

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

CSC

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

Linear Feedback Stabilization of Incompressible Flow Problems

 Eberhard Bänsch (FAU Erlangen)
 Peter Benner
 (MPI/CSC)

 Jens Saak (MPI/CSC)
 Heiko Weichelt (The MathWorks, Inc., Cambridge, UK)
 UK)

Sino-German Symposium on Modeling, Model Reduction, and Optimization of Flows" Shanghai, September 26–30, 2016

- Physical transport processes are one of the most fundamental dynamical processes in nature.
- Prediction and manipulation of transport processes are important research topics.
- **Open-loop** controllers are widely used in various engineering fields.
 - \rightarrow Not robust regarding perturbation
- Dynamical systems are often influenced via so called **distributed control**.
 - \rightarrow Unfeasible in many real-world areas

\Rightarrow Boundary feedback stabilization (closed-loop) can be used to increase robustness and feasibility.

1. Introduction

- 2. Feedback Stabilization for Index-2 DAE Systems
- 3. Accelerated Solution of Riccati Equations
- 4. Conclusions

- Consider 2D flow problems described by incompressible Navier–Stokes equations.
- Riccati feedback approach requires the solution of an algebraic Riccati equation.
- Conservation of mass introduces an additional **divergence-free** condition.

Kármán vortex street

Sc Introduction —Multi-Field Flow Stabilization by Riccati Feedback—

- Consider 2D flow problems described by incompressible Navier–Stokes equations.
- Riccati feedback approach requires the solution of an algebraic Riccati equation.
- Conservation of mass introduces an additional **divergence-free** condition.
- **Coupling** flow problems with another scalar transport equation.

1 Functional analytic control approach by Raymond ([RAYMOND '05–07]).

Functional analytic control approach by Raymond ([RAYMOND '05–07]).
 Establish a numerical realization for Leray projection.

- Functional analytic control approach by Raymond ([RAYMOND '05–07]).
 Establish a numerical realization for Leray projection.
- 2 NAVIER: FE package to simulate and create finite-dimensional representations.

- Functional analytic control approach by Raymond ([RAYMOND '05-07]).
 Establish a numerical realization for Leray projection.
- **2** NAVIER: FE package to simulate and create finite-dimensional representations. **Tailored for a standard** \mathcal{P}_2 - \mathcal{P}_1 **Taylor–Hood element discretization.**

- Functional analytic control approach by Raymond ([RAYMOND '05–07]).
 Establish a numerical realization for Leray projection.
- **2** NAVIER: FE package to simulate and create finite-dimensional representations. **Tailored for a standard** \mathcal{P}_2 - \mathcal{P}_1 **Taylor–Hood element discretization.**
- **3** LQR theory for generalized state-space systems.

- Functional analytic control approach by Raymond ([RAYMOND '05–07]).
 Establish a numerical realization for Leray projection.
- **2** NAVIER: FE package to simulate and create finite-dimensional representations. **Tailored for a standard** \mathcal{P}_2 - \mathcal{P}_1 **Taylor–Hood element discretization.**
- **3** LQR theory for generalized state-space systems.
 - Incorporate a DAE structure without using expensive DAE methods.

- Functional analytic control approach by Raymond ([RAYMOND '05–07]).
 Establish a numerical realization for Leray projection.
- **2** NAVIER: FE package to simulate and create finite-dimensional representations. **Tailored for a standard** \mathcal{P}_2 - \mathcal{P}_1 **Taylor–Hood element discretization.**
- **3** LQR theory for generalized state-space systems.

4 Kleinman–Newton-ADI framework for solving generalized algebraic Riccati equations.

- Functional analytic control approach by Raymond ([RAYMOND '05-07]).
 Establish a numerical realization for Leray projection.
- **2** NAVIER: FE package to simulate and create finite-dimensional representations. **Tailored for a standard** \mathcal{P}_2 - \mathcal{P}_1 **Taylor–Hood element discretization.**
- **3** LQR theory for generalized state-space systems.

④ Kleinman–Newton-ADI framework for solving generalized algebraic Riccati equations. Incorporate the divergence-free condition without explicit projection.

- Functional analytic control approach by Raymond ([RAYMOND '05-07]).
 Establish a numerical realization for Leray projection.
- **2** NAVIER: FE package to simulate and create finite-dimensional representations. **Tailored for a standard** \mathcal{P}_2 - \mathcal{P}_1 **Taylor–Hood element discretization.**
- **3** LQR theory for generalized state-space systems.

- ④ Kleinman–Newton-ADI framework for solving generalized algebraic Riccati equations. Incorporate the divergence-free condition without explicit projection.
- **5** Preconditioned iterative methods to solve stationary Navier–Stokes systems.

- Functional analytic control approach by Raymond ([RAYMOND '05–07]).
 Establish a numerical realization for Leray projection.
- **2** NAVIER: FE package to simulate and create finite-dimensional representations. **Tailored for a standard** \mathcal{P}_2 - \mathcal{P}_1 **Taylor–Hood element discretization.**
- **3** LQR theory for generalized state-space systems.

- ④ Kleinman–Newton-ADI framework for solving generalized algebraic Riccati equations. Incorporate the divergence-free condition without explicit projection.
- 6 Preconditioned iterative methods to solve stationary Navier-Stokes systems.

Develop techniques to deal with complex-shifted multi-field flow systems.

1 Functional analytic control approach by Raymond ([RAYMOND '05–07]).

- 2 NAVIER: FE package to simulate and create finite-dimensional representations.
- **3** LQR theory for generalized state-space systems.
- **4** Kleinman–Newton-ADI framework for solving generalized algebraic Riccati equations.
- **5** Preconditioned iterative methods to solve stationary Navier–Stokes systems.

- Implicitly project on "hidden manifold"
 NAVIER: FE package to manufactor on the understand of the understand of
- 3 LQR theory for generalized state-space systems.
- (4) Kleinman–Newton-ADI framework for solving generalized algebraic Riccati equations.
- **5** Preconditioned iterative methods to solve stationary Navier–Stokes systems.

- Functional analytic cont

 use discrete projector from [HEINKENSCHLOSS/SORENSEN/SUN '08]
 implicitly project on "hidden manifold"
 NAVIER: FE package to
 Nested iteration: solve large-scale sparse saddle point system

 adapt various ideas from [ELMAN/SILVESTER/WATHEN '05]
 develop suitable preconditioner to be used with GMRES

 efficient preconditioner use various approximation methods
- **4** Kleinman–Newton-ADI framework for solving generalized algebraic Riccati equations.
- **5** Preconditioned iterative methods to solve stationary Navier–Stokes systems.

