

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

RECENT ADVANCES IN MODEL ORDER REDUCTION OF DELAY SYSTEMS

Automatic Generation of Minimal and Reduced Systems for Structured Parametric Systems

Peter Benner Igor Duff Pontes Pawan Goyal

MS: Model Order Reduction for Complex Dynamical Systems TU Eindhoven, June 6, 2019

- 1. Introduction
- 2. Minimal Realization
- 3. Reachability and Observability for SLS
- 4. Model Order Reduction
- 5. Numerical Results
- 6. Outlook and Conclusions

1. Introduction

Structered Linear Systems Projection-based Framework Existing Approaches

2. Minimal Realization

- 3. Reachability and Observability for SLS
- 4. Model Order Reduction
- 5. Numerical Results
- 6. Outlook and Conclusions

$$\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s), \tag{1}$$

where
$$\mathcal{C}(s) = \sum_{i=1}^{k} \alpha_i(s) \mathbf{C}_i, \quad \mathcal{K}(s) = s \mathbf{E} - \sum_{i=1}^{l} \beta_i(s) \mathbf{A}_i, \quad \mathcal{B}(s) = \sum_{i=1}^{m} \gamma_i(s) \mathbf{B}_i,$$

$$\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s),\tag{1}$$

where

$$\mathcal{C}(s) = \sum_{i=1}^{k} \alpha_i(s) \mathbf{C}_i, \quad \mathcal{K}(s) = s \mathbf{E} - \sum_{i=1}^{l} \beta_i(s) \mathbf{A}_i, \quad \mathcal{B}(s) = \sum_{i=1}^{m} \gamma_i(s) \mathbf{B}_i,$$

• with $\mathbf{E}, \mathbf{A}_i \in \mathbb{R}^{n \times n}, \mathbf{B}_i \in \mathbb{R}^{n \times m}$, and $\mathbf{C}_i \in \mathbb{R}^{p \times n}$, and $\alpha_i(s), \beta_i(s)$ and $\gamma_i(s)$ are meromorphic functions.

$$\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s),\tag{1}$$

where

$$\mathcal{C}(s) = \sum_{i=1}^{k} \alpha_i(s) \mathbf{C}_i, \quad \mathcal{K}(s) = s \mathbf{E} - \sum_{i=1}^{l} \beta_i(s) \mathbf{A}_i, \quad \mathcal{B}(s) = \sum_{i=1}^{m} \gamma_i(s) \mathbf{B}_i,$$

- with $\mathbf{E}, \mathbf{A}_i \in \mathbb{R}^{n \times n}, \mathbf{B}_i \in \mathbb{R}^{n \times m}$, and $\mathbf{C}_i \in \mathbb{R}^{p \times n}$, and $\alpha_i(s), \beta_i(s)$ and $\gamma_i(s)$ are meromorphic functions.
- For simplicity, in this talk p = m = 1 (SISO case).

$$\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s),\tag{1}$$

where

$$\mathcal{C}(s) = \sum_{i=1}^{k} \alpha_i(s) \mathbf{C}_i, \quad \mathcal{K}(s) = s \mathbf{E} - \sum_{i=1}^{l} \beta_i(s) \mathbf{A}_i, \quad \mathcal{B}(s) = \sum_{i=1}^{m} \gamma_i(s) \mathbf{B}_i,$$

- with $\mathbf{E}, \mathbf{A}_i \in \mathbb{R}^{n \times n}, \mathbf{B}_i \in \mathbb{R}^{n \times m}$, and $\mathbf{C}_i \in \mathbb{R}^{p \times n}$, and $\alpha_i(s), \beta_i(s)$ and $\gamma_i(s)$ are meromorphic functions.
- For simplicity, in this talk p = m = 1 (SISO case).
- We assumed that E is invertible (no descriptor behavior).

$$\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s),\tag{1}$$

where

$$\mathcal{C}(s) = \sum_{i=1}^{k} \alpha_i(s) \mathbf{C}_i, \quad \mathcal{K}(s) = s \mathbf{E} - \sum_{i=1}^{l} \beta_i(s) \mathbf{A}_i, \quad \mathcal{B}(s) = \sum_{i=1}^{m} \gamma_i(s) \mathbf{B}_i,$$

- with $\mathbf{E}, \mathbf{A}_i \in \mathbb{R}^{n \times n}, \mathbf{B}_i \in \mathbb{R}^{n \times m}$, and $\mathbf{C}_i \in \mathbb{R}^{p \times n}$, and $\alpha_i(s), \beta_i(s)$ and $\gamma_i(s)$ are meromorphic functions.
- For simplicity, in this talk p = m = 1 (SISO case).
- We assumed that **E** is invertible (no descriptor behavior).

1) First-order systems: C(s) = C, $\mathcal{B}(s) = B$, and $\mathcal{K}(s) = (sE - A)^{-1}$.

$$\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s), \tag{1}$$

where

$$\mathcal{C}(s) = \sum_{i=1}^{k} \alpha_i(s) \mathbf{C}_i, \quad \mathcal{K}(s) = s \mathbf{E} - \sum_{i=1}^{l} \beta_i(s) \mathbf{A}_i, \quad \mathcal{B}(s) = \sum_{i=1}^{m} \gamma_i(s) \mathbf{B}_i,$$

- with $\mathbf{E}, \mathbf{A}_i \in \mathbb{R}^{n \times n}, \mathbf{B}_i \in \mathbb{R}^{n \times m}$, and $\mathbf{C}_i \in \mathbb{R}^{p \times n}$, and $\alpha_i(s), \beta_i(s)$ and $\gamma_i(s)$ are meromorphic functions.
- For simplicity, in this talk p = m = 1 (SISO case).
- We assumed that E is invertible (no descriptor behavior).

1) First-order systems: C(s) = C, $\mathcal{B}(s) = B$, and $\mathcal{K}(s) = (sE - A)^{-1}$.

