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Motivation
–Transport Problems as Dynamical Systems–

Physical transport processes are one of the most fundamental dynamical processes in
nature.

Prediction and manipulation of transport processes are important research topics.

Open-loop controllers are widely used in various engineering fields.
→ Not robust regarding perturbation

Dynamical systems are often influenced via so called distributed control.
→ Unfeasible in many real-world areas

⇒ Boundary feedback stabilization (closed-loop)
can be used to increase robustness and feasibility.
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Introduction
–Multi-Field Flow Stabilization by Riccati Feedback–

Consider 2D flow problems described by incompressible Navier–Stokes equations.

Riccati feedback approach requires the solution of an algebraic Riccati equation.

Conservation of mass introduces an additional divergence-free condition.

Coupling flow problems with another scalar transport equation.

Kármán vortex street
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Consider 2D flow problems described by incompressible Navier–Stokes equations.

Riccati feedback approach requires the solution of an algebraic Riccati equation.

Conservation of mass introduces an additional divergence-free condition.

Coupling flow problems with another scalar transport equation.

simplified reactor model
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Introduction
–Available Tools and Necessary Tasks at Project Start–

1 Functional analytic control approach by Raymond ([Raymond ’05–07]).

Establish a numerical realization for Leray projection.

2 NAVIER: FE package to simulate and create finite-dimensional representations.

Tailored for a standard P2-P1 Taylor–Hood element discretization.

3 LQR theory for generalized state-space systems.

Incorporate a DAE structure without using expensive DAE methods.

4 Kleinman–Newton-ADI framework for solving generalized algebraic Riccati equations.

Incorporate the divergence-free condition without explicit projection.

5 Preconditioned iterative methods to solve stationary Navier–Stokes systems.

Develop techniques to deal with complex-shifted multi-field flow systems.
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Introduction
–Introduced Framework–

1 Functional analytic control approach by Raymond ([Raymond ’05–07]).
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• use discrete projector from [Heinkenschloss/Sorensen/Sun ’08]

• implicitly project on “hidden manifold”
⇒ Nested iteration: solve large-scale sparse saddle point system
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⇒ closed-loop forward flow simulation
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Feedback Stabilization for Index-2 DAE Systems
–Physics of Multi-Field Flow–

defined for time t ∈ (0,∞) and space ~x ∈ Ω ⊂ R2 bounded with Γ = ∂Ω

+ boundary and initial conditions

initial boundary value problem with additional algebraic constraints

∂~v

∂t
− 1

Re
∆~v + (~v · ∇)~v +∇p = ~f

div~v = 0

Navier–Stokes Equations
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–Physics of Multi-Field Flow–

∂~v

∂t
− 1

Re
∆~v + (~v · ∇)~v +∇p = ~f

div~v = 0

Navier–Stokes Equations

M
d

dt
v(t) = Av(t) + Ĝp(t) + Bu(t)

0 = ĜT v(t)

y(t) = Cv(t)

M = MT � 0

v(t) ∈ Rn, p(t) ∈ Rnp

n = nv, N = n + np

A, M ∈ Rn×n, Ĝ ∈ Rn×np

B ∈ Rn×nr , C ∈ Rna×n

u(t) ∈ Rnr , y(t) ∈ Rna

rank
(
Ĝ
)

= np

Linearize + Discretize → Index-2 DAE
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B ∈ Rn×nr , C ∈ Rna×n

u(t) ∈ Rnr , y(t) ∈ Rna

rank
(
Ĝ
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Showed that projection in [Hei/Sor/Sun ’08] is dis-
cretized version of Leray projector in [Ray ’06].

MΠT = ΠM ∧ ΠT v = vdiv,0

[Bänsch/B./Saak/Stoll/Weichelt ’13,’15]
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Ĝ
)

= np

Linearize + Discretize → Index-2 DAE

Showed that projection in [Hei/Sor/Sun ’08] is dis-
cretized version of Leray projector in [Ray ’06].

MΠT = ΠM ∧ ΠT v = vdiv,0
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Extension to coupled flow case, i.e.,

Π̂ :=

[
Π 0
0 I

]
∧

[
ΠT 0

0 I

] [
v
c

]
=

[
vdiv,0

c

]
.

