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Introduction to Parametric Model Order Reduction
Parametric Dynamical Systems

Dynamical Systems

Σ(p) :

{
E (p)ẋ(t; p) = f (t, x(t; p), u(t), p), x(t0) = x0, (a)

y(t; p) = g(t, x(t; p), u(t), p) (b)

with

(generalized) states x(t; p) ∈ Rn (E ∈ Rn×n),

inputs u(t) ∈ Rm,

outputs y(t; p) ∈ Rq, (b) is called output equation,

p ∈ Ω ⊂ Rd is a parameter vector, Ω is bounded.

Applications:
Repeated simulation for varying material or geometry parameters,
boundary conditions,
control, optimization and design,
of models, often generated by FE software (e.g., ANSYS,
NASTRAN,. . . ) or automatic tools (e.g., Modelica).
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Introduction to Parametric Model Order Reduction
Parametric Dynamical Systems

Dynamical Systems

Σ(p) :

{
E (p)ẋ(t; p) = f (t, x(t; p), u(t), p), x(t0) = x0, (a)

y(t; p) = g(t, x(t; p), u(t), p) (b)

with

(generalized) states x(t; p) ∈ Rn (E ∈ Rn×n),

inputs u(t) ∈ Rm,

outputs y(t; p) ∈ Rq, (b) is called output equation,

p ∈ Ω ⊂ Rd is a parameter vector, Ω is bounded.

PDE and boundary conditions often not accessible!
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Introduction to Parametric Model Order Reduction
Linear Parametric Systems

Linear, time-invariant (parametric) systems

E (p)ẋ(t; p) = A(p)x(t; p) + B(p)u(t), A(p),E (p) ∈ Rn×n,

y(t; p) = C (p)x(t; p), B(p) ∈ Rn×m,C (p) ∈ Rq×n.

Laplace Transformation / Frequency Domain

Application of Laplace transformation (x(t; p) 7→ x(s; p), ẋ(t; p) 7→ sx(s; p))
to linear system with x(0; p) ≡ 0:

sE(p)x(s; p) = A(p)x(s; p) + B(p)u(s), y(s; p) = C(p)x(s; p),

yields I/O-relation in frequency domain:

y(s; p) =
(

C(p)(sE(p)− A(p))−1B(p)︸ ︷︷ ︸
=:G(s,p)

)
u(s).

G(s, p) is the parameter-dependent transfer function of Σ(p).

Goal: Fast evaluation of mapping (u, p) → y(s; p).
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Introduction to Parametric Model Order Reduction
Motivating Example: Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Voltage applied to electrodes induces
vibration of wings, resulting rotation due
to Coriolis force yields sensor data.

FE model of second order:
N = 17.361 n = 34.722, m = 1, q = 12.

Sensor for position control based on
acceleration and rotation.

Applications:

inertial navigation,
electronic stability control
(ESP).

Source: MOR Wiki http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Gyroscope

Max Planck Institute Magdeburg c© P. Benner, PMOR: Survey and Recent Advances 5/33

http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Gyroscope


PMOR PMOR Methods — a Survey PMOR via Bilinearization Conclusions and Outlook

Introduction to Parametric Model Order Reduction
Motivating Example: Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Parametric FE model: M(d)ẍ(t) + D(θ, d , α, β)ẋ(t) + T (d)x(t) = Bu(t).
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Introduction to Parametric Model Order Reduction
Motivating Example: Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Parametric FE model:

M(d)ẍ(t) + D(θ, d , α, β)ẋ(t) + T (d)x(t) = Bu(t),

where

M(d) = M1 + dM2,

D(θ, d , α, β) = θ(D1 + dD2) + αM(d) + βT (d),

T (d) = T1 +
1

d
T2 + dT3,

with

width of bearing: d ,

angular velocity: θ,

Rayleigh damping parameters: α, β.
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Introduction to Parametric Model Order Reduction
Motivating Example: Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Original. . . and reduced-order model.
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The Parametric Model Order Reduction (PMOR) Problem

Problem
Approximate the dynamical system

E (p)ẋ = A(p)x + B(p)u, E (p),A(p) ∈ Rn×n,
y = C (p)x , B(p) ∈ Rn×m,C (p) ∈ Rq×n,

by reduced-order system

Ê (p) ˙̂x = Â(p)x̂ + B̂(p)u, Ê (p), Â(p) ∈ Rr×r ,

ŷ = Ĉ (p)x̂ , B̂(p) ∈ Rr×m, Ĉ (p) ∈ Rq×r ,

of order r � n, such that

‖y − ŷ‖ = ‖Gu − Ĝ u‖ ≤ ‖G − Ĝ‖ · ‖u‖ < tolerance · ‖u‖ ∀ p ∈ Ω.

=⇒ Approximation problem: min
order (Ĝ)≤r

‖G − Ĝ‖.
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PMOR ←→ Multivariate Function Approximation

Approximate (for fast evaluation) function G , defined on C× Ω.