2) Second-order systems: C(s) = C, $\mathcal{B}(s) = \frac{1}{s}B$, and $\mathcal{K}(s) = (sE - A_1 - \frac{1}{s}A_2)^{-1}$.

$$\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s), \tag{1}$$

where

$$\mathcal{C}(s) = \sum_{i=1}^{k} \alpha_i(s) \mathbf{C}_i, \quad \mathcal{K}(s) = s \mathbf{E} - \sum_{i=1}^{l} \beta_i(s) \mathbf{A}_i, \quad \mathcal{B}(s) = \sum_{i=1}^{m} \gamma_i(s) \mathbf{B}_i,$$

- with $\mathbf{E}, \mathbf{A}_i \in \mathbb{R}^{n \times n}, \mathbf{B}_i \in \mathbb{R}^{n \times m}$, and $\mathbf{C}_i \in \mathbb{R}^{p \times n}$, and $\alpha_i(s), \beta_i(s)$ and $\gamma_i(s)$ are meromorphic functions.
- For simplicity, in this talk p = m = 1 (SISO case).
- We assumed that E is invertible (no descriptor behavior).
- 1) First-order systems: C(s) = C, $\mathcal{B}(s) = B$, and $\mathcal{K}(s) = (sE A)^{-1}$.
- 2) Second-order systems: C(s) = C, $\mathcal{B}(s) = \frac{1}{s}B$, and $\mathcal{K}(s) = (sE A_1 \frac{1}{s}A_2)^{-1}$.
- 3) Time delay systems : C(s) = C, $\mathcal{B}(s) = B$, and $\mathcal{K}(s) = (s\mathbf{E} \mathbf{A}_1 \mathbf{A}_2 e^{-s\tau})^{-1}$.

$$\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s),\tag{1}$$

where

$$\mathcal{C}(s) = \sum_{i=1}^{k} \alpha_i(s) \mathbf{C}_i, \quad \mathcal{K}(s) = s \mathbf{E} - \sum_{i=1}^{l} \beta_i(s) \mathbf{A}_i, \quad \mathcal{B}(s) = \sum_{i=1}^{m} \gamma_i(s) \mathbf{B}_i,$$

- with $\mathbf{E}, \mathbf{A}_i \in \mathbb{R}^{n \times n}, \mathbf{B}_i \in \mathbb{R}^{n \times m}$, and $\mathbf{C}_i \in \mathbb{R}^{p \times n}$, and $\alpha_i(s), \beta_i(s)$ and $\gamma_i(s)$ are meromorphic functions.
- For simplicity, in this talk p = m = 1 (SISO case).
- We assumed that E is invertible (no descriptor behavior).
- 1) First-order systems: C(s) = C, $\mathcal{B}(s) = B$, and $\mathcal{K}(s) = (sE A)^{-1}$.
- 2) Second-order systems: C(s) = C, $\mathcal{B}(s) = \frac{1}{s}B$, and $\mathcal{K}(s) = (sE A_1 \frac{1}{s}A_2)^{-1}$.
- 3) Time delay systems : C(s) = C, $\mathcal{B}(s) = B$, and $\mathcal{K}(s) = (s\mathbf{E} \mathbf{A}_1 \mathbf{A}_2 e^{-s\tau})^{-1}$.
- 4) Integro-differential Volterra systems, input delays, fractional order systems

Introduction Projection-based Framework

Given a large-scale SLS

 $\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s),$

Given a large-scale SLS

 $\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s),$

find projection matrices

 $\mathbf{V}, \mathbf{W} \in \mathbb{R}^{n \times r}, \quad \mathbf{W}^T \mathbf{V} = \mathbf{I}_r,$

(with $r \ll n$), such that

 $\hat{\mathbf{H}}(s) = \hat{\mathcal{C}}(s)\hat{\mathcal{K}}(s)^{-1}\hat{\mathcal{B}}(s), \ \text{where}$

Given a large-scale SLS

 $\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s),$

find projection matrices

 $\mathbf{V}, \mathbf{W} \in \mathbb{R}^{n \times r}, \quad \mathbf{W}^T \mathbf{V} = \mathbf{I}_r,$

(with $r \ll n$), such that

 $\hat{\mathbf{H}}(s) = \hat{\mathcal{C}}(s)\hat{\mathcal{K}}(s)^{-1}\hat{\mathcal{B}}(s), \text{ where }$

$$\begin{split} \hat{\mathcal{K}}(s) &= \mathbf{W}^T \mathcal{K}(s) \mathbf{V}, \hat{\mathbf{B}}(s) = \mathbf{W}^T \mathbf{B}(s) \\ \text{and } \hat{\mathbf{C}}(s) &= \mathbf{C}(s) \mathbf{V} \end{split}$$

Given a large-scale SLS

 $\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s),$

find projection matrices

 $\mathbf{V}, \mathbf{W} \in \mathbb{R}^{n \times r}, \quad \mathbf{W}^T \mathbf{V} = \mathbf{I}_r,$

(with $r \ll n$), such that

 $\hat{\mathbf{H}}(s)=\hat{\mathcal{C}}(s)\hat{\mathcal{K}}(s)^{-1}\hat{\mathcal{B}}(s),$ where

$$\begin{split} \hat{\mathcal{K}}(s) &= \mathbf{W}^T \mathcal{K}(s) \mathbf{V}, \hat{\mathbf{B}}(s) = \mathbf{W}^T \mathbf{B}(s) \\ \text{and } \hat{\mathbf{C}}(s) &= \mathbf{C}(s) \mathbf{V} \end{split}$$

• Note $\hat{\mathbf{A}}_i = \mathbf{W}^T \mathbf{A}_i \mathbf{V}$, $\hat{\mathbf{E}} = \mathbf{W}^T \mathbf{E} \mathbf{V}$, $\hat{\mathbf{C}}_i = \mathbf{C}_i \mathbf{V}$ and $\hat{\mathbf{B}}_i = \mathbf{W}^T \mathbf{B}_i$.

• The ROM preserves $\alpha_i(s), \beta_i(s)$ and $\gamma_i(s)$ functions.

Interpolation-based methods

• Interpolatory projection methods for structure-preserving model reduction. [BEATTIE/GUGERCIN '09]

Interpolation points
$$\sigma_k, \mu_j \Rightarrow \begin{pmatrix} \mathcal{K}^{-1}(\sigma_k)\mathcal{B}(\sigma_k) \in \operatorname{range}(\mathbf{V}) \text{ and} \\ \mathcal{K}^{-T}(\mu_j)\mathcal{C}^T(\mu_j) \in \operatorname{range}(\mathbf{W}). \end{pmatrix}$$

Interpolation-based methods

• Interpolatory projection methods for structure-preserving model reduction.

```
[BEATTIE/GUGERCIN '09]
```

Balancing truncation methods

• Structure-preserving model reduction for integro-differential equations. [BREITEN '16]

$$\mathbf{P} = \frac{1}{2\pi} \int_{-i\infty}^{i\infty} \mathcal{K}_s(s)^{-1} \mathcal{B}(s) \mathcal{B}(s)^T \mathcal{K}(s)^{-T} ds,$$
$$\mathbf{Q} = \frac{1}{2\pi} \int_{-i\infty}^{i\infty} \mathcal{K}_s(s)^{-T} \mathcal{C}(s)^T \mathcal{C}(s) \mathcal{K}(s)^{-1} ds.$$

Interpolation-based methods

• Interpolatory projection methods for structure-preserving model reduction.

