

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

LOW-RANK METHODS FOR PDE-CONSTRAINED OPTIMIZATION UNDER UNCERTAINTY

Peter Benner

Joint work with Sergey Dolgov (U Bath), Akwum Onwunta and Martin Stoll (both MPI DCTS, moving to U Maryland and TU Chemnitz)

September 27, 2017

Applied Mathematics and Scientific Computing Seminar Temple University The Max Planck Institute (MPI) in Magdeburg

The Max Planck Society

CSC

- operates 84 institutes 79 in Germany, 2 in Italy, 1 each in The Netherlands, Luxembourg, and the USA,
- with \sim 23,000 employees,
- 18 Noble Laureates since 1948.

"The first MPI in engineering..."

MPI Magdeburg

- founded 1998
- 4 departments (directors)
- 10 research groups
- budget \sim 15 Mio. EUR
- \sim 230 employees
- 130 scientists,
- doing research in
 - biotechnology
 - chemical engineering
 - process engineering
 - energy conversion
 - applied math

- 1. Introduction
- 2. Unsteady Heat Equation
- 3. Unsteady Navier-Stokes Equations
- 4. Numerical experiments
- 5. Conclusions

• Physical, biological, chemical, etc. processes involve uncertainties.

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for uncertainties.

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for uncertainties.
- PDEs governing the processes can involve uncertain coefficients, or uncertain sources, or uncertain geometry.

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for uncertainties.
- PDEs governing the processes can involve uncertain coefficients, or uncertain sources, or uncertain geometry.
- Uncertain parameters modeled as random variables → random PDEs, potentially also containing uncertain inputs (controls) → (generalized) polynomial chaos approach → high-dimensional PDE!

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for uncertainties.
- PDEs governing the processes can involve uncertain coefficients, or uncertain sources, or uncertain geometry.
- Uncertain parameters modeled as random variables → random PDEs, potentially also containing uncertain inputs (controls) → (generalized) polynomial chaos approach → high-dimensional PDE!
- Here: no stochastic PDEs in the sense of dynamics driven by Wiener or Lévy or ... processes!

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for uncertainties.
- PDEs governing the processes can involve uncertain coefficients, or uncertain sources, or uncertain geometry.
- Uncertain parameters modeled as random variables → random PDEs, potentially also containing uncertain inputs (controls) → (generalized) polynomial chaos approach → high-dimensional PDE!
- Here: no stochastic PDEs in the sense of dynamics driven by Wiener or Lévy or ... processes!

Uncertainty arises because

available data are incomplete;

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for uncertainties.
- PDEs governing the processes can involve uncertain coefficients, or uncertain sources, or uncertain geometry.
- Uncertain parameters modeled as random variables → random PDEs, potentially also containing uncertain inputs (controls) → (generalized) polynomial chaos approach → high-dimensional PDE!
- Here: no stochastic PDEs in the sense of dynamics driven by Wiener or Lévy or ... processes!

Uncertainty arises because

- available data are incomplete;
- data are predictable, but difficult to measure, e.g., porosity above oil reservoirs;

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for uncertainties.
- PDEs governing the processes can involve uncertain coefficients, or uncertain sources, or uncertain geometry.
- Uncertain parameters modeled as random variables → random PDEs, potentially also containing uncertain inputs (controls) → (generalized) polynomial chaos approach → high-dimensional PDE!
- Here: no stochastic PDEs in the sense of dynamics driven by Wiener or Lévy or ... processes!

Uncertainty arises because

- available data are incomplete;
- data are predictable, but difficult to measure, e.g., porosity above oil reservoirs;
- data are unpredictable, e.g, wind shear.

Curse of Dimensionality

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d .

 \rightsquigarrow Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Curse of Dimensionality

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow **Rapid Increase of Dimensionality**, called **Curse of Dimensionality** (d > 3).

Consider $-\Delta u = f$ in $[0, 1] \times [0, 1] \subset \mathbb{R}^2$, uniformly discretized as

 $(I \otimes A + A \otimes I) x =: Ax = b \quad \iff \quad AX + XA^T = B$

with $x = \operatorname{vec}(X)$ and $b = \operatorname{vec}(B)$ with low-rank right hand side $B \approx b_1 b_2^T$.

Curse of Dimensionality

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow **Rapid Increase of Dimensionality**, called **Curse of Dimensionality** (d > 3).

Consider $-\Delta u = f$ in $[0, 1] \times [0, 1] \subset \mathbb{R}^2$, uniformly discretized as

 $(I \otimes A + A \otimes I) x =: Ax = b \quad \iff \quad AX + XA^T = B$

with $x = \operatorname{vec}(X)$ and $b = \operatorname{vec}(B)$ with low-rank right hand side $B \approx b_1 b_2^T$.

• Low-rankness of $\tilde{X} := VW^T \approx X$ follows from properties of A and B, e.g.,

[Penzl '00, Grasedyck '04].

Curse of Dimensionality

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightarrow **Rapid Increase of Dimensionality**, called **Curse of Dimensionality** (d > 3).

Consider $-\Delta u = f$ in $[0, 1] \times [0, 1] \subset \mathbb{R}^2$, uniformly discretized as

 $(I \otimes A + A \otimes I) x =: Ax = b \quad \iff \quad AX + XA^T = B$

with $x = \operatorname{vec}(X)$ and $b = \operatorname{vec}(B)$ with low-rank right hand side $B \approx b_1 b_2^T$.

- Low-rankness of $\tilde{X} := VW^T \approx X$ follows from properties of A and B, e.g., [PENZL '00, GRASEDYCK '04].
- We solve this using low-rank Krylov subspace solvers¹. These essentially require matrix-vector multiplication and vector computations.

¹Recent work by H. Elman analyzes multigrid solver in this context.

Curse of Dimensionality

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightarrow **Rapid Increase of Dimensionality**, called **Curse of Dimensionality** (d > 3).

Consider $-\Delta u = f$ in $[0, 1] \times [0, 1] \subset \mathbb{R}^2$, uniformly discretized as

 $(I \otimes A + A \otimes I) x =: Ax = b \qquad \Longleftrightarrow \qquad AX + XA^T = B$

with x = vec(X) and b = vec(B) with low-rank right hand side $B \approx b_1 b_2^T$.

• Low-rankness of $\tilde{X} := VW^T \approx X$ follows from properties of A and B, e.g., [PENZL '00, GRASEDYCK '04].

• We solve this using low-rank Krylov subspace solvers¹. These essentially require matrix-vector multiplication and vector computations.

• Hence, $\mathcal{A} \operatorname{vec} (X_k) = \mathcal{A} \operatorname{vec} (V_k W_k^T) = \operatorname{vec} \left([AV_k, V_k] [W_k, AW_k]^T \right)$

¹Recent work by H. Elman analyzes multigrid solver in this context.

