# Parametric Model Order Reduction of Dynamical Systems: Survey and Recent Advances 

Peter Benner

Max Planck Institute for Dynamics of Complex Technical Systems
Computational Methods in Systems and Control Theory
Magdeburg, Germany
joint work with Tobias Breiten (KFU Graz) and Angelika Bruns (Robert Bosch GmbH)

## Overview

(1) Introduction to Parametric Model Order Reduction

- Dynamical Systems
- Motivating Example: Microsystems/MEMS Design
- The Parametric Model Order Reduction (PMOR) Problem
- PMOR $\longleftrightarrow$ Multivariate Function Approximation
(2) PMOR Methods - a Survey
- Model Reduction for Linear Parametric Systems
- Interpolatory Model Reduction
- PMOR based on Multi-Moment Matching
- PMOR based on Rational Interpolation
- Other Approaches

3) PMOR via Bilinearization

- Parametric Systems as Bilinear Systems
- $\mathcal{H}_{2}$-Model Reduction for Bilinear Systems

4 Conclusions and Outlook

## Introduction to Parametric Model Order Reduction

## Parametric Dynamical Systems

## Dynamical Systems

$$
\Sigma(p):\left\{\begin{align*}
E(p) \dot{x}(t ; p) & =f(t, x(t ; p), u(t), p), \quad x\left(t_{0}\right)=x_{0},  \tag{a}\\
y(t ; p) & =g(t, x(t ; p), u(t), p) \tag{b}
\end{align*}\right.
$$

with

- (generalized) states $x(t ; p) \in \mathbb{R}^{n}\left(E \in \mathbb{R}^{n \times n}\right)$,
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $y(t ; p) \in \mathbb{R}^{q}$, (b) is called output equation,
- $p \in \Omega \subset \mathbb{R}^{d}$ is a parameter vector, $\Omega$ is bounded.


## Applications:

- Repeated simulation for varying material or geometry parameters, boundary conditions,
- control, optimization and design,
- of models, often generated by FE software (e.g., ANSYS, NASTRAN,...) or automatic tools (e.g., Modelica).


## Introduction to Parametric Model Order Reduction

## Parametric Dynamical Systems

Dynamical Systems

$$
\Sigma(p):\left\{\begin{align*}
E(p) \dot{x}(t ; p) & =f(t, x(t ; p), u(t), p),  \tag{a}\\
y(t ; p) & =g(t, x(t ; p), u(t), p)=x_{0},
\end{align*}\right.
$$

with

- (generalized) states $x(t ; p) \in \mathbb{R}^{n}\left(E \in \mathbb{R}^{n \times n}\right)$,
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $y(t ; p) \in \mathbb{R}^{q}$, (b) is called output equation,
- $p \in \Omega \subset \mathbb{R}^{d}$ is a parameter vector, $\Omega$ is bounded.

PDE and boundary conditions often not accessible!

## Introduction to Parametric Model Order Reduction

Linear Parametric Systems

## Linear, time-invariant (parametric) systems

$$
\begin{aligned}
E(p) \dot{x}(t ; p) & =A(p) \times(t ; p)+B(p) u(t), & & A(p), E(p) \in \mathbb{R}^{n \times n}, \\
y(t ; p) & =C(p) \times(t ; p), & & B(p) \in \mathbb{R}^{n \times m}, C(p) \in \mathbb{R}^{9 \times n} .
\end{aligned}
$$

## Introduction to Parametric Model Order Reduction

## Linear Parametric Systems

## Linear, time-invariant (parametric) systems

$$
\begin{aligned}
E(p) \dot{x}(t ; p) & =A(p) \times(t ; p)+B(p) u(t), & & A(p), E(p) \in \mathbb{R}^{n \times n}, \\
y(t ; p) & =C(p) x(t ; p), & & B(p) \in \mathbb{R}^{n \times m}, C(p) \in \mathbb{R}^{q \times n} .
\end{aligned}
$$

## Laplace Transformation / Frequency Domain

Application of Laplace transformation $\quad(x(t ; p) \mapsto x(s ; p), \dot{x}(t ; p) \mapsto s x(s ; p))$ to linear system with $x(0 ; p) \equiv 0$ :

$$
s E(p) x(s ; p)=A(p) x(s ; p)+B(p) u(s), \quad y(s ; p)=C(p) x(s ; p)
$$

yields I/O-relation in frequency domain:

$$
y(s ; p)=(\underbrace{C(p)(s E(p)-A(p))^{-1} B(p)}_{=: G(s, p)}) u(s)
$$

$G(s, p)$ is the parameter-dependent transfer function of $\Sigma(p)$.

Introduction to Parametric Model Order Reduction

## Linear Parametric Systems

## Linear, time-invariant (parametric) systems

$$
\begin{aligned}
E(p) \dot{x}(t ; p) & =A(p) x(t ; p)+B(p) u(t), & & A(p), E(p) \in \mathbb{R}^{n \times n}, \\
y(t ; p) & =C(p) x(t ; p), & & B(p) \in \mathbb{R}^{n \times m}, C(p) \in \mathbb{R}^{q \times n}
\end{aligned}
$$

## Laplace Transformation / Frequency Domain

Application of Laplace transformation $\quad(x(t ; p) \mapsto x(s ; p), \dot{x}(t ; p) \mapsto s x(s ; p))$ to linear system with $x(0 ; p) \equiv 0$ :

$$
s E(p) x(s ; p)=A(p) x(s ; p)+B(p) u(s), \quad y(s ; p)=C(p) x(s ; p)
$$

yields I/O-relation in frequency domain:

$$
y(s ; p)=(\underbrace{C(p)(s E(p)-A(p))^{-1} B(p)}_{=: G(s, p)}) u(s)
$$

$G(s, p)$ is the parameter-dependent transfer function of $\Sigma(p)$.
Goal: Fast evaluation of mapping $(u, p) \rightarrow y(s ; p)$.

## Introduction to Parametric Model Order Reduction <br> Motivating Example: Microsystems/MEMS Design

## Microgyroscope (butterfly gyro)



- Applications:
- inertial navigation,
- electronic stability control (ESP).
- Voltage applied to electrodes induces vibration of wings, resulting rotation due to Coriolis force yields sensor data.
- FE model of second order: $N=17.361 \rightsquigarrow n=34.722, m=1, q=12$.
- Sensor for position control based on acceleration and rotation.


Source: MOR Wiki http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Gyroscope

## Introduction to Parametric Model Order Reduction

Motivating Example: Microsystems/MEMS Design
Microgyroscope (butterfly gyro)
Parametric FE model: $M(d) \ddot{x}(t)+D(\theta, d, \alpha, \beta) \dot{x}(t)+T(d) x(t)=B u(t)$.


## Introduction to Parametric Model Order Reduction

Motivating Example: Microsystems/MEMS Design

## Microgyroscope (butterfly gyro)

## Parametric FE model:

$$
M(d) \ddot{x}(t)+D(\theta, d, \alpha, \beta) \dot{x}(t)+T(d) x(t)=B u(t)
$$

where

$$
\begin{aligned}
M(d) & =M_{1}+d M_{2} \\
D(\theta, d, \alpha, \beta) & =\theta\left(D_{1}+d D_{2}\right)+\alpha M(d)+\beta T(d) \\
T(d) & =T_{1}+\frac{1}{d} T_{2}+d T_{3}
\end{aligned}
$$

with

- width of bearing: $d$,
- angular velocity: $\theta$,
- Rayleigh damping parameters: $\alpha, \beta$.


## Introduction to Parametric Model Order Reduction

Motivating Example: Microsystems/MEMS Design

## Microgyroscope (butterfly gyro)

Original...
and reduced-order model.



## The Parametric Model Order Reduction (PMOR) Problem

## Problem

Approximate the dynamical system

$$
\begin{aligned}
E(p) \dot{x} & =A(p) x+B(p) u, & & E(p), A(p) \in \mathbb{R}^{n \times n}, \\
y & =C(p) x, & & B(p) \in \mathbb{R}^{n \times m}, C(p) \in \mathbb{R}^{q \times n},
\end{aligned}
$$

by reduced-order system

$$
\begin{aligned}
\hat{E}(p) \dot{\hat{x}} & =\hat{A}(p) \hat{x}+\hat{B}(p) u, & & \hat{E}(p), \hat{A}(p) \in \mathbb{R}^{r \times r}, \\
\hat{y} & =\hat{C}(p) \hat{x}, & & \hat{B}(p) \in \mathbb{R}^{r \times m}, \hat{C}(p) \in \mathbb{R}^{q \times r},
\end{aligned}
$$

of order $r \ll n$, such that

$$
\|y-\hat{y}\|=\|G u-\hat{G} u\| \leq\|G-\hat{G}\| \cdot\|u\|<\text { tolerance } \cdot\|u\| \quad \forall p \in \Omega \text {. }
$$

## The Parametric Model Order Reduction (PMOR) Problem

## Problem

Approximate the dynamical system

$$
\begin{aligned}
E(p) \dot{x} & =A(p) x+B(p) u, & & E(p), A(p) \in \mathbb{R}^{n \times n}, \\
y & =C(p) x, & & B(p) \in \mathbb{R}^{n \times m}, C(p) \in \mathbb{R}^{q \times n}
\end{aligned}
$$

by reduced-order system

$$
\begin{aligned}
\hat{E}(p) \dot{\hat{x}} & =\hat{A}(p) \hat{x}+\hat{B}(p) u, & & \hat{E}(p), \hat{A}(p) \in \mathbb{R}^{r \times r}, \\
\hat{y} & =\hat{C}(p) \hat{x}, & & \hat{B}(p) \in \mathbb{R}^{r \times m}, \hat{C}(p) \in \mathbb{R}^{q \times r},
\end{aligned}
$$

of order $r \ll n$, such that

$$
\|y-\hat{y}\|=\|G u-\hat{G} u\| \leq\|G-\hat{G}\| \cdot\|u\|<\text { tolerance } \cdot\|u\| \quad \forall p \in \Omega .
$$

$\Longrightarrow$ Approximation problem: $\min _{\operatorname{order}(\hat{G}) \leq r}\|G-\hat{G}\|$.

## PMOR $\longleftrightarrow$ Multivariate Function Approximation

- Approximate (for fast evaluation) function $G$, defined on $\mathbb{C} \times \Omega$.


