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1. Introduction
Parametric Dynamical Systems
The Parametric Model Order Reduction (PMOR) Problem
Error Measures
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Parametric Dynamical Systems

o): { EH(ER) = fextephuldhol ()= (o)

y(t:p) g(t,x(t; p), u(t), p) (b)
with
o (generalized) states x(t; p) € R” (E € R"*"),
o inputs (controls) u(t) € R™,
@ outputs (measurements, quantity of interest) y(t; p) € RY,
(b) is called output equation,

e pc QcCRYisa parameter vector, Q is bounded.
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Parametric Dynamical Systems

o): { EH(ER) = fextephuldhol ()= (o)

y(t:p) g(t,x(t; p), u(t), p) (b)
with
o (generalized) states x(t; p) € R” (E € R"*"),
o inputs (controls) u(t) € R™,
@ outputs (measurements, quantity of interest) y(t; p) € RY,
(b) is called output equation,
e pc QcCRYisa parameter vector, Q is bounded.

E(p) singular = (a) is system of differential-algebraic equations (DAEs)
otherwise = (a) is system of ordinary differential equations (ODEs)
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Parametric Dynamical Systems

[ Ex(tp) = flexEe)ut)p), xw)=x (@)
Z(”)'{ W) — deAr oo ()

with
o (generalized) states x(t; p) € R" (E € R"™*"),
o inputs (controls) u(t) € R,
@ outputs (measurements, quantity of interest) y(t; p) € RY,
(b) is called output equation,
o pe QcCRYis a parameter vector, Q is bounded.

Applications:
@ Repeated simulation for varying material or geometry parameters, boundary
conditions,
@ control, optimization and design,
@ of models, often generated by FE software (e.g., ANSYS, NASTRAN,...) or
automatic tools (e.g., Modelica).
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Parametric Dynamical Systems

o): { EH(ER) = fextephuldhol ()= (o)

y(t:p) g(t,x(t; p), u(t), p) (b)
with
o (generalized) states x(t; p) € R” (E € R"*"),
o inputs (controls) u(t) € R™,
@ outputs (measurements, quantity of interest) y(t; p) € RY,
(b) is called output equation,

e pc QcCRYisa parameter vector, Q is bounded.

Underlying PDE and boundary conditions often not accessible!
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Parametric Dynamical Systems

Z(P) : { E(p)X(t;p) = f(t,X(t; P), U(t),p), X(tO) = Xo, (a)
y(t:p) = g(t,x(t;p), u(t),p) (b)
with
o (generalized) states x(t; p) € R" (E € R"*"),
@ inputs (controls) u(t) € R",
o outputs (measurements, quantity of interest) y(t; p) € RY,
(b) is called output equation,
o peQcCRYis a parameter vector, Q is bounded.

Underlying PDE and boundary conditions often not accessible!

Parametric discretized model often not available,
but matrices for certain parameter values can be extracted
(or output data for given u and p can be generated!)
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@ Introduction

E(p)x(t;p) = Alp)x(t;p) + B(p)u(t), Alp), E(p) € R™",
y(t;p) C(p)x(t: p), B(p) € R™™, C(p) € RT*".
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E(p)x(t;p) = Alp)x(t;p) + B(p)u(t), Alp), E(p) € R™",
C(p)x(t: p), B(p) € R™™, C(p) € RT*".

Laplace Transformation / Frequency Domain

Application of Laplace transformation

<

—_

o

o

~
|

x(t;p) = x(s;p), x(t;p) = sx(s; p)
to linear system with x(0; p) = 0:
sE(p)x(s; p) = A(p)x(s: p) + B(p)u(s), y(sip) = C(p)x(s; p),
yields |/O-relation in frequency domain:
v(sip) = ( C(P)(SE(P) ~ Alp)) *BIp) ) u(s).
=:G(s,p)

G(s, p) is the parameter-dependent transfer function of ¥(p).
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E(p)x(t;p) = Alp)x(t;p) + B(p)u(t), Alp), E(p) € R™",
C(p)x(t: p), B(p) € R™™, C(p) € RT*".

Laplace Transformation / Frequency Domain

Application of Laplace transformation

<

—_

o

o

~
|

x(t; p) — x(s; p), x(t; p) — sx(s; p)
to linear system with x(0; p) = 0:
sE(p)x(s; p) = A(p)x(s: p) + B(p)u(s), y(sip) = C(p)x(s; p),
yields |/O-relation in frequency domain:
y(s:p) = ( Cp)(SE(p) — Alp)*B(p) ) u(s).
=:G(s,p)
G(s, p) is the parameter-dependent transfer function of ¥(p).

Goal: Fast evaluation of mapping (u, p) — y(s; p).
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=

Approximate the dynamical system

E(p)x = A(p)x+ B(p)u,  E(p), A(p) € R™",
B(p) E Rnxm’ C(p) e qun,

y = C(p)x,

by reduced-order system

E(p)x = A(p)x+B(p)u,  E(
y = pX, B(

p), A(p) € R <",
P) St C(p) c qur’

of order r < n, such that
ly =yl = HGU— CA;uH < HG - CA;H - ||u|| < tolerance - |ju|| V p € Q.

PMOR for Control Systems
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*‘5@ Problem

Approximate the dynamical system

E(p)x = A(p)x+ B(p)u,  E(p), A(p) € R™",
y = C(p)x, B(p) € R™™, C(p) € RI*",

by reduced-order system

E(p)x = A(p)x+B(p)u,  E(p), A(p) e R,
y = P B(p) e R*™, E(p) € RI*",

of order r < n, such that
ly =yl = HGU— GUH < HG - CA;H - ||u|| < tolerance - |ju|| V p € Q.

G—GH.

—> Approximation problem:  min
order (G)<r

PMOR for Control Systems
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@ Problem

Parametric System

[ E(p)x(t;p) A(p)x(t; p) + B(p)u(t),
0 “7En oo
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Parametric System

[ E(p)x(t;p) A(p)x(t; p) + B(p)u(t),
0 “7En oo

Parametric model reduction goal:

preserve parameters as symbolic quantities in reduced-order model:

ﬂm:{é@&wm A(p)(t; p) + B(p)u(t),

y(t:ip) = C(p)x(tip)

with states %(t; p) € R" and r < n.
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Parametric System

5(p) : { E(p)x(t: p)

A(p)x(t; p) + B(p)u(t),

y(tip) = C(p)x(t:p).

Assuming parameter-affine representation:

E(p) = E+ealp)E+...
Alp) = Ao+ a(p)AL+..
B(p) = Bo+bi(p)Bi+..
Cp) = G+alp)G+...

+ qu (p)EQE’

-+ an(p)AqA7
-t bQB(p)BqB7

+ ¢qc(P) Cac

allows easy parameter preservation for projection based model reduction.