Curse of Dimensionality

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Consider $-\Delta u = f$ in $[0, 1] \times [0, 1] \subset \mathbb{R}^2$, uniformly discretized as

 $(I \otimes A + A \otimes I) x =: Ax = b \qquad \Longleftrightarrow \qquad AX + XA^T = B$

with x = vec(X) and b = vec(B) with low-rank right hand side $B \approx b_1 b_2^T$.

• Low-rankness of $\tilde{X} := VW^T \approx X$ follows from properties of A and B, e.g.,

[Penzl '00, Grasedyck '04].

- We solve this using low-rank Krylov subspace solvers¹. These essentially require matrix-vector multiplication and vector computations.
- Hence, $\mathcal{A} \operatorname{vec} (X_k) = \mathcal{A} \operatorname{vec} (V_k W_k^T) = \operatorname{vec} \left([AV_k, V_k] [W_k, AW_k]^T \right)$
- The rank of $[AV_k \quad V_k] \in \mathbb{R}^{n,2r}$, $[W_k \quad AW_k] \in \mathbb{R}^{n_t,2r}$ increases but can be controlled using truncation. \rightsquigarrow Low-rank Krylov subspace solvers.

[Kressner/Tobler, B/Breiten, Savostyanov/Dolgov, ...].

¹Recent work by H. Elman analyzes multigrid solver in this context.

We consider the problem:

$$\min_{y \in \mathcal{Y}, u \in \mathcal{U}} \mathcal{J}(y, u) \quad \text{subject to} \quad c(y, u) = 0,$$

where

- c(y, u) = 0 represents a (linear or nonlinear) PDE (system) with uncertain coefficient(s).
- The state y and control u are random fields.
- The cost functional *J* is a real-valued Fréchet-differentiable functional on *Y* × *U*.

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow **Rapid Increase of Dimensionality**, called **Curse of Dimensionality** (d > 3).

Goal of this talk

Apply low-rank iterative solvers to discrete optimality systems resulting from

PDE-constrained optimization problems under uncertainty,

and go one step further applying low-rank tensor (instead of matrix) techniques.

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Goal of this talk

Apply low-rank iterative solvers to discrete optimality systems resulting from

PDE-constrained optimization problems under uncertainty,

and go one step further applying low-rank tensor (instead of matrix) techniques.

Take home message

Biggest problem solved so far has $n = 1.29 \cdot 10^{15}$ unknowns (KKT system for unsteady incompressible Navier-Stokes control problem with uncertain viscosity).

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow **Rapid Increase of Dimensionality**, called **Curse of Dimensionality** (d > 3).

Goal of this talk

Apply low-rank iterative solvers to discrete optimality systems resulting from

PDE-constrained optimization problems under uncertainty,

and go one step further applying low-rank tensor (instead of matrix) techniques.

Take home message

Biggest problem solved so far has $n = 1.29 \cdot 10^{15}$ unknowns (KKT system for unsteady incompressible Navier-Stokes control problem with uncertain viscosity). Would require ≈ 10 petabytes (PB) = 10,000 TB to store the solution vector!

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow **Rapid Increase of Dimensionality**, called **Curse of Dimensionality** (d > 3).

Goal of this talk

Apply low-rank iterative solvers to discrete optimality systems resulting from

PDE-constrained optimization problems under uncertainty,

and go one step further applying low-rank tensor (instead of matrix) techniques.

Take home message

Biggest problem solved so far has $n = 1.29 \cdot 10^{15}$ unknowns (KKT system for unsteady incompressible Navier-Stokes control problem with uncertain viscosity). Would require ≈ 10 **petabytes (PB)** = 10,000 **TB** to store the solution vector! Using low-rank tensor techniques, we need $\approx 7 \cdot 10^7$ **bytes** = 70 **GB** to solve the KKT system in MATLAB in less than one hour!

Consider the optimization problem

$$\mathcal{J}(t, y, u) = \frac{1}{2} ||y - \bar{y}||^2_{L^2(0, T; \mathcal{D}) \otimes L^2(\Omega)} + \frac{\alpha}{2} ||\mathsf{std}(y)||^2_{L^2(0, T; \mathcal{D})} + \frac{\beta}{2} ||u||^2_{L^2(0, T; \mathcal{D}) \otimes L^2(\Omega)}$$

subject, \mathbb{P} -almost surely, to

$$\begin{cases} \frac{\partial y(t, \mathbf{x}, \omega)}{\partial t} - \nabla \cdot (\mathbf{a}(\mathbf{x}, \omega) \nabla y(t, \mathbf{x}, \omega)) = u(t, \mathbf{x}, \omega), & \text{in } (0, T] \times \mathcal{D} \times \Omega, \\ y(t, \mathbf{x}, \omega) = 0, & \text{on } (0, T] \times \partial \mathcal{D} \times \Omega, \\ y(0, \mathbf{x}, \omega) = y_0, & \text{in } \mathcal{D} \times \Omega, \end{cases}$$

where

- for any z : D × Ω → ℝ, z(x, ·) is a random variable defined on the complete probability space (Ω, F, ℙ) for each x ∈ D,
- $\exists 0 < a_{\min} < a_{\max} < \infty \text{ s.t. } \mathbb{P}(\omega \in \Omega : a(x, \omega) \in [a_{\min}, a_{\max}] \ \forall x \in D) = 1.$

We discretize and then optimize the stochastic control problem.

• Under finite noise assumption we can use *N*-term (truncated) Karhunen-Loève expansion (KLE)

$$a \equiv a(\mathbf{x}, \omega) \approx a_N(\mathbf{x}, \xi(\omega)) \equiv a_N(\mathbf{x}, \xi_1(\omega), \xi_2(\omega), \dots, \xi_N(\omega)).$$

• Assuming a known continuous covariance $C_a(\mathbf{x}, \mathbf{y})$, we get the KLE

$$a_N(\mathbf{x},\xi(\omega)) = \mathbb{E}[a](\mathbf{x}) + \sigma_a \sum_{i=1}^N \sqrt{\lambda_i} \varphi_i(\mathbf{x}) \xi_i(\omega),$$

where (λ_i, φ_i) are the dominant eigenpairs of C_a .

- Doob-Dynkin Lemma allows same parametrization for solution y.
- Use linear finite elements for the spatial discretization and implicit Euler in time.

This is used within a stochastic Galerkin FEM (SGFEM) approach.

Monte Carlo Sampling

Given a sample $\{\omega_i\}_{i=1}^M \in \Omega$, we estimate desired statistical quantities using the law of large numbers.

- Pros: Simple, code reusability, etc.
- Cons: Slow convergence $\sim O(1/\sqrt{M})$.

