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Motivation

—Transport Problems as Dynamical Systems—

m Physical transport processes are one of the most fundamental dynamical processes in
nature.

m Prediction and manipulation of transport processes are important research topics.

m Open-loop controllers are widely used in various engineering fields.

— Not robust regarding perturbation

m Dynamical systems are often influenced via so called distributed control.
— Unfeasible in many real-world areas

= Boundary feedback stabilization (closed-loop)
can be used to increase robustness and feasibility.
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@ Introduction
—Multi-Field Flow Stabilization by Riccati Feedback—

m Consider 2D flow problems described by incompressible Navier—Stokes equations.
m Riccati feedback approach requires the solution of an algebraic Riccati equation.

m Conservation of mass introduces an additional divergence-free condition.
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Introduction

—Multi-Field Flow Stabilization by Riccati Feedback—

Consider 2D flow problems described by incompressible Navier—Stokes equations.
Riccati feedback approach requires the solution of an algebraic Riccati equation.
Conservation of mass introduces an additional divergence-free condition.

Coupling flow problems with another scalar transport equation.
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3 Introduction
W —Auvailable Tools and Necessary Tasks at Project Start—

@ Functional analytic control approach by Raymond ([Raymonb *05-07]).
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Establish a numerical realization for Leray projection.

® NAVIER: FE package to simulate and create finite-dimensional representations.
Tailored for a standard P,-P; Taylor-Hood element discretization.

©® LQR theory for generalized state-space systems.
Incorporate a DAE structure without using expensive DAE methods.

O Kleinman—Newton-ADI framework for solving generalized algebraic Riccati equations.
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@ Functional analytic control approach by Raymond ([Raymonb *05-07]).
Establish a numerical realization for Leray projection.

® NAVIER: FE package to simulate and create finite-dimensional representations.
Tailored for a standard P,-P; Taylor-Hood element discretization.

©® LQR theory for generalized state-space systems.
Incorporate a DAE structure without using expensive DAE methods.

O Kleinman—Newton-ADI framework for solving generalized algebraic Riccati equations.
Incorporate the divergence-free condition without explicit projection.

® Preconditioned iterative methods to solve stationary Navier—Stokes systems.
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5 Introduction
: —Available Tools and Necessary Tasks at Project Start—

@ Functional analytic control approach by Raymond ([Raymonb *05-07]).
Establish a numerical realization for Leray projection.

® NAVIER: FE package to simulate and create finite-dimensional representations.
Tailored for a standard P,-P; Taylor-Hood element discretization.

©® LQR theory for generalized state-space systems.
Incorporate a DAE structure without using expensive DAE methods.

O Kleinman—Newton-ADI framework for solving generalized algebraic Riccati equations.
Incorporate the divergence-free condition without explicit projection.

® Preconditioned iterative methods to solve stationary Navier—Stokes systems.

Develop techniques to deal with complex-shifted multi-field flow systems.
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) @ Introduction
J —Introduced Framework—

@ Functional analytic control approach by Raymond ([Raymonb *05-07]).

® NAVIER: FE package to simulate and create finite-dimensional representations.

©® LQR theory for generalized state-space systems.

O Kleinman—Newton-ADI framework for solving generalized algebraic Riccati equations.

® Preconditioned iterative methods to solve stationary Navier—Stokes systems.
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) @ Introduction
J —Introduced Framework—

Functional analytic cont(e use discrete projector from [HEINKENSCHLOSS/SORENSEN/SUN '08]

5]

Q)

e implicitly project on “hidden manifold”

NAVIER: FE package to = Nested iteration: solve large-scale sparse saddle point system

LQR theory for generalized state-space systems.
Kleinman—Newton-ADI framework for solving generalized algebraic Riccati equations.

Preconditioned iterative methods to solve stationary Navier—Stokes systems.

(©P. Benner/H. Weichelt Linear Feedback Stabilization of Incompressible Flow Problems



) @ Introduction
S —Introduced Framework—

® Functional analytic cont(e use discrete projector from [HEINKENSCHLOSS/SORENSEN/SUN '08] |

e implicitly project on “hidden manifold”

= Nested iteration: (solve large-scale sparse
m- T P

saddle point system))

® NAVIER: FE package to

SoTT

©® LQR theory for generaliz

(e adapt various ideas from [ELMAN/SILVESTER/ WATHEN '05]
= develop suitable preconditioner to be used with GMRES
(= efficient preconditioner use various approximation methods

~

O Kleinman—Newton-ADI framework for solving generalized algebraic Riccati equations.

