A model predictive control approach for infinite-dimensional nonlinear systems with stochastic disturbance

Peter Benner Sabine Hein
Mathematik in Industrie und Technik
Fakultät für Mathematik
Technische Universität Chemnitz

April 23, 2010

Outline

(1) Introduction/Motivation
(2) MPC/LQG for Finite-Dimensional Problems

- Formulation of the Problem
- MPC/LQG Strategy
(3) MPC/LQG for Infinite-Dimensional Problems
- The LTI Case
- The LTV Case
- An Example: The Burgers Equation
(4) Numerical Results: 3D-Reaction-Diffusion System

Introduction/Motivation

Goal
Nonlinear feedback strategy for instationary PDE control problems.

Introduction/Motivation

Goal

Nonlinear feedback strategy for instationary PDE control problems.

Why?

Application of open-loop (optimization-based) control in practice often does not lead to desired performance due to unmodeled (stochastic) disturbances.

Introduction/Motivation

Goal

Nonlinear feedback strategy for instationary PDE control problems.

Why?

Application of open-loop (optimization-based) control in practice often does not lead to desired performance due to unmodeled (stochastic) disturbances.

Example: Burgers equation with distributed control

uncontrolled

Introduction/Motivation

Goal

Nonlinear feedback strategy for instationary PDE control problems.

Why?

Application of open-loop (optimization-based) control in practice often does not lead to desired performance due to unmodeled (stochastic) disturbances.

Example: Burgers equation with distributed control

Application of optimal control to disturbed system:

open-loop (without feedback)

with MPC (nonlinear feedback)

Formulation of the Problem

Nonlinear Optimal Control Problem

$$
\min \int_{t_{0}}^{T_{f}}\langle Q y(t), y(t)\rangle+\langle R u(t), u(t)\rangle d t+G\left(x\left(T_{f}\right)\right), \quad T_{f} \in\left(t_{0}, \infty\right],
$$

subject to the semi-linear stochastic system

$$
\begin{aligned}
\dot{x}(t) & =f(x(t))+B(t) u(t)+F(t) v(t), \quad t>t_{0} \\
x\left(t_{0}\right) & =x_{0}+\eta_{0}, \quad u(t) \in \mathcal{U}, \quad x(t) \in \mathcal{X} .
\end{aligned}
$$

The output is given as $y(t)=C(t) x(t)+w(t), \quad y \in \mathcal{Y}$.

- $v(t), w(t)$ are unknown Gaussian disturbance processes
- If (1) is an ODE \rightsquigarrow finite-dimensional problem
- If (1) is a PDE \rightsquigarrow infinite-dimensional problem \rightarrow semi-discretization (space) \rightsquigarrow ODE

MPC/LQG Strategy

(1) Prediction step on $\left[t_{i}, t_{i}+T_{p}\right]$:

Linearize the nonlinear system dynamics around a reference $\left(x_{r}(t), u_{r}(t)\right)$ to obtain the linear stochastic time-varying system

$$
\begin{aligned}
\dot{z}(t) & =A(t) z(t)+B(t) \tilde{u}(t)+F(t) v(t), \quad z\left(t_{i}\right)=z_{t_{i}}, \\
\tilde{y}(t) & =C(t) z(t)+w(t),
\end{aligned}
$$

with $z(t)=x(t)-x_{r}(t), \tilde{u}(t)=u(t)-u_{r}(t)$ and $A(t):=f^{\prime}\left(x_{r}(t)\right)$. If B, F, C, Q and R are time-invariant \Rightarrow use an operating point \bar{x}_{r} and $A:=f^{\prime}\left(\bar{x}_{r}\right)$ to obtain an LTI system.
(c) Optimization step on $\left[t_{i}, t_{i}+T_{o}\right], T_{o} \leq T_{p}$:
(3) Implementation step on $\left[t_{i}, t_{i}+T_{c}\right], T_{c} \leq T_{o}$:

- Receding horizon step:

MPC/LQG Strategy

(1) Prediction step on $\left[t_{i}, t_{i}+T_{p}\right]$:

Linearize the nonlinear system dynamics around a reference $\left(x_{r}(t), u_{r}(t)\right)$ to obtain the linear stochastic time-varying system

$$
\begin{aligned}
\dot{z}(t) & =A(t) z(t)+B(t) \tilde{u}(t)+F(t) v(t), \quad z\left(t_{i}\right)=z_{t_{i}}, \\
\tilde{y}(t) & =C(t) z(t)+w(t),
\end{aligned}
$$

with $z(t)=x(t)-x_{r}(t), \tilde{u}(t)=u(t)-u_{r}(t)$ and $A(t):=f^{\prime}\left(x_{r}(t)\right)$. If B, F, C, Q and R are time-invariant \Rightarrow use an operating point \bar{x}_{r} and $A:=f^{\prime}\left(\bar{x}_{r}\right)$ to obtain an LTI system.
(3) Optimization step on $\left[t_{i}, t_{i}+T_{o}\right], T_{o} \leq T_{p}$:
(3) Implementation step on $\left[t_{i}, t_{i}+T_{c}\right], T_{c} \leq T_{o}$:
(-) Receding horizon step:

MPC/LQG Strategy

(3) Prediction step on $\left[t_{i}, t_{i}+T_{p}\right]$:
(2) Optimization step on $\left[t_{i}, t_{i}+T_{o}\right], T_{o} \leq T_{p}$:

Find the optimal control for the linear problem via the solutions of Riccati equations when applying an LQG approach.
(3) Implementation step on $\left[t_{i}, t_{i}+T_{c}\right], T_{c} \leq T_{o}$:
(9) Receding horizon step:

MPC/LQG Strategy

(3) Prediction step on $\left[t_{i}, t_{i}+T_{p}\right]$:
(c) Optimization step on $\left[t_{i}, t_{i}+T_{o}\right], T_{o} \leq T_{p}$:

Find the optimal control for the linear problem via the solutions of Riccati equations when applying an LQG approach. Solve the DRE and FDRE

$$
\dot{X}(t)=-A^{T}(t) X(t)-X(t) A(t)+X(t) B(t) R^{-1}(t) B^{T}(t) X(t)-\tilde{Q}(t),
$$

with $X\left(t_{i}+T_{p}\right)=G$ and $\tilde{Q}(t)=C^{T}(t) Q(t) C(t)$,

$$
\dot{\Sigma}(t)=A(t) \Sigma(t)+\Sigma(t) A^{T}(t)-\Sigma(t) C^{T}(t) W^{-1} C(t) \Sigma(t)+F(t) V F^{T}(t),
$$

with $\Sigma\left(t_{i}\right)=\Sigma_{i}$.
(Implementation step on $\left[t_{i}, t_{i}+T_{c}\right], T_{c} \leq T_{o}$:
(- Receding horizon step:

MPC/LQG Strategy

(3) Prediction step on $\left[t_{i}, t_{i}+T_{p}\right]$:
(c) Optimization step on $\left[t_{i}, t_{i}+T_{o}\right], T_{o} \leq T_{p}$:

Solve the DRE and FDRE

$$
\dot{X}(t)=-A^{T}(t) X(t)-X(t) A(t)+X(t) B(t) R^{-1}(t) B^{T}(t) X(t)-\tilde{Q}(t),
$$

with $X\left(t_{i}+T_{p}\right)=G$ and $\tilde{Q}(t)=C^{\top}(t) Q(t) C(t)$,

$$
\dot{\Sigma}(t)=A(t) \Sigma(t)+\Sigma(t) A^{T}(t)-\Sigma(t) C^{T}(t) W^{-1} C(t) \Sigma(t)+F(t) V F^{T}(t),
$$

with $\Sigma\left(t_{i}\right)=\Sigma_{i}$.
Optimal control on $\left[t_{i}, t_{i}+T_{o}\right]$:

$$
u_{*}(t)=u_{r}(t)-R^{-1}(t) B^{T}(t) X_{*}(t)\left(\hat{x}(t)-x_{r}(t)\right),
$$

where $\hat{x}(t)$ is the estimated state resulting from the Kalman filter $\dot{\hat{x}}(t)=A(t) \hat{x}(t)+B(t) u(t)+L(t)(y(t)-C(t) \hat{x}(t))+f\left(x_{r}(t)\right)-A(t) x_{r}(t)$ and $L(t)=\Sigma_{*}(t) C^{T}(t) W^{-1}$.
(3) Implementation step on $\left[t_{i}, t_{i}+T_{c}\right], T_{c} \leq T_{o}$:

- Receding horizon step:

MPC/LQG Strategy

(3) Prediction step on $\left[t_{i}, t_{i}+T_{p}\right]$:
(c) Optimization step on $\left[t_{i}, t_{i}+T_{o}\right], T_{o} \leq T_{p}$:

LTI case:
Solve the ARE and FARE

$$
\begin{aligned}
& 0=A^{T} X+X A-X B R^{-1} B^{T} X+C^{T} Q C, \\
& 0=A \Sigma+\Sigma A^{T}-\Sigma C^{T} W^{-1} C \Sigma+F V F^{T} .
\end{aligned}
$$

Optimal control on $\left[t_{i}, t_{i}+T_{o}\right]$ is given by

$$
u_{*}(t)=u_{r}(t)-R^{-1} B^{T} X_{*}\left(\hat{x}(t)-x_{r}(t)\right) .
$$

(3) Implementation step on $\left[t_{i}, t_{i}+T_{c}\right], T_{c} \leq T_{o}$:
(-) Receding horizon step:

MPC/LQG Strategy

(3) Prediction step on $\left[t_{i}, t_{i}+T_{p}\right]$:
(c) Optimization step on $\left[t_{i}, t_{i}+T_{o}\right], T_{o} \leq T_{p}$:
(3) Implementation step on $\left[t_{i}, t_{i}+T_{c}\right], T_{c} \leq T_{o}$:

Feed the original system with

$$
u_{*}(t)=u_{r}(t)-R^{-1}(t) B^{T}(t) X_{*}(t)\left(\hat{x}(t)-x_{r}(t)\right),
$$

using the measurements $y(t)$ for estimating $\hat{x}(t)$ (by solving the corresponding ODEs).
(-) Receding horizon step:

MPC/LQG Strategy

(1) Prediction step on $\left[t_{i}, t_{i}+T_{p}\right]$:
(2) Optimization step on $\left[t_{i}, t_{i}+T_{o}\right], T_{o} \leq T_{p}$:
(3) Implementation step on $\left[t_{i}, t_{i}+T_{c}\right], T_{c} \leq T_{o}$:
(0) Receding horizon step:

Set $t_{i}:=t_{i}+T_{c}$.

Formulation of the Problem - LTI Case

Nonlinear Optimal Control Problem

$$
\begin{aligned}
& \min \mathcal{J}(u):=\left\langle x_{T_{f}}, G x_{T_{f}}\right\rangle_{\mathcal{X}}+\int_{0}^{T_{f}}\left\langle x(t), C^{*} Q C x(t)\right\rangle_{\mathcal{X}}+\langle u(t), R u(t)\rangle_{\mathcal{U}} d t, \\
& \text { subject to } \quad \dot{x}(t)=f(x(t))+B u(t)+F v(t), \quad t>0, \\
& y(t)=C x(t)+w(t), \quad t>0, \\
& x(0)=x_{0}+\eta \text {. }
\end{aligned}
$$

- $\mathcal{X}, \mathcal{Y}, \mathcal{U}$ are Hilbert spaces, $f: \mathcal{D}(f) \subseteq \mathcal{X} \rightarrow \mathcal{X}$ nonlinear map
- $B \in \mathcal{L}(\mathcal{U}, \mathcal{X}), F \in \mathcal{L}(\mathcal{U}, \mathcal{X}), C \in \mathcal{L}(\mathcal{X}, \mathcal{Y}), G \in \mathcal{L}(\mathcal{X})$,
- $Q \in \mathcal{L}(\mathcal{Y}), R, R^{-1} \in \mathcal{L}(\mathcal{U})$, all self-adjoint and nonnegative and $\langle\nu, R \nu\rangle \geq \alpha\|\nu\|^{2}$ for all $\nu \in \mathcal{U}$ and some $\alpha>0$,
- $x_{0} \in \mathcal{X}$ and η is a zero mean Gaussian random variable on \mathcal{X} with covariance Σ_{0},
- $v(t)$ and $w(t)$ are Wiener processes (Gaussian and zero mean) on Hilbert spaces \mathcal{U} and \mathcal{Y} with incremental covariance operators $V \in \mathcal{L}(\mathcal{U})$ and $W, W^{-1} \in \mathcal{L}(\mathcal{Y})$, respectively.

Linearization - LTI Case

- Assume that $f(x)$ is Fréchet-differentiable.
- Linearization on small intervals $\left[t_{i}, t_{i}+T_{p}\right]$ around a reference pair $\left(x_{r}(t), u_{r}(t)\right)$ and partially replace $x_{r}(t)$ by a stationary operating point \bar{x}_{r}.

LTI Problem in Differential Form on $\left[t_{i}, t_{i}+T_{p}\right.$]

$$
\begin{aligned}
d z(t) & =A z(t) d t+B \tilde{u}(t) d t+F d v(t), \quad t_{i}<t<t_{i}+T_{p}, \\
d \tilde{y}(t) & =C z(t) d t+d w(t), \quad t_{i}<t<t_{i}+T_{p}, \\
z\left(t_{i}\right) & =z_{t_{i}},
\end{aligned}
$$

with $z(t):=h(t)=x(t)-x_{r}(t), \tilde{u}(t)=u(t)-u_{r}(t)$ and

$$
f\left(x_{r}+h\right)(t) \approx f\left(x_{r}(t)\right)+A h(t),
$$

where $A:=f^{\prime}\left(\bar{x}_{r}\right)$ is the Fréchet derivative, evaluated at $x_{r}(t)=\bar{x}_{r}$.