[Bänsch/B./Saak/Weichelt ’14]
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Feedback Stabilization for Index-2 DAE Systems
–LQR for Projected Systems–

Minimize
J (y,u) =

1

2

∫ ∞
0

λ2||y||2 + ||u||2 dt

subject to
Θ̂T

r MΘ̂r
d

dt
x̃(t) = Θ̂T

r AΘ̂r x̃(t) + Θ̂T
r Bu(t)

y(t) = C Θ̂r x̃(t)

with Π̂ = Θ̂lΘ̂
T
r such that Θ̂T

r Θ̂l = I ∈ R(n−np)×(n−np) and x̃ = Θ̂T
l x.

Riccati Based Feedback Approach

Optimal control: u(t) = −Kx̃(t), with feedback: K = BTXM,

where X is the solution of the generalized continuous-time algebraic Riccati equation
(GCARE)

R(X ) = λ2CTC +ATXM+MXA−MXBBTXM = 0.

©P. Benner/H. Weichelt Linear Feedback Stabilization of Incompressible Flow Problems 9/22



Feedback Stabilization for Index-2 DAE Systems
–LQR for Projected Systems–

Minimize
J (y,u) =

1

2

∫ ∞
0

λ2||y||2 + ||u||2 dt

subject to
M d

dt
x̃(t) = Ax̃(t) + Bu(t)

y(t) = Cx̃(t)

with M =MT � 0.

Riccati Based Feedback Approach

Optimal control: u(t) = −Kx̃(t), with feedback: K = BTXM,

where X is the solution of the generalized continuous-time algebraic Riccati equation
(GCARE)

R(X ) = λ2CTC +ATXM+MXA−MXBBTXM = 0.

©P. Benner/H. Weichelt Linear Feedback Stabilization of Incompressible Flow Problems 9/22



Feedback Stabilization for Index-2 DAE Systems
–LQR for Projected Systems–

Minimize
J (y,u) =

1

2

∫ ∞
0

λ2||y||2 + ||u||2 dt

subject to
M d

dt
x̃(t) = Ax̃(t) + Bu(t)

y(t) = Cx̃(t)

with M =MT � 0.

Riccati Based Feedback Approach

Optimal control: u(t) = −Kx̃(t), with feedback: K = BTXM,

where X is the solution of the generalized continuous-time algebraic Riccati equation
(GCARE)

R(X ) = λ2CTC +ATXM+MXA−MXBBTXM = 0.

©P. Benner/H. Weichelt Linear Feedback Stabilization of Incompressible Flow Problems 9/22



Feedback Stabilization for Index-2 DAE Systems
–Nested Iteration without Projection–

Determine X = XT � 0 such that R(X ) = CTC +ATXM+MXA−MXBBTXM = 0.

Step m + 1: Solve the Lyapunov equation

(A− BK(m))TX (m+1)M+MX (m+1)(A− BK(m)) = −(W(m))TW(m) (1)

Step `: Solve the projected and shifted linear system
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ĜT 0

] [
V`

∗

]
=

[
Y
0

]
for different ADI shifts q` ∈ C− for a couple of rhs Y .

K
le

in
m

a
n

–
N

ew
to

n
m

et
h

o
d

lo
w

-r
a

n
k

A
D

I
m

et
h

o
d

lin
ea

r
so

lv
er

©P. Benner/H. Weichelt Linear Feedback Stabilization of Incompressible Flow Problems 10/22



Feedback Stabilization for Index-2 DAE Systems
–Nested Iteration without Projection–

Determine X = XT � 0 such that R(X ) = CTC +ATXM+MXA−MXBBTXM = 0.

Step m + 1: Solve the Lyapunov equation

(A− BK(m))TX (m+1)M+MX (m+1)(A− BK(m)) = −(W(m))TW(m) (1)

Step `: Solve the projected and shifted linear system

(A− BK(m) + q`M)TV` = Y (2)

Avoid explicit projection using Θ̂rV` = V`, Y = Θ̂T
r Y , and [Hei/Sor/Sun ’08]:

Replace (2) and solve instead the saddle point system (SPS)

[
AT + q`M Ĝ
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ĜT 0

] [
V`

∗

]
=

[
Y
0

]
for different ADI shifts q` ∈ C− for a couple of rhs Y .

