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Introduction
Structered Linear Systems

We consider the class of Structured Linear System (SLS)

H(s) = C(s)K(s)−1B(s), (1)

where

C(s) =
k∑
i=1

αi(s)Ci, K(s) = sE−
l∑
i=1

βi(s)Ai, B(s) =
m∑
i=1

γi(s)Bi,

with E,Ai ∈ Rn×n,Bi ∈ Rn×m, and Ci ∈ Rp×n, and αi(s), βi(s) and γi(s) are
meromorphic functions.

For simplicity, in this talk p = m = 1 (SISO case).

We assumed that E is invertible (no descriptor behavior).

1) First-order systems: C(s) = C, B(s) = B, and K(s) = (sE−A)−1.

2) Second-order systems: C(s) = C, B(s) = 1
s
B, and K(s) = (sE−A1 − 1

s
A2)−1.

3) Time delay systems : C(s) = C, B(s) = B, and K(s) = (sE−A1 −A2e
−sτ )−1.

4) Integro-differential Volterra systems, input delays, fractional order systems . . .
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Introduction
Projection-based Framework

Given a large-scale SLS

H(s) = C(s)K(s)−1B(s),

find projection matrices

V,W ∈ Rn×r, WTV = Ir,

(with r � n), such that

Ĥ(s) = Ĉ(s)K̂(s)−1B̂(s), where

K̂(s) = WTK(s)V, B̂(s) = WTB(s)

and Ĉ(s) = C(s)V

Note Âi = WTAiV, Ê = WTEV, Ĉi = CiV and B̂i = WTBi.

The ROM preserves αi(s), βi(s) and γi(s) functions.
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Introduction
Existing Approaches

Interpolation-based methods

Interpolatory projection methods for structure-preserving model reduction.
[Beattie/Gugercin ’09]

Interpolation points σk, µj ⇒
K−1(σk)B(σk) ∈ range (V) and

K−T (µj)CT (µj) ∈ range (W) .

Balancing truncation methods

Structure-preserving model reduction for integro-differential equations.
[Breiten ’16]

Data-driven methods

Data-driven structured realization. [Schulze/Unger/Beattie/Gugercin ’18]
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P =
1

2π

∫ i∞

−i∞
Ks(s)−1B(s)B(s)TK(s)−T ds,

Q =
1

2π

∫ i∞

−i∞
Ks(s)−T C(s)T C(s)K(s)−1ds.
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Minimal Realization
Motivation

Let us consider the first-order system

H(s) = C(sI−A)−1B, with A =

−1 −1 1
0 −2 −1
0 0 −3

 , B =

1
2
1

 and CT =

1
0
0

 .

Note that H(s) = Ĥ(s) = Ĉ(sI− Â)−1B̂, with Â = −2, B̂ = 1 and Ĉ = 1.

Minimal realization problem

Find an order r and matrices V and W
such that the reduced-order model
obtained by projection satisfies

H(s) = Ĥ(s), ∀s.

Solutions:

Kalman reachability/observability criteria,

Hankel matrix (Silverman method),

Reachability and observability Gramians,

Loewner matrix. [Mayo/Antoulas ’07]
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Minimal realization problem

Find an order r and matrices V and W
such that the reduced-order model
obtained by projection satisfies

H(s) = Ĥ(s), ∀s.
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Minimal Realization
. . . of Structured Linear Systems

For illustration, consider the time-delay systems

H(s) = C(sI−A1 −A2e
−s)−1B, with

A1 =

−1 0 0
0 −1 0
0 0 −1

 ,A2 =

1 0 0
1 0 0
1 0 0

 ,
BT =

[
1 0 0

]
and C =

[
1 1 0

]
.

Ĥ(s) = Ĉ(sI− Â2 − Â2e
−s)−1B̂, with

Â1 =

[
−1 0
0 −1

]
, Â2 =

[
1 0
1 0

]
,

B̂ =

[
1
0

]
and ĈT =

[
1
1

]
.

H(s) = Ĥ(s), ∀s.

H has order 3 and Ĥ order 2.