Linearization - LTI Case

To avoid problems of existence and uniqueness we use the
Integral Form on $\left[t_{i}, t_{i}+T_{p}\right]$

$$
\begin{aligned}
z(t)= & T_{t-t_{i}} z\left(t_{i}\right)+\int_{t_{i}}^{t} T_{t-s} B \tilde{u}(s) d s+\int_{t_{i}}^{t} T_{t-s} F d v(s), \\
& t_{i} \leq s \leq t \leq t_{i}+T_{p}, \\
\tilde{y}(t)= & \int_{t_{i}}^{t} C z(s) d s+w(t), \quad t_{i}<t \leq t_{i}+T_{p}, \\
z\left(t_{i}\right)= & z_{t_{i}},
\end{aligned}
$$

where T_{t} is a strongly continuous semigroup on \mathcal{X} generated by A on $\left[t_{i}, t_{i}+T_{p}\right]$.

Solution of the MPC/LQG/LTI Problem on $\left[t_{i}, t_{i}+T_{p}\right], T_{p}<\infty$

Optimal control $u_{*}(t)=u_{r}(t)-R^{-1} B^{*} \Pi(t)\left(\hat{x}_{*}(t)-x_{r}(t)\right)$.
Estimated state is given by
$\hat{x}_{*}(t)=U\left(t, t_{i}\right) \hat{x}\left(t_{i}\right)+\int_{t_{i}}^{t} U(t, s) \Sigma(s) C^{*} W^{-1} d y(s)+\int_{t_{i}}^{t} U(t, s)\left(f\left(x_{r}(s)\right)-A x_{r}(s)\right) d s$,
where $U(t, s)$ is the quasi-evolution operator generated by

$$
A-B R^{-1} B^{*} \Pi(t)-\Sigma(t) C^{*} W^{-1} C
$$

and $\Pi(t)$ and $\Sigma(t)$ are the unique solutions of the ODRE

$$
\begin{aligned}
& \frac{d}{d t}\langle\Pi(t) \varphi, \psi\rangle= \\
& \quad\left\langle\Pi(t) B R^{-1} B^{*} \Pi(t) \varphi, \psi\right\rangle-\langle\Pi(t) \varphi, A \psi\rangle-\langle A \varphi, \Pi(t) \psi\rangle-\left\langle\varphi, C^{*} Q C \psi\right\rangle,
\end{aligned}
$$

for all $\varphi, \psi \in \mathcal{D}(A)$ and $\Pi\left(t_{i}+T_{p}\right)=G$ and the OFDRE

$$
\begin{aligned}
& \frac{d}{d t}\langle\Sigma(t) \varphi, \psi\rangle= \\
& \qquad\left\langle\Sigma(t) \varphi, A^{*} \psi\right\rangle+\left\langle A^{*} \varphi, \Sigma(t) \psi\right\rangle-\langle\Sigma \\
& \text { for all } \varphi, \psi \in \mathcal{D}\left(A^{*}\right) \text { and } \Sigma\left(t_{i}\right)=\Sigma_{0}
\end{aligned}
$$

$$
\left\langle\Sigma(t) \varphi, A^{*} \psi\right\rangle+\left\langle A^{*} \varphi, \Sigma(t) \psi\right\rangle-\left\langle\Sigma(t) C^{*} W^{-1} C \Sigma(t) \varphi, \psi\right\rangle+\left\langle\varphi, F V F^{*} \psi\right\rangle
$$

Solution to the MPC/LQG/LTI Problem on $\left[t_{i}, t_{i}+T_{p}\right], T_{p}=\infty$ M

The optimal control and corresponding estimated state on $\left[t_{i}, t_{i}+T_{p}\right.$] are given by

$$
\begin{aligned}
& u_{*}(t)=u_{r}(t)-R^{-1} B^{*} \Pi_{\infty}\left(\hat{x}_{*}(t)-x_{r}(t)\right) \\
& \hat{x}_{*}(t)=T_{t_{i} \hat{x}\left(t_{i}\right)+\int_{t_{i}}^{t} T_{t-s} \Sigma_{\infty} C^{*} W^{-1} d y(s)+\int_{t_{i}}^{t} T_{t-s}\left(f\left(x_{r}(s)\right)-A x_{r}(s)\right) d s,}, l
\end{aligned}
$$

where T_{t} is the strongly continuous semigroup generated by

$$
A-B R^{-1} B^{*} \Pi_{\infty}-\Sigma_{\infty} C^{*} W^{-1} C
$$

and Π_{∞} and Σ_{∞} are the unique nonnegative, self-adjoint solutions of the OARE and OFARE

$$
\begin{aligned}
& 0=A^{*} \Pi+\Pi A-\Pi B R^{-1} B^{*} \Pi+C^{*} Q C, \\
& 0=A \Sigma+\Sigma A^{*}-\Sigma C^{*} W^{-1} C \Sigma+F V F^{*} .
\end{aligned}
$$

