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Introduction ( ruence Model Reduction

Introduction
Model Reduction of LTI Systems

Original system Reduced System

o {E)'((t) = Ax + Bu, o [ EX(t) = Ax(t) + Bu(t),
: PR A 2
y(t) = Cx + Du. §(t) = Cx(t) + Du(t).
° A,EER”XH,BERnxm, ° A7E6Rrxr7BeRr><m,
C € RPX" D € RPX™, C eRPX" D eRP*™, r < .
@ State/descriptor vector x(t) € R”, @ State/descriptor vector X(t) € R”,
@ inputs u(t) € R™, o Inputs u(t) € R™,
@ outputs y(t) € RP. o Outputs §(t) € RP.
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Introduction
Model Reduction of LTI Systems

Original system Reduced System

o {E)'((t) = Ax + Bu, o [ EX(t) = Ax(t) + Bu(t),
‘ PR A 2
y(t) = Cx + Du. y(t) = Cx(t) + Du(t).
° A EER™ BeR™, o A EcR™ BeR™",
C € RPX" D € RPX™, C eRPX" D eRP*™, r < .
@ State/descriptor vector x(t) € R”, @ State/descriptor vector X(t) € R”,
@ inputs u(t) € R™, o Inputs u(t) € R™,
@ outputs y(t) € RP. o Outputs §(t) € RP.

lly — 9| < tol - ||u]| for all admissible input signals.
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Model Reduction Based on Balanced Truncation

Linear time-invariant (LTI) systems

5. x(t) = Ax+ Bu, AeR™"  BeR™M
’ y(t) = Cx+ Du, C e RP*" D e RP*™,

(A, B, C, D) = realization of X (non-unique).
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Model Reduction Based on Balanced Truncation

Linear time-invariant (LTI) systems

5. x(t) = Ax+ Bu, AeR™"  BeR™M
’ y(t) = Cx+ Du, C e RP*" D e RP*™,

(A, B, C, D) = realization of X (non-unique).

| A

Balancing of LTI systems

Given: Gramians P, Q € R™" symmetric, positive definite (spd), and
contragredient transformation T : R” — R”, such that

TPTT = T-TQT ! = diag(oy,...,0,), 01>...>0,>0.
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Model Reduction Based on Balanced Truncation

Linear time-invariant (LTI) systems

5. x(t) = Ax+ Bu, AeR™"  BeR™M
’ y(t) = Cx+ Du, C e RP*" D e RP*™,

(A, B, C, D) = realization of X (non-unique).

Balancing of LTI systems

| A

Given: Gramians P, Q € R™" symmetric, positive definite (spd), and
contragredient transformation T : R” — R”, such that

TPTT = T-TQT ! = diag(oy,...,0,), 01>...>0,>0.
Balancing of ¥ w.r.t. P, Q:
Y =(AB,C,D)— (TAT 1, TB,CT ' D)=%.
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Model Reduction Based on Balanced Truncation

Basis for model reduction method

@ Given X = (A, B, C, D) and balancing (w.r.t. given P, Q spd)
transformation T € R"™ ", compute (not explicitly!)

(A,B,C,D) +— (TAT 1, TB,CT7! D)

— A11 A12 Bl
B <|:A21 A22}’[32]7[C1 Cz],D)
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Model Reduction Based on Balanced Truncation

Basis for model reduction method

@ Given X = (A, B, C, D) and balancing (w.r.t. given P, Q spd)
transformation T € R"™ ", compute (not explicitly!)

(A,B,C,D) +— (TAT 1, TB,CT7! D)
A A B
- G GJ.D

@ Truncation ~ reduced model:
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Model Reduction Based on Balanced Truncation

Classical Balanced Truncation (BT)

MuLLIS/ROBERTS ’76, MOORE 81

@ P/Q = controllability/observability Gramians of X = (A, B, C, D).