Preconditioned iterative methods to solve stationary Navier—Stokes systems.
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—Introduced

@ Functional analytic cont

® NAVIER: FE package to

©® LQR theory for generaliz

O Kleinman—Newton-ADI {

©® Preconditioned iterative

Framework—

(e use discrete projector from [HEINKENSCHLOSS/SORENSEN/SUN "08] |
e implicitly project on “hidden manifold”

N . o\ ) :
= es:cecl ||'Eer§t|9p) soI\!e large f,(.:a.l.e., 'spa:'sedsaddle plglnt system |

----- TTCOrcTroT

(e adapt various ideas from [ELMAN/SILVESTER/ WATHEN '05] A

= develop suitable preconditioner to be used with GMRES
(= efficient preconditioner use various approximation methods

(@ combine [K/RSCHNER '16], [B./BYERs '98],
and [FEIZINGER/HYLLA /SACHS '09]
= extend ideas in [B./HEINKENSCHLOSS/SAAK/WEICHELT ’16]
= develop a highly compatible method to solve Riccati equations)
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Framework—

g
@ Functional analytic cont

® NAVIER: FE package to

©® Preconditioned iterative

|

©® LQR theory for generaliz

O Kleinman—Newton-ADI {

(e use discrete projector from [HEINKENSCHLOSS/SORENSEN/SUN "08] )
e implicitly project on “hidden manifold”
= Nested iteration: solve large-scale sparse saddle point system )
= i rreRSIC - FepTes =

TrTOTa e oo OO T - TTCOTroT

(e adapt various ideas from [ELMAN/SILVESTER/ WATHEN '05] )

= develop suitable preconditioner to be used with GMRES
(= efficient preconditioner use various approximation methods

e combine [KURSCHNER ’16], [B./BYERS '98],
and [FEIZINGER/HYLLA /SACHS '09]
= extend ideas in [B./HEINKENSCHLOSS/SAAK/WEICHELT '16]
= develop a highly compatible method to solve Riccati equations

~

(e include feedback into forward simulation within NAVIER
(= closed-loop forward flow simulation
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) @ Introduction
| SO —Introduced Framework—

@ Functional analytic cont(e use discrete projector from [HEINKENSCHLOSS/SORENSEN/SUN '08]

e implicitly project on “hidden manifold”

© NAVIER: FE package to = Nested iteration: solve large-scale sparse saddle point system

©® LQR theory for generalized state-space systems.

© Kleinman—Newton-ADI {° combine [KURSCHNER ’16], [B./BYERS '98],
and [FEIZINGER/HYLLA /SACHS '09]
= extend ideas in [B./HEINKENSCHLOSS/SAAK/WEICHELT ’16]
© Preconditioned iterative | = develop a highly compatible method to solve Riccati equations
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2. Feedback Stabilization for Index-2 DAE Systems
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z Feedback Stabilization for Index-2 DAE Systems
@ —Physics of Multi-Field Flow—

Navier-Stokes Equations

— ]
9 _ L N (7-V)i+Vp=TF

0t Re
divv=0

m defined for time t € (0,00) and space X € Q C R? bounded with ' = 9Q

m + boundary and initial conditions

® initial boundary value problem with additional algebraic constraints

Linear Feedback Stabilization of Incompressible Flow Problems
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Feedback Stabilization for Index-2 DAE Systems
—Physics of Multi-Field Flow—

Navier-Stokes Equations

ov 1 =

& AV+(V-V)i+Vp=F

ot Re ( ) ?
divi=0

Linearize + Discretize — Index-2 DAE

M%v(t) — Av(t) + Cp(t) + Bu(t)

M=M" -0
v(t) € R", p(t) € R™
n=n, N=n+np

A, MeR™" G ecR™m
B eR™™ CeR™ "
u(t) e R™, y(t) e R™

0=GTv(t)
rank (@) = ny

y(t) = Cv(1)
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Feedback Stabilization for Index-2 DAE Systems
@ —Physics of Multi-Field Flow—

Navier-Stokes Equations

ov 1 _
& AV (V-V)T+Vp=F

0t Re
divv =0
Linearize + Discretize — Index-2 DAE
M-S w(t) = Av() + Ga(t) + Bu(t)
0=GTv(t)
y(t) = Cv(1)

Showed that projection in [HEI/Sor/SUN 08] is dis-
cretized version of Leray projector in [RAY ’06].