[BEATTIE/GUGERCIN '09]

Balancing truncation methods

• Structure-preserving model reduction for integro-differential equations. [BREITEN '16]

Data-driven methods

• Data-driven structured realization.

[Schulze/Unger/Beattie/Gugercin '18]

1. Introduction

2. Minimal Realization

Motivation ... of Structured Linear Systems Some Results

- 3. Reachability and Observability for SLS
- 4. Model Order Reduction
- 5. Numerical Results
- 6. Outlook and Conclusions

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}, \text{ with } \mathbf{A} = \begin{bmatrix} -1 & -1 & 1\\ 0 & -2 & -1\\ 0 & 0 & -3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix} \text{ and } \mathbf{C}^T = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}.$$

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}, \text{ with } \mathbf{A} = \begin{bmatrix} -1 & -1 & 1\\ 0 & -2 & -1\\ 0 & 0 & -3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix} \text{ and } \mathbf{C}^T = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}.$$

Note that $\mathbf{H}(s) = \hat{\mathbf{H}}(s) = \hat{\mathbf{C}}(s\mathbf{I} - \hat{\mathbf{A}})^{-1}\hat{\mathbf{B}}$, with $\hat{\mathbf{A}} = -2, \hat{\mathbf{B}} = 1$ and $\hat{\mathbf{C}} = 1$.

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}, \text{ with } \mathbf{A} = \begin{bmatrix} -1 & -1 & 1\\ 0 & -2 & -1\\ 0 & 0 & -3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix} \text{ and } \mathbf{C}^T = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}.$$

Note that
$$\mathbf{H}(s) = \hat{\mathbf{H}}(s) = \hat{\mathbf{C}}(s\mathbf{I} - \hat{\mathbf{A}})^{-1}\hat{\mathbf{B}}$$
, with $\hat{\mathbf{A}} = -2, \hat{\mathbf{B}} = 1$ and $\hat{\mathbf{C}} = 1$.

Minimal realization problem

Find an order r and matrices ${\bf V}$ and ${\bf W}$ such that the reduced-order model obtained by projection satisfies

$$\mathbf{H}(s) = \hat{\mathbf{H}}(s), \forall s.$$

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}, \text{ with } \mathbf{A} = \begin{bmatrix} -1 & -1 & 1\\ 0 & -2 & -1\\ 0 & 0 & -3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix} \text{ and } \mathbf{C}^T = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}.$$

Note that $\mathbf{H}(s) = \hat{\mathbf{H}}(s) = \hat{\mathbf{C}}(s\mathbf{I} - \hat{\mathbf{A}})^{-1}\hat{\mathbf{B}}$, with $\hat{\mathbf{A}} = -2, \hat{\mathbf{B}} = 1$ and $\hat{\mathbf{C}} = 1$.

Minimal realization problem

Find an order r and matrices \mathbf{V} and \mathbf{W} such that the reduced-order model obtained by projection satisfies

$$\mathbf{H}(s) = \hat{\mathbf{H}}(s), \forall s.$$

Solutions:

- Kalman reachability/observability criteria,
- Hankel matrix (Silverman method),
- Reachability and observability Gramians,
- Loewner matrix. [Mayo/Antoulas '07]

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \\ \mathbf{B}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}.$$

$$\begin{split} \mathbf{H}(s) &= \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } & \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \\ \mathbf{B}^T &= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}, \\ \hat{\mathbf{H}}(s) &= \hat{\mathbf{C}}(s\mathbf{I} - \hat{\mathbf{A}}_2 - \hat{\mathbf{A}}_2 e^{-s})^{-1} \hat{\mathbf{B}}, \text{ with } & \hat{\mathbf{A}}_1 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \hat{\mathbf{A}}_2 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \\ \hat{\mathbf{B}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \hat{\mathbf{C}}^T = \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \end{split}$$

-

-

-

-

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1}\mathbf{B}, \text{ with } \begin{array}{l} \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \\ \mathbf{B}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}, \\ \mathbf{\hat{H}}(s) = \hat{\mathbf{C}}(s\mathbf{I} - \hat{\mathbf{A}}_2 - \hat{\mathbf{A}}_2 e^{-s})^{-1}\hat{\mathbf{B}}, \text{ with } \begin{array}{l} \hat{\mathbf{A}}_1 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \hat{\mathbf{A}}_2 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \\ \hat{\mathbf{B}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \hat{\mathbf{C}}^T = \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \end{array}$$

-

-

-

-

• $\mathbf{H}(s) = \hat{\mathbf{H}}(s), \forall s.$

$$\begin{split} \mathbf{H}(s) &= \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } & \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \\ \mathbf{B}^T &= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}, \\ \hat{\mathbf{H}}(s) &= \hat{\mathbf{C}}(s\mathbf{I} - \hat{\mathbf{A}}_2 - \hat{\mathbf{A}}_2 e^{-s})^{-1} \hat{\mathbf{B}}, \text{ with } & \hat{\mathbf{A}}_1 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \hat{\mathbf{A}}_2 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \\ \hat{\mathbf{B}} &= \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \hat{\mathbf{C}}^T = \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \end{split}$$

-

•
$$\mathbf{H}(s) = \hat{\mathbf{H}}(s), \forall s.$$

 $\bullet~{\bf H}$ has order 3 and $\hat{{\bf H}}$ order 2.

-

-

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1}\mathbf{B}, \text{ with } \begin{aligned} \mathbf{A}_1 &= \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \\ \mathbf{B}^T &= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}, \\ \hat{\mathbf{H}}(s) &= \hat{\mathbf{C}}(s\mathbf{I} - \hat{\mathbf{A}}_2 - \hat{\mathbf{A}}_2 e^{-s})^{-1}\hat{\mathbf{B}}, \text{ with } \\ \hat{\mathbf{B}} &= \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \hat{\mathbf{A}}_2 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \\ \hat{\mathbf{B}} &= \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \hat{\mathbf{C}}^T = \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \end{aligned}$$

- $\mathbf{H}(s) = \hat{\mathbf{H}}(s), \forall s.$
- $\bullet~{\bf H}$ has order 3 and $\hat{{\bf H}}$ order 2.

Minimal realization problem

Is there a way to find the order r and matrices $\mathbf{V}, \mathbf{W} \in \mathbb{R}^{n \times r}$ such that the system $\hat{\mathbf{H}}(s)$ obtained by projection is "minimal", *i.e*

$$\mathbf{H}(s) = \hat{\mathbf{H}}(s), \forall s?$$

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}$$
, with $\mathbf{E} \in \mathbb{R}^{n \times n}$ invertible.

