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Introduction
Model Reduction of LTI Systems

Original system

Σ :

{
Eẋ(t) = Ax + Bu,
y(t) = Cx + Du.

A,E ∈ Rn×n,B ∈ Rn×m,
C ∈ Rp×n,D ∈ Rp×m.

State/descriptor vector x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced System

Σ̂ :

{
Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉ x̂(t) + D̂u(t).

Â, Ê ∈ Rr×r , B̂ ∈ Rr×m,
Ĉ ∈ Rp×r , D̂ ∈ Rp×m, r � n.

State/descriptor vector x̂(t) ∈ Rr ,

Inputs u(t) ∈ Rm,

Outputs ŷ(t) ∈ Rp.

Goal:

‖y − ŷ‖ < tol · ‖u‖ for all admissible input signals.
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Model Reduction Based on Balanced Truncation

Linear time-invariant (LTI) systems

Σ :

{
ẋ(t) = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y(t) = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.

(A,B,C ,D) = realization of Σ (non-unique).
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{
ẋ(t) = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y(t) = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.

(A,B,C ,D) = realization of Σ (non-unique).

Balancing of LTI systems

Given: Gramians P,Q ∈ Rn×n symmetric, positive definite (spd), and
contragredient transformation T : Rn → Rn, such that

TPTT = T−TQT−1 = diag(σ1, . . . , σn), σ1 ≥ . . . ≥ σn ≥ 0.

Balancing of Σ w.r.t. P,Q:

Σ ≡ (A,B,C ,D) 7→ (TAT−1,TB,CT−1,D) ≡ Σ.
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Model Reduction Based on Balanced Truncation

Basis for model reduction method
1 Given Σ ≡ (A,B,C ,D) and balancing (w.r.t. given P,Q spd)

transformation T ∈ Rn×n, compute (not explicitly!)

(A,B,C ,D) 7→ (TAT−1,TB,CT−1,D)

=

([
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[
C1 C2

]
,D

)

2 Truncation  reduced model:

(Â, B̂, Ĉ , D̂) = (A11,B1,C1,D).
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Model Reduction Based on Balanced Truncation

Classical Balanced Truncation (BT)
Mullis/Roberts ’76, Moore ’81

P/Q = controllability/observability Gramians of Σ ≡ (A,B,C ,D).

For asymptotically stable systems, P,Q solve dual Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Λ(PQ)
1
2 = {σBT

1 , . . . , σBT
n } are Hankel singular values (HSVs) of Σ.

HSVs are system invariants ( ”energy preservation” motivation).

Asymptotic stability is preserved!

Computable error bound is by-product of computations:

‖y − yBT‖2 ≤ 2
n∑

j=r+1

σBT
j ‖u‖2,

allows adaptive choice of r !
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Model Reduction Based on Balanced Truncation

Choice of other Gramians yields preservation of structural properties
(z.B. minimum phase, passivity, bounded realness, . . . ).

Variants for unstable systems exist.

Application to systems with mass matrix (Eẋ = Ax + Bu) possible
without forming E−1A,E−1B!
Variants for E singular exist.

Applications to second order systems (mechanical systems)  later.

Classical implementations require O(n3) operations and O(n2)
memory  way too expensive for systems with n� 1000!

But: new numerical techniques developed since 1996 ⇒
n = 1.000.000 nowadays computable in MATLAB®!
(Computing times < 1h on quadcore.)
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Model Reduction Based on Balanced Truncation
Numerical Example: Electro-Thermic Simulation of Integrated Circuit (IC)
[Source: Evgenii Rudnyi, CADFEM GmbH]

Simplorer® test circuit with 2 transistors.

Conservative thermic sub-system in Simplorer:
voltage  temperature, current  heat flow.

Original model: n = 270.593, m = p = 2 ⇒
Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

– Solution of Lyapunov equations: ≈ 22min.
– Computation of reduced models: 44sec. (r = 20) – 49sec. (r = 70).
– Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):

7.5h for original system , < 1min for reduced system.
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Split-Congruence Model Reduction
Split-Congruence Transformations

Split-congruence model reduction [Kerns/Yang ’98]

Given descriptor system (E ;A,B,C ) and orthogonal projection VV T ,

V =
[
V1

V2

]
∈ Rn×r , compute reduced-order model

(Ê , Â, B̂, Ĉ ) = (VTEV,VTAV,VTB,CV), where V =

[
V1

V2

]
. (1)

=⇒ 2× 2 block structure of realization is preserved, e.g.,

Â = VTAV =

[
V1

V2

]T [
A11 A12

A21 A22

][
V1

V2

]
=

[
Â11 Â12

Â21 Â22

]
,

so that physically motivated partitioning of state vector can be preserved.
Applications:
→ RLC network equations,
→ mechanical systems.