@© P. Benner
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Petrov-Galerkin-type projection
For given projection matrices V, W € R"*" with WTV = I,
(~ (VWWT)2 = VWT is projector), compute

E(p) = WTEV +ea(p)WTEV +...+e, (p)WTE,V
Alp) = WTAV +a(p)WTALV +... +ag,(p)WT A,V
B(p) = WTBy +bi(p)WTB1 +...+ by (p)W'B,,
Clp) = GV + alp)GV+...+ Cqe(p)Cqc V
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Petrov-Galerkin-type projection

For given projection matrices V, W € R"™ " with WTV = I,
(~ (VWWT)2 = VWT is projector), compute

E(p) =

WTEV +e(p)WTEV + ...+ e (p)WTE,V
Eo+e(p)Er+ ...+ e (p)Ey
WTAV +ai(p)WTALV + ... +ag,(p)WT A,V
Ao+ a1(p)A1 + . .. + ag,(p)Aq,
WTBy +bi(p)WTB1 + ...+ be(p)WT By,
Bo + bi(p)Bi + - . + bas (p) By

GV + alp)GV+...+ Cqe(p)Cqc V

PN

G+a)G+...+ Cqe(p) Coc

@© P. Benner
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Local Bases

Obtain Vi, Wi € R""* using any non-parametric linear MOR method for a number of
full-order models (p¥)), k = 1,...,£. Then compute reduced-order model by
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@ Problem

Local Bases

Obtain Vi, Wi € R""* using any non-parametric linear MOR method for a number of
full-order models ):(p(k)), k=1,...,£. Then compute reduced-order model by
1. manifold interpolation [AMSALLAM/FARHAT 2008, BRUNSCH 2017]
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@ Problem

Basis Generation — Global vs. Local

Local Bases
Obtain Vi, Wi € R""* using any non-parametric linear MOR method for a number of
full-order models ):(p(k)), k=1,...,£. Then compute reduced-order model by

1. manifold interpolation [AMSALLAM/FARHAT 2008, BRUNSCH 2017]

2. transfer function interpolation (= interpolate y(s,.) in frequency domain)
[B./BAUR 2008/09]
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Local Bases

Obtain Vi, Wi € R""* using any non-parametric linear MOR method for a number of
full-order models (p¥)), k = 1,...,£. Then compute reduced-order model by
1. manifold interpolation [AmsaLLAM/FARHAT 2008, BRUNSCH 2017]
2. transfer function interpolation (= interpolate y(s,.) in frequency domain)
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Advantage:
no need for affine parametrization, requires only system matrices A(p¥)), B(p™), .. ..
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Y 5@ Problem

Basis Generation — Global vs. Local

Local Bases

Obtain Vi, Wi € R""* using any non-parametric linear MOR method for a number of
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Advantage:
no need for affine parametrization, requires only system matrices A(p¥)), B(p™), .. ..

Disadvantages:

1. manifold interpolation: originally, requires O(nr) operations in "online” phase.
[BRUNSCH 2017] overcomes this problem, but only for negative definite matrix pencils

(A(p), E(p))-




'@ Problem

Basis Generation — Global vs. Local

Local Bases

Obtain Vi, Wi € R""* using any non-parametric linear MOR method for a number of
full-order models (p¥)), k = 1,...,£. Then compute reduced-order model by
1. manifold interpolation [AmsaLLAM/FARHAT 2008, BRUNSCH 2017]
2. transfer function interpolation (= interpolate y(s,.) in frequency domain)
[B./BAUR 2008/09]
3. matrix interpolation [PANZER/MOHRING /EID/LOHMANN 2010, AMSALLAM/FARHAT 2011]

Advantage:
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1. manifold interpolation: originally, requires O(nr) operations in "online” phase.
[BRUNSCH 2017] overcomes this problem, but only for negative definite matrix pencils
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2. transfer function interpolation: spurious poles of the parametric transfer function.
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'@ Problem

Basis Generation — Global vs. Local

Local Bases

Obtain Vi, Wi € R""* using any non-parametric linear MOR method for a number of
full-order models (p¥)), k = 1,...,£. Then compute reduced-order model by
1. manifold interpolation [AmsaLLAM/FARHAT 2008, BRUNSCH 2017]

2. transfer function interpolation (= interpolate y(s,.) in frequency domain)
[B./BAUR 2008/09]

3. matrix interpolation [PANZER/MOHRING /EID/LOHMANN 2010, AMSALLAM/FARHAT 2011]

Advantage:
no need for affine parametrization, requires only system matrices A(p¥)), B(p™), .. ..

Disadvantages:

1. manifold interpolation: originally, requires O(nr) operations in "online” phase.
[BRUNSCH 2017] overcomes this problem, but only for negative definite matrix pencils
(AP), E(p)).

2. transfer function interpolation: spurious poles of the parametric transfer function.

3. matrix interpolation: different models obtained in different coordinate systems ~~
Procrustes problem ~~ potential loss of accuracy; efficiency in "online” phase suffers from
evaluating the interpolation operator.

PMOR for Cont



@ Problem

Global Basis

Obtain V, W € R such that V"W = I, and perform structure-preserving (Petrov-)
Galerkin projection, exploiting affine parametrization of the linear parametric system.
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Global Basis

Obtain V, W € R such that V"W = I, and perform structure-preserving (Petrov-)
Galerkin projection, exploiting affine parametrization of the linear parametric system.

Obtain global basis from
1. concatenation of local basis matrices:

Vi=[W,...,V], W= [Wh,...,W;]

and orthogonalization (truncation), using, e.g., SVD;
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Global Basis

Obtain V, W € R such that V"W = I, and perform structure-preserving (Petrov-)
Galerkin projection, exploiting affine parametrization of the linear parametric system.

Obtain global basis from
1. concatenation of local basis matrices:

Vi=[W,...,V], W= [Wh,...,W;]

and orthogonalization (truncation), using, e.g., SVD;

2. bilinearization and using bilinear MOR techniques
[B./BREITEN 2011, B./BRUNS 2015];
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Global Basis

Obtain V, W € R such that V"W = I, and perform structure-preserving (Petrov-)
Galerkin projection, exploiting affine parametrization of the linear parametric system.

Obtain global basis from
1. concatenation of local basis matrices:

Vi=[W,...,V], W= [Wh,...,W;]

and orthogonalization (truncation), using, e.g., SVD;

2. bilinearization and using bilinear MOR techniques
[B./BREITEN 2011, B./BRUNS 2015];

3. parametric balanced truncation [SoN/STYKEL 2017].
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Obtain V, W € R such that V"W = I, and perform structure-preserving (Petrov-)
Galerkin projection, exploiting affine parametrization of the linear parametric system.

Obtain global basis from
1. concatenation of local basis matrices:

Vi=[W,...,V], W= [Wh,...,W;]

and orthogonalization (truncation), using, e.g., SVD;

2. bilinearization and using bilinear MOR techniques
[B./BREITEN 2011, B./BRUNS 2015];

3. parametric balanced truncation [SoN/STYKEL 2017].

Avoids most of the problems encountered with local bases, but requires parameter-affine
representation of system.
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%&5@ Using a Global Basis w/o Affine Parametrization

Empirical Matrix Interpolation Method [B./GUGERCIN/WILLCOX 2015]

Given V, W € R™*" and suppose only that M(p) € R"** can be evaluated at specific
parameter values.
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%&5@ Using a Global Basis w/o Affine Parametrization

Empirical Matrix Interpolation Method [B./GUGERCIN/WILLCOX 2015]

Given V, W € R™*" and suppose only that M(p) € R"** can be evaluated at specific
parameter values.

o Let m(p) := vec(M(p)) € R™.
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%&5@ Using a Global Basis w/o Affine Parametrization

Empirical Matrix Interpolation Method [B./GUGERCIN/WILLCOX 2015]
Given V, W € R™*" and suppose only that M(p) € R"** can be evaluated at specific
parameter values.
o Let m(p) := vec(M(p)) € R™.
@ Goal: approximate m(p) ~ m(p) = Va(p), where W € R"™* and a(p) € R® with
< n.
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%&5@ Using a Global Basis w/o Affine Parametrization

Empirical Matrix Interpolation Method [B./GUGERCIN/WILLCOX 2015]
Given V, W € R™*" and suppose only that M(p) € R"** can be evaluated at specific
parameter values.
o Let m(p) := vec(M(p)) € R™.
@ Goal: approximate m(p) ~ m(p) = Va(p), where W € R"™* and a(p) € R® with
< n.
o Then M(p) = vec (M(p)) € R (or R” if t = n) can be computed cheaply and
independent of n as

m(p) = vec (WTM(p) V)
= (VT @W)m(p) ~ (VT @ WT)m(p) = (V" ® WT)Wa(p) = f(p).
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%&3@ Using a Global Basis w/o Affine Parametrization