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}$$
, with $\mathbf{E} \in \mathbb{R}^{n \times n}$ invertible.

Reachability characterization	[Anderson/Antoulas '90]
If $({f E},{f A},{f B})$ is R^n -reachable, $t\geq n$, $\sigma_i eq\sigma_j$ for $i eq j$, and	
$\mathbf{R} = \begin{bmatrix} (\sigma_1 \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} & \dots & (\sigma_t \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} \end{bmatrix}$. Then a	$\operatorname{rank}\left(\mathbf{R}\right)=n.$

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}$$
, with $\mathbf{E} \in \mathbb{R}^{n \times n}$ invertible.

Reachability characterization

[Anderson/Antoulas '90]

If $(\mathbf{E}, \mathbf{A}, \mathbf{B})$ is \mathbb{R}^n -reachable, $t \ge n$, $\sigma_i \ne \sigma_j$ for $i \ne j$, and

 $\mathbf{R} = \begin{bmatrix} (\sigma_1 \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} & \dots & (\sigma_t \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} \end{bmatrix}$. Then rank $(\mathbf{R}) = n$.

Observability characterization

ANDERSON/ANTOULAS '90]

If $(\mathbf{E}, \mathbf{A}, \mathbf{C})$ is \mathbb{R}^n -observable, $t \ge n$, $\sigma_i \ne \sigma_j$ for $i \ne j$, and

$$\mathbf{O} = \begin{bmatrix} (\sigma_1 \mathbf{E} - \mathbf{A})^{-T} \mathbf{C}^T & \dots & (\sigma_t \mathbf{E} - \mathbf{A})^{-T} \mathbf{C}^T \end{bmatrix}$$
. Then rank $(\mathbf{O}) = n$.

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}$$
, with $\mathbf{E} \in \mathbb{R}^{n \times n}$ invertible.

Reachability characterization

[ANDERSON/ANTOULAS '90]

If $(\mathbf{E}, \mathbf{A}, \mathbf{B})$ is \mathbb{R}^n -reachable, $t \ge n$, $\sigma_i \ne \sigma_j$ for $i \ne j$, and

 $\mathbf{R} = [(\sigma_1 \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} \dots (\sigma_t \mathbf{E} - \mathbf{A})^{-1} \mathbf{B}].$ Then rank $(\mathbf{R}) = n.$

Observability characterization

uchla t N u = / = feu i / i and

If
$$({f E},{f A},{f C})$$
 is R^n -observable, $t\geq n$, $\sigma_i
eq\sigma_j$ for $i
eq j$, and

$$\mathbf{O} = \begin{bmatrix} (\sigma_1 \mathbf{E} - \mathbf{A})^{-T} \mathbf{C}^T & \dots & (\sigma_t \mathbf{E} - \mathbf{A})^{-T} \mathbf{C}^T \end{bmatrix}$$
. Then rank $(\mathbf{O}) = n$

Rank encodes minimality

[Anderson/Antoulas '90]

$$\operatorname{rank}\left(\mathbf{O}^{T}\mathbf{ER}\right) =$$
order of minimal realization = r.

© benner@mpi-magdeburg.mpg.de

- 1. Introduction
- 2. Minimal Realization
- 3. Reachability and Observability for SLS An Illustrative Example
- 4. Model Order Reduction
- 5. Numerical Results
- 6. Outlook and Conclusions

For **SLS**, we use the notion of \mathbb{R}^n reachability and observability. Let us consider the SLS

 $\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s)$ of order n.

For **SLS**, we use the notion of \mathbb{R}^n reachability and observability. Let us consider the SLS

$$\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s) \text{ of order n.}$$

Reachability characterization

If $(\mathcal{K}(s), \mathcal{B}(s))$ is \mathbb{R}^n -reachable, $t \ge n$, $\sigma_i \ne \sigma_j$ for $i \ne j$, and

 $\mathbf{R} = \begin{bmatrix} \mathcal{K}(\sigma_1)^{-1} \mathcal{B}(\sigma_1) & \dots & \mathcal{K}(\sigma_t)^{-1} \mathcal{B}(\sigma_t) \end{bmatrix}.$ Then rank (\mathbf{R}) = n.

For **SLS**, we use the notion of \mathbb{R}^n reachability and observability. Let us consider the SLS

$$\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s) \text{ of order n.}$$

Reachability characterization

If $(\mathcal{K}(s), \mathcal{B}(s))$ is \mathbb{R}^n -reachable, $t \ge n$, $\sigma_i \ne \sigma_j$ for $i \ne j$, and

 $\mathbf{R} = \begin{bmatrix} \mathcal{K}(\sigma_1)^{-1} \mathcal{B}(\sigma_1) & \dots & \mathcal{K}(\sigma_t)^{-1} \mathcal{B}(\sigma_t) \end{bmatrix}.$ Then rank $(\mathbf{R}) = n$.

Observability characterization

If $(\mathcal{K}(s), \mathcal{B}(s))$ is \mathbb{R}^n -observable, $t \ge n$, $\sigma_i \ne \sigma_j$ for $i \ne j$, and let

 $\mathbf{O} = \begin{bmatrix} \mathcal{K}(\sigma_1)^{-T} \mathcal{C}^T(\sigma_1) & \dots & \mathcal{K}(\sigma_t)^{-1} \mathcal{C}^T(\sigma_t) \end{bmatrix}.$ Then rank (\mathbf{O}) = n.

For **SLS**, we use the notion of \mathbb{R}^n reachability and observability. Let us consider the SLS

$$\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s) \text{ of order n.}$$

Reachability characterization

If $(\mathcal{K}(s), \mathcal{B}(s))$ is \mathbb{R}^n -reachable, $t \ge n$, $\sigma_i \ne \sigma_j$ for $i \ne j$, and

 $\mathbf{R} = \begin{bmatrix} \mathcal{K}(\sigma_1)^{-1} \mathcal{B}(\sigma_1) & \dots & \mathcal{K}(\sigma_t)^{-1} \mathcal{B}(\sigma_t) \end{bmatrix}.$ Then rank $(\mathbf{R}) = n$.

Observability characterization

If $(\mathcal{K}(s), \mathcal{B}(s))$ is \mathbb{R}^n -observable, $t \ge n$, $\sigma_i \ne \sigma_j$ for $i \ne j$, and let

$$\mathbf{O} = \begin{bmatrix} \mathcal{K}(\sigma_1)^{-T} \mathcal{C}^T(\sigma_1) & \dots & \mathcal{K}(\sigma_t)^{-1} \mathcal{C}^T(\sigma_t) \end{bmatrix}.$$
 Then rank (\mathbf{O}) = n.