@ For asymptotically stable systems, P, Q solve dual Lyapunov equations

AP+PAT +BBT =0, A'Q+QA+C'C = 0.
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Classical Balanced Truncation (BT)

MuLLIS/ROBERTS ’76, MOORE 81

@ P/Q = controllability/observability Gramians of X = (A, B, C, D).

@ For asymptotically stable systems, P, Q solve dual Lyapunov equations

AP+PAT +BBT =0, A'Q+QA+C'C = 0.

° /\(PQ)% = {of",..., 08"} are Hankel singular values (HSVs) of .
HSVs are system invariants (~ "energy preservation” motivation).
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Model Reduction Based on Balanced Truncation

Classical Balanced Truncation (BT)

MuLLIS/ROBERTS ’76, MOORE 81
@ P/Q = controllability/observability Gramians of X = (A, B, C, D).

@ For asymptotically stable systems, P, Q solve dual Lyapunov equations

AP+PAT +BBT =0, A'Q+QA+C'C = 0.

° /\(PQ)% ={oP",..., 08"} are Hankel singular values (HSVs) of .
HSVs are system invariants (~ "energy preservation” motivation).

@ Asymptotic stability is preserved!
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Model Reduction Based on Balanced Truncation

Classical Balanced Truncation (BT)

MuLLIS/ROBERTS ’76, MOORE 81
@ P/Q = controllability/observability Gramians of X = (A, B, C, D).

@ For asymptotically stable systems, P, Q solve dual Lyapunov equations

AP+PAT +BBT =0, A'Q+QA+C'C = 0.

° /\(PQ)% ={oP",..., 08"} are Hankel singular values (HSVs) of .
HSVs are system invariants (~ "energy preservation” motivation).

@ Asymptotic stability is preserved!

@ Computable error bound is by-product of computations:
n
BT BT
ly =y" <2 > o7 |ull2,
Jj=r+1

allows adaptive choice of r!
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Model Reduction Based on Balanced Truncation

@ Choice of other Gramians yields preservation of structural properties
(z.B. minimum phase, passivity, bounded realness, ... ).

@ Variants for unstable systems exist.

o Application to systems with mass matrix (Ex = Ax + Bu) possible
without forming E~'A, E~1BI
Variants for E singular exist.

@ Applications to second order systems (mechanical systems) ~~ later.

o Classical implementations require O(n®) operations and O(n?)
memory ~+ way too expensive for systems with n > 1000!
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Model Reduction Based on Balanced Truncation

ruence Model Reduction Symr [S nd-Order System:

Choice of other Gramians yields preservation of structural properties
(z.B. minimum phase, passivity, bounded realness, ... ).

Variants for unstable systems exist.

Application to systems with mass matrix (Ex = Ax + Bu) possible
without forming E~'A, E~1BI

Variants for E singular exist.

Applications to second order systems (mechanical systems) ~~ later.
Classical implementations require O(n®) operations and O(n?)
memory ~+ way too expensive for systems with n > 1000!

But: new numerical techniques developed since 1996 =-
n = 1.000.000 nowadays computable in MATLABR)!
(Computing times < 1h on quadcore.)
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Model Reduction Based on Balanced Truncation

Numerical Example: Electro-Thermic Simulation of Integrated Circuit (IC)
[Source: Evgenii Rudnyi, CADFEM GmbH]

@ SIMPLORER® test circuit with 2 transistors.

@ Conservative thermic sub-system in SIMPLORER:
voltage ~~ temperature, current ~» heat flow.

@ Original model: n =270.593, m=p=2 =
Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

— Solution of Lyapunov equations: = 22min.
— Computation of reduced models: 44sec. (r = 20) — 49sec. (r = 70).
— Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):

7.5h for original system , < 1min for reduced system.
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Model Reduction Based on Balanced Truncation

Numerical Example: Electro-Thermic Simulation of Integrated Circuit (IC)
[Source: Evgenii Rudnyi, CADFEM GmbH]

@ Original model: n =270.593, m=p=2 =
Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

— Solution of Lyapunov equations: = 22min.
— Computation of reduced models: 44sec. (r = 20) — 49sec. (r = 70).
— Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):

7.5h for original system , < 1min for reduced system.