1	Functional analytic cont	• use discrete projector from [Heinkenschloss/Sorensen/Sun '08]
		 implicitly project on "hidden manifold"
2	NAVIER: FE package to	⇒Nested iteration: solve large-scale sparse saddle point system
		• adapt various ideas from [Elman/Silvester/Wathen '05]
3	LQR theory for generaliz	\Rightarrow develop suitable preconditioner to be used with GMRES \Rightarrow efficient preconditioner use various approximation methods
4	Kleinman–Newton-ADI f	• combine [Kürschner '16], [B./Byers '98], and [Feizinger/Hylla/Sachs '09]
5	Preconditioned iterative	 ⇒ extend ideas in [B./HEINKENSCHLOSS/SAAK/WEICHELT '16] ⇒ develop a highly compatible method to solve Riccati equations

 Functional analytic cont 	• use discrete projector from [Heinkenschloss/Sorensen/Sun '08]
	 implicitly project on "hidden manifold"
2 NAVIER: FE package to	⇒ Nested iteration: solve large-scale sparse saddle point system
	• adapt various ideas from [Elman/Silvester/Wathen '05]
3 LQR theory for generaliz	\Rightarrow develop suitable preconditioner to be used with GMRES \Rightarrow efficient preconditioner use various approximation methods
4 Kleinman–Newton-ADI	• combine [Kürschner '16], [B./Byers '98], and [Feizinger/Hylla/Sachs '09]
5 Preconditioned iterative	\Rightarrow extend ideas in [B./HEINKENSCHLOSS/SAAK/WEICHELT '16] \Rightarrow develop a highly compatible method to solve Riccati equations
	 include feedback into forward simulation within NAVIER
	\Rightarrow closed-loop forward flow simulation

- I Functional analytic cont use discrete projector from [HEINKENSCHLOSS/SORENSEN/SUN '08] • implicitly project on "hidden manifold" 2 NAVIER: FE package to \Rightarrow Nested iteration: solve large-scale sparse saddle point system
- LQR theory for generalized state-space systems.
- combine [KÜRSCHNER '16], [B./BYERS '98], Kleinman–Newton-ADI and [FEIZINGER/HYLLA/SACHS '09] \Rightarrow extend ideas in [B./HEINKENSCHLOSS/SAAK/WEICHELT '16] Preconditioned iterative \Rightarrow develop a highly compatible method to solve Riccati equations

1. Introduction

2. Feedback Stabilization for Index-2 DAE Systems

3. Accelerated Solution of Riccati Equations

4. Conclusions

Navier–Stokes Equations $\frac{\partial \vec{v}}{\partial t} - \frac{1}{\text{Re}} \Delta \vec{v} + (\vec{v} \cdot \nabla) \vec{v} + \nabla p = \vec{f}$ $\operatorname{div} \vec{v} = 0$

- defined for time $t \in (0,\infty)$ and space $\vec{x} \in \Omega \subset \mathbb{R}^2$ bounded with $\Gamma = \partial \Omega$
- + boundary and initial conditions
- initial boundary value problem with additional algebraic constraints

Feedback Stabilization for Index-2 DAE Systems
–Physics of Multi-Field Flow–
Navier–Stokes Equations

$$\frac{\partial \vec{v}}{\partial t} - \frac{1}{\text{Re}} \Delta \vec{v} + (\vec{v} \cdot \nabla) \vec{v} + \nabla p = \vec{t}$$

 $div \vec{v} = 0$
A, $M \in \mathbb{R}^{n \times n}$, $\hat{G} \in \mathbb{R}^{n \times n_p}$
 $B \in \mathbb{R}^{n \times n_r}$, $C \in \mathbb{R}^{n_a \times n}$
 $u(t) \in \mathbb{R}^{n_r}$, $\mathbf{y}(t) \in \mathbb{R}^{n_a}$
 $\operatorname{rank}(\hat{G}) = n_p$
Linearize + Discretize \rightarrow Index-2 DAE
 $M = M^T \succ 0$
 $M = M^T \succ 0$
 $v(t) \in \mathbb{R}^n$, $\mathbf{p}(t) \in \mathbb{R}^{n_p}$
 $n = n_v$, $N = n + n_p$

Navier–Stokes Equations

$$\frac{\partial \vec{v}}{\partial t} - \frac{1}{\text{Re}} \Delta \vec{v} + (\vec{v} \cdot \nabla) \vec{v} + \nabla p = \vec{f} \\
\text{div } \vec{v} = 0$$

$$A, M \in \mathbb{R}^{n \times n}, \hat{G} \in \mathbb{R}^{n \times n_{p}} \\
B \in \mathbb{R}^{n \times n_{r}}, C \in \mathbb{R}^{n_{a} \times n} \\
u(t) \in \mathbb{R}^{n_{r}}, \mathbf{y}(t) \in \mathbb{R}^{n_{a}} \\
\text{rank} (\hat{G}) = n_{p}$$

$$Linearize + \text{Discretize} \rightarrow \text{Index-2 DAE} \\
M \frac{d}{dt} \mathbf{v}(t) = A \mathbf{v}(t) + \hat{G} \mathbf{p}(t) + B \mathbf{u}(t) \\
0 = \hat{G}^{T} \mathbf{v}(t) \\
\mathbf{y}(t) = C \mathbf{v}(t)$$

$$M = M^{T} \succ 0 \\
\mathbf{v}(t) \in \mathbb{R}^{n}, \mathbf{p}(t) \in \mathbb{R}^{n_{p}} \\
n = n_{v}, N = n + n_{p}$$

Showed that projection in [HEI/SOR/SUN '08] is discretized version of Leray projector in [RAY '06]. $M\Pi^{T} = \Pi M \wedge \Pi^{T} \mathbf{v} = \mathbf{v}_{\text{div},0}$ [Bänsch/B./SAAK/Stoll/WEICHELT '13,'15]

 $n_{\mathbf{p}}$

Navier–Stokes Equations

$$\frac{\partial \vec{v}}{\partial t} - \frac{1}{\text{Re}} \Delta \vec{v} + (\vec{v} \cdot \nabla) \vec{v} + \nabla p = \vec{f}$$
div $\vec{v} = 0$

$$\frac{\partial c^{(\vec{v})}}{\partial t} - \frac{1}{\text{Re Sc}} \Delta c^{(\vec{v})} + (\vec{v} \cdot \nabla) c^{(\vec{v})} = 0$$
A, $M \in \mathbb{R}^{n \times n}$, $\hat{G} \in \mathbb{R}^{n \times n_p}$

$$B \in \mathbb{R}^{n \times n_r}$$
, $C \in \mathbb{R}^{n_s \times n}$

$$u(t) \in \mathbb{R}^{n_r}$$
, $\mathbf{y}(t) \in \mathbb{R}^{n_s}$

$$\operatorname{rank}(\hat{G}) = n_p$$
Linearize + Discretize \rightarrow Index-2 DAE
 $M \frac{d}{dt} \mathbf{v}(t) = A \mathbf{v}(t) + \hat{G} \mathbf{p}(t) + B \mathbf{u}(t)$

$$0 = \hat{G}^T \mathbf{v}(t)$$

$$y(t) = C \mathbf{v}(t)$$
Number of the equation is the equation in th

Showed that projection in [HEI/SOR/SUN '08] is discretized version of Leray projector in [RAY '06]. $M\Pi^{T} = \Pi M \wedge \Pi^{T} \mathbf{v} = \mathbf{v}_{div,0}$ [Bänsch/B./SAAK/Stoll/WEICHELT '13.'15]

