Split-Congruence Transformations Meet Balanced Truncation

Peter Benner

Max-Planck-Institut für Dynamik komplexer technischer Systeme Computational Methods in Systems and Control Theory Magdeburg
(1) Introduction

- Model Reduction of LTI Systems
- Model Reduction Based on Balanced Truncation
(2) Split-Congruence Model Reduction
- Split-Congruence Transformations
- Split-Congruence Balanced Truncation
(3) Symmetric Second-Order Systems
- Symmetric Linerizations
- Numerical Examples
(4) Conclusions

Introduction

Model Reduction of LTI Systems

Original system

$\Sigma:\left\{\begin{aligned} E \dot{x}(t) & =A x+B u, \\ y(t) & =C x+D u .\end{aligned}\right.$

- $A, E \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}$.
- State/descriptor vector $x(t) \in \mathbb{R}^{n}$,
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $y(t) \in \mathbb{R}^{p}$.

Reduced System

$$
\hat{\Sigma}:\left\{\begin{aligned}
\hat{E} \dot{\hat{x}}(t) & =\hat{A} \hat{x}(t)+\hat{B} u(t), \\
\hat{y}(t) & =\hat{C} \hat{x}(t)+\hat{D} u(t) .
\end{aligned}\right.
$$

- $\hat{A}, \hat{E} \in \mathbb{R}^{r \times r}, \hat{B} \in \mathbb{R}^{r \times m}$, $\hat{C} \in \mathbb{R}^{p \times r}, \hat{D} \in \mathbb{R}^{p \times m}, r \ll n$.
- State/descriptor vector $\hat{x}(t) \in \mathbb{R}^{r}$,
- Inputs $u(t) \in \mathbb{R}^{m}$,
- Outputs $\hat{y}(t) \in \mathbb{R}^{p}$.

Introduction

Model Reduction of LTI Systems

Original system

$\Sigma:\left\{\begin{aligned} E \dot{x}(t) & =A x+B u, \\ y(t) & =C x+D u .\end{aligned}\right.$

- $A, E \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}$.
- State/descriptor vector $x(t) \in \mathbb{R}^{n}$,
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $y(t) \in \mathbb{R}^{p}$.

Reduced System

$$
\widehat{\Sigma}:\left\{\begin{aligned}
\hat{E} \dot{\hat{x}}(t) & =\hat{A} \hat{x}(t)+\hat{B} u(t), \\
\hat{y}(t) & =\hat{C} \hat{x}(t)+\hat{D} u(t) .
\end{aligned}\right.
$$

- $\hat{A}, \hat{E} \in \mathbb{R}^{r \times r}, \hat{B} \in \mathbb{R}^{r \times m}$, $\hat{C} \in \mathbb{R}^{p \times r}, \hat{D} \in \mathbb{R}^{p \times m}, r \ll n$.
- State/descriptor vector $\hat{x}(t) \in \mathbb{R}^{r}$,
- Inputs $u(t) \in \mathbb{R}^{m}$,
- Outputs $\hat{y}(t) \in \mathbb{R}^{p}$.

Goal:

$\|y-\hat{y}\|<$ tol $\cdot\|u\|$ for all admissible input signals.

Model Reduction Based on Balanced Truncation

Linear time-invariant (LTI) systems

$$
\Sigma:\left\{\begin{array}{llll}
\dot{x}(t) & =A x+B u, & & A \in \mathbb{R}^{n \times n}, \\
y(t) & =C x+D u, & C \in \mathbb{R}^{n \times m}, \\
y(t) & D \in \mathbb{R}^{p \times m} .
\end{array}\right.
$$

$(A, B, C, D)=$ realization of Σ (non-unique).

Model Reduction Based on Balanced Truncation

Linear time-invariant (LTI) systems

$$
\Sigma:\left\{\begin{array}{llll}
\dot{x}(t) & =A x+B u, & & A \in \mathbb{R}^{n \times n}, \\
y(t) & =C x+D u, & C \in \mathbb{R}^{n \times m}, \\
y(t) & D \in \mathbb{R}^{p \times m} .
\end{array}\right.
$$

$(A, B, C, D)=$ realization of Σ (non-unique).

Balancing of LTI systems

Given: Gramians $P, Q \in \mathbb{R}^{n \times n}$ symmetric, positive definite (spd), and contragredient transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, such that

$$
T P T^{T}=T^{-T} Q T^{-1}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right), \quad \sigma_{1} \geq \ldots \geq \sigma_{n} \geq 0
$$

Model Reduction Based on Balanced Truncation

Linear time-invariant (LTI) systems

$$
\Sigma:\left\{\begin{array}{llll}
\dot{x}(t) & =A x+B u, & & A \in \mathbb{R}^{n \times n}, \\
y(t) & =C x+D u, & C \in \mathbb{R}^{n \times m}, \\
y(t) & D \in \mathbb{R}^{p \times m} .
\end{array}\right.
$$

$(A, B, C, D)=$ realization of Σ (non-unique).