Bode Plot (Amplitude) Hankel Singular Values

. Transfer functions of original and reduced systems Computed Hankel singular values

CA(Cl)]
magnitude

o |[—original 10
10" i —ROM 20
——ROM 30
——ROM 40 10°
ROM 50
ROM 60
_|l=—Rom70

10% 10° 10% 10* 50 100 150 200 250 300 350
) index

v
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Model Reduction Based on Balanced Truncation

Numerical Example: Electro-Thermic Simulation of Integrated Circuit (IC)
[Source: Evgenii Rudnyi, CADFEM GmbH]

@ Original model: n =270.593, m=p=2 =
Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

— Solution of Lyapunov equations: = 22min.
— Computation of reduced models: 44sec. (r = 20) — 49sec. (r = 70).
— Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):

7.5h for original system , < 1min for reduced system.

Absolute Error Relative Error

absolute model reduction error pwp relative model reduction error om0
——— RoM 30 —— Rom 30|
J— —— rom o

2 oM 50 ROM 50
10 —k_’ ROM 60 Fomso
—— Rom7)

(G(jo) - G (o)
3 3
/ /L
(G(jo) - G () / |IGII
3 3
b/ ﬁl

S
max!
S,
c
'max!
2

JN ?x/

107
107 10°

10° 10* 10°
© ©
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SpIit-Congrue Model Reduction

Split-Congruence Transformations

[KERNS/YANG '98]

Given descriptor system (E; A, B, C) and orthogonal projection VVT,
V = [&} € R"*", compute reduced-order model

~

(E,A,B,C)=(VTEV,VTAV,VTB, CV), where V = [Vl V} (D)
2

= 2 X 2 block structure of realization is preserved, e.g.,
- - Vi TT Au A Vi Ay Ap
A=V"AY = = . o )
Vo A Ax Vo A Ax
so that physically motivated partitioning of state vector can be preserved.
Applications:

— RLC network equations,
— mechanical systems.

@ K. Kerns, A. Yang.

Preservation of passivity during RLC network reduction via split congruence transformations.
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Split-Congruence Model Reduction

Split-Congruence Model Reduction

Split-Congruence Transformations

RLC network equations
System structure of RLC networks w/o voltage sources (MNA form):

Ei O —A —AT
o A= 1 2 | 32[51]:CT’
0 B Ao 0 0

where Al, Es >0, E; > 0.
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Split-Congruence Model Reduction

Split-Congruence Transformations

RLC network equations

System structure of RLC networks w/o voltage sources (MNA form):

B
= El ° ) A= _Al _A2 ? - [ Bl :| - CT,
0 5 Ao 0 0

where A;, E; > 0, E; > 0. Split-congruence model reduction =

. E o X ~A AT N B .
= Sl A= ] 2 ,B:[Bl]:CT,
0o b Ao 0 0

where Ay, E; > 0, and, if rank (V1) = r, E, >o0.
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Split- Congruence Model Reductlon

Split-Congruence Transformations

RLC network equations

System structure of RLC networks w/o voltage sources (MNA form):
E; 0 —-A; AT
_ 1 A= 1 2  B= [ By ] =T,
0 B A0 0
where A;, E; > 0, E; > 0. Split-congruence model reduction =
R E o R —A; Al R B R
E— 1 N A= Al 2 ’B:[Bl]:CT,
0o B A 0 e

where Ay, E; > 0, and, if rank (V1) = r, E, > 0. = Preservation of

Q stability,
Q@ structure of transfer function:

N N N ~ 1ara A A
G(s) = Bl (s, + A, + ;A2TE2‘1A2)Bl,

and, hence, of passivity and reciprocity (= reduced-order model can be

synthesized as circuit, e.g., [RE1s '10]).
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Split-Congruence Model Reduction