MIIT =IIM A II"v=vguo
[Bansch/B./SAaAK/Stoll/WEICHELT '13,’15]

M=MT >0
v(t) € R", p(t) € R™

n=n, N=n+np

A, MeR™" G eR™™

B eR™™ CeR™"
u(t) € R™, y(t) € R™
rank (&) = ny
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Feedback Stabilization for Index-2 DAE Systems
@ —Physics of Multi-Field Flow—

Navier-Stokes Equations Concentration Equation

ov 1 _
& AV (V-V)T+Vp=F

0t Re
divv =0
Linearize + Discretize — Index-2 DAE
M-S w(t) = Av() + Ga(t) + Bu(t)
0=GTv(t)
y(t) = Cv(1)

Showed that projection in [HEI/Sor/SUN 08] is dis-
cretized version of Leray projector in [RAY ’06].

MIIT =IIM A II"v=vguo
[Bansch/B./SAaAK/Stoll/WEICHELT '13,’15]

dc(¥) 1

_ (V) 2. V) —
5 ReScAC +(v-V)c 0

M=MT >0
v(t) € R", p(t) € R™

n=n, N=n+np

A, MeR™" G eR™™

B eR™™ CeR™"
u(t) € R™, y(t) € R™
rank (&) = ny
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) Feedback Stabilization for Index-2 DAE Systems
& @ —Physics of Multi-Field Flow—

Navier-Stokes Equations Concentration Equation

ov 1 _
& AV (V-V)T+Vp=F

0t Re
divv=0

A McR™" G e R Linearize + Discretize — Index-2 DAE M=MT =0
) K d N
nxn, naxXn — =
Be Rn ,Ce Rn M= x(t) = Ax(t) + Gp(t) + Bu(t) X(t) = [vgg] c R
u(t) € R™, y(t) € R™ 0=G"x(t) ¢ N
rank (G) =np y(t) = Cx(t) N e =0

Showed that projection in [HEI/Sor/SUN 08] is dis-
cretized version of Leray projector in [RAY ’06].

MIIT =IIM A II"v=vguo
[Bansch/B./SAaAK/Stoll/WEICHELT '13,’15]
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y 3 Feedback Stabilization for Index-2 DAE Systems
150 @ —Physics of Multi-Field Flow—

Navier-Stokes Equations Concentration Equation

a_) 1 -
& AV (V-V)T+Vp=F

0t Re
divv=0

A M € R™" G e R Linearize + Discretize — Index-2 DAE M=MT w0
) d N
nxne Mlaxn M—x(t) = Ax(t) + Gp(t) + Bu(t
BeR™™, CeR 5. X(1) = Ax(t) + Gp(t) + Bu(1) x(t):[V(t)]eRn
u(t) € R™, y(t) € R™ 0= GTx() c(t)
~ n=n,+ne, N=n+np
rank (G) =np y(t) = Cx(t)
Showed that projection in [HEI/Sor/SUN 08] is dis- Extension to coupled flow case, i.e.,
cretized version of Leray projector in [RAY ’06]. = I 0 T o] [v Ve 0
MIIT =IIM A IITv=vayug “lo 1] M Lo T <]
[Bansch/B./SaAk/Stoll/ WEICHELT '13,’15] [BANSCH/B./SAAK/WEICHELT ’14]
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Feedback Stabilization for Index-2 DAE Systems
—Physics of Multi-Field Flow—

Linearize + Discretize — Index-2 DAE

M%x(t) — Ax(t) + Gp(t) + Bu(t)

0=G"x(t)
y(t) = Cx(1)
Showed that projection in [HEr/Sor/SuN ’08] is dis- Extension to coupled flow case, i.e.,
cretized version of Leray projector in [RAy '06]. = 7 0 7T o] [v Vo
MIT =M A II7v=vguo H::[o /] " [o /] [c]:[c’]'
[Bansch/B./SaAk/Stoll/ WEICHELT '13,'15] [BANSCH/B./SAAK/WEICHELT ’14]
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Feedback Stabilization for Index-2 DAE Systems

—LQR for Projected Systems—

Minimize 1 [

Tty = 5 [P+l e

subject to N d I N

Q,TI\/IQ,&?(t) =6 A0,x(t) + O] Bu(t)
y(t) = COX(t)

with IT = ©,0] such that 076, = | € R(=m)x(n=m) and X = é\,Tx
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: Feedback Stabilization for Index-2 DAE Systems
S0 y

—LQR for Projected Systems—

Minimize 1 [
Tty = 5 [P+l e
subject to d
Ma”i(t) = Ax(t) + Bu(t)
y(t) = Cx(1)

with M = MT = 0.
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= Feedback Stabilization for Index-2 DAE Systems
S0

—LQR for Projected Systems—

Minimize

1 [ee]
o= [P+l ¢
0
subject to d
ML(t) = AX(¢) + Bu()
y(t) = Cx(1)

with M = MT = 0.