Balancing of LTI systems

Given: Gramians $P, Q \in \mathbb{R}^{n \times n}$ symmetric, positive definite (spd), and contragredient transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, such that

$$
T P T^{T}=T^{-T} Q T^{-1}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right), \quad \sigma_{1} \geq \ldots \geq \sigma_{n} \geq 0
$$

Balancing of Σ w.r.t. P, Q :

$$
\Sigma \equiv(A, B, C, D) \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right) \equiv \Sigma
$$

Model Reduction Based on Balanced Truncation

Basis for model reduction method

© Given $\Sigma \equiv(A, B, C, D)$ and balancing (w.r.t. given P, Q spd) transformation $T \in \mathbb{R}^{n \times n}$, compute (not explicitly!)

$$
\begin{aligned}
(A, B, C, D) & \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right) \\
& =\left(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right],\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right], D\right)
\end{aligned}
$$

Model Reduction Based on Balanced Truncation

Basis for model reduction method

- Given $\Sigma \equiv(A, B, C, D)$ and balancing (w.r.t. given P, Q spd) transformation $T \in \mathbb{R}^{n \times n}$, compute (not explicitly!)

$$
\begin{aligned}
(A, B, C, D) & \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right) \\
& =\left(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right],\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right], D\right)
\end{aligned}
$$

(c) Truncation \rightsquigarrow reduced model:

$$
(\hat{A}, \hat{B}, \hat{C}, \hat{D})=\left(A_{11}, B_{1}, C_{1}, D\right) .
$$

Model Reduction Based on Balanced Truncation

Classical Balanced Truncation (BT)

Mullis/Roberts '76, Moore '81

- $P / Q=$ controllability/observability Gramians of $\Sigma \equiv(A, B, C, D)$.
- For asymptotically stable systems, P, Q solve dual Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

Model Reduction Based on Balanced Truncation

Classical Balanced Truncation (BT)

Mullis/Roberts '76, Moore '81

- $P / Q=$ controllability/observability Gramians of $\Sigma \equiv(A, B, C, D)$.
- For asymptotically stable systems, P, Q solve dual Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

- $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}^{\mathrm{BT}}, \ldots, \sigma_{n}^{\mathrm{BT}}\right\}$ are Hankel singular values (HSVs) of Σ. HSVs are system invariants (\rightsquigarrow "energy preservation" motivation).

Model Reduction Based on Balanced Truncation

Classical Balanced Truncation (BT)

Mullis/Roberts '76, Moore '81

- $P / Q=$ controllability/observability Gramians of $\Sigma \equiv(A, B, C, D)$.
- For asymptotically stable systems, P, Q solve dual Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

- $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}^{\mathrm{BT}}, \ldots, \sigma_{n}^{\mathrm{BT}}\right\}$ are Hankel singular values (HSVs) of Σ. HSVs are system invariants (\rightsquigarrow "energy preservation" motivation).
- Asymptotic stability is preserved!

Model Reduction Based on Balanced Truncation

Classical Balanced Truncation (BT)

Mullis/Roberts '76, Moore '81

- $P / Q=$ controllability/observability Gramians of $\Sigma \equiv(A, B, C, D)$.
- For asymptotically stable systems, P, Q solve dual Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

- $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}^{\mathrm{BT}}, \ldots, \sigma_{n}^{\mathrm{BT}}\right\}$ are Hankel singular values (HSVs) of Σ. HSVs are system invariants (\rightsquigarrow "energy preservation" motivation).
- Asymptotic stability is preserved!
- Computable error bound is by-product of computations:

$$
\left\|y-y^{\mathrm{BT}}\right\|_{2} \leq 2 \sum_{j=r+1}^{n} \sigma_{j}^{\mathrm{BT}}\|u\|_{2}
$$

allows adaptive choice of r !

Model Reduction Based on Balanced Truncation

- Choice of other Gramians yields preservation of structural properties (z.B. minimum phase, passivity, bounded realness, ...).
- Variants for unstable systems exist.
- Application to systems with mass matrix $(E \dot{x}=A x+B u)$ possible without forming $E^{-1} A, E^{-1} B$!
Variants for E singular exist.
- Applications to second order systems (mechanical systems) \rightsquigarrow later.
- Classical implementations require $\mathcal{O}\left(n^{3}\right)$ operations and $\mathcal{O}\left(n^{2}\right)$ memory \rightsquigarrow way too expensive for systems with $n \gg 1000$!

Model Reduction Based on Balanced Truncation

- Choice of other Gramians yields preservation of structural properties (z.B. minimum phase, passivity, bounded realness, ...).
- Variants for unstable systems exist.
- Application to systems with mass matrix $(E \dot{x}=A x+B u)$ possible without forming $E^{-1} A, E^{-1} B$!
Variants for E singular exist.
- Applications to second order systems (mechanical systems) $\rightsquigarrow l$ later.
- Classical implementations require $\mathcal{O}\left(n^{3}\right)$ operations and $\mathcal{O}\left(n^{2}\right)$ memory \rightsquigarrow way too expensive for systems with $n \gg 1000$!
- But: new numerical techniques developed since $1996 \Rightarrow$ $n=1.000 .000$ nowadays computable in MATLAB $®$!
(Computing times $<1 h$ on quadcore.)

Model Reduction Based on Balanced Truncation

 Numerical Example: Electro-Thermic Simulation of Integrated Circuit (IC)[Source: Evgenii Rudnyi, CADFEM GmbH]

- Simplorer ${ }^{\circledR}$ test circuit with 2 transistors.

- Conservative thermic sub-system in Simplorer: voltage \rightsquigarrow temperature, current \rightsquigarrow heat flow.
- Original model: $n=270.593, m=p=2 \Rightarrow$

Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

- Solution of Lyapunov equations: $\approx 22 \mathrm{~min}$.
- Computation of reduced models: 44sec. $(r=20)-49 \mathrm{sec}$. $(r=70)$.
- Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB): 7.5h for original system , <1min for reduced system.