Monte Carlo Sampling

Given a sample $\{\omega_i\}_{i=1}^M \in \Omega$, we estimate desired statistical quantities using the law of large numbers.

- Pros: Simple, code reusability, etc.
- Cons: Slow convergence $\sim O(1/\sqrt{M})$.
- Parametric

Expand $y(\mathbf{x},\xi) = \sum_{k=0}^{P-1} y_k(\mathbf{x}) H_k(\xi)$.

Monte Carlo Sampling

Given a sample $\{\omega_i\}_{i=1}^M \in \Omega$, we estimate desired statistical quantities using the law of large numbers.

- Pros: Simple, code reusability, etc.
- Cons: Slow convergence $\sim O(1/\sqrt{M})$.

Parametric

Expand
$$y(\mathbf{x},\xi) = \sum_{k=0}^{P-1} y_k(\mathbf{x}) H_k(\xi).$$

• Stochastic collocation.

Compute y_k for a set of interpolation points ξ_k , then connect the realizations with, e.g., Lagrangian basis functions $H_k := L_k$.

Monte Carlo Sampling

Given a sample $\{\omega_i\}_{i=1}^M \in \Omega$, we estimate desired statistical quantities using the law of large numbers.

- Pros: Simple, code reusability, etc.
- Cons: Slow convergence $\sim O(1/\sqrt{M})$.

Parametric

Expand
$$y(\mathbf{x},\xi) = \sum_{k=0}^{P-1} y_k(\mathbf{x}) H_k(\xi).$$

• Stochastic collocation.

Compute y_k for a set of interpolation points ξ_k , then connect the realizations with, e.g., Lagrangian basis functions $H_k := L_k$.

- Stochastic Galerkin (Generalized Polynomial Chaos).
 Compute y_k (Galerkin) projecting the equation onto a subspace spanned by orthogonal polynomials H_k := ψ_k.
 - ξ are uniform random variables $\rightarrow \psi_k$ Legendre polynomials.
 - ξ are Gaussian random variables $\rightarrow \psi_k$ Hermite polynomials.

Weak formulation of the random PDE

Seek $y \in H^1\left(0, T; H^1_0(\mathcal{D}) \otimes L^2(\Omega)\right)$ such that, \mathbb{P} -almost surely,

$$\langle y_t, v \rangle + \mathcal{B}(y, v) = \ell(u, v) \quad \forall v \in H^1_0(\mathcal{D}) \otimes L^2(\Omega),$$

with the coercive¹ bilinear form

$$\mathcal{B}(y,v) := \int_{\Omega} \int_{\mathcal{D}} a(\mathbf{x},\omega) \nabla y(\mathbf{x},\omega) \cdot \nabla v(\mathbf{x},\omega) d\mathbf{x} d\mathbb{P}(\omega), \quad v,y \in H^{1}_{0}(\mathcal{D}) \otimes L^{2}(\Omega),$$

and

$$\begin{split} \ell(u,v) &= \langle u(\mathbf{x},\omega), v(\mathbf{x},\omega) \rangle \\ &=: \int_{\Omega} \int_{\mathcal{D}} u(\mathbf{x},\omega) v(\mathbf{x},\omega) d\mathbf{x} d\mathbb{P}(\omega), \quad u,v \in H^{1}_{0}(\mathcal{D}) \otimes L^{2}(\Omega). \end{split}$$

Coercivity and boundedness of \mathcal{B} + Lax-Milgram \implies unique solution exists.

¹due to the positivity assumption on $a(\mathbf{x}, \omega)$

Weak formulation of the optimality system

Theorem

[Chen/Quarteroni 2014, B./Onwunta/Stoll 2016]

Under appropriate regularity assumptions, there exists a unique adjoint state p and optimal solution (y, u, p) to the optimal control problem for the random unsteady heat equation, satisfying the stochastic optimality conditions (KKT system) for $t \in (0, T]$ P-almost surely

$$\begin{aligned} \langle y_t, v \rangle + \mathcal{B}(y, v) &= \ell(u, v), & \forall v \in H_0^1(\mathcal{D}) \otimes L^2(\Omega), \\ \langle p_t, w \rangle - \mathbf{B}^*(p, w) &= \ell\left((y - \bar{y}) + \frac{\alpha}{2}\mathcal{S}(y), w\right), & \forall w \in H_0^1(\mathcal{D}) \otimes L^2(\Omega), \\ \ell(\beta u - p, \tilde{w}) &= 0, & \forall \tilde{w} \in L^2(\mathcal{D}) \otimes L^2(\Omega), \end{aligned}$$

where

- S(y) is the Fréchet derivative of ||std(y)||²_{L²(0,T;D)};
- \mathcal{B}^* is the adjoint operator of \mathcal{B} .

Discretization of the random PDE

• *y*, *p*, *u* are approximated using standard Galerkin ansatz, yielding approximations of the form

$$z(t,\mathbf{x},\omega) = \sum_{k=0}^{P-1} \sum_{j=1}^{J} z_{jk}(t)\phi_j(\mathbf{x})\psi_k(\xi) = \sum_{k=0}^{P-1} z_k(t,\mathbf{x})\psi_k(\xi).$$

Here,

- $\{\phi_j\}_{j=1}^J$ are linear finite elements;
- $\{\psi_k\}_{k=0}^{P-1}$ are the $P = \frac{(N+n)!}{N!n!}$ multivariate Legendre polynomials of degree $\leq n$.
- Implicit Euler/dG(0) used for temporal discretization with constant time step τ .

The Fully Discretized Optimal Control Problem

Discrete first order optimality conditions/KKT system

$$\begin{bmatrix} \tau \mathcal{M}_1 & 0 & -\mathcal{K}_t^T \\ 0 & \beta \tau \mathcal{M}_2 & \tau \mathcal{N}^T \\ -\mathcal{K}_t & \tau \mathcal{N} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \tau \mathcal{M}_\alpha \bar{\mathbf{y}} \\ \mathbf{0} \\ \mathbf{d} \end{bmatrix},$$

where

CSC

•
$$\mathcal{M}_1 = D \otimes G_\alpha \otimes M =: D \otimes \mathcal{M}_\alpha$$
, $\mathcal{M}_2 = D \otimes G_0 \otimes M$
• $\mathcal{K}_t = I_{n_t} \otimes \left[\sum_{i=0}^N G_i \otimes \widehat{\mathcal{K}}_i \right] + (C \otimes G_0 \otimes M)$,
• $\mathcal{N} = I_{n_t} \otimes G_0 \otimes M$,

and

- $G_0 = \operatorname{diag}\left(\langle \psi_0^2 \rangle, \langle \psi_1^2 \rangle, \dots, \langle \psi_{P-1}^2 \rangle\right), \quad G_i(j,k) = \langle \xi_i \psi_j \psi_k \rangle, \quad i = 1, \dots, N,$ • $G_\alpha = G_0 + \alpha \operatorname{diag}\left(0, \langle \psi_1^2 \rangle, \dots, \langle \psi_{P-1}^2 \rangle\right) \quad (\text{with first moments } \langle . \rangle \text{ w.r.t. } \mathbb{P}),$
- $\hat{K}_0 = M + \tau K_0$, $\hat{K}_i = \tau K_i$, i = 1, ..., N,
- M, K_i ∈ ℝ^{J×J} are the mass and stiffness matrices w.r.t. the spatial discretization, where K_i corresponds to the contributions of the *i*th KLE term to the stiffness,