Navier-Stokes Equations

$$\frac{\partial \vec{v}}{\partial t} - \frac{1}{\text{Re}} \Delta \vec{v} + (\vec{v} \cdot \nabla) \vec{v} + \nabla p = \vec{f}$$

$$\frac{\partial c^{(\vec{v})}}{\partial t} - \frac{1}{\text{Re} \text{Sc}} \Delta c^{(\vec{v})} + (\vec{v} \cdot \nabla) c^{(\vec{v})} = 0$$

$$A, M \in \mathbb{R}^{n \times n}, \hat{G} \in \mathbb{R}^{n \times n_p}$$

$$B \in \mathbb{R}^{n \times n_r}, C \in \mathbb{R}^{n_s \times n}$$

$$u(t) \in \mathbb{R}^{n_r}, \mathbf{y}(t) \in \mathbb{R}^{n_s}$$

$$rank \left(\hat{G}\right) = n_p$$
Concentration Equation

$$\frac{\partial c^{(\vec{v})}}{\partial t} - \frac{1}{\text{Re} \text{Sc}} \Delta c^{(\vec{v})} + (\vec{v} \cdot \nabla) c^{(\vec{v})} = 0$$

$$M = M^T \succ 0$$

$$x(t) = \begin{bmatrix} \mathbf{v}(t) \\ \mathbf{c}(t) \end{bmatrix} \in \mathbb{R}^n$$

$$n = n_\mathbf{v} + n_\mathbf{c}, N = n + n_p$$

Showed that projection in [HeI/SOR/SUN '08] is discretized version of Leray projector in [RAY '06]. $M\Pi^{T} = \Pi M \wedge \Pi^{T} \mathbf{v} = \mathbf{v}_{div,0}$ [Bänsch/B./SAAK/Stoll/WEICHELT '13.'15]

Navier–Stokes Equations

$$\frac{\partial \vec{v}}{\partial t} - \frac{1}{\text{Re}} \Delta \vec{v} + (\vec{v} \cdot \nabla) \vec{v} + \nabla p = \vec{f} \\
\text{div } \vec{v} = 0$$

$$\begin{array}{l} \partial c^{(\vec{v})} \\ \partial t & - \frac{1}{\text{Re} \text{Sc}} \Delta c^{(\vec{v})} + (\vec{v} \cdot \nabla) c^{(\vec{v})} = 0 \\
\begin{array}{l} \partial c^{(\vec{v})} \\ \partial t & - \frac{1}{\text{Re} \text{Sc}} \Delta c^{(\vec{v})} + (\vec{v} \cdot \nabla) c^{(\vec{v})} = 0 \\
\end{array}$$

$$\begin{array}{l} A, M \in \mathbb{R}^{n \times n}, \hat{G} \in \mathbb{R}^{n \times n_p} \\
B \in \mathbb{R}^{n \times n_r}, C \in \mathbb{R}^{n_s \times n} \\
u(t) \in \mathbb{R}^{n_r}, \mathbf{y}(t) \in \mathbb{R}^{n_s} \\
\text{rank} \left(\hat{G} \right) = n_p
\end{array}$$

$$\begin{array}{l} \text{Linearize + Discretize \rightarrow Index-2 DAE} \\
M \frac{d}{dt} \mathbf{x}(t) = A\mathbf{x}(t) + \hat{G}\mathbf{p}(t) + B\mathbf{u}(t) \\
0 = \hat{G}^T \mathbf{x}(t) \\
\mathbf{y}(t) = C\mathbf{x}(t)
\end{array}$$

$$\begin{array}{l} M = M^T \succ 0 \\
\mathbf{x}(t) = \begin{bmatrix} \mathbf{v}(t) \\ \mathbf{c}(t) \end{bmatrix} \in \mathbb{R}^n \\
n = n_\mathbf{v} + n_\mathbf{c}, N = n + n_p
\end{array}$$
Showed that projection in [HeI/SOR/SUN '08] is discretized version of Leray projector in [Ray '06]. \\
M \Pi^T = \Pi M \land \Pi^T \mathbf{v} = \mathbf{v}_{\text{div},0}

[Bänsch/B./SAAK/Stoll/WEICHELT '13,'15]

Extension to coupled flow case, i.e.,

$$\begin{array}{l} \Pi^T = \begin{bmatrix} \Pi & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \mathbf{c} \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{\text{div},0} \\ \mathbf{c} \end{bmatrix}. \\$$
[Bänsch/B./SAAK/WEICHELT '14]

Showed that projection in [HeI/SOR/SUN '08] is discretized version of Leray projector in [RAY '06]. $M\Pi^{T} = \Pi M \quad \land \quad \Pi^{T} \mathbf{v} = \mathbf{v}_{div,0}$ [Bänsch/B./SAAK/Stoll/WEICHELT '13,'15] Extension to coupled flow case, i.e., $\widehat{\Pi} := \begin{bmatrix} \Pi & 0 \\ 0 & I \end{bmatrix} \land \begin{bmatrix} \Pi^{T} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \mathbf{c} \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{div,0} \\ \mathbf{c} \end{bmatrix}.$ [BÄNSCH/B./SAAK/WEICHELT '14]

Feedback Stabilization for Index-2 DAE Systems –LQR for Projected Systems–

Minimize

$$\mathcal{J}(\mathbf{y},\mathbf{u}) = rac{1}{2}\int_0^\infty \lambda^2 ||\mathbf{y}||^2 + ||\mathbf{u}||^2 \mathrm{d}t$$

subject to

$$\widehat{\Theta}_{r}^{T} M \widehat{\Theta}_{r} \frac{\mathrm{d}}{\mathrm{d}t} \widetilde{\mathbf{x}}(t) = \widehat{\Theta}_{r}^{T} A \widehat{\Theta}_{r} \widetilde{\mathbf{x}}(t) + \widehat{\Theta}_{r}^{T} B \mathbf{u}(t)$$
$$\mathbf{y}(t) = C \widehat{\Theta}_{r} \widetilde{\mathbf{x}}(t)$$

with
$$\widehat{\Pi} = \widehat{\Theta}_I \widehat{\Theta}_r^T$$
 such that $\widehat{\Theta}_r^T \widehat{\Theta}_I = I \in \mathbb{R}^{(n-n_p) \times (n-n_p)}$ and $\widetilde{\mathbf{x}} = \widehat{\Theta}_I^T \mathbf{x}$.