But:

G : C× Ω → Cq×m, Ω = [α1, β1]× . . .× [αd , βd ],

G (s; p1, . . . , pd) ∈ Cq×m.

 Variables s and pj have different “meaning” for G .
 Dynamical system is in the background!

 Matrix-valued function, require matrix- not entry-wise approximation!

G is rational in s, n ∼ degree of denominator polynomial.
 Require approximation to be rational in s.

Require structure-preserving approximation, e.g., for control design.
 Need realization as linear parametric system!

Also would like to be able to reproduce system dynamics (stability,
passivity).
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PMOR Methods — a Survey
Model Reduction for Linear Parametric Systems

Parametric System

Σ(p) :

{
E (p)ẋ(t; p) = A(p)x(t; p) + B(p)u(t),

y(t; p) = C (p)x(t; p).
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PMOR Methods — a Survey
Model Reduction for Linear Parametric Systems

Parametric System

Σ(p) :

{
E (p)ẋ(t; p) = A(p)x(t; p) + B(p)u(t),

y(t; p) = C (p)x(t; p).

Appropriate parameter-affine representation:

E (p) = E0 + e1(p)E1 + . . .+ eqE (p)EqE ,

A(p) = A0 + a1(p)A1 + . . .+ aqA(p)AqA ,

B(p) = B0 + b1(p)B1 + . . .+ bqB (p)BqB ,

C (p) = C0 + c1(p)C1 + . . .+ cqC (p)CqC ,

allows easy parameter preservation for projection based model reduction.
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Parametric System

Σ(p) :

{
E (p)ẋ(t; p) = A(p)x(t; p) + B(p)u(t),

y(t; p) = C (p)x(t; p).

Appropriate parameter-affine representation:

A(p) = A0 + a1(p)A1 + . . .+ aqA(p)AqA , . . .

allows easy parameter preservation for projection based model reduction.

W.l.o.g. may assume this affine representation:

Any system can be written in this affine form for some qX ≤ n2, but
for efficiency, need qX � n! (X ∈ {E ,A,B,C})
Empirical (operator) interpolation yields this structure for ”smooth
enough” nonlinearities [Barrault/Maday/Nguyen/Patera 2004].
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PMOR Methods — a Survey
Model Reduction for Linear Parametric Systems

Parametric System

Σ(p) :

{
E (p)ẋ(t; p) = A(p)x(t; p) + B(p)u(t),

y(t; p) = C (p)x(t; p).

Appropriate parameter-affine representation:

A(p) = A0 + a1(p)A1 + . . .+ aqA(p)AqA , . . .

allows easy parameter preservation for projection based model reduction.

Parametric model reduction goal:

preserve parameters as symbolic quantities in reduced-order model:

Σ̂(p) :

{
Ê (p) ˙̂x(t; p) = Â(p)x̂(t; p) + B̂(p)u(t),

ŷ(t; p) = Ĉ (p)x̂(t; p)

with states x̂(t; p) ∈ Rr and r � n.
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Model Reduction for Linear Parametric Systems
Structure-Preservation

Petrov-Galerkin-type projection

For given projection matrices V ,W ∈ Rn×r with W TV = Ir
( (VW T )2 = VW T is projector), compute

Ê(p) = W TE0V + e1(p)W TE1V + . . .+ eqE (p)W TEqE V ,

= Ê0 + e1(p)Ê1 + . . .+ eqE (p)ÊqE ,

Â(p) = W TA0V + a1(p)W TA1V + . . .+ aqA(p)W TAqAV ,

= Â0 + a1(p)Â1 + . . .+ aqA(p)ÂqA ,

B̂(p) = W TB0 + b1(p)W TB1 + . . .+ bqB (p)W TBqB ,

= B̂0 + b1(p)B̂1 + . . .+ bqB (p)B̂qB ,

Ĉ(p) = C0V + c1(p)C1V + . . .+ cqC (p)CqC V ,

= Ĉ0 + c1(p)Ĉ1 + . . .+ cqC (p)ĈqC .
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PMOR Methods — a Survey
A Short Introduction to Interpolatory Model Reduction

Computation of reduced-order model by projection

Given a linear (descriptor) system Eẋ = Ax + Bu, y = Cx with transfer
function G(s) = C(sE − A)−1B, a reduced-order model is obtained using
truncation matrices V ,W ∈ Rn×r with W TV = Ir
( (VW T )2 = VW T is projector) by computing

Ê = W TEV , Â = W TAV , B̂ = W TB, Ĉ = CV .

Petrov-Galerkin-type (two-sided) projection: W 6= V ,

Galerkin-type (one-sided) projection: W = V .