## PMOR $\longleftrightarrow$ Multivariate Function Approximation

- Approximate (for fast evaluation) function $G$, defined on $\mathbb{C} \times \Omega$.
- But:

$$
\begin{array}{rll}
G: \mathbb{C} \times \Omega & \rightarrow & \mathbb{C}^{q \times m}, \\
G\left(s ; p_{1}, \ldots, p_{d}\right) & \in \mathbb{C}^{q \times m} .
\end{array}
$$

$\rightsquigarrow$ Variables $s$ and $p_{j}$ have different "meaning" for $G$.
Dynamical system is in the background!
$\rightsquigarrow$ Matrix-valued function, require matrix- not entry-wise approximation!

## PMOR $\longleftrightarrow$ Multivariate Function Approximation

- Approximate (for fast evaluation) function $G$, defined on $\mathbb{C} \times \Omega$.
- But:

$$
\begin{array}{rll}
G: \mathbb{C} \times \Omega & \rightarrow & \mathbb{C}^{q \times m}, \\
G\left(s ; p_{1}, \ldots, p_{d}\right) & \in & \mathbb{C}^{9 \times m} .
\end{array}
$$

$\rightsquigarrow$ Variables $s$ and $p_{j}$ have different "meaning" for $G$.
Dynamical system is in the background!
$\rightsquigarrow$ Matrix-valued function, require matrix- not entry-wise approximation!

- $G$ is rational in $s, n \sim$ degree of denominator polynomial.
$\rightsquigarrow$ Require approximation to be rational in $s$.


## PMOR $\longleftrightarrow$ Multivariate Function Approximation

- Approximate (for fast evaluation) function $G$, defined on $\mathbb{C} \times \Omega$.
- But:

$$
\begin{array}{rll}
G: \mathbb{C} \times \Omega & \rightarrow & \mathbb{C}^{q \times m}, \\
G\left(s ; p_{1}, \ldots, p_{d}\right) & \in \mathbb{C}^{9 \times m} .
\end{array}
$$

$\rightsquigarrow$ Variables $s$ and $p_{j}$ have different "meaning" for $G$.
Dynamical system is in the background!
$\rightsquigarrow$ Matrix-valued function, require matrix- not entry-wise approximation!

- $G$ is rational in $s, n \sim$ degree of denominator polynomial.
$\rightsquigarrow$ Require approximation to be rational in $s$.
- Require structure-preserving approximation, e.g., for control design.
$\rightsquigarrow$ Need realization as linear parametric system!


## PMOR $\longleftrightarrow$ Multivariate Function Approximation

- Approximate (for fast evaluation) function $G$, defined on $\mathbb{C} \times \Omega$.
- But:

$$
\begin{array}{rll}
G: \mathbb{C} \times \Omega & \rightarrow & \mathbb{C}^{q \times m}, \\
G\left(s ; p_{1}, \ldots, p_{d}\right) & \in \mathbb{C}^{9 \times m} .
\end{array}
$$

$\rightsquigarrow$ Variables $s$ and $p_{j}$ have different "meaning" for $G$.
Dynamical system is in the background!
$\rightsquigarrow$ Matrix-valued function, require matrix- not entry-wise approximation!

- $G$ is rational in $s, n \sim$ degree of denominator polynomial.
$\rightsquigarrow$ Require approximation to be rational in $s$.
- Require structure-preserving approximation, e.g., for control design. $\rightsquigarrow$ Need realization as linear parametric system!
- Also would like to be able to reproduce system dynamics (stability, passivity).


## PMOR Methods - a Survey

Model Reduction for Linear Parametric Systems

## Parametric System

$$
\Sigma(p):\left\{\begin{aligned}
E(p) \dot{x}(t ; p) & =A(p) \times(t ; p)+B(p) u(t) \\
y(t ; p) & =C(p) x(t ; p) .
\end{aligned}\right.
$$

## PMOR Methods - a Survey

## Model Reduction for Linear Parametric Systems

## Parametric System

$$
\Sigma(p):\left\{\begin{aligned}
E(p) \dot{x}(t ; p) & =A(p) x(t ; p)+B(p) u(t) \\
y(t ; p) & =C(p) x(t ; p)
\end{aligned}\right.
$$

Appropriate parameter-affine representation:

$$
\begin{aligned}
E(p) & =E_{0}+e_{1}(p) E_{1}+\ldots+e_{q_{E}}(p) E_{q_{E}}, \\
A(p) & =A_{0}+a_{1}(p) A_{1}+\ldots+a_{q_{A}}(p) A_{q_{A}}, \\
B(p) & =B_{0}+b_{1}(p) B_{1}+\ldots+b_{q_{B}}(p) B_{q_{B}}, \\
C(p) & =C_{0}+c_{1}(p) C_{1}+\ldots+c_{q_{C}}(p) C_{q_{C}},
\end{aligned}
$$

allows easy parameter preservation for projection based model reduction.

## PMOR Methods - a Survey

## Model Reduction for Linear Parametric Systems

## Parametric System

$$
\Sigma(p):\left\{\begin{aligned}
E(p) \dot{x}(t ; p) & =A(p) \times(t ; p)+B(p) u(t) \\
y(t ; p) & =C(p) x(t ; p) .
\end{aligned}\right.
$$

Appropriate parameter-affine representation:

$$
A(p)=A_{0}+a_{1}(p) A_{1}+\ldots+a_{q_{A}}(p) A_{q_{A}}, \quad \ldots
$$

allows easy parameter preservation for projection based model reduction.
W.I.o.g. may assume this affine representation:

- Any system can be written in this affine form for some $q_{X} \leq n^{2}$, but for efficiency, need $q_{X} \ll n!(X \in\{E, A, B, C\})$
- Empirical (operator) interpolation yields this structure for "smooth enough" nonlinearities [Barrault/Maday/Nguyen/Patera 2004].


## PMOR Methods - a Survey

## Model Reduction for Linear Parametric Systems

## Parametric System

$$
\Sigma(p):\left\{\begin{aligned}
E(p) \dot{x}(t ; p) & =A(p) x(t ; p)+B(p) u(t) \\
y(t ; p) & =C(p) x(t ; p)
\end{aligned}\right.
$$

Appropriate parameter-affine representation:

$$
A(p)=A_{0}+a_{1}(p) A_{1}+\ldots+a_{q_{A}}(p) A_{q_{A}}, \ldots
$$

allows easy parameter preservation for projection based model reduction.

## Parametric model reduction goal:

preserve parameters as symbolic quantities in reduced-order model:

$$
\widehat{\Sigma}(p):\left\{\begin{aligned}
\hat{E}(p) \dot{\hat{x}}(t ; p) & =\hat{A}(p) \hat{x}(t ; p)+\hat{B}(p) u(t) \\
\hat{y}(t ; p) & =\hat{C}(p) \hat{x}(t ; p)
\end{aligned}\right.
$$

with states $\hat{x}(t ; p) \in \mathbb{R}^{r}$ and $r \ll n$.

## Model Reduction for Linear Parametric Systems

## Structure-Preservation

## Petrov-Galerkin-type projection

For given projection matrices $V, W \in \mathbb{R}^{n \times r}$ with $W^{\top} V=I_{r}$ $\left(\rightsquigarrow\left(V W^{T}\right)^{2}=V W^{T}\right.$ is projector), compute

$$
\begin{aligned}
\hat{E}(p) & =W^{\top} E_{0} V+e_{1}(p) W^{\top} E_{1} V+\ldots+e_{q_{E}}(p) W^{\top} E_{q_{E}} V, \\
& =\hat{E}_{0}+e_{1}(p) \hat{E}_{1}+\ldots+e_{q_{E}}(p) \hat{E}_{q_{E}}, \\
\hat{A}(p) & =W^{\top} A_{0} V+a_{1}(p) W^{\top} A_{1} V+\ldots+a_{q_{A}}(p) W^{\top} A_{q_{A}} V, \\
& =\hat{A}_{0}+a_{1}(p) \hat{A}_{1}+\ldots+a_{q_{A}}(p) \hat{A}_{q_{A}}, \\
\hat{B}(p) & =W^{\top} B_{0}+b_{1}(p) W^{\top} B_{1}+\ldots+b_{q_{B}}(p) W^{\top} B_{q_{B}}, \\
& =\hat{B}_{0}+b_{1}(p) \hat{B}_{1}+\ldots+b_{q_{B}}(p) \hat{B}_{q_{B}}, \\
\hat{C}(p) & =c_{0} V+\quad c_{1}(p) C_{1} V+\ldots+\quad c_{q C}(p) C_{q C} V, \\
& =\hat{C}_{0}+c_{1}(p) \hat{C}_{1}+\ldots+c_{q_{C}}(p) \hat{C}_{q_{C}} .
\end{aligned}
$$

## Model Reduction for Linear Parametric Systems

## Structure-Preservation

## Petrov-Galerkin-type projection

For given projection matrices $V, W \in \mathbb{R}^{n \times r}$ with $W^{\top} V=I_{r}$ $\left(\rightsquigarrow\left(V W^{T}\right)^{2}=V W^{T}\right.$ is projector), compute

$$
\begin{aligned}
\hat{E}(p) & =W^{\top} E_{0} V+e_{1}(p) W^{\top} E_{1} V+\ldots+e_{q_{E}}(p) W^{\top} E_{q_{E}} V, \\
& =\hat{E}_{0}+e_{1}(p) \hat{E}_{1}+\ldots+e_{q_{E}}(p) \hat{E}_{q_{E}}, \\
\hat{A}(p) & =W^{\top} A_{0} V+a_{1}(p) W^{\top} A_{1} V+\ldots+a_{q_{A}}(p) W^{\top} A_{q_{A}} V, \\
& =\hat{A}_{0}+a_{1}(p) \hat{A}_{1}+\ldots+a_{q_{A}}(p) \hat{A}_{q_{A}}, \\
\hat{B}(p) & =W^{\top} B_{0}+b_{1}(p) W^{\top} B_{1}+\ldots+b_{q_{B}}(p) W^{\top} B_{q_{B}}, \\
& =\hat{B}_{0}+b_{1}(p) \hat{B}_{1}+\ldots+b_{q_{B}}(p) \hat{B}_{q_{B}}, \\
\hat{C}(p) & =c_{0} V+\quad c_{1}(p) C_{1} V+\ldots+\quad c_{q C}(p) C_{q_{C}} V, \\
& =\hat{C}_{0}+c_{1}(p) \hat{C}_{1}+\ldots+c_{q_{C}}(p) \hat{C}_{q_{C}} .
\end{aligned}
$$

## PMOR Methods - a Survey

A Short Introduction to Interpolatory Model Reduction

## Computation of reduced-order model by projection

Given a linear (descriptor) system $E \dot{x}=A x+B u, y=C x \quad$ with transfer function $\quad G(s)=C(s E-A)^{-1} B$, a reduced-order model is obtained using truncation matrices $V, W \in \mathbb{R}^{n \times r}$ with $W^{\top} V=I_{r}$ $\left(\rightsquigarrow\left(V W^{T}\right)^{2}=V W^{T}\right.$ is projector) by computing

$$
\hat{E}=W^{T} E V, \hat{A}=W^{T} A V, \hat{B}=W^{T} B, \hat{C}=C V
$$

Petrov-Galerkin-type (two-sided) projection: $W \neq V$, Galerkin-type (one-sided) projection: $W=V$.