Riccati Based Feedback Approach

m Optimal control: u(t) = —Kx(t), with feedback: X = BT XM,

where X is the solution of the generalized continuous-time algebraic Riccati equation

(GCARE)
R(X)=MCTC+ATXM+ MXA—~ MXBBTXM = 0.
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@ Feedback Stabilization for Index-2 DAE Systems

—Nested lteration without Projection—

Determine X = X7 > 0 such that R(X) =C"C+ ATAM + MX A~ MXBB"XM = 0.
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y 3 Feedback Stabilization for Index-2 DAE Systems
SO

—Nested lIteration without Projection—

Determine X = X7 > 0 such that R(X) =C"C+ A"AM + MXA - MXBB" XM =0.

Kleinman—Newton method
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y 3 Feedback Stabilization for Index-2 DAE Systems

—Nested lIteration without Projection—

Determine X = X7 > 0 such that R(X) =C"C+ A"AM + MXA - MXBB" XM =0.

Step m + 1: Solve the Lyapunov equation
(A = BT (M) a4 pma D (A — BE™) = —(wm)Tyylm) (1)

Kleinman—Newton method
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y 3 Feedback Stabilization for Index-2 DAE Systems

—Nested lIteration without Projection—

Determine X = X7 > 0 such that R(X) =C"C+ ATAM + MX A~ MXBB"XM = 0.

Step m + 1: Solve the Lyapunov equation
(A — BKM) T (MDA 4 M (mD) (A — BEM) = —(w(m)Ty(m) (1)

Kleinman—Newton method
low-rank ADI method
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@ Feedback Stabilization for Index-2 DAE Systems

—Nested lteration without Projection—

Determine X = X7 > 0 such that R(X) =C"C+ ATAM + MX A~ MXBB"XM = 0.
Step m + 1: Solve the Lyapunov equation
(A = BT (M A MamED (A — BE™) = —(wm)Tyy(m) (1)

Step £: Solve the projected and shifted linear system
(A—BK™ + gM)TV, =Y (2)

Kleinman—Newton method
low-rank ADI method
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@ Feedback Stabilization for Index-2 DAE Systems

—Nested lteration without Projection—

Determine X = X7 > 0 such that R(X) =C"C+ ATAM + MX A~ MXBB"XM = 0.
Step m + 1: Solve the Lyapunov equation
(A = BT (M) a4 pma D (A — BE™) = —(wm)Tyylm) (1)
Step £: Solve the projected and shifted linear system
(A—BK™ £ M)V, =Y (2)

Kleinman—Newton method
low-rank ADI method

linear solver

(©P. Benner/H. Weichelt Linear Feedback Stabilization of Incompressible Flow Problems



y 3 Feedback Stabilization for Index-2 DAE Systems

—Nested lIteration without Projection—

Determine X = X7 > 0 such that R(X) =C"C+ ATAM + MX A~ MXBB"XM = 0.
Step m + 1: Solve the Lyapunov equation
(A = BT (M) a4 pma D (A — BE™) = —(wm)Tyylm) (1)
Step £: Solve the projected and shifted linear system
(A—BK™ £ M)V, =Y (2)

Avoid explicit projection using OV, =V, Y= é,T Y, and [HEI/SOR/SUN 08]:

Kleinman—Newton method
low-rank ADI method

linear solver
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y 3 Feedback Stabilization for Index-2 DAE Systems

—Nested lIteration without Projection—

Determine X = X7 > 0 such that R(X) =C"C+ ATAM + MX A~ MXBB"XM = 0.

Step m + 1: Solve the Lyapunov equation
(A = BT (M) a4 pma D (A — BE™) = —(wm)Tyylm) (1)

Step £: Solve the projected and shifted linear system
(A—BK™ + gM)TV, =Y (2)

Avoid explicit projection using OV, =V, Y= é,T Y, and [HEI/SOR/SUN 08]:
Replace (2) and solve instead the saddle point system (SPS)
AT — (K(MTBT + M G

& o [F]=[E)

for different ADI shifts g, € C~ for a couple of rhs Y.

Kleinman—Newton method
low-rank ADI method

linear solver
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y 3 Feedback Stabilization for Index-2 DAE Systems

—Nested lIteration without Projection—

Determine X = X7 > 0 such that R(X) =C"C+ ATAM + MX A~ MXBB"XM = 0.

Step m + 1: Solve the Lyapunov equation
(A = BT (M) a4 pma D (A — BE™) = —(wm)Tyylm) (1)
Step £: Solve the projected and shifted linear system
(A—BK™ + gM)TV, =Y (2)

Avoid explicit projection using OV, =V, Y= é,T Y, and [HEI/SOR/SUN 08]:
Replace (2) and solve instead the saddle point system (SPS)
(using Sherman—Morrison—Woodbury formula)

Vel Y

x| |0

AT — (K(mMTBT + M G
for different ADI shifts g, € C~ for a couple of rhs Y.