Max Planck Institute Magdeburg c© P. Benner, PMOR: Survey and Recent Advances 10/33



PMOR PMOR Methods — a Survey PMOR via Bilinearization Conclusions and Outlook
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A Short Introduction to Interpolatory Model Reduction

Computation of reduced-order model by projection

Given a linear (descriptor) system Eẋ = Ax + Bu, y = Cx with transfer
function G(s) = C(sE − A)−1B, a reduced-order model is obtained using
truncation matrices V ,W ∈ Rn×r with W TV = Ir
( (VW T )2 = VW T is projector) by computing

Ê = W TEV , Â = W TAV , B̂ = W TB, Ĉ = CV .

Petrov-Galerkin-type (two-sided) projection: W 6= V ,

Galerkin-type (one-sided) projection: W = V .

Rational Interpolation/Moment-Matching

Choose V ,W such that

G(sj) = Ĝ(sj), j = 1, . . . , k,

and
d i

ds i
G(sj) =

d i

ds i
Ĝ(sj), i = 1, . . . ,Kj , j = 1, . . . , k.

Max Planck Institute Magdeburg c© P. Benner, PMOR: Survey and Recent Advances 10/33



PMOR PMOR Methods — a Survey PMOR via Bilinearization Conclusions and Outlook

PMOR Methods — a Survey
A Short Introduction to Interpolatory Model Reduction

Theorem (simplified) [Grimme ’97, Villemagne/Skelton ’87]

If

span
{

(s1E − A)−1B, . . . , (skE − A)−1B
}
⊂ Ran(V ),

span
{

(s1E − A)−TCT , . . . , (skE − A)−TCT
}
⊂ Ran(W ),

then

G (sj) = Ĝ (sj),
d

ds
G (sj) =

d

ds
Ĝ (sj), for j = 1, . . . , k.
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A Short Introduction to Interpolatory Model Reduction

Theorem (simplified) [Grimme ’97, Villemagne/Skelton ’87]

If

span
{

(s1E − A)−1B, . . . , (skE − A)−1B
}
⊂ Ran(V ),

span
{

(s1E − A)−TCT , . . . , (skE − A)−TCT
}
⊂ Ran(W ),

then

G (sj) = Ĝ (sj),
d

ds
G (sj) =

d

ds
Ĝ (sj), for j = 1, . . . , k.

Remarks:

computation of V ,W from rational Krylov subspaces, e.g.,

– dual rational Arnoldi/Lanczos [Grimme ’97],

– Iter. Rational Krylov-Alg. (IRKA) [Antoulas/Beattie/Gugercin ’06/’08].
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PMOR Methods — a Survey
A Short Introduction to Interpolatory Model Reduction

Theorem (simplified) [Grimme ’97, Villemagne/Skelton ’87]

If

span
{

(s1E − A)−1B, . . . , (skE − A)−1B
}
⊂ Ran(V ),

span
{

(s1E − A)−TCT , . . . , (skE − A)−TCT
}
⊂ Ran(W ),

then

G (sj) = Ĝ (sj),
d

ds
G (sj) =

d

ds
Ĝ (sj), for j = 1, . . . , k.

Remarks:

using Galerkin/one-sided projection (W ≡ V ) yields G(sj) = Ĝ(sj), but in
general

d

ds
G(sj) 6=

d

ds
Ĝ(sj).
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PMOR Methods — a Survey
A Short Introduction to Interpolatory Model Reduction

Theorem (simplified) [Grimme ’97, Villemagne/Skelton ’87]

If

span
{

(s1E − A)−1B, . . . , (skE − A)−1B
}
⊂ Ran(V ),

span
{

(s1E − A)−TCT , . . . , (skE − A)−TCT
}
⊂ Ran(W ),

then

G (sj) = Ĝ (sj),
d

ds
G (sj) =

d

ds
Ĝ (sj), for j = 1, . . . , k.

Remarks:

k = 1, standard Krylov subspace(s) of dimension K :

range (V ) = KK ((s1I − A)−1, (s1I − A)−1B).

 moment-matching methods/Padé approximation,

d i

ds i
G(s1) =

d i

ds i
Ĝ(s1), i = 0, . . . ,K − 1(+K).
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Interpolatory Model Reduction
H2-Model Reduction for Linear Systems

Consider stable (i.e. Λ (A) ⊂ C−) linear systems Σ,

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) ' Y (s) = C (sI − A)−1B︸ ︷︷ ︸
=:G(s)

U(s)

System norms

Two common system norms for measuring approximation quality:

H2-norm, ‖Σ‖H2 =
(

1
2π

∫ 2π

0
tr
((

GT (−ω)G (ω)
))

dω
) 1

2

,

H∞-norm, ‖Σ‖H∞ = sup
ω∈R

σmax (G (ω)),

where
G (s) = C (sI − A)−1 B.

Note: H∞-norm approximation  balanced truncation, Hankel norm

approximation.
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Interpolatory Model Reduction
Error system and H2-Optimality [Meier/Luenberger 1967]

In order to find an H2-optimal reduced system, consider the error system
G (s)− Ĝ (s) which can be realized by

Aerr =

[
A 0

0 Â

]
, Berr =

[
B

B̂

]
, C err =

[
C −Ĉ

]
.
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Aerr =

[
A 0

0 Â

]
, Berr =

[
B

B̂

]
, C err =

[
C −Ĉ

]
.