## PMOR Methods - a Survey

## A Short Introduction to Interpolatory Model Reduction

## Computation of reduced-order model by projection

Given a linear (descriptor) system $E \dot{x}=A x+B u, y=C x \quad$ with transfer function $G(s)=C(s E-A)^{-1} B$, a reduced-order model is obtained using truncation matrices $V, W \in \mathbb{R}^{n \times r}$ with $W^{\top} V=I_{r}$ $\left(\rightsquigarrow\left(V W^{T}\right)^{2}=V W^{T}\right.$ is projector) by computing

$$
\hat{E}=W^{T} E V, \hat{A}=W^{T} A V, \hat{B}=W^{\top} B, \hat{C}=C V
$$

Petrov-Galerkin-type (two-sided) projection: $W \neq V$, Galerkin-type (one-sided) projection: $W=V$.

## Rational Interpolation/Moment-Matching

Choose $V, W$ such that

$$
G\left(s_{j}\right)=\hat{G}\left(s_{j}\right), \quad j=1, \ldots, k
$$

and

$$
\frac{d^{i}}{d s^{i}} G\left(s_{j}\right)=\frac{d^{i}}{d s^{i}} \hat{G}\left(s_{j}\right), \quad i=1, \ldots, K_{j}, \quad j=1, \ldots, k
$$

## PMOR Methods - a Survey

A Short Introduction to Interpolatory Model Reduction

## Theorem (simplified) [Grimme '97, Villemagne/Skelton '87]

If

$$
\begin{array}{rll}
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-1} B, \ldots,\left(s_{k} E-A\right)^{-1} B\right\} & \subset \operatorname{Ran}(V), \\
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-T} C^{T}, \ldots,\left(s_{k} E-A\right)^{-T} C^{T}\right\} & \subset \operatorname{Ran}(W),
\end{array}
$$

then

$$
G\left(s_{j}\right)=\hat{G}\left(s_{j}\right), \quad \frac{d}{d s} G\left(s_{j}\right)=\frac{d}{d s} \hat{G}\left(s_{j}\right), \quad \text { for } j=1, \ldots, k .
$$

## PMOR Methods - a Survey

A Short Introduction to Interpolatory Model Reduction

## Theorem (simplified) [Grimme '97, Villemagne/Skelton '87]

If

$$
\begin{aligned}
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-1} B, \ldots,\left(s_{k} E-A\right)^{-1} B\right\} & \subset \operatorname{Ran}(V), \\
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-T} C^{T}, \ldots,\left(s_{k} E-A\right)^{-T} C^{T}\right\} & \subset \operatorname{Ran}(W),
\end{aligned}
$$

then

$$
G\left(s_{j}\right)=\hat{G}\left(s_{j}\right), \quad \frac{d}{d s} G\left(s_{j}\right)=\frac{d}{d s} \hat{G}\left(s_{j}\right), \quad \text { for } j=1, \ldots, k .
$$

## Remarks:

computation of $V, W$ from rational Krylov subspaces, e.g.,

- dual rational Arnoldi/Lanczos [Grimme '97],
- Iter. Rational Krylov-Alg. (IRKA) [Antoulas/Beattie/Gugercin '06/'08].


## PMOR Methods - a Survey

A Short Introduction to Interpolatory Model Reduction

## Theorem (simplified) [Grimme '97, Villemagne/Skelton '87]

If

$$
\begin{array}{rll}
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-1} B, \ldots,\left(s_{k} E-A\right)^{-1} B\right\} & \subset \operatorname{Ran}(V), \\
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-T} C^{T}, \ldots,\left(s_{k} E-A\right)^{-T} C^{T}\right\} & \subset \operatorname{Ran}(W),
\end{array}
$$

then

$$
G\left(s_{j}\right)=\hat{G}\left(s_{j}\right), \quad \frac{d}{d s} G\left(s_{j}\right)=\frac{d}{d s} \hat{G}\left(s_{j}\right), \quad \text { for } j=1, \ldots, k .
$$

## Remarks:

using Galerkin/one-sided projection $(W \equiv V)$ yields $G\left(s_{j}\right)=\hat{G}\left(s_{j}\right)$, but in general

$$
\frac{d}{d s} G\left(s_{j}\right) \neq \frac{d}{d s} \hat{G}\left(s_{j}\right) .
$$

## PMOR Methods - a Survey

A Short Introduction to Interpolatory Model Reduction

## Theorem (simplified) [Grimme '97, Villemagne/Skelton '87]

If

$$
\begin{aligned}
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-1} B, \ldots,\left(s_{k} E-A\right)^{-1} B\right\} & \subset \operatorname{Ran}(V), \\
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-T} C^{T}, \ldots,\left(s_{k} E-A\right)^{-T} C^{T}\right\} & \subset \operatorname{Ran}(W),
\end{aligned}
$$

then

$$
G\left(s_{j}\right)=\hat{G}\left(s_{j}\right), \quad \frac{d}{d s} G\left(s_{j}\right)=\frac{d}{d s} \hat{G}\left(s_{j}\right), \quad \text { for } j=1, \ldots, k
$$

## Remarks:

$k=1$, standard Krylov subspace(s) of dimension $K$ :

$$
\operatorname{range}(V)=\mathcal{K}_{K}\left(\left(s_{1} I-A\right)^{-1},\left(s_{1} I-A\right)^{-1} B\right)
$$

$\rightsquigarrow$ moment-matching methods/Padé approximation,

$$
\frac{d^{i}}{d s^{i}} G\left(s_{1}\right)=\frac{d^{i}}{d s^{i}} \hat{G}\left(s_{1}\right), \quad i=0, \ldots, K-1(+K) .
$$

## Interpolatory Model Reduction

## $\mathcal{H}_{2}$-Model Reduction for Linear Systems

Consider stable (i.e. $\Lambda(A) \subset \mathbb{C}^{-}$) linear systems $\Sigma$,

$$
\dot{x}(t)=A x(t)+B u(t), y(t)=C x(t) \simeq Y(s)=\underbrace{C(s l-A)^{-1} B}_{=: G(s)} U(s)
$$

## System norms

Two common system norms for measuring approximation quality:

- $\mathcal{H}_{2}$-norm, $\|\Sigma\|_{\mathcal{H}_{2}}=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{tr}\left(\left(G^{T}(-\jmath \omega) G(\jmath \omega)\right)\right) d \omega\right)^{\frac{1}{2}}$,
- $\mathcal{H}_{\infty}$-norm, $\|\Sigma\|_{\mathcal{H}_{\infty}}=\sup _{\omega \in \mathbb{R}} \sigma_{\max }(G(\jmath \omega))$,
where

$$
G(s)=C(s l-A)^{-1} B .
$$

Note: $\mathcal{H}_{\infty}$-norm approximation $\rightsquigarrow$ balanced truncation, Hankel norm approximation.

## Interpolatory Model Reduction

Error system and $\mathcal{H}_{2}$-Optimality
[Meier/Luenberger 1967]
In order to find an $\mathcal{H}_{2}$-optimal reduced system, consider the error system $G(s)-\hat{G}(s)$ which can be realized by

$$
A^{e r r}=\left[\begin{array}{ll}
A & 0 \\
0 & \hat{A}
\end{array}\right], \quad B^{e r r}=\left[\begin{array}{c}
B \\
\hat{B}
\end{array}\right], \quad C^{e r r}=\left[\begin{array}{ll}
C & -\hat{C}
\end{array}\right] .
$$

## 0000

## Interpolatory Model Reduction

Error system and $\mathcal{H}_{2}$-Optimality

In order to find an $\mathcal{H}_{2}$-optimal reduced system, consider the error system $G(s)-\hat{G}(s)$ which can be realized by

$$
A^{e r r}=\left[\begin{array}{ll}
A & 0 \\
0 & \hat{A}
\end{array}\right], \quad B^{e r r}=\left[\begin{array}{l}
B \\
\hat{B}
\end{array}\right], \quad C^{e r r}=\left[\begin{array}{ll}
C & -\hat{C}
\end{array}\right] .
$$

Assuming a coordinate system in which $\hat{A}$ is diagonal and taking derivatives of

$$
\|G(.)-\hat{G}(.)\|_{\mathcal{H}_{2}}^{2}
$$

with respect to free parameters in $\Lambda(\hat{A}), \hat{B}, \hat{C} \rightsquigarrow$ first-order necessary $\mathcal{H}_{2}$-optimality conditions (SISO)

$$
\begin{aligned}
G\left(-\hat{\lambda}_{i}\right) & =\hat{G}\left(-\hat{\lambda}_{i}\right), \\
G^{\prime}\left(-\hat{\lambda}_{i}\right) & =\hat{G}^{\prime}\left(-\hat{\lambda}_{i}\right),
\end{aligned}
$$

where $\hat{\lambda}_{i}$ are the poles of the reduced system $\hat{\Sigma}$.