Empirical Matrix Interpolation Method [B./GUGERCIN/WILLCOX 2015]
Given V, W € R™*" and suppose only that M(p) € R"** can be evaluated at specific
parameter values.
o Let m(p) := vec(M(p)) € R™.
@ Goal: approximate m(p) ~ m(p) = Va(p), where W € R"™* and a(p) € R® with
< n.
o Then M(p) = vec (M(p)) € R (or R” if t = n) can be computed cheaply and
independent of n as

m(p) = vec (WTM(p) V)
= (VT @W)m(p) ~ (VT @ WT)m(p) = (V" ® WT)Wa(p) = f(p).
@ This is achieved by sampling M(p) at p = pY, j =1,...,¢, yielding

gy =vec(M(pY))  and W =[¢r,..., %]

Then apply (Q,D)EIM (or alike) to determine «(p) s.t. selected entries of m(p)
interpolate those entries of m(p).
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‘1@ Using a Global Basis w/o Affine Parametrization

Empirical Matrix Interpolation Method [B./GUGERCIN/WILLCOX 2015]
Given V, W € R™*" and suppose only that M(p) € R"** can be evaluated at specific

parameter values.
Goal: approximate m(p) =~ m(p) = Wa(p), where W € R™** and a(p) € R* with
£ < n, and where W is the sampling matrix built by vec (M(p")).

@© P. Benner PMOR for Control Systems



%&3@ Using a Global Basis w/o Affine Parametrization

Empirical Matrix Interpolation Method [B./GUGERCIN/WILLCOX 2015]
Given V, W € R™*" and suppose only that M(p) € R"** can be evaluated at specific
parameter values.
Goal: approximate m(p) =~ m(p) = Wa(p), where ¥ € R"™* and a(p) € R® with
£ < n, and where W is the sampling matrix built by vec (M(p")).
o Apply (Q,D)EIM (or alike) to determine c(p) s.t. selected entries of m(p)
interpolate those entries of m(p).
Let zi, zp, ...,z be the selected indices to be exactly matched, and
Z :=[e;,...,€z]. Then, forcing interpolation at the selected rows implies

Z'm(p) = Z"Wa(p) = a(p)=(Z"V)"'Z" m(p).
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w@ Using a Global Basis w/o Affine Parametrization

Empirical Matrix Interpolation Method [B./GUGERCIN/WILLCOX 2015]

Given V, W € R™*" and suppose only that M(p) € R"** can be evaluated at specific
parameter values.
Goal: approximate m(p) =~ m(p) = Wa(p), where ¥ € R"™* and a(p) € R® with
£ < n, and where W is the sampling matrix built by vec (M(p")).
o Apply (Q,D)EIM (or alike) to determine c(p) s.t. selected entries of m(p)
interpolate those entries of m(p).

Let zi, zp, ...,z be the selected indices to be exactly matched, and
Z :=[e;,...,€z]. Then, forcing interpolation at the selected rows implies

Z'm(p) = Z"Wa(p) = a(p)=(Z"V)"'Z" m(p).
@ Hence, the approximation is given by r(p) = W(Z7W)"*Z"m(p).

@ Undoing the vectorization yields the reduced model matrix

M(p) = vec ' (r%(p)) = vec™ ((VT QW' \Ila(p)) Zaj p) W M(p )

precomputable'
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w@ Using a Global Basis w/o Affine Parametrization

Empirical Matrix Interpolation Method [B./GUGERCIN/WILLCOX 2015]

Given V, W € R™*" and suppose only that M(p) € R"** can be evaluated at specific
parameter values.
Goal: approximate m(p) =~ m(p) = Wa(p), where ¥ € R"™* and a(p) € R® with
£ < n, and where W is the sampling matrix built by vec (M(p")).
o Apply (Q,D)EIM (or alike) to determine c(p) s.t. selected entries of m(p)
interpolate those entries of m(p).

Let zi, zp, ...,z be the selected indices to be exactly matched, and
Z :=[e;,...,€z]. Then, forcing interpolation at the selected rows implies

Z'm(p) = Z"Wa(p) = a(p)=(Z"V)"'Z" m(p).
@ Hence, the approximation is given by r(p) = W(Z7W)"*Z"m(p).

@ Undoing the vectorization yields the reduced model matrix

M(p) = vec™ (VT & W)¥a(p)) = Za,(p)vv M(p)V =: Za,

precomputable'
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Parametric Systems Norms

Mean—square error norm:

21 J_

“ 1 +o00o N 5
16~ Gluerim == | [ 160 p) = 6, p)f dpi ... dpacs,
(9}

where || . ||r denotes the Frobenius norm.

Worst-case error norm:

16 = Gllnworai = sup_||6Gw, p) = Gl o) -
wER, peN 2
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2. PMOR Methods based on Moment Matching
Interpolatory Model Reduction
PMOR based on Multi-Moment Matching

@© P. Benner PMOR for Control Systems



@@ Recall Interpolatory Model Reduction

Computation of reduced-order model by projection

Given a linear (descriptor) system Ex = Ax+ Bu, y = Cx  with transfer function
G(s) = C(sE — A)"'B, a reduced-order model is obtained using truncation matrices
V,W € R™" with WTV =1, (~ (VWT)? = VW is projector) by computing

E=WTEV, A=wW'Av, B=W'B, E=CV.

Petrov-Galerkin-type (two-sided) projection: W # V,
Galerkin-type (one-sided) projection: W = V.

@© P. Benner PMOR for Control Systems



w@ Recall Interpolatory Model Reduction

Computation of reduced-order model by projection

Given a linear (descriptor) system Ex = Ax+ Bu, y = Cx  with transfer function
G(s) = C(sE — A)™'B, a reduced-order model is obtained using truncation matrices
V,W € R™" with WTV =1, (~ (VWT)? = VW is projector) by computing

E=WTEV, A=W"Av, B=wW'B, € =CV.
Petrov-Galerkin-type (two-sided) projection: W # V,
Galerkin-type (one-sided) projection: W = V.

Rational Interpolation/Moment-Matching

Choose V, W such that

G(Sj) = é(sj)v Ji=1...k,
and : .
d d ; ;
EG(SJ):EG(SJ)? l:17---7l<ja Jj=1.. k.
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span {(s;E — A)7'B,...,(skE — A)"'B} C range(V),
span {(siE —A)"TCT,...,(skE—A)"TCT} C range(W),

then J J
G(sj) = G(sj), EG(SJ) = EG(SJ-), forj=1,..., k.

@© P. Benner PMOR for Control Systems



Q&?@ Recall Interpolatory Model Reduction

Theorem (simplified) [GRIMME 1997, VILLEMAGNE/SKELTON 1987]

span {(s;E — A)7'B,...,(skE — A)"'B} C range(V),
span {(siE —A)"TCT,...,(skE—A)"TCT} C range(W),

then J J
G(sj) = G(sj), EG(SJ‘) = EG(SJ-), forj=1,..., k.

Remarks:
computation of V| W from rational Krylov subspaces, e.g.,
— dual rational Arnoldi/Lanczos [GrRiMME 1997],

— lter. Rational Krylov-Alg. (IRKA) [ANTOULAS/BEATTIE/GUGERCIN 2006 /08].
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Q&?@ Recall Interpolatory Model Reduction

Theorem (simplified) [GRIMME 1997, VILLEMAGNE/SKELTON 1987]

span {(s;E — A)7'B,...,(skE — A)"'B} C range(V),
span {(siE —A)"TCT,...,(skE—A)"TCT} C range(W),

then J J
G(sj) = G(sj), EG(SJ-):EG(SJ-), forj=1,..., k.
Remarks:

using Galerkin /one-sided projection (W = V) yields G(s;) = G(s;), but in general

d d
£G(s) £ 2 C(s).
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w@ Recall Interpolatory Model Reduction

Theorem (simplified) [GRIMME 1997, VILLEMAGNE/SKELTON 1987]

span {(s;E — A)7'B,...,(skE — A)"'B} C range(V),
span {(siE —A)"TCT,...,(skE—A)"TCT} C range(W),

then J .
G(s) = G(s), - G(s)= 16 5(sp), forj=1,... k.