Assuming a coordinate system in which Â is diagonal and taking
derivatives of

‖G ( . )− Ĝ ( . )‖2
H2

with respect to free parameters in Λ (Â), B̂, Ĉ  first-order necessary
H2-optimality conditions (SISO)

G (−λ̂i ) = Ĝ (−λ̂i ),
G ′(−λ̂i ) = Ĝ ′(−λ̂i ),

where λ̂i are the poles of the reduced system Σ̂.
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]
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B
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]
, C err =

[
C −Ĉ

]
.

First-order necessary H2-optimality conditions (MIMO):

G (−λ̂i )B̃i = Ĝ (−λ̂i )B̃i , for i = 1, . . . , n̂,

C̃T
i G (−λ̂i ) = C̃T

i Ĝ (−λ̂i ), for i = 1, . . . , n̂,

C̃T
i H ′(−λ̂i )B̃i = C̃T

i Ĝ ′(−λ̂i )B̃i for i = 1, . . . , n̂,

where Â = RΛ̂R−T is the spectral decomposition of the reduced system
and B̃ = B̂TR−T , C̃ = Ĉ R.
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G (s)− Ĝ (s) which can be realized by

Aerr =

[
A 0

0 Â
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i Ĝ ′(−λ̂i )B̃i for i = 1, . . . , n̂,

⇔ vec (Iq)T
(

eje
T
i ⊗ C

)(
−Λ̂⊗ In − In̂ ⊗ A

)−1 (
B̃T ⊗ B

)
vec (Im)

= vec (Iq)T
(

eje
T
i ⊗ Ĉ

)(
−Λ̂⊗ In̂ − In̂ ⊗ Â

)−1 (
B̃T ⊗ B̂

)
vec (Im),

for i = 1, . . . , n̂ and j = 1, . . . , q.
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Interpolatory Model Reduction
Interpolation of the Transfer Function [Grimme 1997]

Construct reduced transfer function by Petrov-Galerkin projection
P = VW T , i.e.

Ĝ (s) = CV
(
sI −W TAV

)−1
W TB,

where V and W are given as

V =
[
(−µ1I − A)−1B, . . . , (−µr I − A)−1B

]
,

W =
[
(−µ1I − AT )−1CT , . . . , (−µr I − AT )−1CT

]
.

Then
G (−µi ) = Ĝ (−µi ) and G ′(−µi ) = Ĝ ′(−µi ),

for i = 1, . . . , r .
Starting with an initial guess for Λ̂ and setting µi ≡ λ̂i  iterative
algorithms (IRKA/MIRIAm) that yield H2-optimal models.

[Gugercin et al. 2006/08], [Bunse-Gerstner et al. 2007],

[Van Dooren et al. 2008]
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for i = 1, . . . , r .
Starting with an initial guess for Λ̂ and setting µi ≡ λ̂i  iterative
algorithms (IRKA/MIRIAm) that yield H2-optimal models.

[Gugercin et al. 2006/08], [Bunse-Gerstner et al. 2007],

[Van Dooren et al. 2008]

Max Planck Institute Magdeburg c© P. Benner, PMOR: Survey and Recent Advances 13/33



PMOR PMOR Methods — a Survey PMOR via Bilinearization Conclusions and Outlook

Interpolatory Model Reduction
Interpolation of the Transfer Function [Grimme 1997]

Construct reduced transfer function by Petrov-Galerkin projection
P = VW T , i.e.
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Interpolatory Model Reduction
The Basic IRKA Algorithm

Algorithm 1 IRKA (MIMO version/MIRIAm)

Input: A stable, B, C , Â stable, B̂, Ĉ , δ > 0.
Output: Aopt , Bopt , C opt

1: while (maxj=1,...,r

{
|µj−µold

j |
|µj |

}
> δ) do

2: diag {µ1, . . . , µr} := T−1ÂT = spectral decomposition,
B̃ = B̂HT−T , C̃ = Ĉ T .

3: V =
[
(−µ1I − A)−1Bb̃1, . . . , (−µr I − A)−1Bb̃r

]
4: W =

[
(−µ1I − AT )−1CT c̃1, . . . , (−µr I − AT )−1CT c̃r

]
5: V = orth(V ), W = orth(W ), W = W (V HW )−1

6: Â = W HAV , B̂ = W HB, Ĉ = CV
7: end while
8: Aopt = Â, Bopt = B̂, C opt = Ĉ
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PMOR based on Multi-Moment Matching

Idea: choose appropriate frequency parameter ŝ and parameter vector p̂,
expand into multivariate power series about (ŝ, p̂) and compute
reduced-order model, so that

G (s, p) = Ĝ (s, p) +O
(
|s − ŝ|K + ‖p − p̂‖L + |s − ŝ|k‖p − p̂‖`

)
,

i.e., first K , L, k + ` (mostly: K = L = k + `) coefficients (multi-moments)
of Taylor/Laurent series coincide.