GT 0

Kleinman—Newton method
low-rank ADI method

linear solver
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y 3 Feedback Stabilization for Index-2 DAE Systems

—Nested lIteration without Projection—

Determine X = X7 > 0 such that R(X) =C"C+ ATAM + MX A~ MXBB"XM = 0.

Step m + 1: Solve the Lyapunov equation
(A = BT (M) a4 pma D (A — BE™) = —(wm)Tyylm) (1)

Step £: Solve the projected and shifted linear system
(A—BK™ + gM)TV, =Y (2)

o
<]
1=
-
c f-_; Avoid explicit projection using érVg =V, V= é,T Y, and [HE1/SoRr/SUN 08]:
§ = Replace (2) and solve instead the saddle point system (SPS)
= o 5 (using Sherman—Morrison—-Woodbury formula)
< _> -~ ~
£ « 3 AT +qM G| [v] [V
E ¢ 5 GT o] lx] o
s : £
g 2 =

for different ADI shifts g, € C~ for a couple of rhs Y.
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Q Feedback Stabilization for Index-2 DAE Systems

—Convergence Result for Kleinman—Newton Method-

Theorem 4.5 [B./Heinkenschloss/Saak /Weichelt '16]

m assume (A, B; M) stabilizable, (C, A; M) detectable

m = 3 unique, symmetric solution X(*) = ©,X(*)OT with R(X(*)) = 0 that stabilizes

A—BBTX®M G| [M 0
G o 0

GT 0
m for {X®)}° ) defined by X() := 8,X(O], (1), and X(© symmetric with (A - B (K©)" M)
stable, it holds that, for k > 1,
XD = x@ = ... = XK =0 and lim X*) = x*)

k— 00

m 10 < kK < oo such that, for kK > 1,
XD — X < FIX® - X O
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Feedback Stabilization for Index-2 DAE Systems
S0

—Remarks/Open Problems—

Additional Contributions [Bansch/B./Saak/Weichelt '15,'16]

m Suitable approximation framework for Raymond’s projected boundary control input.
m Proposed method directly iterates over the feedback matrix K € R™ ",
m Initial feedback for index-2 DAE systems using a special eigenvalue shifting technique.

m Improved ADI shift computation for index-2 DAE systems (Penzl- and projection shifts).
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Feedback Stabilization for Index-2 DAE Systems
e0o

—Remarks/Open Problems—

Additional Contributions [Bansch/B./Saak/Weichelt '15,'16]

m Suitable approximation framework for Raymond’s projected boundary control input.
m Proposed method directly iterates over the feedback matrix K € R™"r,
m Initial feedback for index-2 DAE systems using a special eigenvalue shifting technique.

m Improved ADI shift computation for index-2 DAE systems (Penzl- and projection shifts).

Current Problems

m Determination of suitable stopping criteria/tolerances.

m Computation of projected residuals is very costly (=~ 10x ADI step).
= use relative change of feedback matrix [B./L1/PENzL "08]
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@ Feedback Stabilization for Index-2 DAE Systems

—Numerical Examples—

NSE scenario: Re = 500, n = 5468, A\ = 102, tolyewton = 1078
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@ Feedback Stabilization for Index-2 DAE Systems

—Numerical Examples—

NSE scenario: Re = 500, n = 5468, A\ = 102, tolyewton = 1078
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3. Accelerated Solution of Riccati Equations
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Accelerated Solution of Riccati Equations

—Structure—

m Coefficients of GCARE are large-scale matrices (resulting from FE discretization).

m Quadratic system matrices A, M = M7 € R"*" are sparse.

R(X) = CTC+ A"XM + MXA — MXBBT™ XM

(©P. Benner/H. Weichelt Linear Feedback Stabilization of Incompressible Flow Problems
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—Structure—

m Coefficients of GCARE are large-scale matrices (resulting from FE discretization).

m Quadratic system matrices A, M = M7 € R"*" are sparse.
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Accelerated Solution of Riccati Equations

—Structure—

m Coefficients of GCARE are large-scale matrices (resulting from FE discretization).
m Quadratic system matrices A, M = M7 € R"*" are sparse.
m In-/output matrices are rectangular and dense: B € R"*", C € R"*" with n, + n, < n.

Velocity Magnitude
0.8 o 1.2

: | e—
0 1.5415038137

Karman vortex street
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Accelerated Solution of Riccati Equations

—Structure—

Coefficients of GCARE are large-scale matrices (resulting from FE discretization).
Quadratic system matrices A, M = MT € R"" are sparse.
In-/output matrices are rectangular and dense: B € R"™ "™ C € R"*" with n, 4+ n, < n.