K
le

in
m

a
n

–
N

ew
to

n
m

et
h

o
d

lo
w

-r
a

n
k

A
D

I
m

et
h

o
d

lin
ea

r
so

lv
er

©P. Benner/H. Weichelt Linear Feedback Stabilization of Incompressible Flow Problems 10/22



Feedback Stabilization for Index-2 DAE Systems
–Nested Iteration without Projection–

Determine X = XT � 0 such that R(X ) = CTC +ATXM+MXA−MXBBTXM = 0.

Step m + 1: Solve the Lyapunov equation

(A− BK(m))TX (m+1)M+MX (m+1)(A− BK(m)) = −(W(m))TW(m) (1)

Step `: Solve the projected and shifted linear system

(A− BK(m) + q`M)TV` = Y (2)

Avoid explicit projection using Θ̂rV` = V`, Y = Θ̂T
r Y , and [Hei/Sor/Sun ’08]:

Replace (2) and solve instead the saddle point system (SPS)
(using Sherman–Morrison–Woodbury formula)[

AT − (K (m))TBT + q`M Ĝ
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Feedback Stabilization for Index-2 DAE Systems
–Convergence Result for Kleinman–Newton Method–

Theorem 4.5 [B./Heinkenschloss/Saak/Weichelt ’16]

assume (A,B; M) stabilizable, (C,A; M) detectable

⇒ ∃ unique, symmetric solution X (∗) = Θ̂rX (∗)Θ̂T
r with R(X (∗)) = 0 that stabilizes([

A− BBTX (∗)M Ĝ

ĜT 0

]
,

[
M 0
0 0

])

for
{
X (k)

}∞
k=0

defined by X (k) := Θ̂rX (k)Θ̂T
r , (1), and X (0) symmetric with

(
A− B

(
K(0)

)T
,M
)

stable, it holds that, for k ≥ 1,

X (1) � X (2) � · · · � X (k) � 0 and lim
k→∞

X (k) = X (∗)

∃ 0 < κ̃ <∞ such that, for k ≥ 1,

||X (k+1) − X (∗)||F ≤ κ̃||X (k) − X (∗)||2F

©P. Benner/H. Weichelt Linear Feedback Stabilization of Incompressible Flow Problems 11/22



Feedback Stabilization for Index-2 DAE Systems
–Remarks/Open Problems–

Additional Contributions [Bänsch/B./Saak/Weichelt ’15,’16]

Suitable approximation framework for Raymond’s projected boundary control input.

Proposed method directly iterates over the feedback matrix K ∈ Rn×nr .

Initial feedback for index-2 DAE systems using a special eigenvalue shifting technique.

Improved ADI shift computation for index-2 DAE systems (Penzl- and projection shifts).

Current Problems

Determination of suitable stopping criteria/tolerances.

Computation of projected residuals is very costly (≈ 10x ADI step).
⇒ use relative change of feedback matrix [B./Li/Penzl ’08]

©P. Benner/H. Weichelt Linear Feedback Stabilization of Incompressible Flow Problems 12/22



Feedback Stabilization for Index-2 DAE Systems
–Remarks/Open Problems–
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Feedback Stabilization for Index-2 DAE Systems
–Numerical Examples–

NSE scenario: Re = 500, n = 5 468, λ = 102, tolNewton = 10−8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Overview

1. Introduction

2. Feedback Stabilization for Index-2 DAE Systems

3. Accelerated Solution of Riccati Equations

4. Conclusions
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Accelerated Solution of Riccati Equations
–Structure–

Coefficients of GCARE are large-scale matrices (resulting from FE discretization).

Quadratic system matrices A, M = MT ∈ Rn×n are sparse.

In-/output matrices are rectangular and dense: B ∈ Rn×nr , C ∈ Rna×n with nr + na � n.

Unique stabilizing solution X ∈ Rn×n is symmetric, positive-semidefinite, but dense
[Lancaster/Rodman ’95], [B./Heinkenschloss/Saak/Weichelt ’16].

Singular values of X decay rapidly [Grasedyck ’04], [B./Bujanović ’16]

⇒ X = ZZT exists, with Z ∈ Rn×m, nr + na < m� n.
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R(X ) = CTC + ATXM +MXA−MXBBTXM

Kármán vortex street

©P. Benner/H. Weichelt Linear Feedback Stabilization of Incompressible Flow Problems 15/22



Accelerated Solution of Riccati Equations
–Structure–

Coefficients of GCARE are large-scale matrices (resulting from FE discretization).