## Interpolatory Model Reduction

Error system and $\mathcal{H}_{2}$-Optimality

In order to find an $\mathcal{H}_{2}$-optimal reduced system, consider the error system $G(s)-\hat{G}(s)$ which can be realized by

$$
A^{e r r}=\left[\begin{array}{ll}
A & 0 \\
0 & \hat{A}
\end{array}\right], \quad B^{e r r}=\left[\begin{array}{l}
B \\
\hat{B}
\end{array}\right], \quad C^{e r r}=\left[\begin{array}{ll}
C & -\hat{C}
\end{array}\right] .
$$

First-order necessary $\mathcal{H}_{2}$-optimality conditions (MIMO):

$$
\begin{aligned}
G\left(-\hat{\lambda}_{i}\right) \tilde{B}_{i} & =\hat{G}\left(-\hat{\lambda}_{i}\right) \tilde{B}_{i}, & & \text { for } i=1, \ldots, \hat{n}, \\
\tilde{C}_{i}^{T} G\left(-\hat{\lambda}_{i}\right) & =\tilde{C}_{i}^{T} \hat{G}\left(-\hat{\lambda}_{i}\right), & & \text { for } i=1, \ldots, \hat{n}, \\
\tilde{C}_{i}^{T} H^{\prime}\left(-\hat{\lambda}_{i}\right) \tilde{B}_{i} & =\tilde{C}_{i}^{T} \hat{G}^{\prime}\left(-\hat{\lambda}_{i}\right) \tilde{B}_{i} & & \text { for } i=1, \ldots, \hat{n},
\end{aligned}
$$

where $\hat{A}=R \hat{\wedge} R^{-T}$ is the spectral decomposition of the reduced system and $\tilde{B}=\hat{B}^{T} R^{-T}, \tilde{C}=\hat{C} R$.

## Interpolatory Model Reduction

## Error system and $\mathcal{H}_{2}$-Optimality

In order to find an $\mathcal{H}_{2}$-optimal reduced system, consider the error system $G(s)-\hat{G}(s)$ which can be realized by

$$
A^{e r r}=\left[\begin{array}{ll}
A & 0 \\
0 & \hat{A}
\end{array}\right], \quad B^{e r r}=\left[\begin{array}{l}
B \\
\hat{B}
\end{array}\right], \quad C^{e r r}=\left[\begin{array}{ll}
C & -\hat{C}
\end{array}\right] .
$$

First-order necessary $\mathcal{H}_{2}$-optimality conditions (MIMO):

$$
\begin{array}{rlr}
G\left(-\hat{\lambda}_{i}\right) \tilde{B}_{i}=\hat{G}\left(-\hat{\lambda}_{i}\right) \tilde{B}_{i}, & \text { for } i=1, \ldots, \hat{n}, \\
\tilde{C}_{i}^{T} G\left(-\hat{\lambda}_{i}\right)=\tilde{C}_{i}^{T} \hat{G}\left(-\hat{\lambda}_{i}\right), & \text { for } i=1, \ldots, \hat{n}, \\
\tilde{C}_{i}^{T} H^{\prime}\left(-\hat{\lambda}_{i}\right) \tilde{B}_{i}=\tilde{C}_{i}^{T} \hat{G}^{\prime}\left(-\hat{\lambda}_{i}\right) \tilde{B}_{i} & \text { for } i=1, \ldots, \hat{n}, \\
\Leftrightarrow \operatorname{vec}\left(I_{q}\right)^{T}\left(e_{j} e_{i}^{T} \otimes C\right)\left(-\hat{\Lambda} \otimes I_{n}-I_{\hat{n}} \otimes A\right)^{-1}\left(\tilde{B}^{T} \otimes B\right) \operatorname{vec}\left(I_{m}\right) \\
=\operatorname{vec}\left(I_{q}\right)^{T}\left(e_{j} e_{i}^{T} \otimes \hat{C}\right)\left(-\hat{\Lambda} \otimes I_{\hat{n}}-I_{\hat{n}} \otimes \hat{A}\right)^{-1}\left(\tilde{B}^{T} \otimes \hat{B}\right) \operatorname{vec}\left(I_{m}\right), \\
& \text { for } i=1, \ldots, \hat{n} \text { and } j=1, \ldots, q .
\end{array}
$$

## Interpolatory Model Reduction

Interpolation of the Transfer Function [Grimme 1997]

Construct reduced transfer function by Petrov-Galerkin projection $\mathcal{P}=V W^{T}$, i.e.

$$
\hat{G}(s)=C V\left(s I-W^{T} A V\right)^{-1} W^{\top} B
$$

## Interpolatory Model Reduction

Interpolation of the Transfer Function [Grimme 1997]

Construct reduced transfer function by Petrov-Galerkin projection $\mathcal{P}=V W^{T}$, i.e.

$$
\hat{G}(s)=C V\left(s l-W^{T} A V\right)^{-1} W^{T} B
$$

where $V$ and $W$ are given as

$$
\begin{aligned}
V & =\left[\left(-\mu_{1} I-A\right)^{-1} B, \ldots,\left(-\mu_{r} I-A\right)^{-1} B\right] \\
W & =\left[\left(-\mu_{1} I-A^{T}\right)^{-1} C^{T}, \ldots,\left(-\mu_{r} I-A^{T}\right)^{-1} C^{T}\right]
\end{aligned}
$$

## Interpolatory Model Reduction

## Interpolation of the Transfer Function [Grimme 1997]

Construct reduced transfer function by Petrov-Galerkin projection $\mathcal{P}=V W^{T}$, i.e.

$$
\hat{G}(s)=C V\left(s l-W^{\top} A V\right)^{-1} W^{\top} B
$$

where $V$ and $W$ are given as

$$
\begin{aligned}
V & =\left[\left(-\mu_{1} I-A\right)^{-1} B, \ldots,\left(-\mu_{r} I-A\right)^{-1} B\right] \\
W & =\left[\left(-\mu_{1} I-A^{T}\right)^{-1} C^{T}, \ldots,\left(-\mu_{r} I-A^{T}\right)^{-1} C^{T}\right] .
\end{aligned}
$$

Then

$$
G\left(-\mu_{i}\right)=\hat{G}\left(-\mu_{i}\right) \quad \text { and } \quad G^{\prime}\left(-\mu_{i}\right)=\hat{G}^{\prime}\left(-\mu_{i}\right),
$$

for $i=1, \ldots, r$.

## 00

## Interpolatory Model Reduction

## Interpolation of the Transfer Function [Grimme 1997]

Construct reduced transfer function by Petrov-Galerkin projection $\mathcal{P}=V W^{T}$, i.e.

$$
\hat{G}(s)=C V\left(s l-W^{T} A V\right)^{-1} W^{\top} B
$$

where $V$ and $W$ are given as

$$
\begin{aligned}
V & =\left[\left(-\mu_{1} I-A\right)^{-1} B, \ldots,\left(-\mu_{r} I-A\right)^{-1} B\right] \\
W & =\left[\left(-\mu_{1} I-A^{T}\right)^{-1} C^{T}, \ldots,\left(-\mu_{r} I-A^{T}\right)^{-1} C^{T}\right] .
\end{aligned}
$$

Then

$$
G\left(-\mu_{i}\right)=\hat{G}\left(-\mu_{i}\right) \quad \text { and } \quad G^{\prime}\left(-\mu_{i}\right)=\hat{G}^{\prime}\left(-\mu_{i}\right),
$$

for $i=1, \ldots, r$.
Starting with an initial guess for $\hat{\Lambda}$ and setting $\mu_{i} \equiv \hat{\lambda}_{i} \rightsquigarrow$ iterative algorithms (IRKA/MIRIAm) that yield $\mathcal{H}_{2}$-optimal models.
[Gugercin et al. 2006/08], [Bunse-Gerstner et al. 2007], [VAn Dooren et al. 2008]

## Interpolatory Model Reduction

The Basic IRKA Algorithm

## Algorithm 1 IRKA (MIMO version/MIRIAm)

Input: $A$ stable, $B, C, \hat{A}$ stable, $\hat{B}, \hat{C}, \delta>0$.
Output: $A^{o p t}, B^{o p t}, C^{o p t}$
1: while $\left(\max _{j=1, \ldots, r}\left\{\frac{\left|\mu_{j}-\mu_{j}^{\text {old }}\right|}{\left|\mu_{j}\right|}\right\}>\delta\right)$ do
2: $\quad \operatorname{diag}\left\{\mu_{1}, \ldots, \mu_{r_{\tilde{B}}}\right\}:=T^{-1} \hat{A} T=$ spectral decomposition, $\tilde{B}=\hat{B}^{H} T^{-T}, \tilde{C}=\hat{C} T$.
3: $\quad V=\left[\left(-\mu_{1} I-A\right)^{-1} B \tilde{b}_{1}, \ldots,\left(-\mu_{r} I-A\right)^{-1} B \tilde{b}_{r}\right]$
4: $\quad W=\left[\left(-\mu_{1} I-A^{T}\right)^{-1} C^{T} \tilde{c}_{1}, \ldots,\left(-\mu_{r} I-A^{T}\right)^{-1} C^{T} \tilde{c}_{r}\right]$
5: $\quad V=\operatorname{orth}(V), W=\operatorname{orth}(W), W=W\left(V^{H} W\right)^{-1}$
6: $\quad \hat{A}=W^{H} A V, \hat{B}=W^{H} B, \hat{C}=C V$
7: end while
8: $A^{o p t}=\hat{A}, B^{o p t}=\hat{B}, C^{o p t}=\hat{C}$

## PMOR based on Multi-Moment Matching

Idea: choose appropriate frequency parameter $\hat{s}$ and parameter vector $\hat{p}$, expand into multivariate power series about ( $\hat{s}, \hat{p}$ ) and compute reduced-order model, so that

$$
G(s, p)=\hat{G}(s, p)+\mathcal{O}\left(|s-\hat{s}|^{k}+\|p-\hat{p}\|^{L}+|s-\hat{s}|^{k}\|p-\hat{p}\|^{\ell}\right),
$$

i.e., first $K, L, k+\ell$ (mostly: $K=L=k+\ell$ ) coefficients (multi-moments) of Taylor/Laurent series coincide.

## PMOR based on Multi-Moment Matching

Idea: choose appropriate frequency parameter $\hat{s}$ and parameter vector $\hat{p}$, expand into multivariate power series about ( $\hat{s}, \hat{p}$ ) and compute reduced-order model, so that

$$
G(s, p)=\hat{G}(s, p)+\mathcal{O}\left(|s-\hat{s}|^{k}+\|p-\hat{p}\|^{L}+|s-\hat{s}|^{k}\|p-\hat{p}\|^{\ell}\right),
$$

i.e., first $K, L, k+\ell$ (mostly: $K=L=k+\ell$ ) coefficients (multi-moments) of Taylor/Laurent series coincide.