Rank encodes minimality

$$\operatorname{rank}\left(\mathbf{O}^{T}\mathbf{ER}\right) = \text{order of the SLS "minimal" realization} = r.$$

© benner@mpi-magdeburg.mpg.de

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{B}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}.$$

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{B}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}.$$

Let us construct, for $\sigma_i = [1, 2, 3, 4, 5]$,

$$\mathbf{R} = \begin{bmatrix} K(\sigma_1)^{-1}\mathbf{B} & \dots & K(\sigma_5)^{-1}\mathbf{B} \end{bmatrix}, \mathbf{O} = \begin{bmatrix} K(\sigma_1)^{-T}\mathbf{C}^T & \dots & K(\sigma_5)^{-T}\mathbf{C}^T \end{bmatrix}.$$

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{B}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}.$$

Let us construct, for $\sigma_i = [1, 2, 3, 4, 5]$,

$$\mathbf{R} = \begin{bmatrix} K(\sigma_1)^{-1}\mathbf{B} & \dots & K(\sigma_5)^{-1}\mathbf{B} \end{bmatrix},\\ \mathbf{O} = \begin{bmatrix} K(\sigma_1)^{-T}\mathbf{C}^T & \dots & K(\sigma_5)^{-T}\mathbf{C}^T \end{bmatrix}$$

Hence, we see that

•
$$\operatorname{rank}(\mathbf{R}) = \operatorname{rank}(\mathbf{O}) = 2.$$
 $\binom{\operatorname{nonreachable}}{\operatorname{nonobservable}}$

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{B}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}.$$

Let us construct, for $\sigma_i = [1, 2, 3, 4, 5]$,

$$\mathbf{R} = \begin{bmatrix} K(\sigma_1)^{-1}\mathbf{B} & \dots & K(\sigma_5)^{-1}\mathbf{B} \end{bmatrix},\\ \mathbf{O} = \begin{bmatrix} K(\sigma_1)^{-T}\mathbf{C}^T & \dots & K(\sigma_5)^{-T}\mathbf{C}^T \end{bmatrix}$$

Hence, we see that

•
$$\operatorname{rank}(\mathbf{R}) = \operatorname{rank}(\mathbf{O}) = 2$$
. $\binom{\operatorname{nonreachable}}{\operatorname{nonobservable}}$

• $\mathrm{rank}\left(\mathbf{O}^{T}\mathbf{R}
ight)=2.$ (minimal realization order)

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{B}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}.$$

Let us construct, for
$$\sigma_i = [1, 2, 3, 4, 5]$$
,

Then,

$$[\mathbf{Y}, \boldsymbol{\Sigma}, \mathbf{X}] = \mathbf{svd}(\mathbf{O}^T \mathbf{R}).$$

$$\mathbf{R} = \begin{bmatrix} K(\sigma_1)^{-1}\mathbf{B} & \dots & K(\sigma_5)^{-1}\mathbf{B} \end{bmatrix},\\ \mathbf{O} = \begin{bmatrix} K(\sigma_1)^{-T}\mathbf{C}^T & \dots & K(\sigma_5)^{-T}\mathbf{C}^T \end{bmatrix}$$

Hence, we see that

•
$$\operatorname{rank}(\mathbf{R}) = \operatorname{rank}(\mathbf{O}) = 2.$$
 $\binom{\operatorname{nonreachable}}{\operatorname{nonobservable}}$

• $\mathrm{rank}\left(\mathbf{O}^{T}\mathbf{R}
ight)=2.$ (minimal realization order)

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{B}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}.$$

Let us construct, for
$$\sigma_i = [1, 2, 3, 4, 5]$$
,

$$\mathbf{R} = \begin{bmatrix} K(\sigma_1)^{-1}\mathbf{B} & \dots & K(\sigma_5)^{-1}\mathbf{B} \end{bmatrix}, \\ \mathbf{O} = \begin{bmatrix} K(\sigma_1)^{-T}\mathbf{C}^T & \dots & K(\sigma_5)^{-T}\mathbf{C}^T \end{bmatrix}.$$

Hence, we see that

•
$$\operatorname{rank}(\mathbf{R}) = \operatorname{rank}(\mathbf{O}) = 2.$$
 $\binom{\operatorname{nonreachable}}{\operatorname{nonobservable}}$

•
$$\mathrm{rank}\left(\mathbf{O}^T\mathbf{R}\right)=2.$$
 (minimal realization order)

Then, $[\mathbf{Y},\boldsymbol{\Sigma},\mathbf{X}] = \mathsf{svd}(\mathbf{O}^T\mathbf{R}).$

So, we get the projection matrices

 $\mathbf{V} = \mathbf{R}\mathbf{X}(:,1:2) \text{ and } \mathbf{W} = \mathbf{O}\mathbf{Y}(:,1:2).$

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{B}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}.$$

Let us construct, for
$$\sigma_i = [1, 2, 3, 4, 5]$$
,

$$\mathbf{R} = \begin{bmatrix} K(\sigma_1)^{-1}\mathbf{B} & \dots & K(\sigma_5)^{-1}\mathbf{B} \end{bmatrix}, \\ \mathbf{O} = \begin{bmatrix} K(\sigma_1)^{-T}\mathbf{C}^T & \dots & K(\sigma_5)^{-T}\mathbf{C}^T \end{bmatrix}.$$

Hence, we see that

•
$$\operatorname{rank}(\mathbf{R}) = \operatorname{rank}(\mathbf{O}) = 2.$$
 (nonreachable nonobservable)

•
$$\mathrm{rank}\left(\mathbf{O}^T\mathbf{R}\right)=2.$$
 (minimal realization order)

Then, $[\mathbf{Y},\boldsymbol{\Sigma},\mathbf{X}] = \mathsf{svd}(\mathbf{O}^T\mathbf{R}).$

So, we get the projection matrices $\mathbf{V} = \mathbf{R}\mathbf{X}(:, 1:2)$ and $\mathbf{W} = \mathbf{O}\mathbf{Y}(:, 1:2)$. The $\hat{\mathbf{H}}$ obtained using \mathbf{V} and \mathbf{W} satisfies $\mathbf{H}(s) = \hat{\mathbf{H}}(s), \forall s$.