Split-Congruence Model Reduction

Split-Congruence Transformations

RLC network equations

System structure of RLC networks w/o voltage sources (MNA form):

-
= El ° ) A= _Al _A2 ? = [ Bl :| - CT7
0 5 Ao 0 0

where A;, E; > 0, E; > 0. Split-congruence model reduction =

. E o X ~A AT N B .
= Sl A= ] 2 ,B:[Bl]:CT,
0o b Ao 0 0

where Ay, E; > 0, and, if rank (V1) = r, E, >o0.

Note: used, e.g., in
o PRIMA [OpaBasiocLu/CELIK/PILEGGI *97],
@ SPRIM [FreunD ’04-08].
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Split-Congruence Model Reduction

Split-Congruence Transformations

Mechanical Systems

Structural dynamics/vibration analysis, e.g.,

= systems of second-order differential equations:
Mg+ Dz+ Kq=Bu, y=Cq+ Cq.

Inputs are e.g., forces acting on crankshaft (piston/con-rod):

y
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Split- Congruence Model Reductlon

Split-Congruence Transformations

Mechanical Systems

Split- Congruence Model Reduction Symmetric Second-Order System:

Structural dynamics/vibration analysis = systems of second-order differential
equations:
Mg+ Dz + Kq = Bu, y= Cq+ Cq.

Linearization (x = [Z]):

[6 =

Compute projection subspace range ([V;D using standard (one-sided) model

0 1

X+ 0 :C,C.,X.
e [B] y =[Gy ]

reduction method applied to linearization and split-congruence model reduction
—> second-order structure is preserved:

M=V MVy, D=V, DVs, K=V, KW, B=V,)B, €, =CoV1, C, = C,Va.

Note: (implicitly) used, e.g., in
@ SOAR [BA1/Su 05, SALIMBAHRAMI/LOHMANN ’06],

@ Krylov subspace methods for higher-order dynamical systems [FREUND 08], . ...
v
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Split-Congruence Balanced Truncation (scBT)

(Very) basic idea: let V = Hﬂ € R™" be projection matrix computed

by BT, then use split-congruence model reduction.
Notes:
e range (V) C range (V).
o For standard systems with £ = /,,, E= [Vlgvl VZPVz]
@ But: in general, W # V, so split congruence cannot be expected to
yield reasonable approximation.
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Split-Congruence Model Reduction Second-Order Systems
O@000

uence Balanced Truncation (scBT)

Split-Congyr

(Very) basic idea: let V = Hﬂ € R"*" be projection matrix computed
by BT, then use split-congruence model reduction.
Notes:

e range (V) C range (V).

A~ T
o For standard systems with E = /,,, E = {Vlovl VZPVz]

@ But: in general, W # V, so split congruence cannot be expected to
yield reasonable approximation.
= Consider G(s) symmetric (A= AT <0, C=B"):

= Gramians coincide, P = Q.
= BT needs only one Lyapunov equation, W =V
= (sc)BT automatically preserves stability and passivity.

Possible advantage of scBT: preservation of block structure, no mixing of
physically unrelated variables.
Clear disadvantage: doubling of reduced order.
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Numerical Example

O

Split-Congruence Balanced Truncation

@ Heat equation on unit square, n =400, m =5,

o reduced-order r = 20 / 40, relative Hoo errors 5-107° / 4.107°
(0rer = 1.25-107°).

Singular values of error systems

Singular Values
T

Singular Values (dB)

-110

-120

10

Max Planck Institute Magdeburg

1

L L L
10 10" 10° 10 10’ 10° 10*
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Split-Congruence Model Reduction
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Split-Congruence Balanced Truncation for Hamiltonian Transfer Functions

Hamiltonian Transfer Function [FUHRMANN ’83]

Let H = [é f,], then the transfer function G(s) = C(sE — A)~'B is
called Hamiltonian if

AT = HAH, E" = HEH, C" = HB.
Example:

B E. 0 CaA- A A , B:[Bl]:CT,
0 E —A] 0 0

where E1 = E, B, = EJ and A; = A].