Formulation of the Problem - LTV Case

Integral Form after Linearization on $\left[t_{i}, t_{i}+T_{p}\right]$

$$
\begin{aligned}
z(t)= & U\left(t, t_{i}\right) z\left(t_{i}\right)+\int_{t_{i}}^{t} U(t, s) B(s) \tilde{u}(s) d s+\int_{t_{i}}^{t} U(t, s) F(s) d v(s), \\
& t_{i} \leq s \leq t \leq t_{i}+T_{p}, \\
z\left(t_{i}\right)= & z_{0}+\eta \text { if } t=0 \text { or } z\left(t_{i}\right) \text { is given from the last interval for } t>0, \\
\tilde{y}(t)= & \int_{t_{i}}^{t} C(s) z(s) d s+w(t),
\end{aligned}
$$

where $U(t, s)$ is the mild evolution operator associated with $A(t)$.

- \mathcal{X}, \mathcal{Y} and \mathcal{Z} are real Hilbert spaces,
- $B \in \mathcal{B}^{\infty}\left(t_{i}, t_{i}+T_{p} ; \mathcal{L}(\mathcal{U}, \mathcal{X})\right), F \in \mathcal{B}^{\infty}\left(t_{i}, t_{i}+T_{p} ; \mathcal{L}(\mathcal{U}, \mathcal{X})\right)$,
- $C \in \mathcal{B}^{\infty}\left(t_{i}, t_{i}+T_{p} ; \mathcal{L}(\mathcal{X}, \mathcal{Y})\right), Q \in \mathcal{B}^{\infty}\left(t_{i}, t_{i}+T_{p} ; \mathcal{L}(\mathcal{Y})\right)$,
- $R \in \mathcal{B}^{\infty}\left(t_{i}, t_{i}+T_{p} ; \mathcal{L}(\mathcal{U})\right), V \in \mathcal{L}(\mathcal{U}), W \in \mathcal{L}(\mathcal{Y})$ and $z_{0} \in \mathcal{X}$

Solution to the MPC/LQG/LTV Problem on $\left[t_{i}, t_{i}+T_{p}\right]$

The optimal control and corresponding estimated state on $\left[t_{i}, t_{i}+T_{p}\right]$ are given by

$$
\begin{aligned}
& u_{*}(t)=u_{r}(t)-R^{-1}(t) B^{*}(t) \Pi(t)\left(\hat{x}_{*}(t)-x_{r}(t)\right), \\
& \hat{x}_{*}(t)=U_{\Pi \Sigma}\left(t, t_{i}\right) \hat{x}\left(t_{i}\right)+\int_{t_{i}}^{t} U_{\Pi \Sigma}(t, s) \Sigma(s) C^{*}(s) W^{-1} d \tilde{y}(s) \\
& \quad+\int_{t_{i}}^{t} U_{\Pi \Sigma}(t, s)\left(f\left(x_{r}(s)\right)-A x_{r}(s)\right) d s,
\end{aligned}
$$

where $U_{\Pi \Sigma}(t, s)$ is the quasi-evolution operator generated by

$$
A(t)-B(t) R^{-1}(t) B^{*}(t) \Pi(t)-\Sigma(t) C^{*}(t) W^{-1} C(t)
$$

and $\Pi(t)$ and $\Sigma(t)$ are the unique solutions of the IRE and FIRE.

Solution to the MPC/LQG/LTV Problem on $\left[t_{i}, t_{i}+T_{p}\right]$

IRE and FIRE:

$$
\begin{gathered}
\Pi(t) \varphi=\int_{t}^{t_{i}+T_{p}} U_{\Pi}^{*}(s, t)\left[C^{*}(s) Q(s) C(s)+\Pi(s) B(s) R^{-1}(s) B^{*}(s) \Pi(s)\right] U_{\Pi}(s, t) \varphi d s \\
\quad+U_{\Pi}^{*}\left(t_{i}+T_{p}, t\right) G U_{\Pi}\left(t_{i}+T_{p}, t\right) \varphi, \\
\Sigma(t) \varphi=\int_{t_{i}}^{t} U_{\Sigma}(t, s)\left[F(s) V F^{*}(s)+\Sigma(s) C^{*}(s) W^{-1} C(s) \Sigma(s)\right] U_{\Sigma}^{*}(t, s) \varphi d s \\
\quad+U_{\Sigma}\left(t, t_{i}\right) \Sigma_{0} U_{\Sigma}^{*}\left(t, t_{i}\right) \varphi,
\end{gathered}
$$