Unique stabilizing solution X € R"*" is symmetric, positive-semidefinite, but dense
[LANCASTER/RODMAN '95], [B./HEINKENSCHLOSS/SAAK/WEICHELT '16].

R(X) = CTC+ A"XM + MXA — MXBBT™ XM
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Accelerated Solution of Riccati Equations

—Structure—

m Coefficients of GCARE are large-scale matrices (resulting from FE discretization).
m Quadratic system matrices A, M = M7 € R"*" are sparse.
m In-/output matrices are rectangular and dense: B € R"*", C € R"*" with n, + n, < n.

m Unique stabilizing solution X € R"™*" is symmetric, positive-semidefinite, but dense
[LANCASTER/RODMAN '95], [B./HEINKENSCHLOSS/SAAK/WEICHELT '16].

R(X) = CTC+ A"XM + MXA — MXBBT™ XM
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Accelerated Solution of Riccati Equations

—Structure—

m Coefficients of GCARE are large-scale matrices (resulting from FE discretization).
m Quadratic system matrices A, M = M7 € R"*" are sparse.
m In-/output matrices are rectangular and dense: B € R"*", C € R"*" with n, + n, < n.

m Unique stabilizing solution X € R"™*" is symmetric, positive-semidefinite, but dense
[LANCASTER/RODMAN '95], [B./HEINKENSCHLOSS/SAAK/WEICHELT '16].

m Singular values of X decay rapidly [GrasEDYCK *04], [B./BuUsaNovi¢ '16]
= X = ZZ7 exists, with Z € R™™ n, +n, < m < n.

R(X) = CTC+ A"XM + MXA — MXBBT™ XM

NN
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Accelerated Solution of Riccati Equations

—Structure—

m Coefficients of GCARE are large-scale matrices (resulting from FE discretization).
m Quadratic system matrices A, M = M7 € R"*" are sparse.
m In-/output matrices are rectangular and dense: B € R"*", C € R"*" with n, + n, < n.

m Unique stabilizing solution X € R"™*" is symmetric, positive-semidefinite, but dense
[LANCASTER/RODMAN '95], [B./HEINKENSCHLOSS/SAAK/WEICHELT '16].

m Singular values of X decay rapidly [GrasEDYCK *04], [B./BuUsaNovi¢ '16]
= X = ZZ7 exists, with Z € R™™ n, +n, < m < n.

R(ZZT)=C"C+A"ZZ"™ + MZZ"A— MZZ"BB"2Z™M

NN NN TN
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Accelerated Solution of Riccati Equations

—Problems with Nested lteration—

m Nested iteration depends on accuracy of different nesting levels that influence each other.
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Accelerated Solution of Riccati Equations

—Problems with Nested lteration—

m Nested iteration depends on accuracy of different nesting levels that influence each other.
= inexact Kleinman—Newton method [Feitzinger/Hylla/Sachs '09]
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Accelerated Solution of Riccati Equations

—Problems with Nested lteration—

m Nested iteration depends on accuracy of different nesting levels that influence each other.
= inexact Kleinman—Newton method [Feitzinger/Hylla/Sachs '09]

( e Convergence theory in [FErtzINGER/HYLLA /SAcHS '09] is not applicable in the low-rank case)
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Accelerated Solution of Riccati Equations

—Problems with Nested lteration—

m Nested iteration depends on accuracy of different nesting levels that influence each other.
= inexact Kleinman—Newton method [Feitzinger/Hylla/Sachs "09]

m Kleinman—Newton method converges globally, but often

IRXD)[E > [|[R(XO)|£.

( e Convergence theory in [FErTzINGER/HYLLA /SAcHS '09] is not applicable in the low-rank case)
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Accelerated Solution of Riccati Equations

—Problems with Nested lteration—

m Nested iteration depends on accuracy of different nesting levels that influence each other.
= inexact Kleinman—Newton method [Feitzinger/Hylla/Sachs "09]

m Kleinman—Newton method converges globally, but often

IRXM)] [ > |IR(XO)E.
= Kleinman—Newton with exact line search [B./Byers 98]

( e Convergence theory in [FErTzINGER/HYLLA /SAcHS '09] is not applicable in the low-rank case)
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Accelerated Solution of Riccati Equations

—Problems with Nested lteration—

m Nested iteration depends on accuracy of different nesting levels that influence each other.
= inexact Kleinman—Newton method [Feitzinger/Hylla/Sachs "09]

m Kleinman—Newton method converges globally, but often

IRXM)] [ > |IR(XO)E.
= Kleinman—Newton with exact line search [B./Byers 98]