## Algorithms:

- [Daniel et al. 2004]: explicit computation of moments, numerically unstable.
- [Farle et al. 2006/07]: Krylov subspace approach, only polynomial parameter-dependance, numerical properties not clear, but appears to be robust.
- [Feng/B. 2007/14]: Arnoldi-MGS method, employ recursive dependance of multi-moments, numerically robust, $r$ often larger as with [Farle et al.].


## PMOR based on Multi-Moment Matching

## Numerical Examples

Electro-chemical SEM:
compute cyclic voltammogram based on FEM model

$$
E \dot{x}(t)=\left(A_{0}+p_{1} A_{1}+p_{2} A_{2}\right) x(t)+B u(t), \quad y(t)=c^{T} x(t)
$$

where $n=16,912, m=3, A_{1}, A_{2}$ diagonal.

$$
K=L=k+\ell=4 \Rightarrow r=26
$$



$$
K=L=k+\ell=9 \Rightarrow r=86
$$

## PMOR based on Rational Interpolation

Theory: Interpolation of the Transfer Function
Theorem 1 [Baur/Beattie/B./Gugercin 2007/2011]
Let $\quad \hat{G}(s, p):=\hat{C}(p)(s \hat{E}(p)-\hat{A}(p))^{-1} \hat{B}(p)$

$$
=C(p) V\left(s W^{\top} E(p) V-W^{\top} A(p) V\right)^{-1} W^{\top} B(p) .
$$

Suppose $\hat{p}=\left[\hat{p}_{1}, \ldots, \hat{p}_{d}\right]^{\top}$ and $\hat{s} \in \mathbb{C}$ are chosen such that both $\hat{s} E(\hat{p})-A(\hat{p})$ and $\hat{s} \hat{E}(\hat{p})-\hat{A}(\hat{p})$ are invertible.
If

$$
(\hat{s} E(\hat{p})-A(\hat{p}))^{-1} B(\hat{p}) \in \operatorname{Ran}(V)
$$

or

$$
\left(C(\hat{p})(\hat{s} E(\hat{p})-A(\hat{p}))^{-1}\right)^{T} \in \operatorname{Ran}(W) \text {, }
$$

then $G(\hat{s}, \hat{p})=\hat{G}(\hat{s}, \hat{p})$.

## PMOR based on Rational Interpolation

Theory: Interpolation of the Transfer Function
Theorem 1 [Baur/Beattie/B./Gugercin 2007/2011]
Let $\quad \hat{G}(s, p):=\hat{C}(p)(s \hat{E}(p)-\hat{A}(p))^{-1} \hat{B}(p)$

$$
=C(p) V\left(s W^{\top} E(p) V-W^{\top} A(p) V\right)^{-1} W^{\top} B(p) .
$$

Suppose $\hat{p}=\left[\hat{p}_{1}, \ldots, \hat{p}_{d}\right]^{T}$ and $\hat{s} \in \mathbb{C}$ are chosen such that both $\hat{s} E(\hat{p})-A(\hat{p})$ and $\hat{s} \hat{E}(\hat{p})-\hat{A}(\hat{p})$ are invertible.
If

$$
(\hat{s} E(\hat{p})-A(\hat{p}))^{-1} B(\hat{p}) \in \operatorname{Ran}(V)
$$

or

$$
\left(C(\hat{p})(\hat{s} E(\hat{p})-A(\hat{p}))^{-1}\right)^{T} \in \operatorname{Ran}(W)
$$

then $G(\hat{s}, \hat{p})=\hat{G}(\hat{s}, \hat{p})$.
Note: result extends to MIMO case using tangential interpolation: Let $0 \neq b \in \mathbb{R}^{m}, 0 \neq c \in \mathbb{R}^{q}$ be arbitrary.
a) If $(\hat{s} E(\hat{p})-A(\hat{p}))^{-1} B(\hat{p}) b \in \operatorname{Ran}(V)$, then $G(\hat{s}, \hat{p}) b=\hat{G}(\hat{s}, \hat{p}) b$;
b) If $\left(c^{T} C(\hat{p})(\hat{s} E(\hat{p})-A(\hat{p}))^{-1}\right)^{T} \in \operatorname{Ran}(W)$, then $c^{T} G(\hat{s}, \hat{p})=c^{T} \hat{G}(\hat{s}, \hat{p})$.

## PMOR based on Rational Interpolation

Theory: Interpolation of the Parameter Gradient

## Theorem 2 [Baur/Beattie/B./Gugbrcin '07/'09]

Suppose that $E(p), A(p), B(p), C(p)$ are $C^{1}$ in a neighborhood of $\hat{p}=\left[\hat{p}_{1}, \ldots, \hat{p}_{d}\right]^{\top}$ and that both $\hat{s} E(\hat{p})-A(\hat{p})$ and $\hat{s} \hat{E}(\hat{p})-\hat{A}(\hat{p})$ are invertible. If

$$
(\hat{s} E(\hat{p})-A(\hat{p}))^{-1} B(\hat{p}) \in \operatorname{Ran}(V)
$$

and

$$
\left(C(\hat{p})(\hat{s} E(\hat{p})-A(\hat{p}))^{-1}\right)^{T} \in \operatorname{Ran}(W) \text {, }
$$

then

$$
\nabla_{p} G(\hat{s}, \hat{p})=\nabla_{p} G_{r}(\hat{s}, \hat{p}), \quad \frac{\partial}{\partial s} G(\hat{s}, \hat{p})=\frac{\partial}{\partial s} \hat{G}(\hat{s}, \hat{p}) .
$$

## PMOR based on Rational Interpolation

Theory: Interpolation of the Parameter Gradient

## Theorem 2 [Baur/Beatitie/B./Gugercin '07/'09]

Suppose that $E(p), A(p), B(p), C(p)$ are $C^{1}$ in a neighborhood of $\hat{p}=\left[\hat{p}_{1}, \ldots, \hat{p}_{d}\right]^{\top}$ and that both $\hat{s} E(\hat{p})-A(\hat{p})$ and $\hat{s} \hat{E}(\hat{p})-\hat{A}(\hat{p})$ are invertible. If

$$
(\hat{s} E(\hat{p})-A(\hat{p}))^{-1} B(\hat{p}) \in \operatorname{Ran}(V)
$$

and

$$
\left(C(\hat{p})(\hat{s} E(\hat{p})-A(\hat{p}))^{-1}\right)^{T} \in \operatorname{Ran}(W)
$$

then

$$
\nabla_{p} G(\hat{s}, \hat{p})=\nabla_{p} G_{r}(\hat{s}, \hat{p}), \quad \frac{\partial}{\partial s} G(\hat{s}, \hat{p})=\frac{\partial}{\partial s} \hat{G}(\hat{s}, \hat{p}) .
$$

Note: result extends to MIMO case using tangential interpolation:
Let $0 \neq b \in \mathbb{R}^{m}, 0 \neq c \in \mathbb{R}^{q}$ be arbitrary. If $(\hat{s} E(\hat{p})-A(\hat{p}))^{-1} B(\hat{p}) b \in \operatorname{Ran}(V)$ and $\left(c^{T} C(\hat{p})(\hat{s} E(\hat{p})-A(\hat{p}))^{-1}\right)^{T} \in \operatorname{Ran}(W)$, then $\nabla_{p} c^{T} G(\hat{s}, \hat{p}) b=\nabla_{p} c^{T} \hat{G}(\hat{s}, \hat{p}) b$.

## PMOR based on Rational Interpolation

Theory: Interpolation of the Parameter Gradient

## Theorem 2 [Baur/Beattie/B./Gugercin '07/'09]

Suppose that $E(p), A(p), B(p), C(p)$ are $C^{1}$ in a neighborhood of $\hat{p}=\left[\hat{p}_{1}, \ldots, \hat{p}_{d}\right]^{\top}$ and that both $\hat{s} E(\hat{p})-A(\hat{p})$ and $\hat{s} \hat{E}(\hat{p})-\hat{A}(\hat{p})$ are invertible. If

$$
(\hat{s} E(\hat{p})-A(\hat{p}))^{-1} B(\hat{p}) \in \operatorname{Ran}(V)
$$

and

$$
\left(C(\hat{p})(\hat{s} E(\hat{p})-A(\hat{p}))^{-1}\right)^{T} \in \operatorname{Ran}(W) \text {, }
$$

then

$$
\nabla_{p} G(\hat{s}, \hat{p})=\nabla_{p} G_{r}(\hat{s}, \hat{p}), \quad \frac{\partial}{\partial s} G(\hat{s}, \hat{p})=\frac{\partial}{\partial s} \hat{G}(\hat{s}, \hat{p}) .
$$

(1) Assertion of theorem satisfies necessary conditions for surrogate models in trust region methods [Alexandrov/Dennis/Lewis/Torczon '98].
(2) Approximation of gradient allows use of reduced-order model for sensitivity analysis.

## PMOR based on Rational Interpolation

## Algorithm

## Generic implementation of interpolatory PMOR

Define $\mathcal{A}(s, p):=s E(p)-A(p)$.
(1) Select "frequencies" $s_{1}, \ldots, s_{k} \in \mathbb{C}$ and parameter vectors $p^{(1)}, \ldots, p^{(\ell)} \in \mathbb{R}^{d}$.
(2) Compute (orthonormal) basis of

$$
\mathcal{V}=\operatorname{span}\left\{\mathcal{A}\left(s_{1}, p^{(1)}\right)^{-1} B\left(p^{(1)}\right), \ldots, \mathcal{A}\left(s_{k}, p^{(\ell)}\right)^{-1} B\left(p^{(\ell)}\right)\right\} .
$$

(3) Compute (orthonormal) basis of

$$
\mathcal{W}=\operatorname{span}\left\{\mathcal{A}\left(s_{1}, p^{(1)}\right)^{-T} C\left(p^{(1)}\right)^{T}, \ldots, \mathcal{A}\left(s_{k}, p^{(\ell)}\right)^{-T} C\left(p^{(\ell)}\right)^{T}\right\}
$$

(9) Set $V:=\left[v_{1}, \ldots, v_{k \ell}\right], \tilde{W}:=\left[w_{1}, \ldots, w_{k \ell}\right]$, and $W:=\tilde{W}\left(\tilde{W}^{T} V\right)^{-1}$. (Note: $r=k \ell$ ).
(6) Compute $\begin{cases}\hat{A}(p):=W^{T} A(p) V, & \hat{B}(p):=W^{T} B(p) V, \\ \hat{C}(p):=W^{T} C(p) V, & \hat{E}(p):=W^{T} E(p) V .\end{cases}$

## PMOR based on Rational Interpolation

## Remarks

- If directional derivatives w.r.t. $p$ are included in $\operatorname{Ran}(V), \operatorname{Ran}(W)$, then also the Hessian of $G(\hat{s}, \hat{p})$ is interpolated by the Hessian of $\hat{G}(\hat{s}, \hat{p})$.