- 1. Introduction
- 2. Minimal Realization
- 3. Reachability and Observability for SLS
- 4. Model Order Reduction The Basic Approach Numerical Implementation The Algorithm
- 5. Numerical Results
- 6. Outlook and Conclusions

• Figure represents the singular values of $\mathbf{O}^T \mathbf{E} \mathbf{R}$ for a large-scale time-delay example.

- Figure represents the singular values of $\mathbf{O}^T \mathbf{E} \mathbf{R}$ for a large-scale time-delay example.
- For large-scale systems, often low-rank phenomena can be observed.

- Figure represents the singular values of $\mathbf{O}^T \mathbf{E} \mathbf{R}$ for a large-scale time-delay example.
- For large-scale systems, often low-rank phenomena can be observed.
- Numerical rank of $\mathbf{O}^T \mathbf{E} \mathbf{R}$ generally small compared to n.

- Figure represents the singular values of $\mathbf{O}^T \mathbf{E} \mathbf{R}$ for a large-scale time-delay example.
- For large-scale systems, often low-rank phenomena can be observed.
- Numerical rank of $\mathbf{O}^T \mathbf{E} \mathbf{R}$ generally small compared to n.
- We can cut off states that are related to very small singular value of $O^T ER$.

To compute ${\bf R}$ (analogously for O),

we set

$$R_i := \mathcal{K}(\sigma_i)^{-1} \mathcal{B}(\sigma_i), \quad i \in \{1, \dots, t\}.$$

To compute \mathbf{R} (analogously for \mathbf{O}),

we set

$$R_i := \mathcal{K}(\sigma_i)^{-1} \mathcal{B}(\sigma_i), \quad i \in \{1, \dots, t\}.$$

• Hence, if $\mathbf{R} := \begin{bmatrix} R_1, \dots, R_t \end{bmatrix}$, it solves

$$\mathbf{ERS} - \sum_{i=1}^{l} \mathbf{A}_i \mathbf{RM}_i = \sum_{i=1}^{m} \mathbf{B}_i \mathbf{b}_i,$$

where

$$\mathbf{M}_{i} = \operatorname{diag} \left(\beta_{i}(\sigma_{1}), \dots, \beta_{i}(\sigma_{t})\right)$$
$$\mathbf{b}_{i} = \left[\gamma_{i}(\sigma_{1}), \dots, \gamma_{i}(\sigma_{t})\right],$$
$$\mathbf{S} = \operatorname{diag} \left(\sigma_{1}, \dots, \sigma_{t}\right).$$

To compute \mathbf{R} (analogously for \mathbf{O}),

we set

$$R_i := \mathcal{K}(\sigma_i)^{-1} \mathcal{B}(\sigma_i), \quad i \in \{1, \dots, t\}.$$

• Hence, if $\mathbf{R} := [R_1, \dots, R_t]$, it solves

$$\mathbf{ERS} - \sum_{i=1}^{l} \mathbf{A}_i \mathbf{RM}_i = \sum_{i=1}^{m} \mathbf{B}_i \mathbf{b}_i,$$

where

$$\mathbf{M}_{i} = \operatorname{diag} \left(\beta_{i}(\sigma_{1}), \dots, \beta_{i}(\sigma_{t})\right)$$
$$\mathbf{b}_{i} = \left[\gamma_{i}(\sigma_{1}), \dots, \gamma_{i}(\sigma_{t})\right],$$
$$\mathbf{S} = \operatorname{diag} \left(\sigma_{1}, \dots, \sigma_{t}\right).$$

• This is a generalized Sylvester equation.

To compute \mathbf{R} (analogously for \mathbf{O}),

we set

$$R_i := \mathcal{K}(\sigma_i)^{-1} \mathcal{B}(\sigma_i), \quad i \in \{1, \dots, t\}.$$

• Hence, if $\mathbf{R} := [R_1, \dots, R_t]$, it solves

$$\mathbf{ERS} - \sum_{i=1}^{l} \mathbf{A}_i \mathbf{RM}_i = \sum_{i=1}^{m} \mathbf{B}_i \mathbf{b}_i,$$

where

$$\mathbf{M}_{i} = \operatorname{diag} \left(\beta_{i}(\sigma_{1}), \dots, \beta_{i}(\sigma_{t})\right)$$
$$\mathbf{b}_{i} = \left[\gamma_{i}(\sigma_{1}), \dots, \gamma_{i}(\sigma_{t})\right],$$
$$\mathbf{S} = \operatorname{diag} \left(\sigma_{1}, \dots, \sigma_{t}\right).$$

- This is a generalized Sylvester equation.
- We use the truncated low-rank methods for generalized Sylvester equations from [KRESSNER/SIRKOVIC '15].

Input: SLS $\mathcal{K}(s)$, $\mathcal{B}(s)$, $\mathcal{C}(s)$ and reduced order r.

Input: SLS $\mathcal{K}(s),\,\mathcal{B}(s),\,\mathcal{C}(s)$ and reduced order r.

1: Choose interpolation points $(\sigma_1, \ldots, \sigma_l)$.

Input: SLS $\mathcal{K}(s)$, $\mathcal{B}(s)$, $\mathcal{C}(s)$ and reduced order r.

- 1: Choose interpolation points $(\sigma_1, \ldots, \sigma_l)$.
- 2: Solve for ${\bf R}$ (and ${\bf O})$ the generalized Sylvester equations(low-rank method).

Input: SLS $\mathcal{K}(s)$, $\mathcal{B}(s)$, $\mathcal{C}(s)$ and reduced order r.

- 1: Choose interpolation points $(\sigma_1, \ldots, \sigma_l)$.
- 2: Solve for \mathbf{R} (and \mathbf{O}) the generalized Sylvester equations(low-rank method).
- 3: Determine the SVD

 $[\mathbf{Y}, \boldsymbol{\Sigma}, \mathbf{X}] = \mathrm{svd}(\mathbf{O}^T \mathbf{E} \mathbf{R}).$

Input: SLS $\mathcal{K}(s)$, $\mathcal{B}(s)$, $\mathcal{C}(s)$ and reduced order r.

- 1: Choose interpolation points $(\sigma_1, \ldots, \sigma_l)$.
- 2: Solve for \mathbf{R} (and \mathbf{O}) the generalized Sylvester equations(low-rank method).
- 3: Determine the SVD

$$[\mathbf{Y}, \boldsymbol{\Sigma}, \mathbf{X}] = \mathbf{svd}(\mathbf{O}^T \mathbf{E} \mathbf{R}).$$

4: Construct the projection matrices

 $\mathbf{V} = \mathbf{R}\mathbf{X}(:, 1:r) \text{ and } \mathbf{W} = \mathbf{O}\mathbf{Y}(:, 1:r).$

Input: SLS $\mathcal{K}(s)$, $\mathcal{B}(s)$, $\mathcal{C}(s)$ and reduced order r.