Feedback Stabilization for Index-2 DAE Systems –LQR for Projected Systems–

Minimize

$$\mathcal{J}(\mathbf{y},\mathbf{u}) = \frac{1}{2} \int_0^\infty \lambda^2 ||\mathbf{y}||^2 + ||\mathbf{u}||^2 \,\mathrm{d}t$$

subject to

$$\mathcal{M}\frac{\mathsf{d}}{\mathsf{d}t}\widetilde{\mathbf{x}}(t) = \mathcal{A}\widetilde{\mathbf{x}}(t) + \mathcal{B}\mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathcal{C}\widetilde{\mathbf{x}}(t)$$

with $\mathcal{M} = \mathcal{M}^T \succ 0$.

Feedback Stabilization for Index-2 DAE Systems -LQR for Projected Systems-

Minimize

$$\mathcal{J}(\mathbf{y},\mathbf{u}) = \frac{1}{2} \int_0^\infty \lambda^2 ||\mathbf{y}||^2 + ||\mathbf{u}||^2 \,\mathrm{d}t$$

subject to

$$\mathcal{M}\frac{\mathsf{d}}{\mathsf{d}t}\widetilde{\mathsf{x}}(t) = \mathcal{A}\widetilde{\mathsf{x}}(t) + \mathcal{B}\mathsf{u}(t)$$
$$\mathsf{y}(t) = \mathcal{C}\widetilde{\mathsf{x}}(t)$$

with $\mathcal{M} = \mathcal{M}^T \succ 0$.

Riccati Based Feedback Approach

• Optimal control: $\mathbf{u}(t) = -\mathcal{K}\widetilde{\mathbf{x}}(t)$, with feedback: $\mathcal{K} = \mathcal{B}^T \mathcal{X} \mathcal{M}$,

where \mathcal{X} is the solution of the generalized continuous-time algebraic Riccati equation (GCARE)

 $\mathcal{R}(\mathcal{X}) = \lambda^2 \mathcal{C}^{\mathsf{T}} \mathcal{C} + \mathcal{A}^{\mathsf{T}} \mathcal{X} \mathcal{M} + \mathcal{M} \mathcal{X} \mathcal{A} - \mathcal{M} \mathcal{X} \mathcal{B} \mathcal{B}^{\mathsf{T}} \mathcal{X} \mathcal{M} = 0.$

Determine $\mathcal{X} = \mathcal{X}^T \succeq 0$ such that $\mathcal{R}(\mathcal{X}) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T \mathcal{X} \mathcal{M} + \mathcal{M} \mathcal{X} \mathcal{A} - \mathcal{M} \mathcal{X} \mathcal{B} \mathcal{B}^T \mathcal{X} \mathcal{M} = 0$.

Determine $\mathcal{X} = \mathcal{X}^T \succeq 0$ such that $\mathcal{R}(\mathcal{X}) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T \mathcal{X} \mathcal{M} + \mathcal{M} \mathcal{X} \mathcal{A} - \mathcal{M} \mathcal{X} \mathcal{B} \mathcal{B}^T \mathcal{X} \mathcal{M} = 0$.

Determine $\mathcal{X} = \mathcal{X}^T \succeq 0$ such that $\mathcal{R}(\mathcal{X}) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T \mathcal{X} \mathcal{M} + \mathcal{M} \mathcal{X} \mathcal{A} - \mathcal{M} \mathcal{X} \mathcal{B} \mathcal{B}^T \mathcal{X} \mathcal{M} = 0$.

Step m + 1: Solve the Lyapunov equation

$$(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^{\mathsf{T}}\mathcal{X}^{(m+1)}\mathcal{M} + \mathcal{M}\mathcal{X}^{(m+1)}(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^{\mathsf{T}}\mathcal{W}^{(m)}$$
(1)

Determine $\mathcal{X} = \mathcal{X}^T \succeq 0$ such that $\mathcal{R}(\mathcal{X}) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T \mathcal{X} \mathcal{M} + \mathcal{M} \mathcal{X} \mathcal{A} - \mathcal{M} \mathcal{X} \mathcal{B} \mathcal{B}^T \mathcal{X} \mathcal{M} = 0$.

Step m + 1: Solve the Lyapunov equation

$$(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^{\mathsf{T}}\mathcal{X}^{(m+1)}\mathcal{M} + \mathcal{M}\mathcal{X}^{(m+1)}(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^{\mathsf{T}}\mathcal{W}^{(m)}$$
(1)

ADI method

low-rank

Determine $\mathcal{X} = \mathcal{X}^T \succeq 0$ such that $\mathcal{R}(\mathcal{X}) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T \mathcal{X} \mathcal{M} + \mathcal{M} \mathcal{X} \mathcal{A} - \mathcal{M} \mathcal{X} \mathcal{B} \mathcal{B}^T \mathcal{X} \mathcal{M} = 0$.

Step m + 1: Solve the Lyapunov equation

$$(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^{\mathsf{T}}\mathcal{X}^{(m+1)}\mathcal{M} + \mathcal{M}\mathcal{X}^{(m+1)}(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^{\mathsf{T}}\mathcal{W}^{(m)}$$
(1)

Step ℓ : Solve the projected and shifted linear system

$$(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_{\ell}\mathcal{M})^{\mathsf{T}}\mathcal{V}_{\ell} = \mathcal{Y}$$
⁽²⁾

ADI method

low-rank

Determine $\mathcal{X} = \mathcal{X}^T \succeq 0$ such that $\mathcal{R}(\mathcal{X}) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T \mathcal{X} \mathcal{M} + \mathcal{M} \mathcal{X} \mathcal{A} - \mathcal{M} \mathcal{X} \mathcal{B} \mathcal{B}^T \mathcal{X} \mathcal{M} = 0$.

Step m + 1: Solve the Lyapunov equation

$$(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^{\mathsf{T}}\mathcal{X}^{(m+1)}\mathcal{M} + \mathcal{M}\mathcal{X}^{(m+1)}(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^{\mathsf{T}}\mathcal{W}^{(m)}$$
(1)

Step *l*: Solve the projected and shifted linear system

$$(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_{\ell}\mathcal{M})^{\mathsf{T}}\mathcal{V}_{\ell} = \mathcal{Y}$$
⁽²⁾

ADI method

low-rank

linear solver

Determine $\mathcal{X} = \mathcal{X}^T \succeq 0$ such that $\mathcal{R}(\mathcal{X}) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T \mathcal{X} \mathcal{M} + \mathcal{M} \mathcal{X} \mathcal{A} - \mathcal{M} \mathcal{X} \mathcal{B} \mathcal{B}^T \mathcal{X} \mathcal{M} = 0$.