Algorithms:

[Daniel et al. 2004]: explicit computation of moments, numerically
unstable.

[Farle et al. 2006/07]: Krylov subspace approach, only polynomial
parameter-dependance, numerical properties not clear, but appears
to be robust.

[Feng/B. 2007/14]: Arnoldi-MGS method, employ recursive
dependance of multi-moments, numerically robust, r often larger as
with [Farle et al.].
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PMOR based on Multi-Moment Matching
Numerical Examples

Electro-chemical SEM:
compute cyclic voltammogram based on FEM model

E ẋ(t) = (A0 + p1A1 + p2A2)x(t) + Bu(t), y(t) = cT x(t),

where n = 16, 912, m = 3, A1,A2 diagonal.

K = L = k + ` = 4 ⇒ r = 26 K = L = k + ` = 9 ⇒ r = 86
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PMOR based on Rational Interpolation
Theory: Interpolation of the Transfer Function

Theorem 1 [Baur/Beattie/B./Gugercin 2007/2011]

Let Ĝ(s, p) := Ĉ(p)(sÊ(p)− Â(p))−1B̂(p)

= C(p)V (sW TE(p)V −W TA(p)V )−1W TB(p).

Suppose p̂ = [p̂1, ..., p̂d ]T and ŝ ∈ C are chosen such that both
ŝ E (p̂) − A(p̂) and ŝ Ê (p̂) − Â(p̂) are invertible.

If
(ŝ E (p̂)− A(p̂))−1 B(p̂) ∈ Ran(V )

or (
C (p̂) (ŝ E (p̂)− A(p̂))−1

)T
∈ Ran(W ),

then G (ŝ, p̂) = Ĝ (ŝ, p̂).

Note: result extends to MIMO case using tangential interpolation:
Let 0 6= b ∈ Rm, 0 6= c ∈ Rq be arbitrary.

a) If (ŝ E(p̂)− A(p̂))−1 B(p̂)b ∈ Ran(V ), then G(ŝ, p̂)b = Ĝ(ŝ, p̂)b;

b) If
(
cTC(p̂) (ŝ E(p̂)− A(p̂))−1

)T
∈ Ran(W ), then cTG(ŝ, p̂) = cT Ĝ(ŝ, p̂).
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Max Planck Institute Magdeburg c© P. Benner, PMOR: Survey and Recent Advances 17/33



PMOR PMOR Methods — a Survey PMOR via Bilinearization Conclusions and Outlook

PMOR based on Rational Interpolation
Theory: Interpolation of the Parameter Gradient

Theorem 2 [Baur/Beattie/B./Gugercin ’07/’09]

Suppose that E (p), A(p), B(p), C (p) are C 1 in a neighborhood of
p̂ = [p̂1, ..., p̂d ]T and that both ŝ E (p̂) − A(p̂) and ŝ Ê (p̂) − Â(p̂) are
invertible. If

(ŝ E (p̂)− A(p̂))−1 B(p̂) ∈ Ran(V )

and (
C (p̂) (ŝ E (p̂)− A(p̂))−1

)T
∈ Ran(W ),

then

∇pG (ŝ, p̂) = ∇pGr (ŝ, p̂),
∂

∂s
G (ŝ, p̂) =

∂

∂s
Ĝ (ŝ, p̂).
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PMOR based on Rational Interpolation
Theory: Interpolation of the Parameter Gradient
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then
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∂

∂s
G (ŝ, p̂) =

∂

∂s
Ĝ (ŝ, p̂).

1 Assertion of theorem satisfies necessary conditions for surrogate models in trust
region methods [Alexandrov/Dennis/Lewis/Torczon ’98].

2 Approximation of gradient allows use of reduced-order model for sensitivity
analysis.
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PMOR based on Rational Interpolation
Algorithm

Generic implementation of interpolatory PMOR

Define A(s, p) := sE(p)− A(p).

1 Select “frequencies” s1, . . . , sk ∈ C and parameter vectors
p(1), . . . , p(`) ∈ Rd .

2 Compute (orthonormal) basis of

V = span
{
A(s1, p

(1))−1B(p(1)), . . . ,A(sk , p
(`))−1B(p(`))

}
.

3 Compute (orthonormal) basis of

W = span
{
A(s1, p

(1))−TC(p(1))T , . . . ,A(sk , p
(`))−TC(p(`))T

}
.

4 Set V := [v1, . . . , vk`], W̃ := [w1, . . . ,wk`], and W := W̃ (W̃ TV )−1.
(Note: r = k`).

5 Compute

{
Â(p) := W TA(p)V , B̂(p) := W TB(p)V ,

Ĉ(p) := W TC(p)V , Ê(p) := W TE(p)V .
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PMOR based on Rational Interpolation
Remarks

If directional derivatives w.r.t. p are included in Ran(V ), Ran(W ),
then also the Hessian of G (ŝ, p̂) is interpolated by the Hessian of
Ĝ (ŝ, p̂).