K. Kerns, A. Yang.

Preservation of passivity during RLC network reduction via split congruence transformations.
IEEE Trans. CAD Integr. Circuits Syst. 17(7):582-–591, 1998.
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Split-Congruence Model Reduction
Split-Congruence Transformations

RLC network equations

System structure of RLC networks w/o voltage sources (MNA form):

E =

[
E1 0

0 E2

]
, A =

[
−A1 −AT

2

A2 0

]
, B =

[
B1

0

]
= CT ,

where A1,E1 ≥ 0, E2 > 0.
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Split-Congruence Transformations

RLC network equations

System structure of RLC networks w/o voltage sources (MNA form):

E =

[
E1 0

0 E2

]
, A =

[
−A1 −AT

2

A2 0

]
, B =

[
B1

0

]
= CT ,

where A1,E1 ≥ 0, E2 > 0. Split-congruence model reduction =⇒

Ê =

[
Ê1 0

0 Ê2

]
, Â =

[
−Â1 −ÂT

2

Â2 0

]
, B̂ =

[
B̂1

0

]
= ĈT ,

where Â1, Ê1 ≥ 0, and, if rank (V1) = r , Ê2 > 0.
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Ê =

[
Ê1 0

0 Ê2

]
, Â =

[
−Â1 −ÂT

2

Â2 0

]
, B̂ =

[
B̂1

0

]
= ĈT ,

where Â1, Ê1 ≥ 0, and, if rank (V1) = r , Ê2 > 0. =⇒ Preservation of

1 stability,
2 structure of transfer function:

Ĝ (s) = B̂T
1 (sÊ1 + Â1 +

1

s
ÂT

2 Ê
−1
2 Â2)B̂1,

and, hence, of passivity and reciprocity (⇒ reduced-order model can be

synthesized as circuit, e.g., [Reis ’10]).
Max Planck Institute Magdeburg Peter Benner, Split-Congruence Transformations Meet Balanced Truncation 6/17



Introduction Split-Congruence Model Reduction Symmetric Second-Order Systems Fin

Split-Congruence Model Reduction
Split-Congruence Transformations

RLC network equations

System structure of RLC networks w/o voltage sources (MNA form):
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2

Â2 0

]
, B̂ =

[
B̂1

0

]
= ĈT ,

where Â1, Ê1 ≥ 0, and, if rank (V1) = r , Ê2 > 0.

Note: used, e.g., in

PRIMA [Odabasioglu/Celik/Pileggi ’97],

SPRIM [Freund ’04–’08].
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Split-Congruence Model Reduction
Split-Congruence Transformations

Mechanical Systems

Structural dynamics/vibration analysis, e.g.,

⇒ systems of second-order differential equations:

Mq̈ + Dż + Kq = Bu, y = Cpq + Cv q̇.

Inputs are e.g., forces acting on crankshaft (piston/con-rod):
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Split-Congruence Model Reduction
Split-Congruence Transformations

Mechanical Systems

Structural dynamics/vibration analysis ⇒ systems of second-order differential
equations:

Mq̈ + Dż + Kq = Bu, y = Cpq + Cv q̇.

Linearization (x =
[
q
q̇

]
):[

I 0

0 M

]
ẋ =

[
0 I

−K −D

]
x +

[
0
B

]
, y = [Cp, Cv ]x .

Compute projection subspace range
([

V1
V2

])
using standard (one-sided) model

reduction method applied to linearization and split-congruence model reduction
=⇒ second-order structure is preserved:

M̂ = VT
2 MV2, D̂ = VT

2 DV2, K̂ = VT
2 KV1, B̂ = VT

2 B, Ĉp = CpV1, Ĉv = CvV2.

Note: (implicitly) used, e.g., in

SOAR [Bai/Su ’05, Salimbahrami/Lohmann ’06],

Krylov subspace methods for higher-order dynamical systems [Freund ’08], . . . .
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Split-Congruence Balanced Truncation (scBT)

(Very) basic idea: let V =
[
V1

V2

]
∈ Rn×r be projection matrix computed

by BT, then use split-congruence model reduction.
Notes:

range (V ) ⊂ range (V).