Step m + 1: Solve the Lyapunov equation

$$(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^{\mathsf{T}}\mathcal{X}^{(m+1)}\mathcal{M} + \mathcal{M}\mathcal{X}^{(m+1)}(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^{\mathsf{T}}\mathcal{W}^{(m)}$$
(1)

Step ℓ : Solve the projected and shifted linear system

$$(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_{\ell}\mathcal{M})^{\mathsf{T}}\mathcal{V}_{\ell} = \mathcal{Y}$$
⁽²⁾

Avoid explicit projection using $\widehat{\Theta}_r \mathcal{V}_\ell = \mathcal{V}_\ell$, $\mathcal{Y} = \widehat{\Theta}_r^T \mathcal{Y}$, and [HeI/SOR/SUN '08]:

ADI method

low-rank

linear solver

Determine $\mathcal{X} = \mathcal{X}^T \succeq 0$ such that $\mathcal{R}(\mathcal{X}) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T \mathcal{X} \mathcal{M} + \mathcal{M} \mathcal{X} \mathcal{A} - \mathcal{M} \mathcal{X} \mathcal{B} \mathcal{B}^T \mathcal{X} \mathcal{M} = 0$.

Step m + 1: Solve the Lyapunov equation

$$(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^{\mathsf{T}}\mathcal{X}^{(m+1)}\mathcal{M} + \mathcal{M}\mathcal{X}^{(m+1)}(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^{\mathsf{T}}\mathcal{W}^{(m)}$$
(1)

Step ℓ : Solve the projected and shifted linear system

$$(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_{\ell}\mathcal{M})^{\mathsf{T}}\mathcal{V}_{\ell} = \mathcal{Y}$$
⁽²⁾

Avoid explicit projection using $\widehat{\Theta}_r \mathcal{V}_\ell = V_\ell$, $\mathcal{Y} = \widehat{\Theta}_r^T Y$, and [HeI/SOR/SUN '08]: **Replace** (2) and **solve instead** the saddle point system (SPS)

$$\begin{bmatrix} A^{T} - (K^{(m)})^{T}B^{T} + q_{\ell}M & \widehat{G} \\ \widehat{G}^{T} & 0 \end{bmatrix} \begin{bmatrix} V_{\ell} \\ * \end{bmatrix} = \begin{bmatrix} Y \\ 0 \end{bmatrix}$$
for different ADI shifts $q_{\ell} \in \mathbb{C}^{-}$ for a couple of rhs Y.

ADI method

low-rank

linear solver

Determine $\mathcal{X} = \mathcal{X}^T \succeq 0$ such that $\mathcal{R}(\mathcal{X}) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T \mathcal{X} \mathcal{M} + \mathcal{M} \mathcal{X} \mathcal{A} - \mathcal{M} \mathcal{X} \mathcal{B} \mathcal{B}^T \mathcal{X} \mathcal{M} = 0$.

Step m + 1: Solve the Lyapunov equation

$$(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^{\mathsf{T}}\mathcal{X}^{(m+1)}\mathcal{M} + \mathcal{M}\mathcal{X}^{(m+1)}(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^{\mathsf{T}}\mathcal{W}^{(m)}$$
(1)

Step ℓ : Solve the projected and shifted linear system

$$(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_{\ell}\mathcal{M})^{\mathsf{T}}\mathcal{V}_{\ell} = \mathcal{Y}$$
⁽²⁾

ow-rank ADI method

Avoid explicit projection using $\widehat{\Theta}_r \mathcal{V}_\ell = V_\ell$, $\mathcal{Y} = \widehat{\Theta}_r^T Y$, and [HEI/SOR/SUN '08]: **Replace** (2) and **solve instead** the saddle point system (SPS) (using *Sherman–Morrison–Woodbury* formula) $\begin{bmatrix} A^T - (K^{(m)})^T B^T + q_\ell M \quad \widehat{G} \\ \widehat{G}^T \quad 0 \end{bmatrix} \begin{bmatrix} V_\ell \\ * \end{bmatrix} = \begin{bmatrix} Y \\ 0 \end{bmatrix}$ for different ADI shifts $q_\ell \in \mathbb{C}^-$ for a couple of rhs Y.

Determine $\mathcal{X} = \mathcal{X}^T \succeq 0$ such that $\mathcal{R}(\mathcal{X}) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T \mathcal{X} \mathcal{M} + \mathcal{M} \mathcal{X} \mathcal{A} - \mathcal{M} \mathcal{X} \mathcal{B} \mathcal{B}^T \mathcal{X} \mathcal{M} = 0$.

Step m + 1: Solve the Lyapunov equation

$$(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^{\mathsf{T}}\mathcal{X}^{(m+1)}\mathcal{M} + \mathcal{M}\mathcal{X}^{(m+1)}(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^{\mathsf{T}}\mathcal{W}^{(m)}$$
(1)

Step ℓ : Solve the projected and shifted linear system

$$(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_{\ell}\mathcal{M})^{\mathsf{T}}\mathcal{V}_{\ell} = \mathcal{Y}$$
⁽²⁾

ow-rank ADI method

Avoid explicit projection using $\widehat{\Theta}_r \mathcal{V}_\ell = \mathcal{V}_\ell$, $\mathcal{Y} = \widehat{\Theta}_r^T Y$, and [HEI/SOR/SUN '08]: **Replace** (2) and **solve instead** the saddle point system (SPS) (using *Sherman–Morrison–Woodbury* formula) $\begin{bmatrix} A^T + q_\ell M \quad \widehat{G} \\ \widehat{G}^T \quad 0 \end{bmatrix} \begin{bmatrix} \mathcal{V}_\ell \\ * \end{bmatrix} = \begin{bmatrix} \widetilde{Y} \\ 0 \end{bmatrix}$ for different ADI shifts $q_\ell \in \mathbb{C}^-$ for a couple of rhs \widetilde{Y} .