Choice of optimal interpolation frequencies sk and parameter vectors
p(k) in general is an open problem.

For prescribed parameter vectors p(k), we can use corresponding
H2-optimal frequencies sk,`, ` = 1, . . . , rk computed by IRKA, i.e.,

reduced-order systems Ĝ
(k)
∗ so that

‖G (., p(k))− Ĝ
(k)
∗ (.)‖H2 = min

order(Ĝ)=rk
Ĝ stable

‖G (., p(k))− Ĝ (k)(.)‖H2 ,

where

‖G‖H2
:=

(
1

2π

∫ +∞

−∞

∥∥G (ω)
∥∥2

F
dω

)1/2

.

Optimal choice of interpolation frequencies sk and parameter vectors
p(k) possible for special cases.
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PMOR based on Rational Interpolation
Numerical Example: Thermal Conduction in a Semiconductor Chip

Important requirement for a compact model of thermal conduction is
boundary condition independence.

The thermal problem is modeled by the heat equation, where heat
exchange through device interfaces is modeled by convection boundary
conditions containing film coefficients {pi}3

i=1, to describe the heat
exchange at the ith interface.

Spatial semi-discretization leads to

Eẋ(t) = (A0 +
3∑

i=1

piAi )x(t) + bu(t), y(t) = cT x(t),

where n = 4, 257, Ai , i = 1, 2, 3, are diagonal.

Source: C.J.M Lasance, Two benchmarks to facilitate the study of compact thermal

modeling phenomena, IEEE. Trans. Components and Packaging Technologies,

Vol. 24, No. 4, pp. 559–565, 2001.
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PMOR based on Rational Interpolation
Numerical Example: Thermal Conduction in a Semiconductor Chip

Choose 2 interpolation points for parameters (“important” configurations), 8/7
interpolation frequencies are picked H2 optimal by IRKA. =⇒ k = 2, ` = 8, 7,
hence r = 15.

p3 = 1, p1, p2 ∈ [1, 104].
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PMOR Methods — a Survey
Other Approaches

Transfer function interpolation (= output interpolation in
frequency domain) [B./Baur 2008]

Matrix interpolation
[Panzer/Mohring/Eid/Lohmann 2010, Amsallam/Farhat 2011]

Manifold interpolation [Amsallam/Farhat/. . . 2008]

Proper orthogonal/generalized decomposition (POD/PGD)
[Kunisch/Volkwein, Hinze, Willcox, Nouy, . . . ]

Reduced basis method (RBM)
[Haasdonk, Maday, Patera, Prud’homme, Rozza, Urban, . . . ]
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Parametric Systems as Bilinear Systems
Linear Parametric Systems — An Alternative Interpretation

Consider bilinear control systems:

Σ :

 ẋ(t) = Ax(t) +
m∑
i=1

Aix(t)ui (t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

where A,Ai ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n.
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Parametric Systems as Bilinear Systems
Linear Parametric Systems — An Alternative Interpretation

Consider bilinear control systems:

Σ :

 ẋ(t) = Ax(t) +
m∑
i=1

Aix(t)ui (t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

where A,Ai ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n.

Key Observation [B./Breiten 2011]

Consider parameters as additional inputs, a linear parametric system

ẋ(t) = Ax(t) +

mp∑
i=1

ai (p)Aix(t) + B0u0(t), y(t) = Cx(t)

with B0 ∈ Rn×m0 can be interpreted as bilinear system:

u(t) :=
[
a1(p) . . . amp (p) u0(t)

]T
,

B :=
[
0 . . . 0 B0

]
∈ Rn×m, m = mp + m0.
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Parametric Systems as Bilinear Systems
Linear Parametric Systems — An Alternative Interpretation

Linear parametric systems can be interpreted as bilinear systems.

Consequence

Model order reduction techniques for bilinear systems can be applied to
linear parametric systems!

Here:

Balanced truncation,

H2 optimal model reduction.
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H2-Model Reduction for Bilinear Systems
Some background

Consider bilinear system (m = 1, i.e. SISO)

Σ : {ẋ(t) = Ax(t) + A1x(t)u(t) + Bu(t), y(t) = Cx(t).

Output Characterization (SISO): Volterra series

y(t) =
∞∑
k=1

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

K(t1, . . . , tk)u(t−t1−. . .−tk) · · · u(t−tk)dtk · · · dt1,

with kernels K (t1, . . . , tk) = CeAtk A1 · · · eAt2 A1eAt1 B.

Multivariate Laplace-transform:

Gk(s1, . . . , sk) = C (sk I − A)−1A1 · · · (s2I − A)−1A1(s1I − A)−1B.

Bilinear H2-norm: [Zhang/Lam 2002]

||Σ||H2
:=

(
tr

(( ∞∑
k=1

∫ ∞
−∞

. . .