- 1: Choose interpolation points $(\sigma_1, \ldots, \sigma_l)$.
- 2: Solve for \mathbf{R} (and \mathbf{O}) the generalized Sylvester equations(low-rank method).
- 3: Determine the SVD

$$[\mathbf{Y}, \Sigma, \mathbf{X}] = \mathsf{svd}(\mathbf{O}^T \mathbf{E} \mathbf{R}).$$

4: Construct the projection matrices

$$V = RX(:, 1:r)$$
 and $W = OY(:, 1:r)$.

Output: Reduced-order model is given by

$$\hat{\mathcal{K}}(s) = \mathbf{W}^T \mathcal{K}(s) \mathbf{V}, \ \hat{\mathcal{B}}(s) = \mathbf{W}^T \mathcal{B}(s) \text{ and } \hat{\mathcal{C}}(s) = \mathcal{C}(s) \mathbf{V}.$$

- 1. Introduction
- 2. Minimal Realization
- 3. Reachability and Observability for SLS
- 4. Model Order Reduction

5. Numerical Results

A Time delay System Second-order System Parametric Systems

6. Outlook and Conclusions

Numerical Results A Time delay System

Let us consider the time delay system

$$\dot{x}(t) = Ax(t) + A_{\tau}x(t-\tau) + Bu(t),$$

$$y(t) = Cx(t).$$

• Heated rod cooled using delayed feedback from [BreDA/MASET/VERMIGLIO '09].

- Full order model n = 120 and $\tau = 1$.
- ROM obtained used SPNMR method (100 log. dist. points in $[1e^{-1}, 1e^3]i$) and Structured Balanced Truncation [BREITEN '16].
- Reduced order r = 4.

Let us consider the time delay system

$$\dot{x}(t) = Ax(t) + A_{\tau}x(t-\tau) + Bu(t),$$

$$y(t) = Cx(t).$$

• Heated rod cooled using delayed feedback from [BreDA/MASET/VERMIGLIO '09].

- Full order model n = 120 and $\tau = 1$.
- ROM obtained used SPNMR method (100 log. dist. points in $[1e^{-1}, 1e^3]i$) and Structured Balanced Truncation [BREITEN '16].
- Reduced order r = 4.

Let us consider the time delay system

$$\dot{x}(t) = Ax(t) + A_{\tau}x(t-\tau) + Bu(t),$$

$$y(t) = Cx(t).$$

• Heated rod cooled using delayed feedback from [Breda/MASET/VERMIGLIO '09].

- Full order model n = 120 and $\tau = 1$.
- ROM obtained used SPNMR method (100 log. dist. points in $[1e^{-1}, 1e^3]i$) and Structured Balanced Truncation [BREITEN '16].
- Reduced order r = 4.

Numerical Results A Time delay System

Let us consider the time delay system

$$\dot{x}(t) = Ax(t) + A_{\tau}x(t-\tau) + Bu(t),$$

$$y(t) = Cx(t).$$

• Heated rod cooled using delayed feedback from [BreDA/MASET/VERMIGLIO '09].

- Full order model n = 120 and $\tau = 1$.
- ROM obtained used SPNMR method (100 log. dist. points in $[1e^{-1}, 1e^3]i$) and Structured Balanced Truncation [BREITEN '16].
- Reduced order r = 12.

Let us consider the second-order system

$$M\ddot{x}(t) + D\dot{x}(t) + Kx(t) = Bu(t)$$
$$y(t) = Cx(t).$$

Damped vibrational system.

- Full order model with n = 301.
- ROM obtained used SPNMR method (500 log. dist. points in $[1e^{-3}, 1]i$) and Structured Balanced Truncation [BREITEN '16].
- Reduced order r = 50.

Let us consider the second-order system

$$\begin{aligned} M\ddot{x}(t) + D\dot{x}(t) + Kx(t) &= Bu(t)\\ y(t) &= Cx(t). \end{aligned}$$

• Damped vibrational system.

- Full order model with n = 301.
- ROM obtained used SPNMR method (500 log. dist. points in $[1e^{-3}, 1]i$) and Structured Balanced Truncation [BREITEN '16].
- Reduced order r = 50.

Let us consider the second-order system

$$\begin{aligned} M\ddot{x}(t) + D\dot{x}(t) + Kx(t) &= Bu(t)\\ y(t) &= Cx(t). \end{aligned}$$

• Damped vibrational system.

- Full order model with n = 301.
- ROM obtained used SPNMR method (500 log. dist. points in $[1e^{-3}, 1]i$) and Structured Balanced Truncation [BREITEN '16].
- Reduced order r = 50.

 $\mathbf{H}(s,p) = \mathcal{C}(s,p)\mathcal{K}(s,p)^{-1}\mathcal{B}(s,p).$

$$\mathbf{H}(s,p) = \mathcal{C}(s,p)\mathcal{K}(s,p)^{-1}\mathcal{B}(s,p).$$

• Consider $\mathbf{H}(s, p) = \mathbf{C} \left(s\mathbf{I} - \mathbf{A}_1 - p\mathbf{A}_2 \right)^{-1} \mathbf{B}$, where

$$\mathbf{A}_1 = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}, \ \mathbf{A}_2 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \ \text{and} \ \mathbf{C}^T = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

$$\mathbf{H}(s,p) = \mathcal{C}(s,p)\mathcal{K}(s,p)^{-1}\mathcal{B}(s,p).$$

• Consider $\mathbf{H}(s, p) = \mathbf{C} \left(s\mathbf{I} - \mathbf{A}_1 - p\mathbf{A}_2 \right)^{-1} \mathbf{B}$, where

$$\mathbf{A}_1 = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}, \ \mathbf{A}_2 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \text{ and } \mathbf{C}^T = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

• For t = 20 points (σ_i, \mathbf{p}_i) , let

$$\mathbf{R} = \begin{bmatrix} K(\sigma_1, \mathbf{p}_1)^{-1} \mathbf{B} & \dots & K(\sigma_t, \mathbf{p}_t)^{-1} \mathbf{B} \end{bmatrix}, \mathbf{O} = \begin{bmatrix} K(\sigma_1, \mathbf{p}_1)^{-T} \mathbf{C}^T & \dots & K(\sigma_t, \mathbf{p}_t)^{-T} \mathbf{C}^T \end{bmatrix}.$$

$$\mathbf{H}(s,p) = \mathcal{C}(s,p)\mathcal{K}(s,p)^{-1}\mathcal{B}(s,p).$$

• Consider $\mathbf{H}(s,p) = \mathbf{C} \left(s\mathbf{I} - \mathbf{A}_1 - p\mathbf{A}_2 \right)^{-1} \mathbf{B}$, where

$$\mathbf{A}_{1} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}, \ \mathbf{A}_{2} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \text{ and } \mathbf{C}^{T} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