•
$$C = -\text{diag}(\text{ones}, -1), \quad D = \text{diag}\left(\frac{1}{2}, 1, \dots, 1, \frac{1}{2}\right) \in \mathbb{R}^{n_t \times n_t}.$$

CSC The Fully Discretized Optimal Control Problem

Discrete first order optimality conditions/KKT system

$$\begin{bmatrix} \tau \mathcal{M}_1 & 0 & -\mathcal{K}_t^T \\ 0 & \beta \tau \mathcal{M}_2 & \tau \mathcal{N}^T \\ -\mathcal{K}_t & \tau \mathcal{N} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \tau \mathcal{M}_\alpha \bar{\mathbf{y}} \\ \mathbf{0} \\ \mathbf{d} \end{bmatrix},$$

Linear system with 3JPn_t unknowns!

Optimality system leads to saddle point problem

$$\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}$$

• Very large scale setting, (block-)structured sparsity \rightsquigarrow iterative solution.

Optimality system leads to saddle point problem

$$\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}$$

- Very large scale setting, (block-)structured sparsity \rightsquigarrow iterative solution.
- Krylov subspace methods for indefinite symmetric systems: MINRES,

Optimality system leads to saddle point problem

$$\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}$$

- Very large scale setting, (block-)structured sparsity \rightsquigarrow iterative solution.
- Krylov subspace methods for indefinite symmetric systems: MINRES,
- Requires good preconditioner.

$$\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}$$

- Very large scale setting, (block-)structured sparsity \rightsquigarrow iterative solution.
- Krylov subspace methods for indefinite symmetric systems: MINRES,
- Requires good preconditioner.
- Famous three-iterations-convergence result [MURPHY/GOLUB/WATHEN 2000]: using ideal preconditioner

$$\mathcal{P} := \left[\begin{array}{cc} A & 0 \\ 0 & -S \end{array} \right] \qquad \text{with the Schur complement} \quad S := -BA^{-1}B^T,$$

MINRES finds the exact solution in at most three steps.

$$\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}.$$

- Very large scale setting, (block-)structured sparsity \rightsquigarrow iterative solution.
- Krylov subspace methods for indefinite symmetric systems: MINRES,
- Requires good preconditioner.
- Famous three-iterations-convergence result [MURPHY/GOLUB/WATHEN 2000]: using ideal preconditioner

$$\mathcal{P} := \left[egin{array}{cc} A & 0 \\ 0 & -S \end{array}
ight] \qquad ext{with the Schur complement} \quad S := -BA^{-1}B^T,$$

MINRES finds the exact solution in at most three steps.

• Motivates to use approximate Schur complement preconditioner $\begin{bmatrix} \hat{A} & 0\\ 0 & \hat{S} \end{bmatrix}$.

$$\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}.$$

- Very large scale setting, (block-)structured sparsity \rightsquigarrow iterative solution.
- Krylov subspace methods for indefinite symmetric systems: MINRES,
- Requires good preconditioner.
- Famous three-iterations-convergence result [MURPHY/GOLUB/WATHEN 2000]: using ideal preconditioner

$$\mathcal{P} := \begin{bmatrix} A & 0 \\ 0 & -S \end{bmatrix} \quad \text{with the Schur complement} \quad S := -BA^{-1}B^{T}$$

MINRES finds the exact solution in at most three steps.

• Motivates to use approximate Schur complement preconditioner

$$\begin{bmatrix} \hat{A} & 0 \\ 0 & \hat{S} \end{bmatrix}.$$

 Here, A ~ mass matrices → application of A⁻¹ is approximated using a small number of Chebyshev semi-iterations.

- $\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}$ with approximate Schur complement preconditioner $\begin{bmatrix} \hat{A} & 0 \\ 0 & \hat{S} \end{bmatrix}$.
 - How to approximate the application of the inverse Schur complement efficiently?

- $\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}$ with approximate Schur complement preconditioner $\begin{bmatrix} \hat{A} & 0 \\ 0 & \hat{S} \end{bmatrix}$.
 - How to approximate the application of the inverse Schur complement efficiently?
 - Pioneering work by ELMAN, ERNST, ULLMANN, POWELL, SILVESTER, ...

- $\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}$ with approximate Schur complement preconditioner $\begin{bmatrix} \dot{A} & 0 \\ 0 & \hat{S} \end{bmatrix}$.
- - How to approximate the application of the inverse Schur complement efficiently? ۰
 - Pioneering work by ELMAN, ERNST, ULLMANN, POWELL, SILVESTER, ...

Theorem

Let $\alpha \in [0, +\infty)$ and

$$\tilde{S} = \frac{1}{\tau} \left(\mathcal{K} + \tau \gamma \mathcal{N} \right) \mathcal{M}_1^{-1} \left(\mathcal{K} + \tau \gamma \mathcal{N} \right)^T,$$

where $\gamma = \sqrt{(1+\alpha)/\beta}$ and $\mathcal{K} = \sum_{i=0}^{N} G_i \otimes K_i$. Then the eigenvalues of $\tilde{S}^{-1}S$ satisfy

$$\lambda(\tilde{S}^{-1}S) \subset \left[rac{1}{2(1+lpha)}, 1
ight), \quad orall lpha < \left(rac{\sqrt{\kappa(\mathcal{K})}+1}{\sqrt{\kappa(\mathcal{K})}-1}
ight)^2 - 1.$$

- $\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}$ with approximate Schur complement preconditioner $\begin{bmatrix} A & 0 \\ 0 & \hat{S} \end{bmatrix}$.
 - How to approximate the application of the inverse Schur complement efficiently?
 - Pioneering work by ELMAN, ERNST, ULLMANN, POWELL, SILVESTER, ...