DOO

Model Reduction Based on Balanced Truncation
 Numerical Example: Electro-Thermic Simulation of Integrated Circuit (IC)

[Source: Evgenii Rudnyi, CADFEM GmbH]

- Original model: $n=270.593, m=p=2 \Rightarrow$

Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

- Solution of Lyapunov equations: $\approx 22 \mathrm{~min}$.
- Computation of reduced models: 44sec. $(r=20)-49 \mathrm{sec}$. $(r=70)$.
- Bode plot (MATLAB on Intel Core i7, $2,67 \mathrm{GHz}, 12 \mathrm{~GB}$): 7.5 h for original system,$<1 \mathrm{~min}$ for reduced system.

Bode Plot (Amplitude)

Hankel Singular Values

000

Model Reduction Based on Balanced Truncation
 Numerical Example: Electro-Thermic Simulation of Integrated Circuit (IC)

[Source: Evgenii Rudnyi, CADFEM GmbH]

- Original model: $n=270.593, m=p=2 \Rightarrow$

Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

- Solution of Lyapunov equations: $\approx 22 \mathrm{~min}$.
- Computation of reduced models: 44sec. $(r=20)-49 \mathrm{sec}$. $(r=70)$.
- Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):
7.5 h for original system,$<1 \mathrm{~min}$ for reduced system.

Absolute Error

Relative Error

Split-Congruence Model Reduction

Split-Congruence Transformations

Split-congruence model reduction

Given descriptor system ($E ; A, B, C$) and orthogonal projection $V V^{\top}$, $V=\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right] \in \mathbb{R}^{n \times r}$, compute reduced-order model

$$
(\hat{E}, \hat{A}, \hat{B}, \hat{C})=\left(\mathcal{V}^{\top} E \mathcal{V}, \mathcal{V}^{T} A \mathcal{V}, \mathcal{V}^{\top} B, C \mathcal{V}\right), \text { where } \mathcal{V}=\left[\begin{array}{ll}
v_{1} & \tag{1}\\
& v_{2}
\end{array}\right] .
$$

$\Longrightarrow 2 \times 2$ block structure of realization is preserved, e.g.,

$$
\hat{A}=\mathcal{V}^{\top} A \mathcal{V}=\left[\begin{array}{ll}
V_{1} & \\
& V_{2}
\end{array}\right]^{\top}\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{ll}
V_{1} & \\
& V_{2}
\end{array}\right]=\left[\begin{array}{ll}
\hat{A}_{11} & \hat{A}_{12} \\
\hat{A}_{21} & \hat{A}_{22}
\end{array}\right],
$$

so that physically motivated partitioning of state vector can be preserved. Applications:
\rightarrow RLC network equations,
\rightarrow mechanical systems.

[^0]
Split-Congruence Model Reduction

Split-Congruence Transformations

RLC network equations

System structure of RLC networks w/o voltage sources (MNA form):

$$
E=\left[\begin{array}{cc}
E_{1} & 0 \\
0 & E_{2}
\end{array}\right], \quad A=\left[\begin{array}{cc}
-A_{1} & -A_{2}^{T} \\
A_{2} & 0
\end{array}\right], \quad B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]=C^{T},
$$

where $A_{1}, E_{1} \geq 0, E_{2}>0$.

Split-Congruence Model Reduction

Split-Congruence Transformations

RLC network equations

System structure of RLC networks w/o voltage sources (MNA form):

$$
E=\left[\begin{array}{cc}
E_{1} & 0 \\
0 & E_{2}
\end{array}\right], \quad A=\left[\begin{array}{cc}
-A_{1} & -A_{2}^{T} \\
A_{2} & 0
\end{array}\right], \quad B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]=C^{T},
$$

where $A_{1}, E_{1} \geq 0, E_{2}>0$. Split-congruence model reduction \Longrightarrow

$$
\hat{E}=\left[\begin{array}{cc}
\hat{E}_{1} & 0 \\
0 & \hat{E}_{2}
\end{array}\right], \hat{A}=\left[\begin{array}{cc}
-\hat{A}_{1} & -\hat{A}_{2}^{T} \\
\hat{A}_{2} & 0
\end{array}\right], \hat{B}=\left[\begin{array}{c}
\hat{B}_{1} \\
0
\end{array}\right]=\hat{C}^{T},
$$

where $\hat{A}_{1}, \hat{E}_{1} \geq 0$, and, if $\operatorname{rank}\left(V_{1}\right)=r, \hat{E}_{2}>0$.