## PMOR based on Rational Interpolation

## Remarks

- If directional derivatives w.r.t. $p$ are included in $\operatorname{Ran}(V), \operatorname{Ran}(W)$, then also the Hessian of $G(\hat{s}, \hat{p})$ is interpolated by the Hessian of $\hat{G}(\hat{s}, \hat{p})$.
- Choice of optimal interpolation frequencies $s_{k}$ and parameter vectors $p^{(k)}$ in general is an open problem.


## PMOR based on Rational Interpolation

## Remarks

- If directional derivatives w.r.t. $p$ are included in $\operatorname{Ran}(V), \operatorname{Ran}(W)$, then also the Hessian of $G(\hat{s}, \hat{p})$ is interpolated by the Hessian of $\hat{G}(\hat{s}, \hat{p})$.
- Choice of optimal interpolation frequencies $s_{k}$ and parameter vectors $p^{(k)}$ in general is an open problem.
- For prescribed parameter vectors $p^{(k)}$, we can use corresponding $\mathcal{H}_{2}$-optimal frequencies $s_{k, \ell,} \ell=1, \ldots, r_{k}$ computed by IRKA, i.e., reduced-order systems $\hat{G}_{*}^{(k)}$ so that

$$
\left\|G\left(., p^{(k)}\right)-\hat{G}_{*}^{(k)}(.)\right\|_{\mathcal{H}_{2}}=\min _{\substack{\text { orderf(G)=r, } \\ \text { Gstable }}}\left\|G\left(., p^{(k)}\right)-\hat{G}^{(k)}(.)\right\|_{\mathcal{H}_{2}},
$$

where

$$
\|G\|_{\mathcal{H}_{2}}:=\left(\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\|G(\jmath \omega)\|_{\mathrm{F}}^{2} d \omega\right)^{1 / 2}
$$

## PMOR based on Rational Interpolation

## Remarks

- If directional derivatives w.r.t. $p$ are included in $\operatorname{Ran}(V), \operatorname{Ran}(W)$, then also the Hessian of $G(\hat{s}, \hat{p})$ is interpolated by the Hessian of $\hat{G}(\hat{s}, \hat{p})$.
- Choice of optimal interpolation frequencies $s_{k}$ and parameter vectors $p^{(k)}$ in general is an open problem.
- For prescribed parameter vectors $p^{(k)}$, we can use corresponding $\mathcal{H}_{2}$-optimal frequencies $s_{k}, \ell, \ell=1, \ldots, r_{k}$ computed by IRKA, i.e., reduced-order systems $\hat{G}_{*}^{(k)}$ so that

$$
\left\|G\left(., p^{(k)}\right)-\hat{G}_{*}^{(k)}(.)\right\|_{\mathcal{H}_{2}}=\min _{\substack{\text { orderf( } \hat{c})=r_{k} \\ G \\ \text { stable }}}\left\|G\left(., p^{(k)}\right)-\hat{G}^{(k)}(.)\right\|_{\mathcal{H}_{2}},
$$

where

$$
\|G\|_{\mathcal{H}_{2}}:=\left(\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\|G(\jmath \omega)\|_{\mathrm{F}}^{2} d \omega\right)^{1 / 2}
$$

- Optimal choice of interpolation frequencies $s_{k}$ and parameter vectors $p^{(k)}$ possible for special cases.


## PMOR based on Rational Interpolation

## Numerical Example: Thermal Conduction in a Semiconductor Chip

- Important requirement for a compact model of thermal conduction is boundary condition independence.
- The thermal problem is modeled by the heat equation, where heat exchange through device interfaces is modeled by convection boundary conditions containing film coefficients $\left\{p_{i}\right\}_{i=1}^{3}$, to describe the heat exchange at the ith interface.
- Spatial semi-discretization leads to

$$
E \dot{x}(t)=\left(A_{0}+\sum_{i=1}^{3} p_{i} A_{i}\right) x(t)+b u(t), \quad y(t)=c^{T} x(t)
$$

where $n=4,257, A_{i}, i=1,2,3$, are diagonal.

Source: C.J.M Lasance, Two benchmarks to facilitate the study of compact thermal modeling phenomena, IEEE. Trans. Components and Packaging Technologies, Vol. 24, No. 4, pp. 559-565, 2001.

## PMOR based on Rational Interpolation

## Numerical Example: Thermal Conduction in a Semiconductor Chip

Choose 2 interpolation points for parameters ("important" configurations), 8/7 interpolation frequencies are picked $H_{2}$ optimal by IRKA. $\Longrightarrow k=2, \ell=8,7$, hence $r=15$.

$$
p_{3}=1, p_{1}, p_{2} \in\left[1,10^{4}\right] .
$$



## PMOR Methods - a Survey

## Other Approaches

- Transfer function interpolation (= output interpolation in frequency domain)
[B./BAUR 2008]


## PMOR Methods - a Survey

## Other Approaches

- Transfer function interpolation (= output interpolation in frequency domain)
[B./BAUR 2008]
- Matrix interpolation
[Panzer/Mohring/Eid/Lohmann 2010, Amsallam/Farhat 2011]


## PMOR Methods - a Survey

## Other Approaches

- Transfer function interpolation (= output interpolation in frequency domain)
[B./BAUR 2008]
- Matrix interpolation
[Panzer/Mohring/Eid/Lohmann 2010, Amsallam/Farhat 2011]
- Manifold interpolation [Amsallam/Farhat/... 2008]


## PMOR Methods - a Survey

## Other Approaches

- Transfer function interpolation (= output interpolation in frequency domain)
[B./BAUR 2008]
- Matrix interpolation
[Panzer/Mohring/Eid/Lohmann 2010, Amsallam/Farhat 2011]
- Manifold interpolation
[Amsallam/Farhat/... 2008]
- Proper orthogonal/generalized decomposition (POD/PGD) [Kunisch/Volkwein, Hinze, Willcox, Nouy, ...]


## PMOR Methods - a Survey

## Other Approaches

- Transfer function interpolation (= output interpolation in frequency domain)
[B./BAUR 2008]
- Matrix interpolation
[Panzer/Mohring/Eid/Lohmann 2010, Amsallam/Farhat 2011]
- Manifold interpolation
[Amsallam/Farhat/... 2008]
- Proper orthogonal/generalized decomposition (POD/PGD) [Kunisch/Volkwein, Hinze, Willcox, Nouy, ...]
- Reduced basis method (RBM)
[Haasdonk, Maday, Patera, Prud'homme, Rozza, Urban, ...]


## Parametric Systems as Bilinear Systems

Linear Parametric Systems - An Alternative Interpretation
Consider bilinear control systems:

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+\sum_{i=1}^{m} A_{i} x(t) u_{i}(t)+B u(t) \\
y(t)=C x(t), \quad x(0)=x_{0}
\end{array}\right.
$$

where $A, A_{i} \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}$.

## Parametric Systems as Bilinear Systems

Linear Parametric Systems - An Alternative Interpretation
Consider bilinear control systems:

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+\sum_{i=1}^{m} A_{i} x(t) u_{i}(t)+B u(t) \\
y(t)=C x(t), \quad x(0)=x_{0}
\end{array}\right.
$$

where $A, A_{i} \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}$.

## Key Observation

[B./Breiten 2011]
Consider parameters as additional inputs, a linear parametric system

$$
\dot{x}(t)=A x(t)+\sum_{i=1}^{m_{p}} a_{i}(p) A_{i} x(t)+B_{0} u_{0}(t), \quad y(t)=C x(t)
$$

with $B_{0} \in \mathbb{R}^{n \times m_{0}}$ can be interpreted as bilinear system:

$$
\begin{aligned}
u(t) & :=\left[\begin{array}{llll}
a_{1}(p) & \ldots & a_{m_{p}}(p) & u_{0}(t)
\end{array}\right]^{T} \\
B & :=\left[\begin{array}{llll}
\mathbf{0} & \ldots & \mathbf{0} & B_{0}
\end{array}\right] \in \mathbb{R}^{n \times m}, \quad m=m_{p}+m_{0}
\end{aligned}
$$

## Parametric Systems as Bilinear Systems

Linear Parametric Systems - An Alternative Interpretation

Linear parametric systems can be interpreted as bilinear systems.

## Parametric Systems as Bilinear Systems

Linear Parametric Systems - An Alternative Interpretation

Linear parametric systems can be interpreted as bilinear systems.

## Consequence

Model order reduction techniques for bilinear systems can be applied to linear parametric systems!

## Here:

- Balanced truncation,
- $\mathcal{H}_{2}$ optimal model reduction.


## $\mathcal{H}_{2}$-Model Reduction for Bilinear Systems

Some background
Consider bilinear system ( $m=1$, i.e. SISO)

$$
\Sigma:\left\{\dot{x}(t)=A x(t)+A_{1} x(t) u(t)+B u(t), \quad y(t)=C x(t) .\right.
$$

## $\mathcal{H}_{2}$-Model Reduction for Bilinear Systems

Some background
Consider bilinear system ( $m=1$, i.e. SISO)

$$
\Sigma:\left\{\dot{x}(t)=A x(t)+A_{1} x(t) u(t)+B u(t), \quad y(t)=C x(t)\right.
$$

Output Characterization (SISO): Volterra series
$y(t)=\sum_{k=1}^{\infty} \int_{0}^{t} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{k}-1} K\left(t_{1}, \ldots, t_{k}\right) u\left(t-t_{1}-\ldots-t_{k}\right) \cdots u\left(t-t_{k}\right) d t_{k} \cdots d t_{1}$,
with kernels $K\left(t_{1}, \ldots, t_{k}\right)=C e^{A t_{k}} A_{1} \cdots e^{A t_{2}} A_{1} e^{A t_{1}} B$.