Minimal realization problem

Is there a way to find the order r and matrices
V,W ∈ Rn×r such that the system Ĥ(s)
obtained by projection is ”minimal”, i.e

H(s) = Ĥ(s), ∀s?
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Minimal realization problem

Is there a way to find the order r and matrices
V,W ∈ Rn×r such that the system Ĥ(s)
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Minimal realization problem

Is there a way to find the order r and matrices
V,W ∈ Rn×r such that the system Ĥ(s)
obtained by projection is ”minimal”, i.e

H(s) = Ĥ(s), ∀s?
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Minimal Realization
Some Results

Given a first order system

H(s) = C(sE−A)−1B, with E ∈ Rn×n invertible.

Reachability characterization [Anderson/Antoulas ’90]

If (E,A,B) is Rn-reachable, t ≥ n, σi 6= σj for i 6= j, and

R =
[
(σ1E−A)−1B . . . (σtE−A)−1B

]
. Then rank (R) = n.

Observability characterization [Anderson/Antoulas ’90]

If (E,A,C) is Rn-observable, t ≥ n, σi 6= σj for i 6= j, and

O =
[
(σ1E−A)−TCT . . . (σtE−A)−TCT

]
. Then rank (O) = n.

Rank encodes minimality [Anderson/Antoulas ’90]

rank
(
OTER

)
= order of minimal realization = r.

© benner@mpi-magdeburg.mpg.de Recent Advances in Model Order Reduction of Delay Systems 10/25

mailto:benner@mpi-magdeburg.mpg.de


Minimal Realization
Some Results

Given a first order system

H(s) = C(sE−A)−1B, with E ∈ Rn×n invertible.

Reachability characterization [Anderson/Antoulas ’90]

If (E,A,B) is Rn-reachable, t ≥ n, σi 6= σj for i 6= j, and

R =
[
(σ1E−A)−1B . . . (σtE−A)−1B

]
. Then rank (R) = n.

Observability characterization [Anderson/Antoulas ’90]

If (E,A,C) is Rn-observable, t ≥ n, σi 6= σj for i 6= j, and

O =
[
(σ1E−A)−TCT . . . (σtE−A)−TCT

]
. Then rank (O) = n.

Rank encodes minimality [Anderson/Antoulas ’90]

rank
(
OTER

)
= order of minimal realization = r.

© benner@mpi-magdeburg.mpg.de Recent Advances in Model Order Reduction of Delay Systems 10/25

mailto:benner@mpi-magdeburg.mpg.de


Minimal Realization
Some Results

Given a first order system

H(s) = C(sE−A)−1B, with E ∈ Rn×n invertible.

Reachability characterization [Anderson/Antoulas ’90]

If (E,A,B) is Rn-reachable, t ≥ n, σi 6= σj for i 6= j, and

R =
[
(σ1E−A)−1B . . . (σtE−A)−1B

]
. Then rank (R) = n.

Observability characterization [Anderson/Antoulas ’90]

If (E,A,C) is Rn-observable, t ≥ n, σi 6= σj for i 6= j, and

O =
[
(σ1E−A)−TCT . . . (σtE−A)−TCT

]
. Then rank (O) = n.

Rank encodes minimality [Anderson/Antoulas ’90]

rank
(
OTER

)
= order of minimal realization = r.

© benner@mpi-magdeburg.mpg.de Recent Advances in Model Order Reduction of Delay Systems 10/25

mailto:benner@mpi-magdeburg.mpg.de


Minimal Realization
Some Results

Given a first order system

H(s) = C(sE−A)−1B, with E ∈ Rn×n invertible.

Reachability characterization [Anderson/Antoulas ’90]

If (E,A,B) is Rn-reachable, t ≥ n, σi 6= σj for i 6= j, and

R =
[
(σ1E−A)−1B . . . (σtE−A)−1B

]
. Then rank (R) = n.

Observability characterization [Anderson/Antoulas ’90]

If (E,A,C) is Rn-observable, t ≥ n, σi 6= σj for i 6= j, and

O =
[
(σ1E−A)−TCT . . . (σtE−A)−TCT

]
. Then rank (O) = n.

Rank encodes minimality [Anderson/Antoulas ’90]

rank
(
OTER

)
= order of minimal realization = r.