For standard systems with E = In, Ê =
[
V T

1 V1

0
0

V T
2 V2

]
.

But: in general, W 6= V , so split congruence cannot be expected to
yield reasonable approximation.
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by BT, then use split-congruence model reduction.
Notes:

range (V ) ⊂ range (V).

For standard systems with E = In, Ê =
[
V T

1 V1

0
0

V T
2 V2

]
.

But: in general, W 6= V , so split congruence cannot be expected to
yield reasonable approximation.

=⇒ Consider G (s) symmetric (A = AT < 0, C = BT ):

⇒ Gramians coincide, P = Q.
⇒ BT needs only one Lyapunov equation, W ≡ V
⇒ (sc)BT automatically preserves stability and passivity.

Possible advantage of scBT: preservation of block structure, no mixing of
physically unrelated variables.
Clear disadvantage: doubling of reduced order.
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Split-Congruence Balanced Truncation
Numerical Example

Heat equation on unit square, n = 400,m = 5,

reduced-order r = 20 / 40, relative H∞ errors 5 · 10−6 / 4 · 10−6

(δrel = 1.25 · 10−5).

Singular values of error systems
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Split-Congruence Balanced Truncation for Hamiltonian Transfer Functions

Hamiltonian Transfer Function [Fuhrmann ’83]

Let H =
[
I
0

0
−I

]
, then the transfer function G (s) = C (sE − A)−1B is

called Hamiltonian if

AT = HAH, ET = HEH, CT = HB.

Example:

E =

[
E1 0

0 E2

]
, A =

[
A1 A2

−AT
2 0

]
, B =

[
B1

0

]
= CT ,

where E1 = ET
1 , E2 = ET

2 and A1 = AT
1 .

Note: for Hamiltonian systems, the controllability and observability Gramians

satisfy Q = HPH =
[

P11

−PT
12

−P12
P22

]
⇒ only one Gramian computation required.

Generalization: J-Hermitian transfer functions: H nonsingular, HB = CTF for

nonsingular F .
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Split-Congruence Balanced Truncation for Hamiltonian Transfer Function
Numerical Example

Hamiltonian transfer function with E = In, A1 = −∆h, A2 = ∇h on unit
square, n1 = 400, n2 = 100, i.e., n = 500, m = 5.

reduced-order r = 20 / 40.

Variants: scBT-v with V =
[
V1
0

0
V2

]
, scBT-w with W =

[
W1
0

0
W2

]
,

scBT-vw with two-sided projection with V,W.
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Symmetric Second-Order Systems
FVV Project 1029, partners P. Eberhard (U. Stuttgart), G. Knoll (U Kassel)

Multibody system

Elastic body

FE model

M ẍ + D ẋ + K x = B u

y = BT x

Symmetric second-order system

M̃ ¨̃x + D̃ ˙̃x + K̃ x̃ = B̃ u

ỹ = B̃T x̃

Reduced second-order model

Simulation
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ỹ = B̃T x̃

Reduced second-order model

Simulation

Max Planck Institute Magdeburg Peter Benner, Split-Congruence Transformations Meet Balanced Truncation 11/17



Introduction Split-Congruence Model Reduction Symmetric Second-Order Systems Fin

Symmetric Second-Order Systems
FVV Project 1029, partners P. Eberhard (U. Stuttgart), G. Knoll (U Kassel)

Multibody system

Elastic body

FE model
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Symmetric Second-Order Systems
Symmetric Linerizations

Linearizations
Standard linearization[

I 0

0 M

]
︸ ︷︷ ︸

:=E

ẋ =

[
0 I

−K −D

]
︸ ︷︷ ︸

:=A

x +

[
0
B

]
︸ ︷︷ ︸

:=B

u, y = [BT , 0 ]︸ ︷︷ ︸
:=C

x .

does not exhibit desired symmetry (A 6= AT , C 6= BT ).

Recall: for symmetric transfer function, solutions of corresponding
generalized Lyapunov equations

APET +ATPE = −BBT , ATQE +AQET = −CTC.

coincide ⇒ only 1 Lyapunov solve, i.e., only 1 ADI iteration.
Note: E−1A+A−1E 6< 0 in any case!