( e Convergence theory in [FErTzINGER/HYLLA /SAcHS '09] is not applicable in the low-rank case.j

e Step size computation in [B./Byers *98] involves dense residuals, therefore, it is not
applicable in large-scale case.
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Accelerated Solution of Riccati Equations

—Newton lteration in 1D-

m Nested iteration depends on accuracy of different nestin

levels that influence each other.

f(x) = —10x% — 10x +20, x, =1

=
m Kle
20—
™
s 0—f
B —
3 20t
g
—40}-
—0.5 0

solution: x
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—Newton lteration in 1D-

m Nested iteration depends on accuracy of different nestin

=
m Kl
=X
.
=
]
el
)
(0]
—

f(x) = —10x% — 10x +20, x, =1

-0.5

0.5 1 1.5 2 2.5
solution: x

levels that influence each other.

achs ’09]

yers '98]

(©P. Benner/H. Weichelt

Linear Feedback Stabilization of Incompressible Flow Problems
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m Nested iteration depends on accuracy of different nestin
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Accelerated Solution of Riccati Equations

—Newton lteration in 1D-

m Nested iteration depends on accuracy of different nestin

levels that influence each other.
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Accelerated Solution of Riccati Equations

—Newton lteration in 1D-

m Nested iteration depends on accuracy of different nestin
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Accelerated Solution of Riccati Equations

—Newton lteration in 1D-

m Nested iteration depends on accuracy of different nestin
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Accelerated Solution of Riccati Equations

—Problems with Nested lteration—

m Nested iteration depends on accuracy of different nesting levels that influence each other.
= inexact Kleinman—Newton method [Feitzinger/Hylla/Sachs '09]

m Kleinman—Newton method converges globally, but often

IR(XD)||F > [[R(XO)||F.
= Kleinman—Newton with exact line search [B./Byers '98]
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Accelerated Solution of Riccati Equations

—Problems with Nested lteration—

m Nested iteration depends on accuracy of different nesting levels that influence each other.
= inexact Kleinman—Newton method [Feitzinger/Hylla/Sachs "09]

m Kleinman—Newton method converges globally, but often

IRXM)] [ > |IR(XO)E.
= Kleinman—Newton with exact line search [B./Byers 98]

‘= inexact low-rank Kleinman—Newton-ADI with line search
[B./HEINKENSCHLOSS/SAAK/WEICHELT ’16]

e combination yields convergence proof

e efficient implementation exploits low-rank structure
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Accelerated Solution of Riccati Equations

—Problems with Nested lteration—

m Nested iteration depends on accuracy of different nesting levels that influence each other.
= inexact Kleinman—Newton method [Feitzinger/Hylla/Sachs "09]

m Kleinman—Newton method converges globally, but often

IRXM)] [ > |IR(XO)E.
= Kleinman—Newton with exact line search [B./Byers 98]

‘= inexact low-rank Kleinman—Newton-ADI with line search
[B./HEINKENSCHLOSS/SAAK/WEICHELT ’16]

e combination yields convergence proof
e efficient implementation exploits low-rank structure

e drastically reduced amount of ADI steps + step size computation “for free”
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Accelerated Solution of Riccati Equations

—Problems with Nested lteration—

m Nested iteration depends on accuracy of different nesting levels that influence each other.
= inexact Kleinman—Newton method [Feitzinger/Hylla/Sachs "09]

m Kleinman—Newton method converges globally, but often

IRXM)] [ > |IR(XO)E.
= Kleinman—Newton with exact line search [B./Byers 98]

‘= inexact low-rank Kleinman—Newton-ADI with line search
[B./HEINKENSCHLOSS/SAAK/WEICHELT ’16]

e combination yields convergence proof
e efficient implementation exploits low-rank structure

e drastically reduced amount of ADI steps + step size computation “for free”

e extension to index-2 DAE case “straight forward”
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Q Accelerated Solution of Riccati Equations

—Convergence Result for inexact Kleinman—Newton Method—

Theorem [B./Heinkenschloss/Saak /Weichelt '16]
Set 74 € (0,1) and assume: (A, B; M) stabilizable, (C, A; M) detectable, and 3 X1 = 0 Vk that solves

(A= BEW)TXEDAg 4 pmaxED (A — BEW) = —¢Te — (kW) Tk 4 &+
such that
1L le < 7l IR(AD))
Find & € (0,1] such that ||R(X™ + &SM)||r < (1 — &a)||R(X®)||F and set
XKD (1 g )x® 4 g, Tk,

O IF & > Enin > 0Kk = [R(XW)|F — 0.