Corollary

[B./ONWUNTA/STOLL '16]

Let \mathcal{A} be the KKT matrix from the stochastic Galerkin approach, and \mathcal{P} the preconditioner using the Schur complement approximation \tilde{S} (and exact \mathcal{A}). Then

$$\lambda(\mathcal{P}^{-1}\mathcal{A}) \subset \{1\} \cup \mathcal{I}^+ \cup \mathcal{I}^-,$$

where

$$\mathcal{I}^{\pm} = rac{1}{2} \left(1 \pm \left[\sqrt{1 + rac{2}{1 + lpha}} \,, \, \sqrt{5}
ight]
ight).$$

Separation of variables and low-rank approximation

• Approximate:
$$\underbrace{\mathbf{x}(i_1, \dots, i_d)}_{\text{tensor}} \approx \underbrace{\sum_{\alpha} \mathbf{x}_{\alpha}^{(1)}(i_1) \mathbf{x}_{\alpha}^{(2)}(i_2) \cdots \mathbf{x}_{\alpha}^{(d)}(i_d)}_{\text{tensor product decomposition}}$$

Goals:

- Store and manipulate x
- Solve equations Ax = b

 $\mathcal{O}(dn)$ cost instead of $\mathcal{O}(n^d)$. $\mathcal{O}(dn^2)$ cost instead of $\mathcal{O}(n^{2d})$.

• Discrete separation of variables:

$$\begin{bmatrix} x_{1,1} & \cdots & x_{1,n} \\ \vdots & & \vdots \\ x_{n,1} & \cdots & x_{n,n} \end{bmatrix} = \sum_{\alpha=1}^{r} \begin{bmatrix} v_{1,\alpha} \\ \vdots \\ v_{n,\alpha} \end{bmatrix} \begin{bmatrix} w_{\alpha,1} & \cdots & w_{\alpha,n} \end{bmatrix} + \mathcal{O}(\varepsilon).$$

Diagrams:

- Rank r ≪ n.
- $mem(v) + mem(w) = 2nr \ll n^2 = mem(x).$
- Singular Value Decomposition (SVD) $\implies \epsilon(r)$ optimal w.r.t. spectral/Frobenius norm.

Data Compression in Higher Dimensions: *Tensor Trains*

• Matrix Product States/Tensor Train (TT) format [WILSON '75, WHITE '93, VERSTRAETE '04, OSELEDETS '09/'11]: For indices

$$\overline{i_p \dots i_q} = (i_p - 1)n_{p+1} \dots n_q + (i_{p+1} - 1)n_{p+2} \dots n_q + \dots + (i_{q-1} - 1)n_q + i_q,$$

the TT format can be expressed as

$$\mathbf{x}(\overline{i_1\dots i_d}) = \sum_{\alpha=1}^{\mathsf{r}} \mathbf{x}_{\alpha_1}^{(1)}(i_1) \cdot \mathbf{x}_{\alpha_1,\alpha_2}^{(2)}(i_2) \cdot \mathbf{x}_{\alpha_2,\alpha_3}^{(3)}(i_3) \cdots \mathbf{x}_{\alpha_{d-1},\alpha_d}^{(d)}(i_d)$$

or

$$\mathbf{x}(\overline{i_1\ldots i_d})=\mathbf{x}^{(1)}(i_1)\cdots \mathbf{x}^{(d)}(i_d), \quad \mathbf{x}^{(k)}(i_k)\in \mathbb{R}^{r_{k-1}\times r_k} \text{ w/ } r_0, r_d=1,$$

or

Always work with factors $\mathbf{x}^{(k)} \in \mathbb{R}^{r_{k-1} \times n_k \times r_k}$ instead of full tensors.

Sum z = x + y → increase of tensor rank r_z = r_x + r_y.
TT format for a high-dimensional operator

$$A(\overline{i_1 \dots i_d}, \overline{j_1 \dots j_d}) = \mathbf{A}^{(1)}(i_1, j_1) \cdots \mathbf{A}^{(d)}(i_d, j_d)$$

- *Matrix-vector* multiplication y = Ax; \rightsquigarrow tensor rank $r_y = r_A \cdot r_x$.
- Additions and multiplications *increase* TT ranks.
- Decrease ranks quasi-optimally via QR and SVD.

🐟 宽 Solving KKT System using TT Format

The dimensionality of the saddle point system is vast \Rightarrow use tensor structure and low tensor ranks.

Use tensor train format and approximate the solution as

$$\mathbf{y}(i_1,\ldots,i_d) \approx \sum_{\alpha_1\ldots\alpha_{d-1}=1}^{r_1\ldots r_{d-1}} \mathbf{y}_{\alpha_1}^{(1)}(i_1) \mathbf{y}_{\alpha_1,\alpha_2}^{(2)}(i_2) \cdots \mathbf{y}_{\alpha_{d-2},\alpha_{d-1}}^{(d-1)}(i_{d-1}) \mathbf{y}_{\alpha_{d-1}}^{(d)}(i_d),$$

and

$$\mathcal{A}(i_{1}\cdots i_{d}, j_{1}\cdots j_{d}) \approx \sum_{\beta_{1}\dots\beta_{d-1}=1}^{R_{1}\dots R_{d-1}} \mathbf{A}_{\beta_{1}}^{(1)}(i_{1}, j_{1}) \mathbf{A}_{\beta_{1},\beta_{2}}^{(2)}(i_{2}, j_{2})\cdots \mathbf{A}_{\beta_{d-1}}^{(d)}(i_{d}, j_{d}),$$

where the multi-index $\mathbf{i} = (i_1, \dots, i_d)$ is implied by the parametrization of the approximate solutions of the form

$$\mathbf{z}(t,\xi_1,\ldots,\xi_N,\mathbf{x}), \quad \mathbf{z}=\mathbf{y},\mathbf{u},\mathbf{p},$$

i.e., solution vectors are represented by *d*-way tensor with d = N + 2.

Mean-Based Preconditioned TT-MinRes

TT-MINRES	# iter (t)	# iter (t)	# iter (t)
n _t	2 ⁵	2 ⁶	2 ⁸
$\dim(\mathcal{A}) = 3JPn_t$	10,671,360	21, 342, 720	85, 370, 880
$\alpha = 1, \text{ tol} = 10^{-3}$			
$\beta = 10^{-5}$	6 (285.5)	6 (300.0)	8 (372.2)
$eta = 10^{-6}$	4 (77.6)	4 (130.9)	4 (126.7)
$eta = 10^{-8}$	4 (56.7)	4 (59.4)	4 (64.9)
$\alpha = 0, \text{ tol} = 10^{-3}$			
$\beta = 10^{-5}$	4 (207.3)	6 (366.5)	6 (229.5)
$eta = 10^{-6}$	4 (153.9)	4 (158.3)	4 (172.0)
$\beta = 10^{-8}$	2 (35.2)	2 (37.8)	2 (40.0)

csc Unsteady Navier-Stokes Equations

Model Problem: 'Uncertain' flow past a rectangular obstacle domain

- We model this as a boundary control problem.
- Our constraint c(y, u) = 0 is given by the unsteady incompressible Navier-Stokes equations with uncertain viscosity ν := ν(ω).