Theorem 4.5

Feedback Stabilization for Index-2 DAE Systems -Convergence Result for Kleinman-Newton Method-

[B./Heinkenschloss/Saak/Weichelt '16]

- assume (A, B; M) stabilizable, (C, A; M) detectable
- $\Rightarrow \exists$ unique, symmetric solution $X^{(*)} = \widehat{\Theta}_r \mathcal{X}^{(*)} \widehat{\Theta}_r^T$ with $\mathcal{R}(\mathcal{X}^{(*)}) = 0$ that stabilizes

$$\left(\begin{bmatrix} A - BB^{T}X^{(*)}M & \widehat{G} \\ \widehat{G}^{T} & 0 \end{bmatrix}, \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \right)$$

• for $\{X^{(k)}\}_{k=0}^{\infty}$ defined by $X^{(k)} := \widehat{\Theta}_r \mathcal{X}^{(k)} \widehat{\Theta}_r^T$, (1), and $X^{(0)}$ symmetric with $\left(\mathbf{A} - \mathbf{B} \left(\mathbf{K}^{(0)}\right)^T, \mathbf{M}\right)$ stable, it holds that, for $k \ge 1$,

$$X^{(1)} \succeq X^{(2)} \succeq \cdots \succeq X^{(k)} \succeq 0$$
 and $\lim_{k \to \infty} X^{(k)} = X^{(*)}$

• $\exists 0 < \widetilde{\kappa} < \infty$ such that, for $k \ge 1$,

$$||X^{(k+1)} - X^{(*)}||_F \le \widetilde{\kappa} ||X^{(k)} - X^{(*)}||_F^2$$

Additional Contributions

[Bänsch/B./Saak/Weichelt '15,'16]

- Suitable approximation framework for Raymond's projected boundary control input.
- Proposed method directly iterates over the feedback matrix $K \in \mathbb{R}^{n \times n_r}$.
- Initial feedback for index-2 DAE systems using a special eigenvalue shifting technique.
- Improved ADI shift computation for index-2 DAE systems (Penzl- and projection shifts).

Additional Contributions

[Bänsch/B./Saak/Weichelt '15,'16]

- Suitable approximation framework for Raymond's projected boundary control input.
- Proposed method directly iterates over the feedback matrix $K \in \mathbb{R}^{n imes n_r}$.
- Initial feedback for index-2 DAE systems using a special eigenvalue shifting technique.
- Improved ADI shift computation for index-2 DAE systems (Penzl- and projection shifts).

Current Problems

- Determination of suitable stopping criteria/tolerances.
- Computation of projected residuals is very costly ($\approx 10x \text{ ADI step}$).
 - \Rightarrow use relative change of feedback matrix [B./LI/PENZL '08]

Feedback Stabilization for Index-2 DAE Systems -Numerical Examples-

NSE scenario: Re = 500, n = 5468, $\lambda = 10^2$, $tol_{Newton} = 10^{-8}$

CSC

Feedback Stabilization for Index-2 DAE Systems -Numerical Examples-

NSE scenario: Re = 500, n = 5468, $\lambda = 10^2$, $tol_{Newton} = 10^{-8}$

CSC

Linear Feedback Stabilization of Incompressible Flow Problems

1. Introduction

2. Feedback Stabilization for Index-2 DAE Systems

3. Accelerated Solution of Riccati Equations

4. Conclusions

- Coefficients of GCARE are large-scale matrices (resulting from FE discretization).
- Quadratic system matrices A, $M = M^T \in \mathbb{R}^{n \times n}$ are sparse.

$$\mathcal{R}(X) = C^{\mathsf{T}}C + A^{\mathsf{T}}XM + MXA - MXBB^{\mathsf{T}}XM$$

- Coefficients of GCARE are large-scale matrices (resulting from FE discretization).
- Quadratic system matrices A, $M = M^T \in \mathbb{R}^{n \times n}$ are sparse.

Kármán vortex street

Accelerated Solution of Riccati Equations -Structure-

- Coefficients of GCARE are large-scale matrices (resulting from FE discretization).
- Quadratic system matrices A, $M = M^T \in \mathbb{R}^{n \times n}$ are sparse.
- In-/output matrices are rectangular and dense: $B \in \mathbb{R}^{n \times n_r}$, $C \in \mathbb{R}^{n_a \times n}$ with $n_r + n_a \ll n$.

Kármán vortex street

Accelerated Solution of Riccati Equations

- Coefficients of GCARE are large-scale matrices (resulting from FE discretization).
- Quadratic system matrices A, $M = M^T \in \mathbb{R}^{n \times n}$ are sparse.
- In-/output matrices are rectangular and dense: $B \in \mathbb{R}^{n \times n_r}$, $C \in \mathbb{R}^{n_a \times n}$ with $n_r + n_a \ll n$.
- Unique stabilizing solution $X \in \mathbb{R}^{n \times n}$ is symmetric, positive-semidefinite, but dense [Lancaster/Rodman '95], [B./Heinkenschloss/Saak/Weichelt '16].

$$\mathcal{R}(X) = C^{\mathsf{T}}C + A^{\mathsf{T}}XM + MXA - MXBB^{\mathsf{T}}XM$$

Accelerated Solution of Riccati Equations

- Coefficients of GCARE are large-scale matrices (resulting from FE discretization).
- Quadratic system matrices A, $M = M^T \in \mathbb{R}^{n \times n}$ are sparse.
- In-/output matrices are rectangular and dense: $B \in \mathbb{R}^{n \times n_r}$, $C \in \mathbb{R}^{n_a \times n}$ with $n_r + n_a \ll n$.
- Unique stabilizing solution $X \in \mathbb{R}^{n \times n}$ is symmetric, positive-semidefinite, but dense [Lancaster/Rodman '95], [B./Heinkenschloss/Saak/Weichelt '16].

$$\mathcal{R}(X) = C^{T}C + A^{T}XM + MXA - MXBB^{T}XM$$
$$= \square + \square \square + \square \square - \square \square \square$$

Accelerated Solution of Riccati Equations -Structure-

- Coefficients of GCARE are large-scale matrices (resulting from FE discretization).
- Quadratic system matrices A, $M = M^T \in \mathbb{R}^{n \times n}$ are sparse.
- In-/output matrices are rectangular and dense: $B \in \mathbb{R}^{n \times n_r}$, $C \in \mathbb{R}^{n_a \times n}$ with $n_r + n_a \ll n$.
- Unique stabilizing solution $X \in \mathbb{R}^{n \times n}$ is symmetric, positive-semidefinite, but dense [Lancaster/Rodman '95], [B./Heinkenschloss/Saak/Weichelt '16].
- Singular values of X decay rapidly [GRASEDYCK '04], [B./BUJANOVIĆ '16] $\Rightarrow X = ZZ^T$ exists, with $Z \in \mathbb{R}^{n \times m}$, $n_r + n_a < m \ll n$.

$$\mathcal{R}(X) = C^{T}C + A^{T}XM + MXA - MXBB^{T}XM$$
$$= \square + \square \square + \square \square - \square \square \square$$

Accelerated Solution of Riccati Equations -Structure-

- Coefficients of GCARE are large-scale matrices (resulting from FE discretization).
- Quadratic system matrices A, $M = M^T \in \mathbb{R}^{n \times n}$ are sparse.
- In-/output matrices are rectangular and dense: $B \in \mathbb{R}^{n \times n_r}$, $C \in \mathbb{R}^{n_a \times n}$ with $n_r + n_a \ll n$.
- Unique stabilizing solution $X \in \mathbb{R}^{n \times n}$ is symmetric, positive-semidefinite, but dense [Lancaster/Rodman '95], [B./Heinkenschloss/Saak/Weichelt '16].
- Singular values of X decay rapidly [GRASEDYCK '04], [B./BUJANOVIĆ '16] $\Rightarrow X = ZZ^T$ exists, with $Z \in \mathbb{R}^{n \times m}$, $n_r + n_a < m \ll n$.

$$\mathcal{R}(ZZ^{T}) = C^{T}C + A^{T}ZZ^{T}M + MZZ^{T}A - MZZ^{T}BB^{T}ZZ^{T}M$$
$$= \square + \square \square + \square \square \square \square \square \square \square \square \square \square$$

Nested iteration depends on accuracy of different nesting levels that influence each other.