where U_{Π} is the quasi-evolution operator generated by

$$
A(t)-B(t) R^{-1}(t) B^{*}(t) \Pi(t)
$$

and U_{Σ} is the quasi-evolution operator generated by

$$
A(t)-\Sigma(t) C^{*}(t) W^{-1} C(t)
$$

An Example: The Burgers Equation

Burgers Equation

$$
\begin{aligned}
& x_{t}(t, \xi)=\nu x_{\xi \xi}(t, \xi)-x(t, \xi) x_{\xi}(t, \xi), \quad \text { on }\left(0, T_{f}\right] \times(0,1) \\
& x(t, 0)=x(t, 1)=0, \quad t \in\left(0, T_{f}\right], \\
& x(0, \xi)=x_{0}(\xi), \quad \xi \in(0,1)
\end{aligned}
$$

Choose $\mathcal{X}=L^{2}(0,1)$ and define $D_{\xi} z=\frac{d z}{d \xi}$ with $\mathcal{D}\left(D_{\xi}\right)=\left\{z \in L^{2}(0,1) \mid z\right.$ is absolutely continuous, $\frac{d z}{d x} \in L^{2}(0,1), z(0)=$ $z(1)=0\}$.

Abstract Burgers Equation

$$
\dot{x}(t)=f(x(t)), x(0)=x_{0}, \quad \text { with } \quad f(x)=\nu D_{\xi}^{2} x-x D_{\xi} x
$$

- Linearization: $A(t) h=f^{\prime}\left(x_{r}\right) h=\nu D_{\xi}^{2} h-D_{\xi}\left(x_{r} h\right)$
- Replace $x_{r}(t)$ by stationary operating point \bar{x}_{r} :

$$
A h=f^{\prime}\left(\bar{x}_{r}\right) h=\nu D_{\xi}^{2} h-D_{\xi}\left(\bar{x}_{r} h\right)
$$

An Example: The Burgers Equation

Abstract Burgers Equation

$$
\dot{x}(t)=f(x(t)), x(0)=x_{0}, \quad \text { with } \quad f(x)=\nu D_{\xi}^{2} x-x D_{\xi} x
$$

$$
A h=f^{\prime}\left(\bar{x}_{r}\right) h=\nu D_{\xi}^{2} h-D_{\xi}\left(\bar{x}_{r} h\right)
$$

Question

Does A generates a strongly continuous semigroup?

Lemma

[Curtain/Zwart '95]
A closed, densely defined operator on a Hilbert space is an infinitesimal generator of a strongly continuous semigroup satisfying $\left\|T_{t}\right\| \leq e^{\omega t}$, $\omega<0$, if

$$
\begin{aligned}
\Re\langle A z, z\rangle & \leq \omega\|z\|^{2} \quad \text { for } z \in \mathcal{D}(A), \\
\Re\left\langle A^{*} z, z\right\rangle & \leq \omega\|z\|^{2} \quad \text { for } z \in \mathcal{D}(A) .
\end{aligned}
$$

An Example: The Burgers Equation

$$
A h=f^{\prime}\left(\bar{x}_{r}\right) h=\nu D_{\xi}^{2} h-D_{\xi}\left(\bar{x}_{r} h\right)
$$

It can be shown that D_{ξ} and D_{ξ}^{2} are densely defined, closed operators, see [Curtain/Zwart '95].
$\Rightarrow A$ is a densely defined, closed operator.
Could show (using the Poincaré inequality and the Cauchy inequality with $\epsilon=\frac{\nu}{2}$):

$$
\langle A z, z\rangle \leq\left(\frac{\left\|x_{r}\right\|_{\infty}^{2}}{2 \nu}-\frac{\nu}{2} \lambda_{0}\right)\|z\|^{2} .
$$

Corollary

If $\left\|x_{r}\right\|_{\infty}^{2} \leq 2 \omega \nu+\nu^{2} \lambda_{0}$ the requirement $\langle A z, z\rangle \leq \omega\|z\|^{2}$ can be fulfilled and A generates a strongly continuous semigroup. In the case of $\omega=0$ and $\left\|x_{r}\right\|_{\infty}^{2}$ satisfying $\left\|x_{r}\right\|_{\infty}^{2} \leq \nu^{2} \lambda_{0}$, the operator A is dissipative and generates a contraction semigroup.

The same can be shown for the adjoint operator.