Split-Congruence Model Reduction

Split-Congruence Transformations

RLC network equations

System structure of RLC networks w/o voltage sources (MNA form):

$$
E=\left[\begin{array}{cc}
E_{1} & 0 \\
0 & E_{2}
\end{array}\right], \quad A=\left[\begin{array}{cc}
-A_{1} & -A_{2}^{T} \\
A_{2} & 0
\end{array}\right], \quad B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]=C^{T},
$$

where $A_{1}, E_{1} \geq 0, E_{2}>0$. Split-congruence model reduction \Longrightarrow

$$
\hat{E}=\left[\begin{array}{cc}
\hat{E}_{1} & 0 \\
0 & \hat{E}_{2}
\end{array}\right], \hat{A}=\left[\begin{array}{cc}
-\hat{A}_{1} & -\hat{A}_{2}^{T} \\
\hat{A}_{2} & 0
\end{array}\right], \hat{B}=\left[\begin{array}{c}
\hat{B}_{1} \\
0
\end{array}\right]=\hat{C}^{T},
$$

where $\hat{A}_{1}, \hat{E}_{1} \geq 0$, and, if $\operatorname{rank}\left(V_{1}\right)=r, \hat{E}_{2}>0 . \Longrightarrow$ Preservation of
(1) stability,
© structure of transfer function:

$$
\hat{G}(s)=\hat{B}_{1}^{T}\left(s \hat{E}_{1}+\hat{A}_{1}+\frac{1}{s} \hat{A}_{2}^{T} \hat{E}_{2}^{-1} \hat{A}_{2}\right) \hat{B}_{1},
$$

and, hence, of passivity and reciprocity (\Rightarrow reduced-order model can be synthesized as circuit, e.g., [ReIs '10]).

Split-Congruence Model Reduction

Split-Congruence Transformations

RLC network equations

System structure of RLC networks w/o voltage sources (MNA form):

$$
E=\left[\begin{array}{cc}
E_{1} & 0 \\
0 & E_{2}
\end{array}\right], \quad A=\left[\begin{array}{cc}
-A_{1} & -A_{2}^{T} \\
A_{2} & 0
\end{array}\right], \quad B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]=C^{T},
$$

where $A_{1}, E_{1} \geq 0, E_{2}>0$. Split-congruence model reduction \Longrightarrow

$$
\hat{E}=\left[\begin{array}{cc}
\hat{E}_{1} & 0 \\
0 & \hat{E}_{2}
\end{array}\right], \hat{A}=\left[\begin{array}{cc}
-\hat{A}_{1} & -\hat{A}_{2}^{T} \\
\hat{A}_{2} & 0
\end{array}\right], \hat{B}=\left[\begin{array}{c}
\hat{B}_{1} \\
0
\end{array}\right]=\hat{C}^{T},
$$

where $\hat{A}_{1}, \hat{E}_{1} \geq 0$, and, if $\operatorname{rank}\left(V_{1}\right)=r, \hat{E}_{2}>0$.

Note: used, e.g., in

- PRIMA [Odabasioglu/Celik/Pileggi '97],
- SPRIM [Freund '04-'08].

000

Split-Congruence Model Reduction

Split-Congruence Transformations

Mechanical Systems

Structural dynamics/vibration analysis, e.g.,

\Rightarrow systems of second-order differential equations:

$$
M \ddot{q}+D \dot{z}+K q=B u, \quad y=C_{p} q+C_{v} \dot{q}
$$

Inputs are e.g., forces acting on crankshaft (piston/con-rod):

Split-Congruence Model Reduction

Split-Congruence Transformations

Mechanical Systems

Structural dynamics/vibration analysis \Rightarrow systems of second-order differential equations:

$$
M \ddot{q}+D \dot{z}+K q=B u, \quad y=C_{p} q+C_{v} \dot{q} .
$$

Linearization $\left(x=\left[\begin{array}{l}q \\ q\end{array}\right]\right.$):

$$
\left[\begin{array}{cc}
I & 0 \\
0 & M
\end{array}\right] \dot{x}=\left[\begin{array}{cc}
0 & I \\
-K & -D
\end{array}\right] x+\left[\begin{array}{l}
0 \\
B
\end{array}\right], \quad y=\left[C_{p}, C_{v}\right] x .
$$

Compute projection subspace range $\left(\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right]\right)$ using standard (one-sided) model reduction method applied to linearization and split-congruence model reduction \Longrightarrow second-order structure is preserved:

$$
\hat{M}=V_{2}^{T} M V_{2}, \hat{D}=V_{2}^{T} D V_{2}, \hat{K}=V_{2}^{T} K V_{1}, \hat{B}=V_{2}^{T} B, \hat{C}_{p}=C_{p} V_{1}, \hat{C}_{v}=C_{v} V_{2} .
$$

Note: (implicitly) used, e.g., in

- SOAR [Bai/Su '05, Salimbahrami/Lohmann '06],
- Krylov subspace methods for higher-order dynamical systems [Freund '08],

Split-Congruence Balanced Truncation (scBT)

(Very) basic idea: let $V=\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right] \in \mathbb{R}^{n \times r}$ be projection matrix computed by BT, then use split-congruence model reduction. Notes:

- range $(V) \subset$ range (\mathcal{V}).
- For standard systems with $E=I_{n}, \hat{E}=\left[\begin{array}{cc}V_{1}^{\top} V_{1} & 0 \\ 0 & V_{2}^{\top} V_{2}\end{array}\right]$.
- But: in general, $W \neq V$, so split congruence cannot be expected to yield reasonable approximation.

Split-Congruence Balanced Truncation (scBT)

(Very) basic idea: let $V=\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right] \in \mathbb{R}^{n \times r}$ be projection matrix computed by BT, then use split-congruence model reduction.

