for H»-optimality, e.g.:

(vec(lg))T (eje[ ® c) <—/\ Dl — Iy @A— zmjl\,- ® A,-) - (B ® B) vec(/m)
i=1

/2\,-> B (é ® é) vec(Im).

R
®

= (vec(l)) " (eje] @ €) (-/\ @lp— Iy @ A—
For A; = 0, this is equivalent to
G(—=\)B] = G(—\)B/
~» tangential interpolation at mirror images of reduced system poles!

Note: [FLAGG 2011] shows equivalence to interpolating the Volterra series!
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A First Iterative Approach (

Algorithm 2 Bilinear IRKA

Input: A, A;, B, C, A A, B, C
Output: A%t AP' Bopt, CoPt
1: while (change in A > ¢€) do

22 RAR1=A B=R1B,C=CR A =R AR
—1

m

3. vec(V):(—/\@l,,—l;,@ —ZA,-@A,-) (é@B)vec(/m)
i=1
™ 1

4 vec(W) = —A®/n—/ﬁ®AT—ZZ\,T®A,T> (C ®C)vec()
i=1

5.V =orth(V), W = orth(W)

6 A= (WTV)"WTAV, A = (WTV) " WTAV,
B=(WTV)'WTB, ¢ =cV

7. end while )

8 A%t — A APt — A, BPt = B, Cot =
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OR via Bilinearization Conclusions and

000080

H>-Model Reduction for Bilinear Systems
Industrial Case Study: Thermal Analysis of Electrical Motor

@ Thermal simulations to detect whether temperature changes lead to
fatigue or deterioration of employed materials.

@ Main heat source: thermal losses resulting from current stator coil /rotor.

@ Many different current profiles need to be considered to predict whether
temperature on certain parts of the motor remans in feasible region.

@ Finite element analysis on rather complicated geometries ~~ large-scale
linear models with many (here: 7/13) parameters.

magnets

coil

stator

rotor

Schematic view of an electrical motor. Bosch integrated motor generator used
in hybrid variants of Porsche Cayenne,
VW Touareg.
Pictures: ) BOSCH
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Conclusions z

H>-Model Reduction for Bilinear Systems

Industrial Case Study: Thermal Analysis of Electrical Motor

Output 1 — on stator — front Output 2 — on top of the coil

@ FEM analysis of thermal model ~~
linear parametric systems with
n=41,199, m = 4 inputs, and
d =13 parameters, 0 200400 )Gm 500 b zule:::r(S)mru 500

ime (s)

Temperature (K)

Output 3 — insulation between coil and stator  Output 4 — insulation on top of the stator

@ measurements taken at g = 4 heat o
sensors; o

400

@ time for 1 transient simulation in
COMSOL® ~ 90min; 350

° ROM Order ;\1 — 300’ tlme fOr 1 0 znuT‘;l;u(s) G0 s00 ; 0 JUUTI:‘A:r(S) G0 800
transient Simulation ~ 15$ec |— COMSOL solution - reduced model

Temperature

102

107

@ Legend: Temperature curves for six

<
. < 510
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@ We have established a connection between special linear parametric and
bilinear systems that automatically yields structure-preserving model
reduction techniques for linear parametric systems.

@ Balanced truncation:

o Under certain assumptions, we can expect the existence of low-rank
approximations to the solution of generalized Lyapunov equations.

o Solutions strategies via extending the ADI iteration to bilinear
systems and EKSM as well as using preconditioned iterative solvers
like CG or BiCGstab up to dimensions n ~ 500,000 in MATLAB®.

o Optimal choice of shift parameters for ADI is a nontrivial task.

o Existence of low-rank solutions in case of A; being full rank?
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@ We have reviewed the most popular PMOR methods developed in the last
decade, in particular those based on rational interpolation.
Open problem in general: optimal interpolation points.

@ We have established a connection between special linear parametric and
bilinear systems that automatically yields structure-preserving model
reduction techniques for linear parametric systems.

@ Balanced truncation:

o Under certain assumptions, we can expect the existence of low-rank
approximations to the solution of generalized Lyapunov equations.

o Solutions strategies via extending the ADI iteration to bilinear
systems and EKSM as well as using preconditioned iterative solvers
like CG or BiCGstab up to dimensions n ~ 500,000 in MATLAB®.

o Optimal choice of shift parameters for ADI is a nontrivial task.

o Existence of low-rank solutions in case of A; being full rank?

@ 7, optimal model reduction:

o Yields competitive approach, proven in industrial context.

o Still high offline cost (= time for generating reduced-order model).

o May need to switch to one-sided projection (W = V) to preserve
stability.
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