Numerical Results: 3D-Reaction-Diffusion System

- Aim: model a chemical or biological process where the species involved are subjected to diffusion and reaction among each other.
- Modeled by a coupled system of reaction-diffusion equations ($i=1,2$):

$\begin{aligned}\left(c_{i}\right)_{t}(x, t) & =D_{i} \Delta c_{i}(x, t)-k c_{1}(x, t) c_{2}(x, t) \text { on } \Omega \times(0, T), \\ c_{i}(x, 0) & =c_{i 0}(x)+\eta_{i}(x) \text { on } \Omega, \\ \frac{\partial}{\partial n} c_{1}(x, t) & =0 \text { on } \delta \Omega \times(0, T), \frac{\partial}{\partial n} c_{2}(x, t)=0 \text { on }\left(\delta \Omega \backslash \delta \Omega_{u}\right) \times(0, T),\end{aligned}$
$\frac{\partial}{\partial n} c_{2}(x, t)=\alpha(x, t) u(t)$ on $\delta \Omega_{u} \times(0, T)$.
- α models a counter-clockwise revolving nozzle around the upper annular surface.
- $u(t)$ describes the intensity of the spray.

Source: Griesse/Volkwein, SIAM J. Cont. Optim., 44(2), 2005.

Numerical Results: 3D-Reaction-Diffusion System

- Aim: model a chemical or biological process where the species involved are subjected to diffusion and reaction among each other.
- Modeled by a coupled system of reaction-diffusion equations ($i=1,2$):

$$
\begin{aligned}
\left(c_{i}\right)_{t}(x, t) & =D_{i} \Delta c_{i}(x, t)-k c_{1}(x, t) c_{2}(x, t) \text { on } \Omega \times(0, T), \\
c_{i}(x, 0) & =c_{i 0}(x)+\eta_{i}(x) \text { on } \Omega, \\
\frac{\partial}{\partial n} c_{1}(x, t) & =0 \text { on } \delta \Omega \times(0, T), \frac{\partial}{\partial n} c_{2}(x, t)=0 \text { on }\left(\delta \Omega \backslash \delta \Omega_{u}\right) \times(0, T), \\
\frac{\partial}{\partial n} c_{2}(x, t) & =\alpha(x, t) u(t) \text { on } \delta \Omega_{u} \times(0, T) .
\end{aligned}
$$

- α models a counter-clockwise revolving nozzle around the upper annular surface.
- $u(t)$ describes the intensity of the spray.

Numerical Results: 3D-Reaction-Diffusion System

- Aim: model a chemical or biological process where the species involved are subjected to diffusion and reaction among each other.
- Modeled by a coupled system of reaction-diffusion equations ($i=1,2$):

$$
\begin{aligned}
\left(c_{i}\right)_{t}(x, t) & =D_{i} \Delta c_{i}(x, t)-k c_{1}(x, t) c_{2}(x, t) \text { on } \Omega \times(0, T), \\
c_{i}(x, 0) & =c_{i 0}(x)+\eta_{i}(x) \text { on } \Omega, \\
\frac{\partial}{\partial n} c_{1}(x, t) & =0 \text { on } \delta \Omega \times(0, T), \frac{\partial}{\partial n} c_{2}(x, t)=0 \text { on }\left(\delta \Omega \backslash \delta \Omega_{u}\right) \times(0, T), \\
\frac{\partial}{\partial n} c_{2}(x, t) & =\alpha(x, t) u(t) \text { on } \delta \Omega_{u} \times(0, T) .
\end{aligned}
$$

Goal: control intensity $u(t)$ to achieve desired terminal concentrations of the substances.

Numerical Results: 3D-Reaction-Diffusion System

- Semi-discretization in space by using piecewise linear and globally continuous $\left(P_{1}\right)$ finite elements on tetrahedra.
- After linearization on each interval we obtain the linear system

$$
\mathbf{M} \dot{z}(t)=\mathbf{A}(\mathbf{t}) z(t)+\mathbf{B}(\mathbf{t})(\tilde{u}(t)+v(t)), \quad z\left(t_{i}\right)=z_{t_{i}}, \text { on }\left[t_{i}, t_{i}+T_{p}\right]
$$

with

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{cc}
-D_{1} K-k M \operatorname{diag}\left(c_{r 2}(t)\right) & -k M \operatorname{diag}\left(c_{r 1}(t)\right) \\
-k M \operatorname{diag}\left(c_{r 2}(t)\right) & -D_{2} K-k M \operatorname{diag}\left(c_{r 1}(t)\right)
\end{array}\right], \\
\mathbf{M}=\left[\begin{array}{cc}
M & 0 \\
0 & M
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{c}
0 \\
G\left(t_{i}\right)
\end{array}\right], \quad z(t)=\left[\begin{array}{l}
z_{1}(t) \\
z_{2}(t)
\end{array}\right] .
\end{gathered}
$$