Note: for Hamiltonian systems, the controllability and observability Gramians
satisfy @ = HPH —= [ P;;T P’;;Q] = only one Gramian computation required.

12
Generalization: J-Hermitian transfer functions: H nonsingular, HB = CTF for
nonsingular F.
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Split-Congruence Model Reduction
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Split-Congruence Balanced Truncation for Hamiltonian Transfer Function
Numerical Example

@ Hamiltonian transfer function with E = I, Ay = —Aj, A> = V}, on unit
square, n; = 400, n, =100, i.e., n =500, m = 5.
@ reduced-order r = 20 / 40.

@ Variants: scBT-v with V = [‘61 32], scBT-w with W = [Wl y }

scBT-vw with two-sided projection with V, W.

Singular Values
T

80 ; T :
—original
---scBT-vw
60 scBT-v

. 40F

1]

koA

1]

H

=1

3

S

-

o

3

=]

£

2z

40
-60 L L L L L L L
10" 10° 107 10" 10° 10" 10° 10° 10*
Frequency (rad/sec)
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Symmetric Second-Order Systems
FVV Project 1029, partners P. Eberhard (U. Stuttgart), G. Knoll (U Kassel)

— Multibody system ——

-
d
e

5 Hauptlager

impedanz

flexible Kurbelwelle ]| ideal
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Symmetric Second-Order Systems
FVV Project 1029, partners P. Eberhard (U. Stuttgart), G. Knoll (U Kassel)

{ Multibody system

5 Hauptlager

impedanz

Max Planck Institute Magdeburg Peter Benner, Split-Congruence Tr ions Meet Bal: d Tri i 11/17




Symme ond-Order Systems

Symmetric Second-Order Systems
FVV Project 1029, partners P. Eberhard (U. Stuttgart), G. Knoll (U Kassel)

{ Multibody system

5 Hauptlager

impedanz

FE model

Max Planck Institute Magdeburg Peter Benner, Split-Congruence Tr jons Meet Balanced Truncati 11/17




Symmetric Second-Order Systems

Symmetric Second-Order Systems

FVV Project 1029, partners P. Eberhard (U. Stuttgart), G. Knoll (U Kassel)

{ Multibody system

5 Hauptlager

impedanz

FE model

Max Planck Institute Magdeburg

Symmetric second-order system ——

Wl < < - -

y =[BT x
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Symmetric Second-Order Systems

FVV Project 1029, partners P. Eberhard (U. Stuttgart), G. Knoll (U Kassel)

{ Multibody system

5 Hauptlager

impedanz

FE model

Max Planck Institute Magdeburg

Reduced second-order model

—
- Symmetric second-order system ——

Wl < < - -

y =[BT x
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Symme ond-Order Systems

Symmetric Second-Order Systems
FVV Project 1029, partners P. Eberhard (U. Stuttgart), G. Knoll (U Kassel)

— Multibody system ——

mimaer Spot

g7 \{\/\ ;s.,\ \ ....... o
EMVe o Naoa N LA e tangKrylov2
£ Ay ™ 500G
< \;‘ \ [ \ ;) ---5’393

0 001 00z 003 004 005 006 007 005 008 04
Zeitt[s]

S Hauptlager
impedanz :

Elastic body . Reduced second-order model
| Elastic body | ! 1
p . ] X+ . : . : X = - u

+

(I [

e —_
- Symmetric second-order system ——

FE model
M s+ [ s+ [k <= B v

y =[BT x
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Symmetric Second-Order Systems
@00

Symmetric Second-Order Systems

Symmetric Linerizations

Linearizations

Standard linearization

I 0 | 0 / [ 0 ] (BT, 0]
X = X + u, = , O x.
0 M -K -D B Y
S—— =C
=£ —A =B

does not exhibit desired symmetry (A # AT, C # BT).