Remarks:
k =1, standard Krylov subspace(s) of dimension K:

range(V) = Ki((s1E — A)™', (s1.E — A)"'B).
~~» moment-matching methods/Padé approximation,

dl

(1)—— 5(s1), i=0,...,K—1(+K).

@© P. Benner PMOR for Control Systems



@ Comparison of Moment Matching and RBM

@ System in time domain:

Ex(t)
y(t)

Ax(t) + Bu(t),
Cx(t).

@ System in frequency domain:

sEx(s) = Ax(s)+ Bu(s),
y(s) Cx(s).

@ Reduced basis method considers s
as a parameter, and uses the system
in frequency domain to compute

range( V) = span{x(s1),...,x(sm)}- = 25,080, = g = 1

The ROM is obtained by Galerkin
projection with V. Courtesy of TEMF, TU Darmstadt.
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ment-matching vs. reduced basis metho

10! Py e —— Moment-matching [0 gt SR N Moment-matching
- - - Reduced basis method === Reduced basis method
10-11 i 10" N
5 8
S0 510 i
Em) 1051 i‘: 1075 “\ |
.
070 \eeeeaae 10771 N ]
107 | I | ] 1077 B
5 10 15 20 25 30 3 0 i3 20

Reduced order r Computational effort
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@ PMOR based on Multi-Moment Matching

Idea: choose appropriate frequency parameter § and parameter vector p, expand into
multivariate power series about (8, p) and compute reduced-order model, so that

G(s.p) = G(s.p) + O (Is =8 +Ilp— plI* + s — 8I*llp— B")

i.e., first K, L, k+ I (mostly: K =L = k+[) coefficients (multi-moments) of
Taylor/Laurent series coincide.

@© P. Benner PMOR for Control Systems



@ PMOR based on Multi-Moment Matching

Idea: choose appropriate frequency parameter § and parameter vector p, expand into
multivariate power series about (8, p) and compute reduced-order model, so that

G(s.p) = G(s.p) + O (Is =8 +Ilp— plI* + s — 8I*llp— B")

i.e., first K, L, k+ I (mostly: K =L = k+[) coefficients (multi-moments) of
Taylor/Laurent series coincide.

Algorithms:

[1] [DANIEL ET AL. 2004]: explicit computation of moments, numerically unstable.

[2] [FarLE ET AL. 2006/07]: Krylov subspace approach, only polynomial
param.-dependance, numerical properties not clear, but appears to be robust.

[3] [WEILE ET AL. 1999, FENG/B. 2007/14]: Arnoldi-MGS method, employ recursive
dependance of multi-moments, numerically robust, r often larger as for [2].

[4] New: employ dual-weighted residual error bound and greedy procedure to define
interpolation points an # of multi-moments matched
[ANTOULAS/B./FENG 2014/17].
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@ PMOR based on Multi-Moment Matching

Parametric System

Again, consider linear parametric system

5 (p) - E(p)x(tip) = A(p)x(t;p) + B(p)u(t),
' y(t:ip) = C(p)x(t:p)
together with its transfer function G(s, p).

@© P. Benner PMOR for Control Systems



@ PMOR based on Multi-Moment Matching

Parametric System

Again, consider linear parametric system
5 (p) - E(p)x(tip) = A(p)x(t;p) + B(p)u(t),
y(t:p) = C(p)x(t:p)
together with its transfer function G(s, p).

For simplicity, assume B(y) = B, and re-parameterize — . :=[s,p’,...]" € C* such
that with

G(u) = G(s,p),  x(u) =x(s,p), y(u) =y(s.p),--.
A(p) = sE(p) — Alp),

we obtain linear-affine structure of A(u):

A(p) = Ao+ prAr + ..+ peAs

@© P. Benner PMOR for Control Systems



@ PMOR based on Multi-Moment Matching

Parametric System

Again, consider linear parametric system

5(p) - { E(px(tip) = Ap)x(t:p) + B(p)u(t),

y(tip) = C(p)x(t;ip)
together with its transfer function G(s, p).

For simplicity, assume B(y) = B, and re-parameterize — . :=[s,p’,...]" € C* such
that with

G(u) = G(s,p),  x(u) =x(s,p), y(u) =y(s.p),--.
A(p) = sE(p) — Alp),

we obtain linear-affine structure of A(u):
A(p) = Ao+ pnAs + ..o+ e As.

In frequency domain, we may then re-write the parametric system as

A(p)x(n) = Bu(s),  y(r) = Cp)x(p).

@© P. Benner PMOR for Control Systems



@ PMOR based on Multi-Moment Matching

Multivariate Power Series Expansion |

© , and write

Choose an expansion point g
A(p) = Ao+ pn Ay + .o+ e Am
= (Ao+ 1A+ + VA + ((ul — )AL+ (e - /LE;O))AZ)

=My
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@ PMOR based on Multi-Moment Matching

Multivariate Power Series Expansion |

© , and write

Choose an expansion point g
A(p) = Ao+ pn Ay + .o+ e Am
= (Ao+ 1A+ + VA + ((ul — )AL+ (e - /LE;O))AZ)
=My

= Mo (I +(p1 — “50))/\40_1.,41 ot (e —/Lg)))MO_IAg)
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@ PMOR based on Multi-Moment Matching

Multivariate Power Series Expansion |

© , and write

Choose an expansion point g
A(p) = Ao+ pn Ay + .o+ e Am
= (Ao+ 1A+ + VA + ((ul — )AL+ (e - uff”)Az)
=My

= Mo (I +(p1 — “50))/\40_1.,41 ot (e —#gj))Mo_lAg)

Using the Neumann lemma ((/ — F)~" = 322 F/ if ||F|| < 1), we obtain

1w ; - VAR
AG) ™ = D01 (o = MG A+ (e = MG A Mg
j=0

= Z(o‘l./\/ll +... Uz/\/lz)i/\/lo_l,

j=0
where o; = pj — u,(.o) and M; = —Mg ' A fori=1,...,L
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C&' @ PMOR based on Multi-Moment Matching

Multivariate Power Series Expansion Il

We have
A(p)x(p) = Bu(s).
and
Ap) ™ =D (aMa+ . oeMY Mg Y,
j=0

where o = p; — uf ) Mo = A(p®) and M; = ~MytAifori=0,...,0
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C&' @ PMOR based on Multi-Moment Matching

Multivariate Power Series Expansion Il

We have
A(p)x(p) = Bu(s).
and
Alp) ™t =) (oM 4. oMY Mg Y
j=0

where o = pj — u,(-o), Mo = A(p?) and M; = ~MytAifori=0,...,0

Hence,

oo

x(p) = A(M)_lBU(S) = Z(UIMI + ...+ UzMz)jMo_lB u(s)
~ 2(01/\/{1 + .o oMY Bu(s) =: %().