Quadratic system matrices A, M = MT ∈ Rn×n are sparse.

In-/output matrices are rectangular and dense: B ∈ Rn×nr , C ∈ Rna×n with nr + na � n.

Unique stabilizing solution X ∈ Rn×n is symmetric, positive-semidefinite, but dense
[Lancaster/Rodman ’95], [B./Heinkenschloss/Saak/Weichelt ’16].

Singular values of X decay rapidly [Grasedyck ’04], [B./Bujanović ’16]
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Accelerated Solution of Riccati Equations
–Problems with Nested Iteration–

Nested iteration depends on accuracy of different nesting levels that influence each other.

⇒ inexact Kleinman–Newton method [Feitzinger/Hylla/Sachs ’09]

Kleinman–Newton method converges globally, but often

||R(X (1))||F � ||R(X (0))||F .

⇒ Kleinman–Newton with exact line search [B./Byers ’98]

• Convergence theory in [Feitzinger/Hylla/Sachs ’09] is not applicable in the low-rank case.

• Step size computation in [B./Byers ’98] involves dense residuals, therefore, it is not
applicable in large-scale case.

−0.5 0 0.5 1 1.5 2 2.5

−40

−20

0

20

solution: x

re
si

d
u

al
:
f

(x
)

f (x) = −10x2 − 10x + 20, x∗ = 1

f (x)
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Accelerated Solution of Riccati Equations
–Convergence Result for inexact Kleinman–Newton Method–

Theorem [B./Heinkenschloss/Saak/Weichelt ’16]

Set τk ∈ (0, 1) and assume: (A,B;M) stabilizable, (C,A;M) detectable, and ∃ X̃ (k+1) � 0 ∀k that solves

(A− BK(k))T X̃ (k+1)M+MX̃ (k+1)(A− BK(k)) = −CTC − (K(k))TK(k) + L(k+1)

such that

||L(k+1)||F ≤ τk ||R(X (k))||F .

Find ξk ∈ (0, 1] such that ||R(X (k) + ξkS(k))||F ≤ (1− ξkα)||R(X (k))||F and set

X (k+1) = (1− ξk)X (k) + ξk X̃ (k+1).

1 IF ξk ≥ ξmin > 0 ∀k ⇒ ‖R(X (k))‖F → 0.

2 IF X (k) � 0, and (A− BBTX (k),M) stable for k ≥ K > 0 ⇒ X (k) → X (∗)

(X (∗) � 0 the unique stabilizing solution).
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Accelerated Solution of Riccati Equations
–Numerical Examples–

NSE scenario: Re = 500, Level 1, λ = 104, tolNewton = 10−14
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–
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Table : Numbers of steps and timings in seconds.
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Accelerated Solution of Riccati Equations
Feedback Stabilization for Index-2 DAE systems

NSE scenario: Re = 500, tolADI = 10−7, tolNewton = 10−8
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Accelerated Solution of Riccati Equations
Comparison to other Solution Approaches

Further solution approaches

Kleinman–Newton ADI with Galerkin projection [B./Saak ’10]

EKSM [Heyouni/Jbilou ’09]

RKSM [Simoncini/Szyld/Monsalve ’14]

Further test examples

1 2D diffusion convection reaction problem [B./Heinkenschloss/Saak/Weichelt ’15]

2 3D diffusion convection reaction problem [B./Heinkenschloss/Saak/Weichelt ’15]

3 carex18: one dimensional heat flow
SLICOT benchmark collection: Example 4.2.b in [Abels/B. ’99]
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Conclusions

Main Contributions

Analyzed Riccati-based feedback for scalar and vector-valued transport problems.

Wide-spread usability tailored for standard inf-sup stable finite element discretizations.

Established specially tailored Kleinman–Newton-ADI that avoids explicit projections.

Suitable preconditioners for multi-field flow problems have been developed.

Ongoing research in similar areas has been incorporated.

Major run time improvements due to combination of inexact Newton and line search.

Established new convergence proofs that were verified by extensive numerical tests.

⇒ Showed overall usability of new approach by a closed-loop forward simulation.
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E. Bänsch, P. Benner, J. Saak, and H. K. Weichelt, Optimal control-based feedback stabilization of
multi-field flow problems, in Trends in PDE Constrained Optimization, vol. 165 of Internat. Ser. Numer. Math.,
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