Recall: for symmetric transfer function, solutions of corresponding
generalized Lyapunov equations

APET + ATPE = —BBT, ATQE+ AQET = -C'C.

coincide = only 1 Lyapunov solve, i.e., only 1 ADI iteration.
Note: £7* A+ A7'E £ 0 in any case!
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Symmetric Second-Order Systems
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Symmetric Second-Order Systems

Symmetric Linerizations

Linearizations

Next idea: "symmetric” linearization

-K 0.
X =
0 M

=€ =A

0 —-K

0 T
X+ u, =[B", 0]x,
-K -D [B} 7=l ]

2

now has A= A" but C # BTl

Recall: for symmetric transfer function, solutions of corresponding
generalized Lyapunov equations

APET + ATPE = —BBT, ATQE+AQET =-C"C.

coincide = only 1 Lyapunov solve, i.e., only 1 ADI iteration.
Note: £ A+ A7E «£ 0 in any case!
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Symmetric Second-Order Systems
@00

Symmetric Second-Order Systems

Symmetric Linerizations

Linearizations

Non-standard symmetric linearization

X+ [ g ] u, y=[BT,0]x,

D M] [-K 0
M 0 0o M

=3 =A

is what we need: A= AT, C = B7!

Recall: for symmetric transfer function, solutions of corresponding
generalized Lyapunov equations

APET + ATPE = —BBT, ATQE+ AQET =-C'C.

coincide = only 1 Lyapunov solve, i.e., only 1 ADI iteration.
Note: £ A+ A7'E £ 0 in any case!
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Symmetric Second-Order Systems
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Symmetric Second-Order Systems

Computation of Gramians

Problem: Exact computation of P (and Q) too expensive (O(n?®) flops,
O(n?) memory)
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ond-Order Systems

Symmetric Second-Order Systems

Computation of Gramians

Problem: Exact computation of P (and Q) too expensive (O(n®) flops,
O(n?) memory) = computation of low-rank factors S (and R),

S"T 7"éT
S ~ P und R ~ Q9

with ADI iteration.
Further gimmicks:
@ Re-write ADI iteration in terms of M, D, K, e.g., only solves of the form
(UiM + piD + K)v = w [B./Saak '09];
@ Purely real arithmetic with only 1 linear system per pair of complex
conjugate shifts ~» acceleration by factor 2—4 [B./SaAk/KURSCHNER '11].
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Symmetric Second-Order Systems

Computation of Gramians

Problem: Exact computation of P (and Q) too expensive (O(n®) flops,
O(n?) memory) = computation of low-rank factors S (and R),

S"T 7"éT
S ~ P und R ~ Q9

with ADI iteration.
Further gimmicks:
@ Re-write ADI iteration in terms of M, D, K, e.g., only solves of the form
(UiM + piD + K)v = w [B./Saak '09];
@ Purely real arithmetic with only 1 linear system per pair of complex
conjugate shifts ~» acceleration by factor 2—4 [B./SaAk/KURSCHNER '11].

SVD computation for balanced truncation:

&7
S P ﬁ:.:.z Y = (X1, X Fl Zz}

computation of truncation matrices

Wo=RTvis;? = V= §TXT;

(NI
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Symmetric Second-Order Systems
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Symmetric Second-Order Systems

Second-Order Balanced Truncation

Second-Order Balanced Truncation [MEYER/SRINIVASAN "96]

Partitioning of Gramians P, Q (or corresponding factors S, R) of

linearization:
D Sp [STSVT]: Po P Q= Rp [RT’RVT]: 9 D _
Sv \L,__/ Po Pv Rv \i,_./ Qo Qv
s —ST W—’ZR —RT
Second-order Gramians:
Py :SPSPT — position controllability Gramian,
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Symmetric Second-Order Systems