Jj=0

@© P. Benner PMOR for Control Systems



@@ PMOR based on Multi-Moment Matching

Multivariate Power Series Expansion Il

We have
A(p)x(p) = Bu(s).
and
A(p) ™t = Z(UIMI + . oMY Mg,
j=0

where o = pj — u,(-o), Mo = A(p?) and M; = ~MytAifori=0,...,0

Hence,

x(n) = A(p) " Bu(s) = Z(UIMI 4.+ oMY My B u(s)
~ 2(01/\/{1 + .o oMY Bu(s) =: %().

j=0
Thus, x(u) is (approximately, locally) contained in the Krylov subspace
K:k+1((0'1./\/t1 +...+ Ug/\/lg), B).
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@@ PMOR based on Multi-Moment Matching

x(p) is (approximately, locally) contained in the Krylov subspace
/Ck+1((0'1./\/l]_ 4+ ... U@M@),B) —

@ Project the state-space onto this subspace.
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@@ PMOR based on Multi-Moment Matching

x(p) is (approximately, locally) contained in the Krylov subspace
/Ck+1((0'1./\/l]_ 4+ ... U@M@),B) —

@ Project the state-space onto this subspace.

@ Obtain an orthogonal basis using block-Arnoldi-MGS [B./Fenc 2007/14], or
TOAR [Bar/Su 2008].

@© P. Benner PMOR for Control Systems



@@ PMOR based on Multi-Moment Matching

x(p) is (approximately, locally) contained in the Krylov subspace
/Ck+1((0'1./\/l]_ 4+ ... U@M@),B) —

@ Project the state-space onto this subspace.

@ Obtain an orthogonal basis using block-Arnoldi-MGS [B./Fenc 2007/14], or
TOAR [Bar/Su 2008].

@ The ROM is obtained by Galerkin projection.
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@@ PMOR based on Multi-Moment Matching

x(p) is (approximately, locally) contained in the Krylov subspace
/Ck+1((0'1./\/l]_ + ... U@M@),B) —
@ Project the state-space onto this subspace.

@ Obtain an orthogonal basis using block-Arnoldi-MGS [B./Fenc 2007/14], or
TOAR [Bar/Su 2008].

@ The ROM is obtained by Galerkin projection.

o Petrov-Galerkin projection possible using the "dual” Krylov subspace
obtained from using A7 and CT [Aumap/B./Fenc 2017].

@© P. Benner PMOR for Control Systems



@@ PMOR based on Multi-Moment Matching

x(p) is (approximately, locally) contained in the Krylov subspace
/Ck+1((0'1./\/11 + ... U@M(),B) —

@ Project the state-space onto this subspace.

@ Obtain an orthogonal basis using block-Arnoldi-MGS [B./Fenc 2007/14], or
TOAR [Bar/Su 2008].

@ The ROM is obtained by Galerkin projection.

@ Petrov-Galerkin projection possible using the "dual” Krylov subspace
obtained from using A7 and CT [Aumap/B./Fenc 2017].

o First terms in the multivariate Taylor expansion match, i.e., we achieve

matrix interpolation for partial derivatives up to order k, or more in the
Petrov-Galerkin case.

@© P. Benner PMOR for Control Systems



@@ PMOR based on Multi-Moment Matching

x(p) is (approximately, locally) contained in the Krylov subspace
/Ck+1((0'1./\/11 + ... U@M(),B) —

@ Project the state-space onto this subspace.

@ Obtain an orthogonal basis using block-Arnoldi-MGS [B./Fenc 2007/14], or
TOAR [Bar/Su 2008].

@ The ROM is obtained by Galerkin projection.

@ Petrov-Galerkin projection possible using the "dual” Krylov subspace
obtained from using A7 and CT [Aumap/B./Fenc 2017].

o First terms in the multivariate Taylor expansion match, i.e., we achieve
matrix interpolation for partial derivatives up to order k, or more in the
Petrov-Galerkin case.

o Approximation is only valid locally (convergence radius of Neumann series!)
~ use several expansion points (9, ..., u(" and concatenate (and
truncate) the local bases to obtain a global basis.
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@ PMOR based on Multi-Moment Matching

Numerical Examples: Electro-Chemical SEM

Compute cyclic voltammogram based on FE model

EX(t) = (Ao + plAl + pQAQ)X(t) + Bu(t), y(t) = CTX(t),
where n = 16,912, m = 3, Ay, A, diagonal.

K=L=k+{=4 = r=26 K=L=k+¢=9 = r=286

—— full simulation, n=16912
— = —reduced order 86

current, nA
current, nA
N

5 0 05 5 0 05
voltage u(t), alpha=0.5 voltage u(t), alpha=0.5

Source: MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Scanning_Electrochemical_Microscopy
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w@ PMOR based on Multi-Moment Matching

How to adaptively choose 1(1)7?
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w@ PMOR based on Multi-Moment Matching

How to adaptively choose 1(1)7?

And how many partial derivatives to be matched at each interpolation point?

@© P. Benner PMOR for Control Systems



Q&?@ PMOR based on Multi-Moment Matching

How to adaptively choose z(17?

And how many partial derivatives to be matched at each interpolation point?

Possible approach: adopt ideas from Reduced Basis Methods, i.e., let

1G(1) = G(u)l| < A(r) o ly() — 9(w)l| < Do)

guide the selection of ;) for computable a posteriori error bounds for the state or
the output.

@© P. Benner PMOR for Control Systems



%&f@ Error Bound for Automatic ROM Construction

Theorem (SISO case) [FENG/ANTOULAS/B. 2015/17]
Assume that omin(G(s, p)) =: B(s,p) >0 VRe(s) >0,Vp € Q, then

|H(s,p) — A(s, p)| < A(s, p) + [(X™)"" (s, p)| =: A(s, p);

where

Ir*(s, )2 Il (s, P)lI2
B(s, p) ’

with the primal and dual residuals r”", r® and the reduced " dual state
r”(s,p) = 1 (B = (sE(p) — A(P))) (V(sE(p) — A(p)) ' B)Il,

r(s,p) = Il (€T = (5E(p) — A(P))) £,

£ — _y(sEN(p) — A%(p)) T EM.

A(s,p) =

" )?du:

The dual reduced-order system is computed using Galerkin projection with V% obtained
by applying multi-moment matching algorithm to "dual” system (5E(p)" — A(p)", C").
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@ Error Bound for Automatic ROM Construction

Remarks

@ For application in "RBM fashion”, r(u), rP" (1) can be efficiently computed,
need to solve sparse linear systems on training set, i.e., one sparse
factorization for each sampling point.

o [(s,p) = omin(G(s, p)) easily computable on the training set — system
solves for evaluation of the transfer function readily available from residual
computation!

o Extension to MIMO case possible taking max over all 1/O channels.
o Can use Petrov-Galerkin framework using W = V9 at no extra cost!
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@ PMOR based on Multi-Moment Matching

Algorithm 1 Automatic generation of the ROM: adaptively selecting z()

Input: V =[]; € > €4y; Initial expansion point: fi; i :== —1;
=irain. a set of samples of i covering the parameter domain.

Output: V.

while ¢ > ¢;, do

i=1i+1;
M(i):ﬂ;

o

V = orth([V, V,»]);

fi = arg max A(u);
ne

7 €= A(ﬂ),
8: end while

=train

1:
2
3:
4.V, = orthogonal basis of /Ck+1((0'§i)M1 +...+ a§’)Mz), B);
5
6

@© P. Benner
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@ PMOR based on Multi-Moment Matching

Numerical Example: Silicon Nitride Membrane

A SiN membrane can be a part of a gas sensor, an infra-red sensor, a
microthruster, etc. Heat tansfer in the membrane is described by

(Eo + pcpEr)x(t)
y(t)

—(Ko + kK1 + th)X(t) + bu(t)
Cx(t),

with parameters
o density p € [3000,3200],
@ specific heat capacity ¢, € [400,750],
@ thermal conductivity k € [2.5,4],

@ membrane heat transfer coefficient
h € [10,12].

and frequency f € [0, 25]Hz.