∫ ∞
−∞

1

(2π)k
Gk (iω1, . . . , iωk )GT

k (iω1, . . . , iωk )

))) 1
2

.
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H2-Model Reduction for Bilinear Systems
Measuring the Approximation Error

Lemma [B./Breiten 2012]

Let Σ denote a bilinear system. Then, the H2-norm is given as:

||Σ||2H2
= (vec(Iq))T (C ⊗ C)

(
−A⊗ I − I ⊗ A−

m∑
i=1

Ai ⊗ Ai

)−1

(B ⊗ B) vec(Im).

Error System

In order to find an H2-optimal reduced system, define the error system
Σerr := Σ− Σ̂ as follows:

Aerr =

[
A 0

0 Â

]
, Aerr

i =

[
Ai 0

0 Âi

]
, Berr =

[
B

B̂

]
, C err =

[
C −Ĉ

]
.
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H2-Model Reduction
H2-Optimality Conditions

Assume Σ̂ is given in coordinate system induced by eigenvalue decomposition
of Â:

Â = RΛR−1, Ãi = R−1ÂiR, B̃ = R−1B̂, C̃ = ĈR.
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H2-Model Reduction
H2-Optimality Conditions

Assume Σ̂ is given in coordinate system induced by eigenvalue decomposition
of Â:

Â = RΛR−1, Ãi = R−1ÂiR, B̃ = R−1B̂, C̃ = ĈR.

Using Λ, Ãi , B̃, C̃ as optimization parameters, we can derive necessary
conditions for H2-optimality, e.g.:
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H2-Model Reduction
H2-Optimality Conditions

Assume Σ̂ is given in coordinate system induced by eigenvalue decomposition
of Â:

Â = RΛR−1, Ãi = R−1ÂiR, B̃ = R−1B̂, C̃ = ĈR.

Using Λ, Ãi , B̃, C̃ as optimization parameters, we can derive necessary
conditions for H2-optimality, e.g.:

(vec(Iq))T
(
eje

T
` ⊗ C

)(
−Λ⊗ In − In̂ ⊗ A−

m∑
i=1

Ãi ⊗ Ai

)−1 (
B̃ ⊗ B

)
vec(Im)

= (vec(Iq))T
(
eje

T
` ⊗ Ĉ

)(
−Λ⊗ In − In̂ ⊗ Â−

m∑
i=1

Ãi ⊗ Âi

)−1 (
B̃ ⊗ B̂

)
vec(Im).

Max Planck Institute Magdeburg c© P. Benner, PMOR: Survey and Recent Advances 28/33



PMOR PMOR Methods — a Survey PMOR via Bilinearization Conclusions and Outlook

H2-Model Reduction
H2-Optimality Conditions

Assume Σ̂ is given in coordinate system induced by eigenvalue decomposition
of Â:

Â = RΛR−1, Ãi = R−1ÂiR, B̃ = R−1B̂, C̃ = ĈR.

Using Λ, Ãi , B̃, C̃ as optimization parameters, we can derive necessary
conditions for H2-optimality, e.g.:

(vec(Iq))T
(
eje

T
` ⊗ C

)(
−Λ⊗ In − In̂ ⊗ A−

m∑
i=1

Ãi ⊗ Ai

)−1 (
B̃ ⊗ B

)
vec(Im)

= (vec(Iq))T
(
eje

T
` ⊗ Ĉ

)(
−Λ⊗ In − In̂ ⊗ Â−

m∑
i=1

Ãi ⊗ Âi

)−1 (
B̃ ⊗ B̂

)
vec(Im).

Connection to interpolation of transfer functions?
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H2-Model Reduction
H2-Optimality Conditions

Assume Σ̂ is given in coordinate system induced by eigenvalue decomposition
of Â:

Â = RΛR−1, Ãi = R−1ÂiR, B̃ = R−1B̂, C̃ = ĈR.

Using Λ, Ãi , B̃, C̃ as optimization parameters, we can derive necessary
conditions for H2-optimality, e.g.:

(vec(Iq))T
(
eje

T
` ⊗ C

)(
−Λ⊗ In − In̂ ⊗ A−

m∑
i=1

Ãi ⊗ Ai

)−1 (
B̃ ⊗ B

)
vec(Im)

= (vec(Iq))T
(
eje

T
` ⊗ Ĉ

)(
−Λ⊗ In − In̂ ⊗ Â−

m∑
i=1

Ãi ⊗ Âi

)−1 (
B̃ ⊗ B̂

)
vec(Im).

For Ai ≡ 0, this is equivalent to

G (−λ`)B̃T
` = Ĝ (−λ`)B̃T

`

 tangential interpolation at mirror images of reduced system poles!
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H2-Model Reduction
H2-Optimality Conditions

Assume Σ̂ is given in coordinate system induced by eigenvalue decomposition
of Â:

Â = RΛR−1, Ãi = R−1ÂiR, B̃ = R−1B̂, C̃ = ĈR.