Minimize:

$$\mathcal{J}(\mathbf{v}, u) = \frac{1}{2} \| \operatorname{curl} \mathbf{v} \|_{L^2(0, T; \mathcal{D}) \otimes L^2(\Omega)}^2 + \frac{\beta}{2} \| u \|_{L^2(0, T; \mathcal{D}) \otimes L^2(\Omega)}^2$$
(1)

subject to

$$\begin{aligned} \frac{\partial v}{\partial t} - v\Delta v + (v \cdot \nabla)v + \nabla p &= 0, & \text{in } \mathcal{D}, \\ -\nabla \cdot v &= 0, & \text{in } \mathcal{D}, \\ v &= \theta, & \text{on } \Gamma_{in}, \\ v &= 0, & \text{on } \Gamma_{wall}, \\ \frac{\partial v}{\partial n} &= u, & \text{on } \Gamma_c, \\ \frac{\partial v}{\partial n} &= 0, & \text{on } \Gamma_{out}, \\ v(\cdot, 0, \cdot) &= v_0, & \text{in } \mathcal{D}. \end{aligned}$$

(2)

CSC Model Problem: Setting (cf. [Powell/Silvester '12])

We assume

- $\nu(\omega) = \nu_0 + \nu_1 \xi(\omega), \ \nu_0, \nu_1 \in \mathbb{R}^+, \ \xi \sim \mathcal{U}(-1, 1).$
- $\mathbb{P}\left(\omega \in \Omega : \nu(\omega) \in [\nu_{\min}, \nu_{\max}]\right) = 1$, for some $0 < \nu_{\min} < \nu_{\max} < +\infty$.
- \Rightarrow velocity v, control u and pressure p are random fields on $L^2(\Omega)$.
- $L^2(\Omega) := L^2(\Omega, \mathcal{F}, \mathbb{P})$ is a complete probability space.
- $L^2(0, T; \mathcal{D}) := L^2(\mathcal{D}) \times L^2(\mathcal{T}).$

CSC Model Problem: Setting (cf. [Powell/Silvester '12])

We assume

- $\nu(\omega) = \nu_0 + \nu_1 \xi(\omega), \ \nu_0, \nu_1 \in \mathbb{R}^+, \ \xi \sim \mathcal{U}(-1, 1).$
- $\mathbb{P}\left(\omega \in \Omega : \nu(\omega) \in [\nu_{\min}, \nu_{\max}]\right) = 1$, for some $0 < \nu_{\min} < \nu_{\max} < +\infty$.
- \Rightarrow velocity v, control u and pressure p are random fields on $L^2(\Omega)$.
- $L^2(\Omega) := L^2(\Omega, \mathcal{F}, \mathbb{P})$ is a complete probability space.

•
$$L^2(0, T; \mathcal{D}) := L^2(\mathcal{D}) \times L^2(\mathcal{T}).$$

Computational challenges

- Nonlinearity (due to the nonlinear convection term $(v \cdot \nabla)v$).
- Uncertainty (due to random $\nu(\omega)$).
- High dimensionality (of the resulting linear/optimality systems).

OTD Strategy and Picard (Oseen) Iteration \rightsquigarrow

state equation

$$egin{aligned} &
u_t -
u \Delta v + (ar{v} \cdot
abla) \, v +
abla p = 0 \ &
abla \cdot v = 0 + \ ext{boundary conditions} \end{aligned}$$

adjoint equation

$$-\chi_t - \Delta \chi - (\bar{\nu} \cdot \nabla) \chi + (\nabla \bar{\nu})^T \chi + \nabla \mu = -\operatorname{curl}^2 \nu$$
$$\nabla \cdot \chi = 0$$
on $\Gamma_{wall} \cup \Gamma_{in} : \quad \chi = 0$ on $\Gamma_{out} \cup \Gamma_c : \quad \frac{\partial \chi}{\partial n} = 0$
$$\chi(\cdot, T, \cdot) = 0$$

gradient equation

$$\beta u + \chi|_{\Gamma_c} = 0$$

OTD Strategy and Picard (Oseen) Iteration \rightsquigarrow

state equation

$$egin{aligned} &
u_t -
u \Delta v + (ar{v} \cdot
abla) \, v +
abla p = 0 \ &
abla \cdot v = 0 + \ \text{boundary conditions} \end{aligned}$$

adjoint equation

$$-\chi_t - \Delta \chi - (\bar{\nu} \cdot \nabla) \chi + (\nabla \bar{\nu})^T \chi + \nabla \mu = -\operatorname{curl}^2 \nu$$
$$\nabla \cdot \chi = 0$$
on $\Gamma_{wall} \cup \Gamma_{in} : \quad \chi = 0$ on $\Gamma_{out} \cup \Gamma_c : \quad \frac{\partial \chi}{\partial n} = 0$
$$\chi(\cdot, T, \cdot) = 0$$

gradient equation

$$\beta u + \chi|_{\Gamma_c} = 0.$$

- \bar{v} denotes the velocity from the previous Oseen iteration.
- Having solved this system, we update $\overline{v} = v$ until convergence.

• Velocity v and control u are of the form

$$z(t, x, \omega) = \sum_{k=0}^{P-1} \sum_{j=1}^{J_{v}} z_{jk}(t)\phi_{j}(x)\psi_{k}(\xi) = \sum_{k=0}^{P-1} z_{k}(t, x)\psi_{k}(\xi).$$

• Pressure *p* is of the form

$$p(t,x,\omega) = \sum_{k=0}^{P-1} \sum_{j=1}^{J_P} p_{jk}(t) \tilde{\phi}_j(x) \psi_k(\xi) = \sum_{k=0}^{P-1} p_k(t,x) \psi_k(\xi).$$

• Here,

- $\{\phi_j\}_{j=1}^{J_v}$ and $\{\tilde{\phi}_j\}_{j=1}^{J_p}$ are Q2–Q1 finite elements;
- $\{\psi_k\}_{k=0}^{P-1}$ are Legendre polynomials.
- Implicit Euler/dG(0) used for temporal discretization.

Linearization and SGFEM discretization yields the following saddle point system

$$\underbrace{\begin{bmatrix} M_y & 0 & L^* \\ 0 & M_u & N^\top \\ L & N & 0 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} y \\ u \\ \lambda \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} f \\ 0 \\ g \end{bmatrix}}_{b}.$$

Each of the block matrices in A is of the form

$$\sum_{\alpha=1}^R X_\alpha \otimes Y_\alpha \otimes Z_\alpha,$$

corresponding to temporal, stochastic, and spatial discretizations.