Source: MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Silicon_nitride_membrane
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o

W@ PMOR based on Multi-Moment Matching

Numerical Examples: Silicon Nitride Membrane

@ Training set: =i, = 5 random samples for p and ¢p, 3 random samples for ~ and h,
respectively, 10 samples of Laplace variable s.

@ Error measures: N
= max |G(u) - G(u)l/IG()],

A(p) = A(u)/16 ()|
@ V, ) = span{B, (aii)/\/ll + ...+ a'g)Mg)B}, e =

rel
true

@© P. Benner

tol

102, n = 60,020, r = 8.

iter. et A () s pCp K h
1 1x1073 3.44 18.94 | 1.37x10° | 2.74 | 10.97
2 1x107* |4.59x1072| 0.89 |1.31 x 10°|3.96 | 11.60
3 [2.80x107°|4.07 x 1072 23.98 | 2.35 x 10° | 3.94 | 10.28
4 |258%x107%(2.62x107°| 0.89 |2.31 x 10° | 2.74 | 10.28
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@ PMOR based on Multi-Moment Matching

Numerical Examples: Silicon Nitride Membrane

Verification of the accuracy of the ROM for x over set =fn with 16 equidistant samples
of k, 51 equidistant samples of the frequency f, while the other parameters are fixed.

x10

T30
20

10 o G2

ic : preaV

Relative error of the final ROM changing with s and frequency.
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Verification of the accuracy of the ROM for ¢, over set =fne with 36 equidistant samples
of ¢,, 51 equidistant samples of the frequency f, while the other parameters are fixed.

800

10

< 400 0 Frequency (Hz)

Relative error of the final ROM changing with ¢, and frequency.

@© P. Benner
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@ PMOR based on Multi-Moment Matching

Numerical Examples: Silicon Nitride Membrane

Verification of the accuracy of the ROM for p, ¢, over set =g with 50 random samples
of p, cp, respectively, the other parameters are fixed.

700

p 3000 400 6p

Relative error of the final ROM changing with ¢, and &.
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3. Optimal PMOR using Rational Interpolation?
Ho-optimal Model Reduction for Linear Systems
Ho-(sub)optimal Model Reduction for Linear Parametric Systems

Ho-optimal Model Reduction for Special Linear Parametric Systems
A Comparison of PMOR Methods

@© P. Benner
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@ PMOR based on Multi-Moment Matching

Greedy expansion point selection has a heuristic nature and relies on a training set.

@© P. Benner PMOR for Control Systems



@ PMOR based on Multi-Moment Matching

Greedy expansion point selection has a heuristic nature and relies on a training set.

How to determine the right number of partial derivatives to be matched at the expansion
points is an open problem (for potential solutions in the non-parametric case, see
[FENG/KORVINK/B. 2015, BONIN/FASSBENDER/SOPPA/ZAH 2016, LEE/CHU/FENG 2006,. . .].
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%&5@ PMOR based on Multi-Moment Matching

Greedy expansion point selection has a heuristic nature and relies on a training set.

How to determine the right number of partial derivatives to be matched at the expansion
points is an open problem (for potential solutions in the non-parametric case, see
[FENG/KORVINK/B. 2015, BONIN/FASSBENDER/SOPPA /ZAH 2016, LEE/CHU/FENG 2006,. .. ].

Can we find (necessary) optimality conditions similar to the LTI case, leading to an
IRKA-like procedure?

@© P. Benner PMOR for Control Systems



Q&@ PMOR based on Multi-Moment Matching

Greedy expansion point selection has a heuristic nature and relies on a training set.

How to determine the right number of partial derivatives to be matched at the expansion
points is an open problem (for potential solutions in the non-parametric case, see
[FENG/KORVINK/B. 2015, BONIN/FASSBENDER/SOPPA /ZAH 2016, LEE/CHU/FENG 2006,. .. ].

Can we find (necessary) optimality conditions similar to the LTI case, leading to an
IRKA-like procedure?

Hence, we investigate the problem: for a given order r of the reduced-order model, can
we provide necessary conditions for a rational interpolant to minimize

A 1 “He9 A
|G — G||§{2®L2(Q) = Z/ /HG(JUJ, p) — G(jw, p)||idp1 ...dpgdw ?
oo )
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ms‘@ PMOR based on Multi-Moment Matching

Greedy expansion point selection has a heuristic nature and relies on a training set.

How to determine the right number of partial derivatives to be matched at the expansion
points is an open problem (for potential solutions in the non-parametric case, see
[FENG/KORVINK/B. 2015, BONIN/FASSBENDER/SOPPA /ZAH 2016, LEE/CHU/FENG 2006,. .. ].

Can we find (necessary) optimality conditions similar to the LTI case, leading to an
IRKA-like procedure?

Hence, we investigate the problem: for a given order r of the reduced-order model, can
we provide necessary conditions for a rational interpolant to minimize

A 1 “He9 A
1G = G301 = Z/ /HG(]UJ, p) — G(w, p)|[Zdps ...dpgdw ?
e J

Following the non-parametric case, one would need:

@ Projection-based framework for tangential rational interpolation. [v]

@© P. Benner
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ms‘@ PMOR based on Multi-Moment Matching

Greedy expansion point selection has a heuristic nature and relies on a training set.

How to determine the right number of partial derivatives to be matched at the expansion
points is an open problem (for potential solutions in the non-parametric case, see
[FENG/KORVINK/B. 2015, BONIN/FASSBENDER/SOPPA /ZAH 2016, LEE/CHU/FENG 2006,. .. ].

Can we find (necessary) optimality conditions similar to the LTI case, leading to an
IRKA-like procedure?

Hence, we investigate the problem: for a given order r of the reduced-order model, can
we provide necessary conditions for a rational interpolant to minimize

A 1 “He9 A
1G = G301 = Z/ /HG(]UJ, p) — G(w, p)|[Zdps ...dpgdw ?
e J

Following the non-parametric case, one would need:
@ Projection-based framework for tangential rational interpolation. [v]

@ lterative procedure for selecting interpolation points. [x] ...[v] for special case.

@© P. Benner
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Ho-Model Reduction for Linear Systems

@ ‘H,-optimal Model Reduction for Linear Systems

Consider stable (i.e. A(A) C C7) linear systems X,

x(t) = Ax(t) + Bu(t), y(t) = Cx(t) =~ y(s) = C(sl — A" B u(s)

Recall: two common system norms for measuring approximation quality are

@ Ha-norm, |3, = (i ozﬂtr((GT(—]w)G(jw))) dw)i,

0 Hoo-norm, [|Z||7.. = sup omax (G(yw)),
wER

where
G(s) = C(sl — A ' B.
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@ ‘H,-optimal Model Reduction for Linear Systems

Error system and H»-Optimality [MEIER/LUENBERGER 1967]

In order to find an H>-optimal reduced system, consider the error system
G(s) — G(s) which can be realized by

A 0

err __ ~
A _[0 A

err B err A
], B :[é], cr=[c -CJ.
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@ ‘H,-optimal Model Reduction for Linear Systems

Error system and H»-Optimality [MEIER/LUENBERGER 1967]

In order to find an H>-optimal reduced system, consider the error system
G(s) — G(s) which can be realized by

err __ A0 err __ B err __ ~
A _[0 2\]’ B _[é], cr=[c -C].

Assuming a coordinate system in which Als diagonal and taking derivatives of
16(.) = G()l3,

with respect to free parameters in /\(A)7 B, € ~~ first-order necessary
H,-optimality conditions (SISO)
G(=X) = G(=N),

G'(=A) = G'(—X),

where }\; are the poles of the reduced system ..
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@ ‘H,-optimal Model Reduction for Linear Systems

Error system and H»-Optimality [MEIER/LUENBERGER 1967]

In order to find an H>-optimal reduced system, consider the error system
G(s) — G(s) which can be realized by

err __ A 0 err __ B err __ ~
A _[0 2\]’ B _[é], cr=[c -CJ.