Max Planck Institute Magdeburg Peter Benner, Split-Congruence Transformations Meet Balanced Truncation 12/17



Introduction Split-Congruence Model Reduction Symmetric Second-Order Systems Fin

Symmetric Second-Order Systems
Symmetric Linerizations

Linearizations
Next idea: ”symmetric” linearization[

−K 0

0 M

]
︸ ︷︷ ︸

:=E
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Symmetric Second-Order Systems
Symmetric Linerizations

Linearizations
Non-standard symmetric linearization[

D M

M 0
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0 M

]
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:=A
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B
0

]
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Symmetric Second-Order Systems
Computation of Gramians

Problem: Exact computation of P (and Q) too expensive (O(n3) flops,
O(n2) memory)

⇒ computation of low-rank factors S̃ (and R̃),

S̃
S̃T

≈ P und R̃
R̃T

≈ Q

with ADI iteration.
Further gimmicks:

Re-write ADI iteration in terms of M,D,K , e.g., only solves of the form
(µ2

j M + µjD + K)v = w [B./Saak ’09];

Purely real arithmetic with only 1 linear system per pair of complex
conjugate shifts  acceleration by factor 2–4 [B./Saak/Kürschner ’11].

SVD computation for balanced truncation:

S̃T
E R̃ = = X Σ Y

T = [X1, X2]

[
Σ1

Σ2

]
[Y1, Y2]T

computation of truncation matrices

W := R̃TY1Σ
− 1

2
1 ≡ V := S̃TX1Σ

− 1
2

1 .
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Symmetric Second-Order Systems
Second-Order Balanced Truncation

Second-Order Balanced Truncation [Meyer/Srinivasan ’96]

Partitioning of Gramians P, Q (or corresponding factors S, R) of
linearization:

P =

[
Sp
Sv

]
︸ ︷︷ ︸

=S

[
STp STv

]︸ ︷︷ ︸
=ST

=

[
Pp Po

Po Pv

]
, Q =

[
Rp

Rv

]
︸ ︷︷ ︸

=R

[
RT

p RT
v

]︸ ︷︷ ︸
=RT

=

[
Qp Qo

Qo Qv

]
.

Second-order Gramians:

Pp = SpSTp − position controllability Gramian,

Pv = SvSTv − velocity controllability Gramian,

Qp = RpRT
p − position observability Gramian,

Qv = RvRT
v − position observability Gramian.
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Symmetric Second-Order Systems
Second-Order Balanced Truncation

Second-Order Balanced Truncation [Meyer/Srinivasan ’96]

Pairwise contragredient diagonalization of two of the second-order
Gramians yields 4 possible balancing schemes:

Typ Balancing right proj. left proj.

position-position Pp =Qp =Σpp V =SpXpΣ
− 1

2
pp W =RpYpΣ

− 1
2

pp

position-velocity Pp =Qv =Σpv V =SpXpΣ
− 1

2
pv W =RvYvΣ

− 1
2

pv

velocity-position Pv =Qp =Σvp V =SvXvΣ
− 1

2
vp W =RpYpΣ

− 1
2

vp

velocity-velocity Pv =Qv =Σvv V =SvXvΣ
− 1

2
vv W =RvYvΣ

− 1
2

vv

where, e.g.,

XpΣppY
T
p = STp MRp.
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Symmetric Second-Order Systems
Numerical Examples: Crank Shaft

Order n = 46.860, 35 inputs/outputs
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Computations by P. Kürschner, C. Nowakowski
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Computations by P. Kürschner, C. Nowakowski

Max Planck Institute Magdeburg Peter Benner, Split-Congruence Transformations Meet Balanced Truncation 15/17



Introduction Split-Congruence Model Reduction Symmetric Second-Order Systems Fin

Symmetric Second-Order Systems
Numerical Examples: Crank Shaft

Order n = 46.860, 35 inputs/outputs
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Symmetric Second-Order Systems
Numerical Examples: Control of Continuous Faceplate Deformable Mirrors

Symmetric second-order system, n = 83, 508, m = p = 672, tolBT = 10−10.
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[Source: T. Ruppel, ISYS, U Stuttgart]
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Conclusions

Split-congruence model reduction is an easy tool to preserve
block-structures in linear systems, avoids mixing of physically
unrelated variables in reduced-order models.

Split-congruence balanced truncation seems to work well for
symmetric transfer functions.

Symmetric transfer functions often arise from second-order systems
in elastic multibody simulation.

Symmetric ADI iteration for these systems is very efficient
(compared to ADI applied to standard linearization).

Future work:

– error bound for scBT applied to symmetric transfer functions;
– analyze symmetric ADI iteration w.r.t. stability/robustness.
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