- For t = 20 points (σ_i, \mathbf{p}_i) , let
 - $\mathbf{R} = \begin{bmatrix} K(\sigma_1, \mathbf{p}_1)^{-1} \mathbf{B} & \dots & K(\sigma_t, \mathbf{p}_t)^{-1} \mathbf{B} \end{bmatrix},$ $\mathbf{O} = \begin{bmatrix} K(\sigma_1, \mathbf{p}_1)^{-T} \mathbf{C}^T & \dots & K(\sigma_t, \mathbf{p}_t)^{-T} \mathbf{C}^T \end{bmatrix}.$
- Build $\mathbf{O}^T \mathbf{R}$ and check rank (=2).

$$\mathbf{H}(s,p) = \mathcal{C}(s,p)\mathcal{K}(s,p)^{-1}\mathcal{B}(s,p).$$

• Consider $\mathbf{H}(s, p) = \mathbf{C} (s\mathbf{I} - \mathbf{A}_1 - p\mathbf{A}_2)^{-1} \mathbf{B}$, where

$$\mathbf{A}_{1} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}, \ \mathbf{A}_{2} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \ \text{and} \ \mathbf{C}^{T} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

• For
$$t = 20$$
 points (σ_i, \mathbf{p}_i) , let

$$\mathbf{R} = \begin{bmatrix} K(\sigma_1, \mathbf{p}_1)^{-1}\mathbf{B} & \dots & K(\sigma_t, \mathbf{p}_t)^{-1}\mathbf{B} \end{bmatrix},$$

$$\mathbf{O} = \begin{bmatrix} K(\sigma_1, \mathbf{p}_1)^{-T}\mathbf{C}^T & \dots & K(\sigma_t, \mathbf{p}_t)^{-T}\mathbf{C}^T \end{bmatrix}.$$

$$10^{-10}$$

- Build $\mathbf{O}^{T}\mathbf{R}$ and check rank (=2).
- Compute projectors V and W and $\hat{\mathbf{H}}(s, p)$.
- Then, $\mathbf{H}(s, p) = \hat{\mathbf{H}}(s, p)$.

 10^{-25}

5

20

values

10

15

• FOM example $[MORWIKI]^1$ of order 1006 and $p \in [10, 100]$ of the form

$$\dot{\mathbf{x}}(t) = (\mathbf{A}_1 + p\mathbf{A}_2)\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

• 1500 randomly points $(s, p) \in [1e0, 1e4]i \times [10, 100]$. Reduced order r = 15.

Singular values of the Loewner matrix

- FOM example [MORWIKI]¹ of order 1006 and $p \in [10, 100]$ of the form $\dot{\mathbf{x}}(t) = (\mathbf{A}_1 + p\mathbf{A}_2)\mathbf{x}(t) + \mathbf{Bu}(t)$ $\mathbf{y}(t) = \mathbf{Cx}(t)$
- 1500 randomly points $(s, p) \in [1e0, 1e4]i \times [10, 100]$. Reduced order r = 15.

- FOM example [MORWIKI]¹ of order 1006 and $p \in [10, 100]$ of the form $\dot{\mathbf{x}}(t) = (\mathbf{A}_1 + p\mathbf{A}_2)\mathbf{x}(t) + \mathbf{Bu}(t)$ $\mathbf{y}(t) = \mathbf{Cx}(t)$
- 1500 randomly points $(s, p) \in [1e0, 1e4]i \times [10, 100]$. Reduced order r = 15.

- FOM example [MORWIKI]¹ of order 1006 and $p \in [10, 100]$ of the form $\dot{\mathbf{x}}(t) = (\mathbf{A}_1 + p\mathbf{A}_2)\mathbf{x}(t) + \mathbf{Bu}(t)$ $\mathbf{y}(t) = \mathbf{Cx}(t)$
- 1500 randomly points $(s, p) \in [1e0, 1e4]i \times [10, 100]$. Reduced order r = 15.

$$\dot{\mathbf{x}}(t) = \mathbf{A}_1 \mathbf{x}(t) + p \mathbf{A}_2 \mathbf{x}(t-\tau) + \mathbf{B} \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)$$

• 1500 randomly chosen points $(s, p) \in [1e0, 1e4]i \times [10, 100]$. Reduced order r = 15.

Singular values of the Loewner matrix

$$\dot{\mathbf{x}}(t) = \mathbf{A}_1 \mathbf{x}(t) + p \mathbf{A}_2 \mathbf{x}(t-\tau) + \mathbf{B} \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)$$

• 1500 randomly chosen points $(s, p) \in [1e0, 1e4]i \times [10, 100]$. Reduced order r = 15.

$$\dot{\mathbf{x}}(t) = \mathbf{A}_1 \mathbf{x}(t) + p \mathbf{A}_2 \mathbf{x}(t-\tau) + \mathbf{B} \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)$$

• 1500 randomly chosen points $(s, p) \in [1e0, 1e4]i \times [10, 100]$. Reduced order r = 15.

$$\dot{\mathbf{x}}(t) = \mathbf{A}_1 \mathbf{x}(t) + p \mathbf{A}_2 \mathbf{x}(t-\tau) + \mathbf{B} \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)$$

• 1500 randomly chosen points $(s, p) \in [1e0, 1e4]i \times [10, 100]$. Reduced order r = 15.

- 1. Introduction
- 2. Minimal Realization
- 3. Reachability and Observability for SLS
- 4. Model Order Reduction
- 5. Numerical Results
- 6. Outlook and Conclusions

Contribution of this talk

- Minimal realization by projection of **SLS**.
- Model reduction technique inspired by numerical rank of matrix O^TER.
- Projector computation solving generalized Sylvester equation (low-rank methods).
- Performance illustrated by numerical examples for several system classes.
- Extended results to parametric SLS.

Contribution of this talk

- Minimal realization by projection of **SLS**.
- Model reduction technique inspired by numerical rank of matrix **O**^T**ER**.
- Projector computation solving generalized Sylvester equation (low-rank methods).
- Performance illustrated by numerical examples for several system classes.
- Extended results to parametric SLS.

Open questions and future work

- Stability preservation and error bounds.
- Application to real-world problems.
- Extension to nonlinear systems, first results in [BENNER/GOYAL '19, ARXIV:1904.11891.]