First-order necessary 7{,-optimality conditions (MIMO):

G(—j\,’)é; = é —;\;)é;, for i = 1, N
CTG(—=N\) = CTG(-N\), fori=1,...,r,
5ITH/(—5\i)é; = N,-Té/(—:\;)é; for i = 1, Ry £
v!hereA/Z\ = R/A\R_T is the spectral decomposition of the reduced system and
B=BTR™T, C=CR.
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@ ‘H,-optimal Model Reduction for Linear Systems

Error system and H»-Optimality [MEIER/LUENBERGER 1967]

In order to find an H>-optimal reduced system, consider the error system
G(s) — G(s) which can be realized by

err __ A 0 err __ B err __ A
A _[0 2\]’ B _[é], cr=[c -C].

First-order necessary 7{,-optimality conditions (MIMO):
G(—j\;)é/ = é —5\/)3,', for i = 17 ol
G(=N), fori=1,...,r,
G'(=\)B: fori=1,...,r,
o vec(lg)” (eje,-T ® C)

A
= vec ()" (eje,-T ® é) (—/A\® I — /,®A3>71 <§T® é) vec (Im),
fori=1,...,randj=1,...,q.
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@ ‘H,-optimal Model Reduction for Linear Systems

Construct reduced transfer function by Petrov-Galerkin projection P = VW | i.e.

G(s) = CV (sl — WTAV) ' WTB,
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Construct reduced transfer function by Petrov-Galerkin projection P = VW | i.e.
G(s) = CV (sl — WTAV) ' WTB,
where V and W are given as

V= [(—ml—A)'B,....(—u ! — A)'B],
W= [(—pal —AT)ICT, .. (=l = AT)TECTT.

G(—pi) = G(—p) and G'(—p) = G'(—m),
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@ ‘H,-optimal Model Reduction for Linear Systems

Construct reduced transfer function by Petrov-Galerkin projection P = VW | i.e.
G(s) = CV (sl — WTAV) ' WTB,

where V and W are given as

V= [(—ml—A)'B,....(—u ! — A)'B],

W= [(—pal —AT)ICT, .. (=l = AT)TECTT.
Then . .

G(—pi) = G(—w) and  G'(—p;) = G'(—p),

fori=1,...,r.

Starting with an initial guess for A and setting p; = Xi ~ iterative algorithms
(IRKA/MIRIAm) that yield H,-optimal models.

[GUGERCIN ET AL. 2006/08], [BUNSE-GERSTNER ET AL. 2007],
[VAN DOOREN ET AL. 2008]
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@ ‘H,-optimal Model Reduction for Linear Systems

Algorithm 2 IRKA (MIMO version/MIRIAm)

Input: A stable, B, C, A stable, B, C, § > 0.
Output: APt Bort (ort

1. while (maxj=1,__, {”’H—fﬁdl} > ¢) do

2. diag(pa,...,pur) = R"TAR = spectral decomposition.

32 B=B"R T, C=CR

s V= [(—m/ — A)Bby,... (—pl — B]

W= [(—pal — AT)1CTE, . (— el — AT)

V = orth(V), W = orth(W), W = W(VH W)
A=wHav, B=wHB, C=cV.

end while

6. AP _ A, BoPt _ B, Comt — €.

@ N o v
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[BAUR/BEATTIE/B./GUGERCIN 2007/11]

~

Let G(s,p) = C(p)(sE(p) — A(p))B(p)
C(p)V(sWTE(p)V — WTA(p)V) ™ W B(p).

Suppose p = [p1,..., ps]" and & € C are chosen such that both § £(p) — A(p) and
SE(p) — A(p) are invertible.  If
(3E(p) — A(B)) " B(p) € range(V)
or
S\ (A 28 =), "
(c(B) BE() ~ AB) ) € range(w),

then G(5,p) = G(3,p).
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[BAUR/BEATTIE/B./GUGERCIN 2007/11]

Let G(s,p) = C(p)(sE(p) — A(p))"'B(p)

= C(p)V(sWTE(p)V — WTA(p)V) ' W'B(p).
SuAppose p= [B1, ..., ps]” and & € C are chosen such that both § £(p) — A(p) and
SE(p) — A(p) are invertible. If

(8 E(p) — A(p)) " B(p) € range(V)
or
2\ (15 2 & =), "

(c(B) BE() ~ AB) ) € range(w),
then G(5,p) = G(3,p).
Extension to MIMO case using tangential interpolation: let 0 # b € R™, 0 # ¢ € R9.
a) If (BE(p) — A(p)) "' B(p)b € range(V), then G(3,p)b = G (3, p)b.
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IN 2007/11]
Suppose that E(p), A(p), B(p), C(p) are ClAin a neighborhood of p = [p1, ..., pa]”
and that both § E(p) — A(p) and § E(p) — A(p) are invertible.

If
(3E(p) — A(P)) " B(p) € range(V)
and
(C6)(5E@) ~A®B) ") & range(W),
then
VoG(E )= VoGi(5B), G5 p)= 2 )
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[BAUR/BEATTIE

Suppose that E(p), A(p), B(p), C(p) are ClAin a neighborhood of p = [p1, ..., pa]"
and that both § E(p) — A(p) and § E(p) — A(p) are invertible.

If
(3E(p) — A(P)) " B(p) € range(V)
and
(C6)(5E@) ~A®B) ") & range(W),
then
VoG(E )= VoGi(5B), G5 p)= 2 )

Note: result extends to MIMO case using tangential interpolation:

Let 0 b € R™, 0 # ¢ € RY be arbitrary. If (8 E(p) — A(p)) * B(p)b € range(V) and
T N

(cTC(ﬁ) (SE(p) — A(,s))—l) € range(W), then V,cT G(3, p)b = VpcT G(8, p)b.
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[BAUR/BEATTIE/B./GUGERCIN 2007/11]

Suppose that E(p), A(p), B(p), C(p) are ClAin a neighborhood of p = [p1, ..., pa]"
and that both § E(p) — A(p) and § E(p) — A(p) are invertible.

If
(3E(p) — A(P)) " B(p) € range(V)
and
(C6)(5E@) ~A®B) ") & range(W),
then
VoG(E )= VoGi(5B), G5 p)= 2 )

1. Reduced-order model satisfies necessary conditions for surrogate models in trust
region methods [ALExANDROV/DENNIS/LEWIS/ TORCZON 1998].
2. Approximation of gradient allows use of reduced-order model for sensitivity analysis.
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Generic implementation of interpolatory PMOR

Define A(s, p) := sE(p) — A(p).
1. Select “frequencies” si,...,sx € C and parameter vectors p¥), ..., p¥) € Q c R
2. Compute (orthonormal) basis of
V = span {A(s1, p0) 1B(p™M), ..., A(si, p9) 1 B(p®)}.

3. Compute (orthonormal) basis of
W = span {A(Sl, P(l))_TC(p(l))T7 000 7A(sk7 P(z))_TC(p(e))T}‘
4. Set Vi=[vi,...,vike], W= [wi,...,wk], and W := W(WT V)™,

(Note: r = k).
. c { A(p) := WTA(p)V, B(p)=WTB(p)V,
. Compute A T A T

C(p) :==W'C(p)V, E(p):=W'E(p)V.

PMOR for Control Systems
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@ Parametric Systems

Remarks

o If directional derivatives w.r.t. p are included in range(V/), range(V/), then also the
Hessian of G(3, p) is interpolated by the Hessian of G(3, p).
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@ Parametric Systems

Remarks

o If directional derivatives w.r.t. p are included in range(V/), range(V/), then also the
Hessian of G(3, p) is interpolated by the Hessian of G(3, p).