Linearization and SGFEM discretization yields the following saddle point system

$$\underbrace{\begin{bmatrix} M_y & 0 & L^* \\ 0 & M_u & N^\top \\ L & N & 0 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} y \\ u \\ \lambda \end{bmatrix}}_{\times} = \underbrace{\begin{bmatrix} f \\ 0 \\ g \end{bmatrix}}_{b}.$$

Each of the block matrices in A is of the form

$$\sum_{\alpha=1}^R X_\alpha \otimes Y_\alpha \otimes Z_\alpha,$$

corresponding to temporal, stochastic, and spatial discretizations.

Size: $\sim 3n_t P(J_v + J_p)$, e.g., for P = 10, $n_t = 2^{10}$, $J \approx 10^5 \rightsquigarrow \approx 10^9$ unknowns!

How to solve Ax = b if Krylov solvers become too expensive?

How to solve Ax = b if Krylov solvers become too expensive?

Data are given in TT format:

•
$$A(i,j) = \mathbf{A}^{(1)}(i_1,j_1) \cdots \mathbf{A}^{(d)}(i_d,j_d).$$

•
$$b(i) = \mathbf{b}^{(1)}(i_1) \cdots \mathbf{b}^{(d)}(i_d)$$
.

Seek the solution in the same format:

•
$$\mathbf{x}(i) = \mathbf{x}^{(1)}(i_1) \cdots \mathbf{x}^{(d)}(i_d).$$

How to solve Ax = b if Krylov solvers become too expensive?

Data are given in TT format:

•
$$A(i,j) = \mathbf{A}^{(1)}(i_1,j_1) \cdots \mathbf{A}^{(d)}(i_d,j_d).$$

•
$$b(i) = \mathbf{b}^{(1)}(i_1) \cdots \mathbf{b}^{(d)}(i_d)$$
.

Seek the solution in the same format:

•
$$x(i) = \mathbf{x}^{(1)}(i_1) \cdots \mathbf{x}^{(d)}(i_d).$$

Use a new block-variant of *Alternating Least Squares* in a new block TT format to overcome difficulties with indefiniteness of KKT system matrix.

How to solve Ax = b if Krylov solvers become too expensive?

Data are given in TT format:

•
$$A(i,j) = \mathbf{A}^{(1)}(i_1,j_1) \cdots \mathbf{A}^{(d)}(i_d,j_d).$$

•
$$b(i) = \mathbf{b}^{(1)}(i_1) \cdots \mathbf{b}^{(d)}(i_d)$$
.

Seek the solution in the same format:

•
$$\mathbf{x}(i) = \mathbf{x}^{(1)}(i_1) \cdots \mathbf{x}^{(d)}(i_d).$$

Use a new block-variant of *Alternating Least Squares* in a new block TT format to overcome difficulties with indefiniteness of KKT system matrix.

• If
$$A = A^{\top} > 0$$
: minimize $J(x) = x^{\top}Ax - 2x^{\top}b$.

Alternating Least Squares (ALS):

• replace $\min_{\mathbf{x}} J(\mathbf{x})$ by iteration

size n^d size $r^2 n$

• for $k = 1, \ldots, d$, solve $\min_{\mathbf{x}^{(k)}} J(\mathbf{x}^{(1)}(i_1) \cdots \mathbf{x}^{(k)}(i_k) \cdots \mathbf{x}^{(d)}(i_d))$. (all other blocks are fixed)

1. $\hat{\mathbf{x}}^{(1)} = \arg\min_{\mathbf{x}^{(1)}} J(\mathbf{x}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$

1.
$$\hat{\mathbf{x}}^{(1)} = \arg\min_{\mathbf{x}^{(1)}} J(\mathbf{x}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$$

2. $\hat{\mathbf{x}}^{(2)} = \arg\min_{\mathbf{x}^{(2)}} J(\hat{\mathbf{x}}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$

1.
$$\hat{\mathbf{x}}^{(1)} = \arg\min_{\mathbf{x}^{(1)}} J(\mathbf{x}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$$

2. $\hat{\mathbf{x}}^{(2)} = \arg\min_{\mathbf{x}^{(2)}} J(\hat{\mathbf{x}}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$
3. $\hat{\mathbf{x}}^{(3)} = \arg\min_{\mathbf{x}^{(3)}} J(\hat{\mathbf{x}}^{(1)}(i_1)\hat{\mathbf{x}}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$

1.
$$\hat{\mathbf{x}}^{(1)} = \arg \min_{\mathbf{x}^{(1)}} J(\mathbf{x}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$$

2. $\hat{\mathbf{x}}^{(2)} = \arg \min_{\mathbf{x}^{(2)}} J(\hat{\mathbf{x}}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$
3. $\hat{\mathbf{x}}^{(3)} = \arg \min_{\mathbf{x}^{(3)}} J(\hat{\mathbf{x}}^{(1)}(i_1)\hat{\mathbf{x}}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$
4. $\mathbf{x}^{(2)} = \arg \min_{\mathbf{x}^{(2)}} J(\hat{\mathbf{x}}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\hat{\mathbf{x}}^{(3)}(i_3))$

1.
$$\hat{\mathbf{x}}^{(1)} = \arg\min_{\mathbf{x}^{(1)}} J(\mathbf{x}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$$

2. $\hat{\mathbf{x}}^{(2)} = \arg\min_{\mathbf{x}^{(2)}} J(\hat{\mathbf{x}}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$
3. $\hat{\mathbf{x}}^{(3)} = \arg\min_{\mathbf{x}^{(3)}} J(\hat{\mathbf{x}}^{(1)}(i_1)\hat{\mathbf{x}}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$

- 4. $\mathbf{x}^{(2)} = \arg\min_{\mathbf{x}^{(2)}} J\left(\hat{\mathbf{x}}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\hat{\mathbf{x}}^{(3)}(i_3)\right)$
- 5. repeat 1.-4. until convergence

If we differentiate J w.r.t. TT blocks, we see that...

• ... each step means solving a Galerkin linear system

$$\left(X_{\neq k}^{\top}AX_{\neq k}\right)\hat{\mathbf{x}}^{(k)} = \left(X_{\neq k}^{\top}b\right) \in \mathbb{R}^{nr^2}.$$
• $X_{\neq k} = \underbrace{\operatorname{TT}\left(\hat{\mathbf{x}}^{(1)}\cdots\hat{\mathbf{x}}^{(k-1)}\right)}_{n^{k-1}\times r_{k-1}} \otimes \underbrace{I}_{n\times n} \otimes \underbrace{\operatorname{TT}\left(\mathbf{x}^{(k+1)}\cdots\mathbf{x}^{(d)}\right)}_{n^{d-k}\times r_{k}}$

If we differentiate J w.r.t. TT blocks, we see that...