Using Λ, Ãi , B̃, C̃ as optimization parameters, we can derive necessary
conditions for H2-optimality, e.g.:

(vec(Iq))T
(
eje

T
` ⊗ C

)(
−Λ⊗ In − In̂ ⊗ A−

m∑
i=1

Ãi ⊗ Ai

)−1 (
B̃ ⊗ B

)
vec(Im)

= (vec(Iq))T
(
eje

T
` ⊗ Ĉ

)(
−Λ⊗ In − In̂ ⊗ Â−

m∑
i=1

Ãi ⊗ Âi

)−1 (
B̃ ⊗ B̂

)
vec(Im).

For Ai ≡ 0, this is equivalent to

G (−λ`)B̃T
` = Ĝ (−λ`)B̃T

`

 tangential interpolation at mirror images of reduced system poles!

Note: [Flagg 2011] shows equivalence to interpolating the Volterra series!
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A First Iterative Approach

Algorithm 2 Bilinear IRKA

Input: A, Ai , B, C , Â, Âi , B̂, Ĉ
Output: Aopt , Aopt

i , Bopt , C opt

1: while (change in Λ > ε) do
2: RΛR−1 = Â, B̃ = R−1B̂, C̃ = Ĉ R, Ãi = R−1ÂiR

3: vec(V ) =

(
−Λ⊗ In − In̂ ⊗ A−

m∑
i=1

Ãi ⊗ Ai

)−1 (
B̃ ⊗ B

)
vec(Im)

4: vec(W ) =

(
−Λ⊗ In − In̂ ⊗ AT −

m∑
i=1

ÃT
i ⊗ AT

i

)−1 (
C̃T ⊗ CT

)
vec(Iq)

5: V = orth(V ), W = orth(W )

6: Â =
(
W TV

)−1
W TAV , Âi =

(
W TV

)−1
W TAiV ,

B̂ =
(
W TV

)−1
W TB, Ĉ = CV

7: end while
8: Aopt = Â, Aopt

i = Âi , Bopt = B̂, C opt = Ĉ
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H2-Model Reduction for Bilinear Systems
Industrial Case Study: Thermal Analysis of Electrical Motor

Thermal simulations to detect whether temperature changes lead to
fatigue or deterioration of employed materials.
Main heat source: thermal losses resulting from current stator coil/rotor.
Many different current profiles need to be considered to predict whether
temperature on certain parts of the motor remans in feasible region.
Finite element analysis on rather complicated geometries  large-scale
linear models with many (here: 7/13) parameters.

Schematic view of an electrical motor. Bosch integrated motor generator used
in hybrid variants of Porsche Cayenne,

VW Touareg.
Pictures:Bildtext | Caption

Der Integrierte Motor Generator von Bosch
 

Antriebseinheit und Generator in einem: der Integrierte Motor
Generator (IMG) von Bosch. Der IMG ist in den Hybrid-Varianten
des Porsche Cayenne und Volkswagen Touareg im Serieneinsatz. Er
ist zwischen Verbrennungsmotor und Getriebe verbaut.
 

The Bosch integrated motor generator
 

Drive unit and generator in one: the Bosch integrated motor
generator (IMG). The IMG is used in the hybrid variants of the
Porsche Cayenne and the Volkswagen Touareg. It is installed
between the combustion engine and the transmission.
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You can find all Bosch press
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H2-Model Reduction for Bilinear Systems
Industrial Case Study: Thermal Analysis of Electrical Motor

FEM analysis of thermal model  
linear parametric systems with
n = 41, 199, m = 4 inputs, and
d = 13 parameters,

measurements taken at q = 4 heat
sensors;

time for 1 transient simulation in
COMSOL R© ∼ 90min;

ROM order n̂ = 300, time for 1
transient simulation ∼ 15sec.

Legend: Temperature curves for six
different values (5, 25, 45, 65, 85,
100[W /m2K ]) of the heat transfer
coefficient on the coil.
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Conclusions and Outlook

We have reviewed the most popular PMOR methods developed in the last
decade, in particular those based on rational interpolation.

Open problem in general: optimal interpolation points.

We have established a connection between special linear parametric and
bilinear systems that automatically yields structure-preserving model
reduction techniques for linear parametric systems.

Balanced truncation:

Under certain assumptions, we can expect the existence of low-rank
approximations to the solution of generalized Lyapunov equations.
Solutions strategies via extending the ADI iteration to bilinear
systems and EKSM as well as using preconditioned iterative solvers
like CG or BiCGstab up to dimensions n ∼ 500, 000 in MATLAB R©.
Optimal choice of shift parameters for ADI is a nontrivial task.
Existence of low-rank solutions in case of Ai being full rank?

H2 optimal model reduction:

Yields competitive approach, proven in industrial context.
Still high offline cost (= time for generating reduced-order model).
May need to switch to one-sided projection (W = V ) to preserve
stability.
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