■ Nested iteration depends on accuracy of different nesting levels that influence each other. ⇒ inexact Kleinman–Newton method [Feitzinger/Hylla/Sachs '09]

■ Nested iteration depends on accuracy of different nesting levels that influence each other. ⇒ inexact Kleinman–Newton method [Feitzinger/Hylla/Sachs '09]

• Convergence theory in [FEITZINGER/HYLLA/SACHS '09] is not applicable in the low-rank case.

■ Nested iteration depends on accuracy of different nesting levels that influence each other. ⇒ inexact Kleinman–Newton method [Feitzinger/Hylla/Sachs '09]

Kleinman–Newton method converges globally, but often

 $||\mathcal{R}(X^{(1)})||_F \gg ||\mathcal{R}(X^{(0)})||_F.$

• Convergence theory in [FEITZINGER/HYLLA/SACHS '09] is not applicable in the low-rank case.

- Nested iteration depends on accuracy of different nesting levels that influence each other. ⇒ inexact Kleinman–Newton method [Feitzinger/Hylla/Sachs '09]
- Kleinman–Newton method converges globally, but often

 $||\mathcal{R}(X^{(1)})||_F \gg ||\mathcal{R}(X^{(0)})||_F.$

 \Rightarrow Kleinman–Newton with exact line search

[B./Byers '98]

• Convergence theory in [FEITZINGER/HYLLA/SACHS '09] is not applicable in the low-rank case.

- Nested iteration depends on accuracy of different nesting levels that influence each other. ⇒ inexact Kleinman–Newton method [Feitzinger/Hylla/Sachs '09]
- Kleinman–Newton method converges globally, but often

 $||\mathcal{R}(X^{(1)})||_F \gg ||\mathcal{R}(X^{(0)})||_F.$

 \Rightarrow Kleinman–Newton with exact line search

[B./Byers '98]

• Convergence theory in [FEITZINGER/HYLLA/SACHS '09] is not applicable in the low-rank case.

• Step size computation in [B./BYERS '98] involves dense residuals, therefore, it is not applicable in large-scale case.

Accelerated Solution of Riccati Equations -Problems with Nested Iteration-

- Nested iteration depends on accuracy of different nesting levels that influence each other. ⇒ inexact Kleinman–Newton method [Feitzinger/Hylla/Sachs '09]
- Kleinman–Newton method converges globally, but often

 $||\mathcal{R}(X^{(1)})||_F \gg ||\mathcal{R}(X^{(0)})||_F.$

 \Rightarrow Kleinman–Newton with exact line search

[B./Byers '98]

- Nested iteration depends on accuracy of different nesting levels that influence each other. ⇒ inexact Kleinman–Newton method [Feitzinger/Hylla/Sachs '09]
- Kleinman–Newton method converges globally, but often

 $||\mathcal{R}(X^{(1)})||_F \gg ||\mathcal{R}(X^{(0)})||_F.$

 \Rightarrow Kleinman–Newton with exact line search

[B./Byers '98]

⇒ inexact low-rank Kleinman–Newton-ADI with line search

[B./Heinkenschloss/Saak/Weichelt '16]

- combination yields convergence proof
- efficient implementation exploits low-rank structure

CSC

 \Rightarrow Kleinman–Newton with exact line search

[B./Byers '98]

[Feitzinger/Hylla/Sachs '09]

 \Rightarrow inexact low-rank Kleinman–Newton-ADI with line search

Accelerated Solution of Riccati Equations

-Problems with Nested Iteration-

[B./HEINKENSCHLOSS/SAAK/WEICHELT '16]

- combination yields convergence proof
- efficient implementation exploits low-rank structure
- drastically reduced amount of ADI steps + step size computation "for free"

Nested iteration depends on accuracy of different nesting levels that influence each other.

 $||\mathcal{R}(X^{(1)})||_F \gg ||\mathcal{R}(X^{(0)})||_F.$

- Nested iteration depends on accuracy of different nesting levels that influence each other. ⇒ inexact Kleinman–Newton method [Feitzinger/Hylla/Sachs '09]
- Kleinman–Newton method converges globally, but often

 $||\mathcal{R}(X^{(1)})||_F \gg ||\mathcal{R}(X^{(0)})||_F.$

 \Rightarrow Kleinman–Newton with exact line search

[B./Byers '98]

⇒ inexact low-rank Kleinman–Newton-ADI with line search

[B./Heinkenschloss/Saak/Weichelt '16]

- combination yields convergence proof
- efficient implementation exploits low-rank structure
- drastically reduced amount of ADI steps + step size computation "for free"
- extension to index-2 DAE case "straight forward"

Accelerated Solution of Riccati Equations -Convergence Result for inexact Kleinman–Newton Method–

Theorem

[B./Heinkenschloss/Saak/Weichelt '16]

Set $\tau_k \in (0,1)$ and assume: $(\mathcal{A}, \mathcal{B}; \mathcal{M})$ stabilizable, $(\mathcal{C}, \mathcal{A}; \mathcal{M})$ detectable, and $\exists \widetilde{\mathcal{X}}^{(k+1)} \succeq 0 \ \forall k$ that solves

$$\mathcal{A} - \mathcal{B}\mathcal{K}^{(k)})^{\mathsf{T}}\widetilde{\mathcal{X}}^{(k+1)}\mathcal{M} + \mathcal{M}\widetilde{\mathcal{X}}^{(k+1)}(\mathcal{A} - \mathcal{B}\mathcal{K}^{(k)}) = -\mathcal{C}^{\mathsf{T}}\mathcal{C} - (\mathcal{K}^{(k)})^{\mathsf{T}}\mathcal{K}^{(k)} + \mathcal{L}^{(k+1)}$$

such that

$$||\mathcal{L}^{(k+1)}||_{F} \leq \tau_{k}||\mathcal{R}(\mathcal{X}^{(k)})||_{F}.$$

Find $\xi_k \in (0,1]$ such that $||\mathcal{R}(\mathcal{X}^{(k)} + \xi_k \mathcal{S}^{(k)})||_F \leq (1 - \xi_k \alpha)||\mathcal{R}(\mathcal{X}^{(k)})||_F$ and set

$$\mathcal{X}^{(k+1)} = (1-\xi_k)\mathcal{X}^{(k)} + \xi_k\widetilde{\mathcal{X}}^{(k+1)}$$

1 IF $\xi_k \ge \xi_{\min} > 0 \ \forall k \Rightarrow \|\mathcal{R}(\mathcal{X}^{(k)})\|_F \to 0.$ **2** IF $\mathcal{X}^{(k)} \succeq 0$, and $(\mathcal{A} - \mathcal{B}\mathcal{B}^T \mathcal{X}^{(k)}, \mathcal{M})$ stable for $k \ge K > 0 \Rightarrow \mathcal{X}^{(k)} \to \mathcal{X}^{(*)}$ $(\mathcal{X}^{(*)} \succeq 0$ the unique stabilizing solution).