Notes:

- range $(V) \subset$ range (\mathcal{V}).
- For standard systems with $E=I_{n}, \hat{E}=\left[\begin{array}{cc}V_{1}^{\top} V_{1} & 0 \\ 0 & V_{2}^{T} V_{2}\end{array}\right]$.
- But: in general, $W \neq V$, so split congruence cannot be expected to yield reasonable approximation.
\Longrightarrow Consider $G(s)$ symmetric $\left(A=A^{T}<0, C=B^{T}\right)$:
$\Rightarrow \quad$ Gramians coincide, $P=Q$.
$\Rightarrow \quad B T$ needs only one Lyapunov equation, $W \equiv V$
$\Rightarrow \quad(s c) B T$ automatically preserves stability and passivity.
Possible advantage of scBT: preservation of block structure, no mixing of physically unrelated variables.
Clear disadvantage: doubling of reduced order.

Split-Congruence Balanced Truncation
 Numerical Example

- Heat equation on unit square, $n=400, m=5$,
- reduced-order $r=20 / 40$, relative \mathcal{H}_{∞} errors $5 \cdot 10^{-6} / 4 \cdot 10^{-6}$ $\left(\delta_{\text {rel }}=1.25 \cdot 10^{-5}\right)$.

Singular values of error systems

Split-Congruence Balanced Truncation for Hamiltonian Transfer Functions

Hamiltonian Transfer Function

Let $H=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, then the transfer function $G(s)=C(s E-A)^{-1} B$ is called Hamiltonian if

$$
A^{T}=H A H, \quad E^{T}=H E H, \quad C^{T}=H B
$$

Example:

$$
E=\left[\begin{array}{cc}
E_{1} & 0 \\
0 & E_{2}
\end{array}\right], \quad A=\left[\begin{array}{cc}
A_{1} & A_{2} \\
-A_{2}^{T} & 0
\end{array}\right], \quad B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]=C^{T}
$$

where $E_{1}=E_{1}^{T}, E_{2}=E_{2}^{T}$ and $A_{1}=A_{1}^{T}$.
Note: for Hamiltonian systems, the controllability and observability Gramians satisfy $Q=H P H=\left[\begin{array}{cc}P_{11} & -P_{12} \\ -P_{12}^{T} & P_{22}\end{array}\right] \Rightarrow$ only one Gramian computation required. Generalization: J-Hermitian transfer functions: H nonsingular, $H B=C^{T} F$ for nonsingular F.

Split-Congruence Balanced Truncation for Hamiltonian Transfer Function Numerical Example

- Hamiltonian transfer function with $E=I_{n}, A_{1}=-\Delta_{h}, A_{2}=\nabla_{h}$ on unit square, $n_{1}=400, n_{2}=100$, i.e., $n=500, m=5$.
- reduced-order $r=20 / 40$.
- Variants: scBT-v with $\mathcal{V}=\left[\begin{array}{cc}v_{1} & 0 \\ 0 & v_{2}\end{array}\right]$, scBT-w with $\mathcal{W}=\left[\begin{array}{cc}w_{1} & 0 \\ 0 & w_{2}\end{array}\right]$, scB -vw with two-sided projection with \mathcal{V}, \mathcal{W}.

Symmetric Second-Order Systems

FVV Project 1029, partners P. Eberhard (U. Stuttgart), G. Knoll (U Kassel)

Symmetric Second-Order Systems

FVV Project 1029, partners P. Eberhard (U. Stuttgart), G. Knoll (U Kassel)

Symmetric Second-Order Systems

FVV Project 1029, partners P. Eberhard (U. Stuttgart), G. Knoll (U Kassel)

Symmetric Second-Order Systems

FVV Project 1029, partners P. Eberhard (U. Stuttgart), G. Knoll (U Kassel)

Symmetric Second-Order Systems

FVV Project 1029, partners P. Eberhard (U. Stuttgart), G. Knoll (U Kassel)

Reduced second-order model

$$
\begin{aligned}
\tilde{M} \ddot{\tilde{x}}+\tilde{D} \dot{\tilde{x}}+\tilde{K} \tilde{x} & =\tilde{B} u \\
\tilde{y} & =\tilde{B}^{T} \tilde{x}
\end{aligned}
$$

Symmetric Second-Order Systems

FVV Project 1029, partners P. Eberhard (U. Stuttgart), G. Knoll (U Kassel)

Simulation

Reduced second-order model

$$
\begin{aligned}
\tilde{M}\} \tilde{x}+\tilde{D}\} \tilde{\tilde{x}}+\tilde{K} \quad \tilde{x} & =\tilde{B} u \\
\tilde{y} & =\tilde{B}^{\top}: \tilde{x}
\end{aligned}
$$

Symmetric second-order system

$$
\begin{aligned}
M \ddot{x}+D \dot{x}+K x & =B u \\
y & =B^{T} x
\end{aligned}
$$

Symmetric Second-Order Systems

Symmetric Linerizations

Linearizations

Standard linearization

$$
\underbrace{\left[\begin{array}{cc}
I & 0 \\
0 & M
\end{array}\right]}_{:=\mathcal{E}} \dot{x}=\underbrace{\left[\begin{array}{cc}
0 & I \\
-K & -D
\end{array}\right]}_{:=\mathcal{A}} x+\underbrace{\left[\begin{array}{l}
0 \\
B
\end{array}\right]}_{:=\mathcal{B}} u, \quad y=\underbrace{\left[B^{T}, 0\right]}_{:=\mathcal{C}} x .
$$

does not exhibit desired symmetry $\left(\mathcal{A} \neq \mathcal{A}^{\top}, \mathcal{C} \neq \mathcal{B}^{T}\right)$.
Recall: for symmetric transfer function, solutions of corresponding generalized Lyapunov equations

$$
\mathcal{A P} E^{T}+\mathcal{A}^{T} \mathcal{P E}=-\mathcal{B B}^{T}, \quad \mathcal{A}^{T} \mathcal{Q} E+\mathcal{A Q E} \mathcal{E}^{T}=-\mathcal{C}^{\top} \mathcal{C} .
$$

coincide \Rightarrow only 1 Lyapunov solve, i.e., only 1 ADI iteration.
Note: $\mathcal{E}^{-1} \mathcal{A}+\mathcal{A}^{-1} \mathcal{E} \nless 0$ in any case!