## $\mathcal{H}_{2}$-Model Reduction for Bilinear Systems

Some background
Consider bilinear system ( $m=1$, i.e. SISO)

$$
\Sigma:\left\{\dot{x}(t)=A x(t)+A_{1} x(t) u(t)+B u(t), \quad y(t)=C x(t)\right.
$$

Output Characterization (SISO): Volterra series
$y(t)=\sum_{k=1}^{\infty} \int_{0}^{t} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{k}-1} K\left(t_{1}, \ldots, t_{k}\right) u\left(t-t_{1}-\ldots-t_{k}\right) \cdots u\left(t-t_{k}\right) d t_{k} \cdots d t_{1}$,
with kernels $K\left(t_{1}, \ldots, t_{k}\right)=C e^{A t_{k}} A_{1} \cdots e^{A t_{2}} A_{1} e^{A t_{1}} B$.
Multivariate Laplace-transform:

$$
G_{k}\left(s_{1}, \ldots, s_{k}\right)=C\left(s_{k} I-A\right)^{-1} A_{1} \cdots\left(s_{2} I-A\right)^{-1} A_{1}\left(s_{1} I-A\right)^{-1} B
$$

## $\mathcal{H}_{2}$-Model Reduction for Bilinear Systems

Some background
Consider bilinear system ( $m=1$, i.e. SISO)

$$
\Sigma:\left\{\dot{x}(t)=A x(t)+A_{1} x(t) u(t)+B u(t), \quad y(t)=C x(t)\right.
$$

Output Characterization (SISO): Volterra series
$y(t)=\sum_{k=1}^{\infty} \int_{0}^{t} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{k}-1} K\left(t_{1}, \ldots, t_{k}\right) u\left(t-t_{1}-\ldots-t_{k}\right) \cdots u\left(t-t_{k}\right) d t_{k} \cdots d t_{1}$,
with kernels $K\left(t_{1}, \ldots, t_{k}\right)=C e^{A t_{k}} A_{1} \cdots e^{A t_{2}} A_{1} e^{A t_{1}} B$.
Multivariate Laplace-transform:

$$
G_{k}\left(s_{1}, \ldots, s_{k}\right)=C\left(s_{k} I-A\right)^{-1} A_{1} \cdots\left(s_{2} I-A\right)^{-1} A_{1}\left(s_{1} I-A\right)^{-1} B .
$$

Bilinear $\mathcal{H}_{2}$-norm:
[Zhang/Lam 2002]

$$
\|\Sigma\|_{\mathcal{H}_{2}}:=\left(\operatorname{tr}\left(\left(\sum_{k=1}^{\infty} \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \frac{1}{(2 \pi)^{k}} \overline{G_{k}\left(i \omega_{1}, \ldots, i \omega_{k}\right)} G_{k}^{T}\left(i \omega_{1}, \ldots, i \omega_{k}\right)\right)\right)\right)^{\frac{1}{2}} .
$$

## $\mathcal{H}_{2}$-Model Reduction for Bilinear Systems

## Measuring the Approximation Error

## Lemma

[B./Breiten 2012]
Let $\Sigma$ denote a bilinear system. Then, the $\mathcal{H}_{2}$-norm is given as:

$$
\|\Sigma\|_{\mathcal{H}_{2}}^{2}=\left(\operatorname{vec}\left(I_{q}\right)\right)^{T}(C \otimes C)\left(-A \otimes I-I \otimes A-\sum_{i=1}^{m} A_{i} \otimes A_{i}\right)^{-1}(B \otimes B) \operatorname{vec}\left(I_{m}\right)
$$

## $\mathcal{H}_{2}$-Model Reduction for Bilinear Systems

## Measuring the Approximation Error

## Lemma

[B./Breiten 2012]
Let $\Sigma$ denote a bilinear system. Then, the $\mathcal{H}_{2}$-norm is given as:

$$
\|\Sigma\|_{\mathcal{H}_{2}}^{2}=\left(\operatorname{vec}\left(I_{q}\right)\right)^{T}(C \otimes C)\left(-A \otimes I-I \otimes A-\sum_{i=1}^{m} A_{i} \otimes A_{i}\right)^{-1}(B \otimes B) \operatorname{vec}\left(I_{m}\right) .
$$

## Error System

In order to find an $\mathcal{H}_{2}$-optimal reduced system, define the error system $\Sigma^{\text {err }}:=\Sigma-\hat{\Sigma}$ as follows:

$$
A^{\text {err }}=\left[\begin{array}{cc}
A & 0 \\
0 & \hat{A}
\end{array}\right], \quad A_{i}^{\text {err }}=\left[\begin{array}{cc}
A_{i} & 0 \\
0 & \hat{A}_{i}
\end{array}\right], \quad B^{\text {err }}=\left[\begin{array}{l}
B \\
\hat{B}
\end{array}\right], \quad C^{\text {err }}=\left[\begin{array}{ll}
C & -\hat{C}
\end{array}\right] .
$$

## $\mathcal{H}_{2}$-Model Reduction

$\mathcal{H}_{2}$-Optimality Conditions
Assume $\hat{\Sigma}$ is given in coordinate system induced by eigenvalue decomposition of $\hat{A}$ :

$$
\hat{A}=R \wedge R^{-1}, \quad \tilde{A}_{i}=R^{-1} \hat{A}_{i} R, \quad \tilde{B}=R^{-1} \hat{B}, \quad \tilde{C}=\hat{C} R
$$

## $\mathcal{H}_{2}$-Model Reduction

## $\mathcal{H}_{2}$-Optimality Conditions

Assume $\hat{\Sigma}$ is given in coordinate system induced by eigenvalue decomposition of $\hat{A}$ :

$$
\hat{A}=R \wedge R^{-1}, \quad \tilde{A}_{i}=R^{-1} \hat{A}_{i} R, \quad \tilde{B}=R^{-1} \hat{B}, \quad \tilde{C}=\hat{C} R .
$$

Using $\Lambda, \tilde{A}_{i}, \tilde{B}, \tilde{C}$ as optimization parameters, we can derive necessary conditions for $\mathcal{H}_{2}$-optimality, e.g.:

## $\mathcal{H}_{2}$-Model Reduction

## $\mathcal{H}_{2}$-Optimality Conditions

Assume $\hat{\Sigma}$ is given in coordinate system induced by eigenvalue decomposition of $\hat{A}$ :

$$
\hat{A}=R \wedge R^{-1}, \quad \tilde{A}_{i}=R^{-1} \hat{A}_{i} R, \quad \tilde{B}=R^{-1} \hat{B}, \quad \tilde{C}=\hat{C} R .
$$

Using $\Lambda, \tilde{A}_{i}, \tilde{B}, \tilde{C}$ as optimization parameters, we can derive necessary conditions for $\mathcal{H}_{2}$-optimality, e.g.:

$$
\begin{aligned}
& \left(\operatorname{vec}\left(I_{q}\right)\right)^{T}\left(e_{j} e_{\ell}^{T} \otimes C\right)\left(-\Lambda \otimes I_{n}-I_{\hat{n}} \otimes A-\sum_{i=1}^{m} \tilde{A}_{i} \otimes A_{i}\right)^{-1}(\tilde{B} \otimes B) \operatorname{vec}\left(I_{m}\right) \\
& =\left(\operatorname{vec}\left(I_{q}\right)\right)^{T}\left(e_{j} e_{\ell}^{T} \otimes \hat{C}\right)\left(-\Lambda \otimes I_{n}-I_{\hat{n}} \otimes \hat{A}-\sum_{i=1}^{m} \tilde{A}_{i} \otimes \hat{A}_{i}\right)^{-1}(\tilde{B} \otimes \hat{B}) \operatorname{vec}\left(I_{m}\right)
\end{aligned}
$$

## $\mathcal{H}_{2}$-Model Reduction

## $\mathcal{H}_{2}$-Optimality Conditions

Assume $\hat{\Sigma}$ is given in coordinate system induced by eigenvalue decomposition of $\hat{A}$ :

$$
\hat{A}=R \wedge R^{-1}, \quad \tilde{A}_{i}=R^{-1} \hat{A}_{i} R, \quad \tilde{B}=R^{-1} \hat{B}, \quad \tilde{C}=\hat{C} R .
$$

Using $\Lambda, \tilde{A}_{i}, \tilde{B}, \tilde{C}$ as optimization parameters, we can derive necessary conditions for $\mathcal{H}_{2}$-optimality, e.g.:

$$
\begin{aligned}
& \left(\operatorname{vec}\left(I_{q}\right)\right)^{T}\left(e_{j} e_{\ell}^{T} \otimes C\right)\left(-\Lambda \otimes I_{n}-I_{\hat{n}} \otimes A-\sum_{i=1}^{m} \tilde{A}_{i} \otimes A_{i}\right)^{-1}(\tilde{B} \otimes B) \operatorname{vec}\left(I_{m}\right) \\
& =\left(\operatorname{vec}\left(I_{q}\right)\right)^{T}\left(e_{j} e_{\ell}^{T} \otimes \hat{C}\right)\left(-\Lambda \otimes I_{n}-I_{\hat{n}} \otimes \hat{A}-\sum_{i=1}^{m} \tilde{A}_{i} \otimes \hat{A}_{i}\right)^{-1}(\tilde{B} \otimes \hat{B}) \operatorname{vec}\left(I_{m}\right)
\end{aligned}
$$

Connection to interpolation of transfer functions?