@ Choice of optimal interpolation frequencies s, and parameter vectors p(k) in general
is an open problem.
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@ Parametric Systems

Remarks

o If directional derivatives w.r.t. p are included in range(V/), range(V/), then also the
Hessian of G(3, p) is interpolated by the Hessian of G(3, p).

@ Choice of optimal interpolation frequencies s, and parameter vectors p(k) in general
is an open problem.

@ For prescribed parameter vectors p(k), we can use corresponding H-optimal
frequencies si0, £ =1,..., r computed by IRKA, i.e., reduced-order systems G,Ek)
so that

order(G)=
G stable

1 +o0 5 1/
16, = (52 [ l6Gliaw)

1G(,p") = GF s, = min  1G(, p™) = GW()]Jaus,
Tk

where
2
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@ Parametric Systems

Remarks

o If directional derivatives w.r.t. p are included in range(V/), range(V/), then also the
Hessian of G(3, p) is interpolated by the Hessian of G(3, p).

@ Choice of optimal interpolation frequencies s, and parameter vectors p(k) in general
is an open problem.

@ For prescribed parameter vectors p(k), we can use corresponding H-optimal
frequencies si0, £ =1,..., r computed by IRKA, i.e., reduced-order systems G,Ek)
so that

order(G)=
G stable

1G(,p") = GF s, = min  1G(, p™) = GW()]Jaus,
Tk

where
1 +o0 5 1/2
HG||Hz = (%/ ||G(jw)”Fdw) .

@ Optimal choice of interpolation frequencies s, and parameter vectors p*) possible
for special cases.
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@ Important requirement for a compact model of thermal conduction is boundary
condition independence.

@ The thermal problem is modeled by the heat equation, where heat exchange
through device interfaces is modeled by convection boundary conditions containing
film coefficients {p;}?_; describing the heat exchange at ith interface.

@ Spatial semi-discretization leads to

Ex(t) = (Ao + ) piA)x(t) + bu(t), y(t) = c'x(t),

i=1

where n = 4,257, A;, i = 1,2,3, are diagonal.

Source: C.J.M Lasance, Two benchmarks to facilitate the study of compact thermal modeling phenomena,

IEEE Transactions on Components and Packaging Technologies, 24(4):559-565, 2001.
MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Microthruster_Unit
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Choose 2 interpolation points for parameters ( “important” configurations), 8/7 H»-optimal
interpolation frequencies selected by IRKA. = k =2,£=8,7, hence r = 15.

P3 . p1, p2 € [1,10°

Relative H_ error for p, =1

3

—H L /ITHT

log (IlH

log (p,)
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[BAUR/BEATTIE/B./GUGERCIN 2011]

For special parameterized SISO systems,
A(p) = Ao, E(p) = Eo, B(p) = Bo+ p1B1, C(p) = Go+ G,

optimal choice possible, necessary conditions:
If G minimizes the approximation error w.r.t. ||G — G|l3,x1,(2): P € 2 C R, and

A (A, E) = {X1,...,)A\,} (all simple), then the interpolation frequencies satisfy

si=—Xi, i=1,...,r,

and the parameter interpolation points {p(l), e p(’)} satisfy the interpolation
conditions

G(_S\kyp(k)) = G_S\1p(k))1
O~ 5 0y — O
355( ApY) = (
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[BAUR/BEATTIE/B./GUGERCIN 2011]

For special parameterized SISO systems,
A(p) = Ao, E(p) = Eo, B(p) = Bo+ p1B1, C(p) = Go+ G,

optimal choice possible, necessary conditions:
If G minimizes the approximation error w.r.t. |G — G||3,x1,9), P € 2 C R, the

parameter interpolation points {p(l), e ,p(’)} satisfy the interpolation conditions
G(A,pY) = 6(=%p"),
0 2 0 A, 2 2 PURIDN
—G(-4,p%) = —6(-4,p%), V,6(-%pY) = V,G(-4,p")
0s 0s
Proof:

= = C _
[6llentaay = L7 Gz, where 6(s) = | & | s = A) B, ], L—[

TS

— Computation via IRKA applied to G.

‘»—\O

N
S
[ —
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@ Model for evolution of temperature distribution on a plate, described by the heat
equation.

@ FDM SISO model of order n = 197.

@ Parameter p; € [0, 1] encodes movement of heat source from By to By + By,
analogous for relocation of measurement.

Relative H, error

0s o7 08 09 1

1 o2 03 04 05

0

Relative Ho ® Lo(2) error: 7.5 X 10~%.
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%&f@ A Comparison of PMOR Methods: Anemometer

Consider an anemometer, a flow sensing device located on a membrane used in
the context of minimizing heat dissipation.

FlowProfile

SenL Heater SenR

Source: [BAUR/B./GREINER/KORVINK/LIENEMANN/MOOSMANN 2011]

o FE model:
Ex(t) = (A+ pA)x(t) + Bu(t), y(t) = Cx(t), x(0) =0,
e n=29,008, m=1, g =3, p1 €[0,1] fluid velocity.

Source: MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Anemometer
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Q&?@ A Comparison of PMOR Methods: Anemometer

Consider an anemometer, a flow sensing device located on a membrane used in
the context of minimizing heat dissipation.

o FE model:

Ex(t) = (A+ pAr)x(t) + Bu(t), y(t)=Cx(t), x(0)=0,
e n=29,008, m=1, g =3, p1 €[0,1] fluid velocity.

Hoo error

e(;Ghay),
n
5

POD-Greedy
-6 Matrint
iy TransFncint
PWH2Tanint
MultiPMomtch
. emwx
10

[ 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Parameter Value

Source: MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Anemometer
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Q&?@ A Comparison of PMOR Methods: Anemometer

Consider an anemometer, a flow sensing device located on a membrane used in
the context of minimizing heat dissipation.

o FE model:
Ex(t) = (A+ pA)x(t) + Bu(t), y(t)= Cx(t), x(0)=0,
e n=29,008, m=1, g =3, p1 €[0,1] fluid velocity.

Ho error

e(Gi.Ghat‘ )HZ

POD
POD-Greedy
Matrint
TransFncint
PWH2Tanint
MultiPMomMtch
emwx

[ 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Parameter Value

Source: MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Anemometer
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For more details of this comparisons, and other tests, see

U. Baur, P. Benner, B. Haasdonk, C. Himpe, |. Maier, and M. Ohlberger.
Comparison of Methods for Parametric Model Order Reduction of Unsteady Problems.
In P. Benner, A. Cohen, M. Ohlberger, and K. Willcox (eds.), Model Reduction and

Approximation: Theory and Algorithms.
SIAM, Philadelphia, PA, 2017.

Model Reduction
and Approximation
Theory and Algorithms

X

Chapter 9 in

PETER BENNER

KAREN WILLCOX

Computational Science & Engineering
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@ Conclusions and Outlook

@ We have reviewed some of the most popular PMOR methods developed in
the last decade, in particular those based on rational interpolation.
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@ Conclusions and Outlook

@ We have reviewed some of the most popular PMOR methods developed in
the last decade, in particular those based on rational interpolation.

@ Employing ideas from reduced-basis method, i.e., greedy sampling,
multi-moment matching based PMOR methods can be improved.

@ Some ideas from Hj-optimal MOR for non-parametric systems can be
extended, but full necessary optimality conditions are still missing.

@ Several extensions to nonlinear systems, but just starting.

o New direction: data-enhanced approaches, merging ideas from Loewner
framework with model-based methods.

@ Most of the methods can be used to significantly accelerate UQ by Monte
Carlo or Stochastic Collocation methods!
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