Symmetric Second-Order Systems

Symmetric Linerizations

Linearizations

Next idea: "symmetric" linearization

$$
\underbrace{\left[\begin{array}{cc}
-K & 0 \\
0 & M
\end{array}\right]}_{:=\mathcal{E}} \dot{x}=\underbrace{\left[\begin{array}{cc}
0 & -K \\
-K & -D
\end{array}\right]}_{:=\mathcal{A}} x+\left[\begin{array}{c}
0 \\
B
\end{array}\right] u, \quad y=\left[B^{T}, 0\right] x,
$$

now has $\mathcal{A}=\mathcal{A}^{T}$, but $C \neq B^{T}$!
Recall: for symmetric transfer function, solutions of corresponding generalized Lyapunov equations

$$
\mathcal{A P} E^{T}+\mathcal{A}^{T} \mathcal{P E}=-\mathcal{B B}^{T}, \quad \mathcal{A}^{T} \mathcal{Q} E+\mathcal{A Q E} \mathcal{E}^{T}=-\mathcal{C}^{T} \mathcal{C} .
$$

coincide \Rightarrow only 1 Lyapunov solve, i.e., only 1 ADI iteration. Note: $\mathcal{E}^{-1} \mathcal{A}+\mathcal{A}^{-1} \mathcal{E} \nless 0$ in any case!

Symmetric Second-Order Systems

Symmetric Linerizations

Linearizations

Non-standard symmetric linearization

$$
\underbrace{\left[\begin{array}{cc}
D & M \\
M & 0
\end{array}\right]}_{:=\mathcal{E}} \dot{x}=\underbrace{\left[\begin{array}{cc}
-K & 0 \\
0 & M
\end{array}\right]}_{:=\mathcal{A}} x+\left[\begin{array}{l}
B \\
0
\end{array}\right] u, \quad y=\left[B^{T}, 0\right] x,
$$

is what we need: $\mathcal{A}=\mathcal{A}^{T}, C=B^{T}$!
Recall: for symmetric transfer function, solutions of corresponding generalized Lyapunov equations

$$
\mathcal{A P} E^{T}+\mathcal{A}^{T} \mathcal{P E}=-\mathcal{B B}^{T}, \quad \mathcal{A}^{T} \mathcal{Q} E+\mathcal{A Q E} \mathcal{E}^{T}=-\mathcal{C}^{T} \mathcal{C} .
$$

coincide \Rightarrow only 1 Lyapunov solve, i.e., only 1 ADI iteration. Note: $\mathcal{E}^{-1} \mathcal{A}+\mathcal{A}^{-1} \mathcal{E} \nless 0$ in any case!

Symmetric Second-Order Systems

Computation of Gramians

Problem: Exact computation of \mathcal{P} (and \mathcal{Q}) too expensive $\left(\mathcal{O}\left(n^{3}\right)\right.$ flops, $\mathcal{O}\left(n^{2}\right)$ memory)

Symmetric Second-Order Systems

Computation of Gramians

Problem: Exact computation of \mathcal{P} (and \mathcal{Q}) too expensive $\left(\mathcal{O}\left(n^{3}\right)\right.$ flops, $\mathcal{O}\left(n^{2}\right)$ memory) \Rightarrow computation of low-rank factors $\tilde{\mathcal{S}}$ (and $\tilde{\mathcal{R}}$),

with ADI iteration.

Further gimmicks:

- Re-write ADI iteration in terms of M, D, K, e.g., only solves of the form $\left(\mu_{j}^{2} M+\mu_{j} D+K\right) v=w[$ B./SAAK '09];
- Purely real arithmetic with only 1 linear system per pair of complex conjugate shifts \rightsquigarrow acceleration by factor $2-4$ [B./SAAK/KürsChNER '11].

Symmetric Second-Order Systems

Computation of Gramians

Problem: Exact computation of \mathcal{P} (and \mathcal{Q}) too expensive $\left(\mathcal{O}\left(n^{3}\right)\right.$ flops, $\mathcal{O}\left(n^{2}\right)$ memory) \Rightarrow computation of low-rank factors $\tilde{\mathcal{S}}$ (and $\tilde{\mathcal{R}}$),

with ADI iteration.