© benner@mpi-magdeburg.mpg.de Recent Advances in Model Order Reduction of Delay Systems 10/25

mailto:benner@mpi-magdeburg.mpg.de


Outline

1. Introduction

2. Minimal Realization

3. Reachability and Observability for SLS
An Illustrative Example

4. Model Order Reduction

5. Numerical Results

6. Outlook and Conclusions

© benner@mpi-magdeburg.mpg.de Recent Advances in Model Order Reduction of Delay Systems 11/25

mailto:benner@mpi-magdeburg.mpg.de


Reachability and Observability for SLS
Some Results

For SLS, we use the notion of Rn reachability and observability. Let us consider the SLS

H(s) = C(s)K(s)−1B(s) of order n.

Reachability characterization

If (K(s),B(s)) is Rn-reachable, t ≥ n, σi 6= σj for i 6= j, and

R =
[
K(σ1)−1B(σ1) . . . K(σt)

−1B(σt)
]
. Then rank (R) = n.

Observability characterization

If (K(s),B(s)) is Rn-observable, t ≥ n, σi 6= σj for i 6= j, and let

O =
[
K(σ1)−T CT (σ1) . . . K(σt)

−1CT (σt)
]
. Then rank (O) = n.

Rank encodes minimality

rank
(
OTER

)
= order of the SLS ”minimal” realization = r.
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Reachability and Observability for SLS
An Illustrative Example

Let’s go back to the time-delay example

H(s) = C(sI−A1 −A2e
−s)−1B, with

A1 =

−1 0 0
0 −1 0
0 0 −1

 ,A2 =

1 0 0
1 0 0
1 0 0


BT =

[
1 0 0

]
and C =

[
1 1 0

]
.

Let us construct, for σi = [1, 2, 3, 4, 5],

R =
[
K(σ1)−1B . . . K(σ5)−1B

]
,

O =
[
K(σ1)−TCT . . . K(σ5)−TCT

]
.

Hence, we see that

rank (R) = rank (O) = 2.
(

nonreachable
nonobservable

)

rank
(
OTR

)
= 2. (minimal realization order)

Then,
[Y,Σ,X] = svd(OTR).

So, we get the projection matrices

V = RX(:, 1 : 2) and W = OY(:, 1 : 2).

The Ĥ obtained using V and W satisfies

H(s) = Ĥ(s),∀s.
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H(s) = Ĥ(s),∀s.

© benner@mpi-magdeburg.mpg.de Recent Advances in Model Order Reduction of Delay Systems 13/25

mailto:benner@mpi-magdeburg.mpg.de


Reachability and Observability for SLS
An Illustrative Example

Let’s go back to the time-delay example

H(s) = C(sI−A1 −A2e
−s)−1B, with

A1 =

−1 0 0
0 −1 0
0 0 −1

 ,A2 =

1 0 0
1 0 0
1 0 0


BT =

[
1 0 0

]
and C =

[
1 1 0

]
.

Let us construct, for σi = [1, 2, 3, 4, 5],

R =
[
K(σ1)−1B . . . K(σ5)−1B

]
,

O =
[
K(σ1)−TCT . . . K(σ5)−TCT

]
.

Hence, we see that

rank (R) = rank (O) = 2.
(

nonreachable
nonobservable

)

rank
(
OTR

)
= 2. (minimal realization order)

Then,
[Y,Σ,X] = svd(OTR).

So, we get the projection matrices

V = RX(:, 1 : 2) and W = OY(:, 1 : 2).
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Model Order Reduction
The Basic Approach
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Figure represents the singular values of OTER for a large-scale time-delay example.

For large-scale systems, often low-rank phenomena can be observed.

Numerical rank of OTER generally small compared to n.

We can cut off states that are related to very small singular value of OTER.
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Model Order Reduction
Numerical Implementation

To compute R (analogously for O),

we set
Ri := K(σi)

−1B(σi), i ∈ {1, . . . , t}.

Hence, if R :=
[
R1, . . . , Rt

]
, it solves

ERS−
l∑
i=1

AiRMi =

m∑
i=1

Bibi,

where
Mi = diag (βi(σ1), . . . , βi(σt))

bi = [γi(σ1), . . . , γi(σt)] ,

S = diag (σ1, . . . , σt) .

This is a generalized Sylvester equation.