Numerical Results: 3D-Reaction-Diffusion System

- LTI/ARE time-invariant system matrices on each horizon, nozzle is fixed in the middle of the control interval, solve AREs
- LTI/DRE time-invariant system matrices on each horizon, nozzle is fixed in the middle of the control interval, solve DREs
- LTV/DRE-At time-varying A, nozzle is fixed in the middle of the control interval, solve DREs
- LTV/DRE-AtBt time-varying system matrices on each horizon, nozzle position changes in each time step, solve DREs

Parameters:

$D_{1}=0.15, D_{2}=0.2, k=1, c_{10}=1, c_{20}=0, T=1, d t=0.01$, $C=Q=I_{594}, R=10, \sigma(v)=\sigma(w)=0.5, \eta=0$

Aim: Steer c_{1} to zero by spraying the second substance onto the reactor

Software:

\square
Matlab: basic routines, FEmLAB: FEM, LyaPack 1.8: AREs
DREs were solved with an adapted BDF code [Mena 07]

Numerical Results: 3D-Reaction-Diffusion System

- LTI/ARE time-invariant system matrices on each horizon, nozzle is fixed in the middle of the control interval, solve AREs
- LTI/DRE time-invariant system matrices on each horizon, nozzle is fixed in the middle of the control interval, solve DREs
- LTV/DRE-At time-varying A, nozzle is fixed in the middle of the control interval, solve DREs
- LTV/DRE-AtBt time-varying system matrices on each horizon, nozzle position changes in each time step, solve DREs

Parameters:

$$
\begin{aligned}
& D_{1}=0.15, D_{2}=0.2, k=1, c_{10}=1, c_{20}=0, T=1, d t=0.01 \\
& C=Q=I_{594}, R=10, \sigma(v)=\sigma(w)=0.5, \eta=0
\end{aligned}
$$

Aim: Steer c_{1} to zero by spraying the second substance onto the reactor.

Software:

Matlab: basic routines,
Femlab: FEM,
LyaPack 1.8: AREs
DREs were solved with an adapted BDF code [Mena 07]

Numerical Results: 3D-Reaction-Diffusion System

- LTI/ARE time-invariant system matrices on each horizon, nozzle is fixed in the middle of the control interval, solve AREs
- LTI/DRE time-invariant system matrices on each horizon, nozzle is fixed in the middle of the control interval, solve DREs
- LTV/DRE-At time-varying A, nozzle is fixed in the middle of the control interval, solve DREs
- LTV/DRE-AtBt time-varying system matrices on each horizon, nozzle position changes in each time step, solve DREs

Parameters:

$$
\begin{aligned}
& D_{1}=0.15, D_{2}=0.2, k=1, c_{10}=1, c_{20}=0, T=1, d t=0.01 \\
& C=Q=I_{594}, R=10, \sigma(v)=\sigma(w)=0.5, \eta=0
\end{aligned}
$$

Aim: Steer c_{1} to zero by spraying the second substance onto the reactor.

Software:

Matlab: basic routines, FEmLAB: FEM, LyaPack 1.8: AREs DREs were solved with an adapted BDF code [Mena 07]

Numerical Results: 3D-Reaction-Diffusion System

T_{p}	T_{c}	Type	J	$\int_{0}^{\tilde{T}} z_{1}^{T} z_{1} d t$	$\int_{0}^{\tilde{T}} z_{2}^{T} z_{2} d t$	$\int_{0}^{\tilde{T}} \tilde{u}^{T} \tilde{u} d t$
0.1	0.05	LTI/ARE	0.644872	0.067804	0.521638	0.005543
		LTI/DRE	0.623733	0.070703	0.524184	0.002885
		LTV-At	0.624833	0.070120	0.525954	0.002876
		LTV-AtBt	0.129287	0.068377	0.057168	0.000374
0.05	0.05	LTI/ARE	0.646785	0.067504	0.523364	0.005592
		LTI/DRE	0.612729	0.068944	0.529253	0.001453
		LTV-At	0.612223	0.068680	0.529031	0.001451
		LTV-AtBt	0.131773	0.068104	0.061985	0.000168
0.1	0.1	LTI/ARE	0.823303	0.061546	0.687169	0.007459
		LTI/DRE	0.812116	0.061004	0.724103	0.002701
		LTV-At	0.809999	0.060147	0.722932	0.002692
		LTV-AtBt	0.145055	0.067758	0.073827	0.000347

$$
J=\int_{0}^{\tilde{T}} z^{T} Q z+\tilde{u}^{T} R \tilde{u} d t, \quad \tilde{T}=0.91
$$

Numerical Results: 3D-Reaction-Diffusion System

Numerical Results: 3D-Reaction-Diffusion System

Optimized trajectory, no disturbances

Numerical Results: 3D-Reaction-Diffusion System

Disturbed trajectory, with MPC/LQG feedback