Further gimmicks:

- Re-write ADI iteration in terms of M, D, K, e.g., only solves of the form $\left(\mu_{j}^{2} M+\mu_{j} D+K\right) v=w[$ B./SAAK '09];
- Purely real arithmetic with only 1 linear system per pair of complex conjugate shifts \rightsquigarrow acceleration by factor 2-4 [B./SAAK/KürsCHNER '11].
SVD computation for balanced truncation:

computation of truncation matrices

$$
W:=\tilde{\mathcal{R}}^{T} Y_{1} \Sigma_{1}^{-\frac{1}{2}} \equiv V:=\tilde{\mathcal{S}}^{T} X_{1} \Sigma_{1}^{-\frac{1}{2}} .
$$

Symmetric Second-Order Systems

Second-Order Balanced Truncation

Second-Order Balanced Truncation

Partitioning of Gramians \mathcal{P}, \mathcal{Q} (or corresponding factors \mathcal{S}, \mathcal{R}) of linearization:

$$
\mathcal{P}=\underbrace{\left[\begin{array}{l}
\mathcal{S}_{p} \\
\mathcal{S}_{v}
\end{array}\right]}_{=\mathcal{S}} \underbrace{\left[\mathcal{S}_{p}^{T} \mathcal{S}_{v}^{T}\right]}_{=\mathcal{S}^{T}}=\left[\begin{array}{ll}
\mathcal{P}_{p} & \mathcal{P}_{o} \\
\mathcal{P}_{0} & \mathcal{P}_{v}
\end{array}\right], \mathcal{Q}=\underbrace{\left[\begin{array}{l}
\mathcal{R}_{p} \\
\mathcal{R}_{v}
\end{array}\right]}_{=\mathcal{R}} \underbrace{\left[\mathcal{R}_{p}^{T} \mathcal{R}_{v}^{T}\right]}_{=\mathcal{R}^{T}}=\left[\begin{array}{ll}
\mathcal{Q}_{p} & \mathcal{Q}_{o} \\
\mathcal{Q}_{0} & \mathcal{Q}_{v}
\end{array}\right] .
$$

Second-order Gramians:

$$
\mathcal{P}_{p}=\mathcal{S}_{p} \mathcal{S}_{p}^{T} \quad \text { position controllability Gramian, }
$$

Symmetric Second-Order Systems

Second-Order Balanced Truncation

Second-Order Balanced Truncation

Partitioning of Gramians \mathcal{P}, \mathcal{Q} (or corresponding factors \mathcal{S}, \mathcal{R}) of linearization:

$$
\mathcal{P}=\underbrace{\left[\begin{array}{l}
\mathcal{S}_{p} \\
\mathcal{S}_{v}
\end{array}\right]}_{=\mathcal{S}} \underbrace{\left[\mathcal{S}_{p}^{T} \mathcal{S}_{v}^{T}\right]}_{=\mathcal{S}^{T}}=\left[\begin{array}{ll}
\mathcal{P}_{p} & \mathcal{P}_{o} \\
\mathcal{P}_{o} & \mathcal{P}_{v}
\end{array}\right], \mathcal{Q}=\underbrace{\left[\begin{array}{l}
\mathcal{R}_{p} \\
\mathcal{R}_{v}
\end{array}\right]}_{=\mathcal{R}} \underbrace{\left[\mathcal{R}_{p}^{T} \mathcal{R}_{v}^{T}\right]}_{=\mathcal{R}^{T}}=\left[\begin{array}{ll}
\mathcal{Q}_{p} & \mathcal{Q}_{o} \\
\mathcal{Q}_{0} & \mathcal{Q}_{v}
\end{array}\right] .
$$

Second-order Gramians:

$$
\begin{aligned}
& \mathcal{P}_{p}=\mathcal{S}_{p} \mathcal{S}_{p}^{T}-\text { position controllability Gramian }, \\
& \mathcal{P}_{v}=\mathcal{S}_{v} \mathcal{S}_{v}^{T}-\text { velocity controllability Gramian },
\end{aligned}
$$

Symmetric Second-Order Systems

Second-Order Balanced Truncation

Second-Order Balanced Truncation

Partitioning of Gramians \mathcal{P}, \mathcal{Q} (or corresponding factors \mathcal{S}, \mathcal{R}) of linearization:

$$
\mathcal{P}=\underbrace{\left[\begin{array}{l}
\mathcal{S}_{p} \\
\mathcal{S}_{v}
\end{array}\right]}_{=\mathcal{S}} \underbrace{\left[\mathcal{S}_{p}^{T} \mathcal{S}_{v}^{T}\right]}_{=\mathcal{S}^{T}}=\left[\begin{array}{ll}
\mathcal{P}_{p} & \mathcal{P}_{o} \\
\mathcal{P}_{o} & \mathcal{P}_{v}
\end{array}\right], \mathcal{Q}=\underbrace{\left[\begin{array}{l}
\mathcal{R}_{p} \\
\mathcal{R}_{v}
\end{array}\right]}_{=\mathcal{R}} \underbrace{\left[\mathcal{R}_{p}^{T} \mathcal{R}_{v}^{T}\right]}_{=\mathcal{R}^{T}}=\left[\begin{array}{ll}
\mathcal{Q}_{p} & \mathcal{Q}_{o} \\
\mathcal{Q}_{0} & \mathcal{Q}_{v}
\end{array}\right] .
$$

Second-order Gramians:

$$
\begin{aligned}
& \mathcal{P}_{p}=\mathcal{S}_{p} \mathcal{S}_{p}^{T}-\text { position controllability Gramian } \\
& \mathcal{P}_{v}=\mathcal{S}_{v} \mathcal{S}_{v}^{T}-\text { velocity controllability Gramian } \\
& \mathcal{Q}_{p}=\mathcal{R}_{p} \mathcal{R}_{p}^{T}-\text { position observability Gramian }
\end{aligned}
$$