NSE scenario: Re = 500, Level 1, $\lambda = 10^4$, $tol_{Newton} = 10^{-14}$

NSE scenario: Re = 500, Level 1, $\lambda = 10^4$, $tol_{Newton} = 10^{-14}$

NSE scenario: Re = 500, Level 1, $\lambda = 10^4$, $tol_{Newton} = 10^{-14}$

NSE scenario: Re = 500, Level 1, $\lambda = 10^4$, $tol_{Newton} = 10^{-14}$

NSE scenario: Re = 500, Level 1, $\lambda = 10^4$, $tol_{Newton} = 10^{-14}$

	exact KN	exact KN+LS	inexact KN	inexact KN+LS
#Newt	27	11	27	10
#ADI	3185	1351	852	549
t _{Newt-ADI}	1304.769	540.984	331.871	222.295
t _{shift}	29.998	12.568	7.370	5.507
t _{LS}	_		_	
t _{total}	1334.767	553.581	339.241	227.824

Table : Numbers of steps and timings in seconds.

NSE scenario: Re = 500, Level 1, $\lambda = 10^4$, $tol_{Newton} = 10^{-14}$

	exact KN	exact KN+LS	inexact KN	inexact KN+LS
#Newt	27	11	27	10
#ADI	3185	1351	852	549
t _{Newt-ADI}	1304.769	540.984	331.871	222.295
t _{shift}	29.998	12.568	7.370	5.507
t _{LS}	_	0.029	_	0.023
t _{total}	1334.767	553.581	339.241	227.824

Table : Numbers of steps and timings in seconds.

NSE scenario: Re = 500, $tol_{ADI} = 10^{-7}$, $tol_{Newton} = 10^{-8}$

NSE scenario: NSE scenario: Re = 500, $tol_{Newton} = 10^{-8}$, N = 334489

Accelerated Solution of Riccati Equations Feedback Stabilization for Index-2 DAE systems

NSE scenario: NSE scenario: Re = 500, $tol_{Newton} = 10^{-8}$, N = 334489

Accelerated Solution of Riccati Equations Comparison to other Solution Approaches

Further solution approaches

- Kleinman–Newton ADI with Galerkin projection [B./SAAK '10]
- EKSM [Heyouni/Jbilou '09]
- **RKSM** [Simoncini/Szyld/Monsalve '14]

Accelerated Solution of Riccati Equations Comparison to other Solution Approaches

Further solution approaches

- Kleinman–Newton ADI with Galerkin projection [B./SAAK '10]
- EKSM [Heyouni/Jbilou '09]
- **RKSM** [Simoncini/Szyld/Monsalve '14]

Further test examples

- 1 2D diffusion convection reaction problem [B./HEINKENSCHLOSS/SAAK/WEICHELT '15]
- 2 3D diffusion convection reaction problem [B./HEINKENSCHLOSS/SAAK/WEICHELT '15]
- 3 carex18: one dimensional heat flow SLICOT benchmark collection: Example 4.2.b in [ABELS/B. '99]

Main Contributions

- Analyzed Riccati-based feedback for scalar and vector-valued transport problems.
- Wide-spread usability tailored for standard inf-sup stable finite element discretizations.
- Established specially tailored Kleinman–Newton-ADI that avoids explicit projections.
- Suitable preconditioners for multi-field flow problems have been developed.
- Ongoing research in similar areas has been incorporated.
- Major run time improvements due to combination of **inexact Newton** and **line search**.
- Established new convergence proofs that were verified by extensive numerical tests.

Main Contributions

- Analyzed Riccati-based feedback for scalar and vector-valued transport problems.
- Wide-spread usability tailored for standard inf-sup stable finite element discretizations.
- Established specially tailored Kleinman–Newton-ADI that avoids explicit projections.
- Suitable preconditioners for multi-field flow problems have been developed.
- Ongoing research in similar areas has been incorporated.
- Major run time improvements due to combination of **inexact Newton** and **line search**.
- Established **new convergence proofs** that were verified by **extensive numerical tests**.

 \Rightarrow Showed overall usability of new approach by a closed-loop forward simulation.

- E. BÄNSCH AND P. BENNER, *Stabilization of incompressible flow problems by Riccati-based feedback*, in Constrained Optimization and Optimal Control for Partial Differential Equations, vol. 160 of International Series of Numerical Mathematics, Birkhäuser, 2012, pp. 5–20.
- P. BENNER, J. SAAK, M. STOLL, AND H. K. WEICHELT, *Efficient solution of large-scale saddle point systems arising in Riccati-based boundary feedback stabilization of incompressible Stokes flow*, **SIAM J. Sci. Comput.**, 35 (2013), pp. S150–S170.
- P. BENNER, J. SAAK, M. STOLL, AND H. K. WEICHELT, *Efficient Solvers for Large-Scale Saddle Point Systems* Arising in Feedback Stabilization of Multi-Field Flow Problems, in System Modeling and Optimization, vol. 443 of IFIP Adv. Inf. Commun. Technol., New York, 2014, Springer, pp. 11–20.
- E. BÄNSCH, P. BENNER, J. SAAK, AND H. K. WEICHELT, *Optimal control-based feedback stabilization of multi-field flow problems*, in Trends in PDE Constrained Optimization, vol. 165 of Internat. Ser. Numer. Math., Birkhäuser, Basel, 2014, pp. 173–188.
- E. BÄNSCH, P. BENNER, J. SAAK, AND H. K. WEICHELT, Riccati-based boundary feedback stabilization of incompressible Navier-Stokes flows, SIAM J. Sci. Comput., 37 (2015), pp. A832–A858.
 - P. BENNER, M. HEINKENSCHLOSS, J. SAAK, AND H. K. WEICHELT, An inexact low-rank Newton-ADI method for large-scale algebraic Riccati equations, Appl. Numer. Math., 108 (2016), pp. 125–142.