• ... each step means solving a Galerkin linear system

•
$$X_{\neq k} = \underbrace{\operatorname{TT}\left(\hat{\mathbf{x}}^{(1)}\cdots\hat{\mathbf{x}}^{(k-1)}\right)}_{n^{k-1}\times r_{k-1}} \otimes \underbrace{I}_{n\times n} \otimes \underbrace{\operatorname{TT}\left(\mathbf{x}^{(k+1)}\cdots\mathbf{x}^{(d)}\right)}_{n^{d-k}\times r_{k}}.$$

Properties of ALS include:

- + Effectively 1D complexity in a prescribed format.
 - Tensor format (ranks) is fixed and cannot be adapted.
- Convergence may be very slow, stagnation is likely.

- Density Matrix Renormalization Group (DMRG) [WHITE '92] - updates *two* blocks $\mathbf{x}^{(k)}\mathbf{x}^{(k+1)}$ simultaneously.
- Alternating Minimal Energy (AMEn) [DOLGOV/SAVOSTYANOV '13]
 augments x^(k) by a TT block of the *residual* z^(k).

- Density Matrix Renormalization Group (DMRG) [WHITE '92] - updates *two* blocks $\mathbf{x}^{(k)}\mathbf{x}^{(k+1)}$ simultaneously.
- Alternating Minimal Energy (AMEn) [DOLGOV/SAVOSTYANOV '13]
 augments x^(k) by a TT block of the *residual* z^(k).

But..., what about saddle point systems A?

Recall our KKT system:

$$\underbrace{\begin{bmatrix} M_y & 0 & L^* \\ 0 & M_u & N^\top \\ L & N & 0 \end{bmatrix}}_{A} \begin{bmatrix} y \\ u \\ \lambda \end{bmatrix} = \begin{bmatrix} f \\ 0 \\ g \end{bmatrix}$$

• The whole matrix is indefinite $\Rightarrow X_{\neq k}^{\top} A X_{\neq k}$ can be degenerate.
• Work-around: Block TT representation

Block ALS

CSC

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{u} \\ \lambda \end{bmatrix} = \mathbf{x}_{\alpha_1}^{(1)} \otimes \cdots \otimes \begin{bmatrix} \mathbf{y}_{\alpha_{k-1},\alpha_k}^{(k)} \\ \mathbf{u}_{\alpha_{k-1},\alpha_k}^{(k)} \\ \mathbf{\lambda}_{\alpha_{k-1},\alpha_k}^{(k)} \end{bmatrix} \otimes \cdots \otimes \mathbf{x}_{\alpha_{d-1}}^{(d)}.$$

• $X_{\neq k}$ is the same for y, u, λ .

• Work-around: Block TT representation

Block ALS

CSC

$$\begin{bmatrix} y \\ u \\ \lambda \end{bmatrix} = \mathbf{x}_{\alpha_1}^{(1)} \otimes \cdots \otimes \begin{bmatrix} \mathbf{y}_{\alpha_{k-1},\alpha_k}^{(k)} \\ \mathbf{u}_{\alpha_{k-1},\alpha_k}^{(k)} \\ \mathbf{\lambda}_{\alpha_{k-1},\alpha_k}^{(k)} \end{bmatrix} \otimes \cdots \otimes \mathbf{x}_{\alpha_{d-1}}^{(d)}$$

- $X_{\neq k}$ is the same for y, u, λ .
- Project each submatrix:

$$\begin{bmatrix} \hat{M}_{y} & 0 & \hat{L}^{*} \\ 0 & \hat{M}_{u} & \hat{N}^{\top} \\ \hat{L} & \hat{N} & 0 \end{bmatrix} \begin{bmatrix} y^{(k)} \\ u^{(k)} \\ \lambda^{(k)} \end{bmatrix} = \begin{bmatrix} \hat{f} \\ 0 \\ \hat{g} \end{bmatrix}, \qquad \widehat{(\cdot)} = X_{\neq k}^{\top}(\cdot) X_{\neq k}$$

B./Dolgov/Onwunta/Stoll '16A, '16B]

Vary one of the default parameters:

- TT truncation tolerance $\varepsilon = 10^{-4}$,
- mean viscosity $\nu_0 = 1/20$,
- uncertainty $\nu_1 = 1/80$,
- regularization/penalty parameter $\beta = 10^{-1}$,
- number of time steps: $n_t = 2^{10}$,
- time horizon T = 30,
- spatial grid size $h = 1/4 \iff J = 2488$,
- max. degree of Legendre polynomials: P = 8.

Solve projected linear systems using block-preconditioned GMRES using efficient approximation of Schur complement [B/DOLGOV/ONWUNTA/STOLL '16A].

Varying regularization β (left) and time T (right)

CSC

Varying spatial h (left) / temporal n_t (right) mesh

CSC

Varying different viscosity parameters

Figure: Left: $\nu_0 = 1/10$, ν_1 is varied. Right: ν_1 and ν_0 are varied together as $\nu_1 = 0.25\nu_0$

CSC

Cost functional, squared vorticity (top) and streamlines (bottom)

- Low-rank tensor solver for unsteady heat and Navier-Stokes equations with uncertain viscosity.
- Similar techniques already used for Stokes(-Brinkman) optimal control problems.
- Adapted AMEn (TT) solver to saddle point systems.
- With 1 stochastic parameter, the scheme reduces complexity by up to 2–3 orders of magnitude.
- To consider next:

- Low-rank tensor solver for unsteady heat and Navier-Stokes equations with uncertain viscosity.
- Similar techniques already used for 3D Stokes(-Brinkman) optimal control problems.
- Adapted AMEn (TT) solver to saddle point systems.
- With 1 stochastic parameter, the scheme reduces complexity by up to 2–3 orders of magnitude.
- To consider next:
 - many parameters coming from uncertain geometry or Karhunen-Loève expansion of random fields; Initial results: the more parameters, the more significant is the complexity reduction w.r.t. memory — up to a factor of 10⁹ for the
 - control problem for a backward facing step.
 - exploit multicore technology (need efficient parallelization of AMEn).

P. Benner, S. Dolgov, A. Onwunta, and M. Stoll. Low-rank solvers for unsteady Stokes-Brinkman optimal control problem with random data. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 304:26-54, 2016. B P. Benner, A. Onwunta, and M. Stoll. Low rank solution of unsteady diffusion equations with stochastic coefficients. SIAM/ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 3(1):622-649, 2015. P. Benner, A. Onwunta, and M. Stoll. Block-diagonal preconditioning for optimal control problems constrained by PDEs with uncertain inputs. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 37(2):491-518, 2016. B C.E. Powell and D.J. Silvester. Preconditioning steady-state Navier-Stokes equations with random data. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 34(5):A2482-A2506, 2012. F Rosseel and G N Wells Optimal control with stochastic PDE constraints and uncertain controls. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 213-216:152-167, 2012. M. Stoll and T. Breiten. A low-rank in time approach to PDE-constrained optimization. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 37(1):B1-B29, 2015.

🔆 CSC 3D Stokes-Brinkman control problem