Symmetric Second-Order Systems

Second-Order Balanced Truncation

Second-Order Balanced Truncation

Partitioning of Gramians \mathcal{P}, \mathcal{Q} (or corresponding factors \mathcal{S}, \mathcal{R}) of linearization:

$$
\mathcal{P}=\underbrace{\left[\begin{array}{l}
\mathcal{S}_{p} \\
\mathcal{S}_{v}
\end{array}\right]}_{=\mathcal{S}} \underbrace{\left[\mathcal{S}_{p}^{T} \mathcal{S}_{v}^{T}\right]}_{=\mathcal{S}^{T}}=\left[\begin{array}{ll}
\mathcal{P}_{p} & \mathcal{P}_{o} \\
\mathcal{P}_{o} & \mathcal{P}_{v}
\end{array}\right], \mathcal{Q}=\underbrace{\left[\begin{array}{l}
\mathcal{R}_{p} \\
\mathcal{R}_{v}
\end{array}\right]}_{=\mathcal{R}} \underbrace{\left[\mathcal{R}_{p}^{T} \mathcal{R}_{v}^{T}\right]}_{=\mathcal{R}^{T}}=\left[\begin{array}{ll}
\mathcal{Q}_{p} & \mathcal{Q}_{o} \\
\mathcal{Q}_{0} & \mathcal{Q}_{v}
\end{array}\right] .
$$

Second-order Gramians:

$$
\begin{aligned}
& \mathcal{P}_{p}=\mathcal{S}_{p} \mathcal{S}_{p}^{T}-\text { position controllability Gramian } \\
& \mathcal{P}_{v}=\mathcal{S}_{v} \mathcal{S}_{v}^{T}-\text { velocity controllability Gramian } \\
& \mathcal{Q}_{p}=\mathcal{R}_{p} \mathcal{R}_{p}^{T}-\text { position observability Gramian } \\
& \mathcal{Q}_{v}=\mathcal{R}_{v} \mathcal{R}_{v}^{T}-\text { position observability Gramian. }
\end{aligned}
$$

Symmetric Second-Order Systems

Second-Order Balanced Truncation

Second-Order Balanced Truncation

Pairwise contragredient diagonalization of two of the second-order Gramians yields 4 possible balancing schemes:

Typ	Balancing	right proj.	left proj.
position-position	$\mathcal{P}_{p}=\mathcal{Q}_{p}=\Sigma_{p p}$	$V=\mathcal{S}_{p} X_{p} \Sigma_{p p}^{-\frac{1}{2}}$	$W=\mathcal{R}_{p} Y_{p} \Sigma_{p p}^{-\frac{1}{2}}$
position-velocity	$\mathcal{P}_{p}=\mathcal{Q}_{v}=\Sigma_{p v}$	$V=\mathcal{S}_{p} X_{p} \Sigma_{p v}^{-\frac{1}{2}}$	$W=\mathcal{R}_{v} Y_{v} \Sigma_{p v}^{-\frac{1}{2}}$
velocity-position	$\mathcal{P}_{v}=\mathcal{Q}_{p}=\Sigma_{v p}$	$V=\mathcal{S}_{v} X_{v} \Sigma_{v p}^{-\frac{1}{2}}$	$W=\mathcal{R}_{p} Y_{p} \Sigma_{v p}^{-\frac{1}{2}}$
velocity-velocity	$\mathcal{P}_{v}=\mathcal{Q}_{v}=\Sigma_{v v}$	$V=\mathcal{S}_{v} X_{v} \Sigma_{v v}^{-\frac{1}{2}}$	$W=\mathcal{R}_{v} Y_{v} \Sigma_{v v}^{-\frac{1}{2}}$

where, e.g.,

$$
X_{p} \Sigma_{p p} Y_{p}^{T}=\mathcal{S}_{p}^{T} M \mathcal{R}_{p}
$$

Symmetric Second-Order Systems

Numerical Examples: Crank Shaft

Order $n=46.860$, 35 inputs/outputs

Symmetric Second-Order Systems

Numerical Examples: Crank Shaft

Order $n=46.860$, 35 inputs/outputs
Modal vs. Krylov

Symmetric Second-Order Systems

Numerical Examples: Crank Shaft

Order $n=46.860$, 35 inputs/outputs
Modal vs. Balanced Truncation

Symmetric Second-Order Systems

Numerical Examples: Control of Continuous Faceplate Deformable Mirrors

Symmetric second-order system, $n=83,508, m=p=672$, tol $_{\mathrm{BT}}=10^{-10}$

[Source: T. Ruppel, ISYS, U Stuttgart]

Conclusions

- Split-congruence model reduction is an easy tool to preserve block-structures in linear systems, avoids mixing of physically unrelated variables in reduced-order models.
- Split-congruence balanced truncation seems to work well for symmetric transfer functions.
- Symmetric transfer functions often arise from second-order systems in elastic multibody simulation.
- Symmetric ADI iteration for these systems is very efficient (compared to ADI applied to standard linearization).
- Future work:
- error bound for scBT applied to symmetric transfer functions;
- analyze symmetric ADI iteration w.r.t. stability/robustness.

[^0]: K. Kerns, A. Yang.

 Preservation of passivity during RLC network reduction via split congruence transformations.
 IEEE Trans. CAD Integr. Circuits Syst. 17(7):582--591, 1998.