## $\mathcal{H}_{2}$-Model Reduction

## $\mathcal{H}_{2}$-Optimality Conditions

Assume $\hat{\Sigma}$ is given in coordinate system induced by eigenvalue decomposition of $\hat{A}$ :

$$
\hat{A}=R \wedge R^{-1}, \quad \tilde{A}_{i}=R^{-1} \hat{A}_{i} R, \quad \tilde{B}=R^{-1} \hat{B}, \quad \tilde{C}=\hat{C} R .
$$

Using $\Lambda, \tilde{A}_{i}, \tilde{B}, \tilde{C}$ as optimization parameters, we can derive necessary conditions for $\mathcal{H}_{2}$-optimality, e.g.:

$$
\begin{aligned}
& \left(\operatorname{vec}\left(I_{q}\right)\right)^{T}\left(e_{j} e_{\ell}^{T} \otimes C\right)\left(-\Lambda \otimes I_{n}-I_{\hat{n}} \otimes A-\sum_{i=1}^{m} \tilde{A}_{i} \otimes A_{i}\right)^{-1}(\tilde{B} \otimes B) \operatorname{vec}\left(I_{m}\right) \\
& =\left(\operatorname{vec}\left(I_{q}\right)\right)^{T}\left(e_{j} e_{\ell}^{T} \otimes \hat{C}\right)\left(-\Lambda \otimes I_{n}-I_{\hat{n}} \otimes \hat{A}-\sum_{i=1}^{m} \tilde{A}_{i} \otimes \hat{A}_{i}\right)^{-1}(\tilde{B} \otimes \hat{B}) \operatorname{vec}\left(I_{m}\right)
\end{aligned}
$$

For $A_{i} \equiv 0$, this is equivalent to

$$
G\left(-\lambda_{\ell}\right) \tilde{B}_{\ell}^{T}=\hat{G}\left(-\lambda_{\ell}\right) \tilde{B}_{\ell}^{T}
$$

$\rightsquigarrow$ tangential interpolation at mirror images of reduced system poles!

## $\mathcal{H}_{2}$-Model Reduction

## $\mathcal{H}_{2}$-Optimality Conditions

Assume $\hat{\Sigma}$ is given in coordinate system induced by eigenvalue decomposition of $\hat{A}$ :

$$
\hat{A}=R \wedge R^{-1}, \quad \tilde{A}_{i}=R^{-1} \hat{A}_{i} R, \quad \tilde{B}=R^{-1} \hat{B}, \quad \tilde{C}=\hat{C} R .
$$

Using $\Lambda, \tilde{A}_{i}, \tilde{B}, \tilde{C}$ as optimization parameters, we can derive necessary conditions for $\mathcal{H}_{2}$-optimality, e.g.:

$$
\begin{aligned}
& \left(\operatorname{vec}\left(I_{q}\right)\right)^{T}\left(e_{j} e_{\ell}^{T} \otimes C\right)\left(-\Lambda \otimes I_{n}-I_{\hat{n}} \otimes A-\sum_{i=1}^{m} \tilde{A}_{i} \otimes A_{i}\right)^{-1}(\tilde{B} \otimes B) \operatorname{vec}\left(I_{m}\right) \\
& =\left(\operatorname{vec}\left(I_{q}\right)\right)^{T}\left(e_{j} e_{\ell}^{T} \otimes \hat{C}\right)\left(-\Lambda \otimes I_{n}-I_{\hat{n}} \otimes \hat{A}-\sum_{i=1}^{m} \tilde{A}_{i} \otimes \hat{A}_{i}\right)^{-1}(\tilde{B} \otimes \hat{B}) \operatorname{vec}\left(I_{m}\right)
\end{aligned}
$$

For $A_{i} \equiv 0$, this is equivalent to

$$
G\left(-\lambda_{\ell}\right) \tilde{B}_{\ell}^{T}=\hat{G}\left(-\lambda_{\ell}\right) \tilde{B}_{\ell}^{T}
$$

$\rightsquigarrow$ tangential interpolation at mirror images of reduced system poles!
Note: [FlagG 2011] shows equivalence to interpolating the Volterra series!

## A First Iterative Approach

## Algorithm 2 Bilinear IRKA

Input: $A, A_{i}, B, C, \hat{A}, \hat{A}_{i}, \hat{B}, \hat{C}$
Output: $A^{o p t}, A_{i}^{o p t}, B^{o p t}, C^{o p t}$
1: while (change in $\Lambda>\epsilon$ ) do
2: $\quad R \wedge R^{-1}=\hat{A}, \tilde{B}=R^{-1} \hat{B}, \tilde{C}=\hat{C} R, \tilde{A}_{i}=R^{-1} \hat{A}_{i} R$
3: $\quad \operatorname{vec}(V)=\left(-\Lambda \otimes I_{n}-I_{\hat{n}} \otimes A-\sum_{i=1}^{m} \tilde{A}_{i} \otimes A_{i}\right)^{-1}(\tilde{B} \otimes B) \operatorname{vec}\left(I_{m}\right)$
4: $\quad \operatorname{vec}(W)=\left(-\Lambda \otimes I_{n}-I_{\hat{n}} \otimes A^{T}-\sum_{i=1}^{m} \tilde{A}_{i}^{T} \otimes A_{i}^{T}\right)^{-1}\left(\tilde{C}^{T} \otimes C^{T}\right) \operatorname{vec}\left(I_{q}\right)$
5: $\quad V=\operatorname{orth}(V), W=\operatorname{orth}(W)$
6: $\quad \hat{A}=\left(W^{\top} V\right)^{-1} W^{\top} A V, \hat{A}_{i}=\left(W^{\top} V\right)^{-1} W^{\top} A_{i} V$,

$$
\hat{B}=\left(W^{\top} V\right)^{-1} W^{\top} B, \hat{C}=C V
$$

7: end while
8: $A^{o p t}=\hat{A}, A_{i}^{o p t}=\hat{A}_{i}, B^{o p t}=\hat{B}, C^{o p t}=\hat{C}$

## $\mathcal{H}_{2}$-Model Reduction for Bilinear Systems Industrial Case Study: Thermal Analysis of Electrical Motor

- Thermal simulations to detect whether temperature changes lead to fatigue or deterioration of employed materials.
- Main heat source: thermal losses resulting from current stator coil/rotor.
- Many different current profiles need to be considered to predict whether temperature on certain parts of the motor remans in feasible region.
- Finite element analysis on rather complicated geometries $\rightsquigarrow$ large-scale linear models with many (here: $7 / 13$ ) parameters.


Schematic view of an electrical motor.


Bosch integrated motor generator used in hybrid variants of Porsche Cayenne, VW Touareg.

## $\mathcal{H}_{2}$-Model Reduction for Bilinear Systems

Industrial Case Study: Thermal Analysis of Electrical Motor

- FEM analysis of thermal model linear parametric systems with $n=41,199, m=4$ inputs, and $d=13$ parameters,
- measurements taken at $q=4$ heat sensors;
- time for 1 transient simulation in COMSOL ${ }^{\circledR} \sim 90 \mathrm{~min}$;
- ROM order $\hat{n}=300$, time for 1 transient simulation $\sim 15 \mathrm{sec}$.
- Legend: Temperature curves for six different values $(5,25,45,65,85$, $\left.100\left[\mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}\right]\right)$ of the heat transfer coefficient on the coil.



## Conclusions and Outlook

- We have reviewed the most popular PMOR methods developed in the last decade, in particular those based on rational interpolation.
Open problem in general: optimal interpolation points.


## Conclusions and Outlook

- We have reviewed the most popular PMOR methods developed in the last decade, in particular those based on rational interpolation. Open problem in general: optimal interpolation points.
- We have established a connection between special linear parametric and bilinear systems that automatically yields structure-preserving model reduction techniques for linear parametric systems.


## Conclusions and Outlook

- We have reviewed the most popular PMOR methods developed in the last decade, in particular those based on rational interpolation.
Open problem in general: optimal interpolation points.
- We have established a connection between special linear parametric and bilinear systems that automatically yields structure-preserving model reduction techniques for linear parametric systems.
- Balanced truncation:
- Under certain assumptions, we can expect the existence of low-rank approximations to the solution of generalized Lyapunov equations.
- Solutions strategies via extending the ADI iteration to bilinear systems and EKSM as well as using preconditioned iterative solvers like CG or BiCGstab up to dimensions $n \sim 500,000$ in MATLAB ${ }^{\circledR}$.
- Optimal choice of shift parameters for ADI is a nontrivial task.
- Existence of low-rank solutions in case of $A_{i}$ being full rank?


## Conclusions and Outlook

- We have reviewed the most popular PMOR methods developed in the last decade, in particular those based on rational interpolation. Open problem in general: optimal interpolation points.
- We have established a connection between special linear parametric and bilinear systems that automatically yields structure-preserving model reduction techniques for linear parametric systems.
- Balanced truncation:
- Under certain assumptions, we can expect the existence of low-rank approximations to the solution of generalized Lyapunov equations.
- Solutions strategies via extending the ADI iteration to bilinear systems and EKSM as well as using preconditioned iterative solvers like CG or BiCGstab up to dimensions $n \sim 500,000$ in MATLAB ${ }^{\circledR}$.
- Optimal choice of shift parameters for ADI is a nontrivial task.
- Existence of low-rank solutions in case of $A_{i}$ being full rank?
- $\mathcal{H}_{2}$ optimal model reduction:
- Yields competitive approach, proven in industrial context.
- Still high offline cost (= time for generating reduced-order model).
- May need to switch to one-sided projection $(W=V)$ to preserve stability.


## Own References



```
P. Benner and T. Breiten.
```

On $\mathcal{H}_{2}$ model reduction of linear parameter-varying systems.
Proceedings in Applied Mathematics and Mechanics 11:805-806, 2011.
P. Benner and T. Breiten.
On optimality of interpolation-based low-rank approximations of large-scale matrix equations.
Systems \& Control Letters 67:55-64, 2014.
P. Benner and T. Breiten.
Interpolation-based $\mathcal{H}_{2}$-model reduction of bilinear control systems.
SIAM Journal on Matrix Analysis and Applications 33(3):859-885, 2012.
P. Benner and T. Breiten.
Low rank methods for a class of generalized Lyapunov equations and related issues.
Numerische Mathematik, 124(3):441-470, 2013.
P. Benner and A. Bruns.

Parametric model order reduction of thermal models using the bilinear interpolatory rational Krylov algorithm.
Mathematical and Computer Modelling of Dynamical Systems, 21(2):103-129, 2015.
P. Benner and T. Damm.
Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems.
SIAM Journal on Control and Optimization 49(2):686-711, 2011.
P. Benner, S. Gugercin, and K. Willcox.

A Survey of Model Reduction Methods for Parametric Systems. SIAM Review, accepted, May 2015.
Available online as MPI Magdeburg Preprint MPIMD/13-14, August 2013.