Second-Order Balanced Truncation

Second-Order Balanced Truncation

[MEYER/SRINIVASAN ’96]
Partitioning of Gramians P, Q (or corresponding factors S, R) of

linearization:
p=[F|lsrsn =7 B o= [F|mirn-=[2 &
L= 4 Bl ‘
=5 =R
Second-order Gramians:
Pp = S,,SPT — position controllability Gramian,

P, =8,8] — velocity controllability Gramian,
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Second-Order Balanced Truncation

Second-Order Balanced Truncation [MEYER/SRINIVASAN "96]
Partitioning of Gramians P, Q (or corresponding factors S, R) of

linearization:
,P _ SP [STS‘;F] — Pp Po 7 Q _ RP [RTR"/F] — Qp Qo )
Sv \L,__/ Po Pv Rv \i’_/ Qo Qv
s —ST W—’ZR —RT
Second-order Gramians:
Pp = S,,SPT — position controllability Gramian,
P, =S,8] — velocity controllability Gramian,

Qp = RPR; — position observability Gramian,
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Second-Order Systems

[MEYER/SRINIVASAN ’96]
Partitioning of Gramians P, Q (or corresponding factors S, R) of

linearization:
P= EP] (ST ST] = [gp 77}] 0= [gp] [RTRT] = BP g} .
L= 4 Bl ‘
-5 =R
Second-order Gramians:
Pp = S,,SPT — position controllability Gramian,

P, =S,8] — velocity controllability Gramian,
Qp, =R,R;] — position observability Gramian,

Q, =R,R! — position observability Gramian.
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Second-Order Balanced Truncation

Second-Order Balanced Truncation

[MEYER/SRINIVASAN ’96]

Pairwise contragredient diagonalization of two of the second-order
Gramians yields 4 possible balancing schemes:
Typ Balancing right proj. left proj.
position-position | P,=0,=%,, | V=S,X, .7 | W=R,Y,X,,}
_1 _1
position-velocity | Pp,=0Q,=%,, | V=5,X,2,° | W=R, Y, %,/
_1 _1
velocity-position | P, =Q,=%,, | V=85 X,L,,° | W=R,Y,¥L,;’
1 1
velocity-velocity | P,=09,=%,, | V=S8, X, 2,2 | W=R,Y, L.}
where, e.g.,
XoZppY, =8 MR,.

Max Planck Institute Magdeburg

Peter Benner, Split-Congruence Transformations Meet Balanced Truncation

14/17



Symmetric Second-Order Systems
®0

Symmetric Second-Order Systems

Numerical Examples: Crank Shaft

Order n = 46.860, 35 inputs/outputs

exact

—— modal (k = 82)

<=+ =Krylov (k = 70)

- == pos.-vel. BT (k = 80)
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Numerical Examples: Crank
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Symmetric Second-Order Systems
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Order n = 46.860, 35 inputs/outputs

Modal vs. Krylov
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Symmetric Second-Order Systems

Numerical Examples: Crank Shaft

Order n = 46.860, 35 inputs/outputs

Modal vs. Balanced Truncation
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Numerical Examples: Control of Continuous Faceplate Deformable Mirrors

Symmetric second-order system, n = 83,508, m = p = 672, tolgr = 10~ 1°.

107

relative error
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[Source: T. Ruppel, ISYS, U Stuttgart]
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Introduction lit-Ce tence Model Reduction

Conclusions

Split-congruence model reduction is an easy tool to preserve
block-structures in linear systems, avoids mixing of physically
unrelated variables in reduced-order models.

Split-congruence balanced truncation seems to work well for
symmetric transfer functions.

Symmetric transfer functions often arise from second-order systems
in elastic multibody simulation.

Symmetric ADI iteration for these systems is very efficient
(compared to ADI applied to standard linearization).

@ Future work:

— error bound for scBT applied to symmetric transfer functions;
— analyze symmetric ADI iteration w.r.t. stability/robustness.
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