@ IF XX =0, and (A - BBTx® M) stable for k> K >0 = X% - x)
~ 0 the unique stabilizing solution).
X% = 0 the uni bilizi Juti
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Accelerated Solution of Riccati Equations

—Numerical Examples—

NSE scenario: Re = 500, Level 1, A = 10*, tolyewton = 10714
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Accelerated Solution of Riccati Equations

—Numerical Examples—

NSE scenario: Re = 500, Level 1, A = 10*, tolyewton = 10714
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Accelerated Solution of Riccati Equations

—Numerical Examples—

NSE scenario: Re = 500, Level 1, A = 10*, tolyewton = 10714
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Accelerated Solution of Riccati Equations

—Numerical Examples—

NSE scenario: Re = 500, Level 1, A = 10*, tolyewton = 10714
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@ Accelerated Solution of Riccati Equations

—Numerical Examples—

NSE scenario: Re = 500, Level 1, A = 10*, tolyewton = 10714

exact KN | exact KN+LS | inexact KN | inexact KN+LS
# Newt 27 11 27 10
#ADI 3185 1351 852 549
tNewt-ADI 1304.769 540.984 331.871 222.295
tshift 29.998 12.568 7.370 5.507
tLs - -
tiotal | 1334.767 | 553.581 | 339.241 | 227.824 |

Table : Numbers of steps and timings in seconds.

(©P. Benner/H. Weichelt Linear Feedback Stabilization of Incompressible Flow Problems



: Accelerated Solution of Riccati Equations
SO q

—Numerical Examples—

NSE scenario: Re = 500, Level 1, A = 10*, tolyewton = 10714

exact KN | exact KN+LS | inexact KN | inexact KN+LS
# Newt 27 11 27 10
#ADI 3185 1351 852 549
tNewt-ADI 1304.769 540.984 331.871 222.295
tshift 29.998 12.568 7.370 5.507
tL s - 0.029 - 0.023
tiotal | 1334.767 | 553.581 | 339.241 | 227.824 |

Table : Numbers of steps and timings in seconds.
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Accelerated Solution of Riccati Equations
Feedback Stabilization for Index-2 DAE systems

S

NSE scenario: Re = 500, tolap; = 1077, tolnewton = 1078
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Accelerated Solution of Riccati Equations
Feedback Stabilization for Index-2 DAE systems

‘\

NSE scenario: NSE scenario: Re = 500, tolyewton = 1078, N = 334489
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Accelerated Solution of Riccati Equations

S o
NS Feedback Stabilization for Index-2 DAE systems

NSE scenario: NSE scenario: Re = 500, tolyewton = 1078, N = 334489
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) Accelerated Solution of Riccati Equations
W Comparison to other Solution Approaches

Further solution approaches

m Kleinman—Newton ADI with Galerkin projection [B./Saak ’10]
m EKSM [Hevouni/JBiLou '09]
B RKSM [SiMoNcINI/SzYLD/MONSALVE '14]
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Accelerated Solution of Riccati Equations
Comparison to other Solution Approaches

Further solution approaches

m Kleinman—Newton ADI with Galerkin projection [B./Saak ’10]
m EKSM [Hevouni/JBiLou '09]
B RKSM [SiMoNcINI/SzYLD/MONSALVE '14]

Further test examples

@ 2D diffusion convection reaction problem [B./HEINKENSCHLOSS/SAAK/WEICHELT ’15]
® 3D diffusion convection reaction problem [B./HEINKENSCHLOSS/SAAK/WEICHELT ’15]

©® carex18: one dimensional heat flow
SLICOT benchmark collection: Example 4.2.b in [ABELS/B. ’99]
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Main Contributions

Analyzed Riccati-based feedback for scalar and vector-valued transport problems.

Wide-spread usability tailored for standard inf-sup stable finite element discretizations.
Established specially tailored Kleinman—Newton-ADI that avoids explicit projections.
Suitable preconditioners for multi-field flow problems have been developed.

Ongoing research in similar areas has been incorporated.

Major run time improvements due to combination of inexact Newton and line search.

Established new convergence proofs that were verified by extensive numerical tests.
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Main Contributions

Analyzed Riccati-based feedback for scalar and vector-valued transport problems.

Wide-spread usability tailored for standard inf-sup stable finite element discretizations.
Established specially tailored Kleinman—Newton-ADI that avoids explicit projections.
Suitable preconditioners for multi-field flow problems have been developed.

Ongoing research in similar areas has been incorporated.

Major run time improvements due to combination of inexact Newton and line search.

Established new convergence proofs that were verified by extensive numerical tests.

=- Showed overall usability of new approach by a closed-loop forward simulation.
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