We use the truncated low-rank methods for generalized Sylvester equations from
[Kressner/Sirkovic ’15].
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Model Order Reduction
The Algorithm

Algorithm 1 Structure Preserving Numerical Minimal Realization algorithm (SPNMR)

Input: SLS K(s), B(s), C(s) and reduced order r.

1: Choose interpolation points (σ1, . . . , σl).
2: Solve for R (and O) the generalized Sylvester equations(low-rank method).
3: Determine the SVD

[Y,Σ,X] = svd(OTER).

4: Construct the projection matrices

V = RX(:, 1 : r) and W = OY(:, 1 : r).

Output: Reduced-order model is given by

K̂(s) = WTK(s)V, B̂(s) = WTB(s) and Ĉ(s) = C(s)V.
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Numerical Results
A Time delay System

Let us consider the time delay system

ẋ(t) = Ax(t) +Aτx(t− τ) +Bu(t),

y(t) = Cx(t).

Heated rod cooled using delayed
feedback from
[Breda/Maset/Vermiglio ’09].

Full order model n = 120 and τ = 1.

ROM obtained used SPNMR method
(100 log. dist. points in [1e−1, 1e3]i)
and Structured Balanced
Truncation [Breiten ’16].

Reduced order r = 4.

Original system SPNMR algorithm Structured BT
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Numerical Results
Second-order System

Let us consider the second-order system

Mẍ(t) +Dẋ(t) +Kx(t) = Bu(t)

y(t) = Cx(t).

Damped vibrational system.

Full order model with n = 301.

ROM obtained used SPNMR method
(500 log. dist. points in [1e−3, 1]i)
and Structured Balanced Truncation
[Breiten ’16].

Reduced order r = 50.

Original system SPNMR algorithm Structured BT

10−3 10−2 10−1 100 101
100

102

104

106

M
ag

n
it

u
d

e

© benner@mpi-magdeburg.mpg.de Recent Advances in Model Order Reduction of Delay Systems 20/25

mailto:benner@mpi-magdeburg.mpg.de


Numerical Results
Second-order System

Let us consider the second-order system
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Parametric Systems
Example 1: Minimal Realization of a Small-scale System

The results presented in this talk can also be generalized to parametric SLS, i.e.,

H(s, p) = C(s, p)K(s, p)−1B(s, p).

Consider H(s, p) = C (sI−A1 − pA2)−1 B, where

A1 =

−2 0 0
0 −1 0
0 0 −2

 , A2 =

 0 1 0
−1 0 0
1 0 0

 , B =

10
1

 , and CT =

11
0

 .
For t = 20 points (σi,pi), let

R =
[
K(σ1,p1)−1B . . . K(σt,pt)

−1B
]
,

O =
[
K(σ1,p1)−TCT . . . K(σt,pt)

−TCT
]
.

Build OTR and check rank (=2).

Compute projectors V and W and Ĥ(s, p).

Then, H(s, p) = Ĥ(s, p). 0 5 10 15 20
10−25

10−10

105

Decay of Singular values
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Parametric Systems
Example 2: Parametric FOM

FOM example [MORwiki]1 of order 1006 and p ∈ [10, 100] of the form

ẋ(t) = (A1 + pA2)x(t) +Bu(t)

y(t) = Cx(t)

1500 randomly points (s, p) ∈ [1e0, 1e4]i× [10, 100]. Reduced order r = 15.
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10−17
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Parametric Systems
Example 3: Parametric FOM with Artificial Delay

Consider again the FOM model [MORwiki]2 of order 1006 and p ∈ [10, 100] with an
artificial delay (τ = 3s)

ẋ(t) = A1x(t) + pA2x(t− τ) +Bu(t)

y(t) = Cx(t)

1500 randomly chosen points (s, p) ∈ [1e0, 1e4]i× [10, 100]. Reduced order r = 15.
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Outlook and Conclusions

Contribution of this talk

Minimal realization by projection of SLS.

Model reduction technique inspired by numerical rank of matrix OTER.

Projector computation solving generalized Sylvester equation (low-rank methods).

Performance illustrated by numerical examples for several system classes.

Extended results to parametric SLS.

Open questions and future work

Stability preservation and error bounds.

Application to real-world problems.

Extension to nonlinear systems, first results in [Benner/Goyal ’19, arXiv:1904.11891.]
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