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Introduction/Motivation

Goal

Nonlinear feedback strategy for instationary PDE control problems.
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Introduction/Motivation

Goal

Nonlinear feedback strategy for instationary PDE control problems.

Why?

Application of open-loop (optimization-based) control in practice often does
not lead to desired performance due to unmodeled (stochastic) disturbances.
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Introduction/Motivation

Goal

Nonlinear feedback strategy for instationary PDE control problems.

Why?

Application of open-loop (optimization-based) control in practice often does
not lead to desired performance due to unmodeled (stochastic) disturbances.

Example: Burgers equation with distributed control

Application of optimal control to disturbed system:
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Formulation of the Problem

Nonlinear Optimal Control Problem

min

Tf∫
t0

〈Qy(t), y(t)〉+ 〈Ru(t), u(t)〉 dt + G (x(Tf )), Tf ∈ (t0,∞],

subject to the semi-linear stochastic system

ẋ(t) = f (x(t)) + B(t)u(t) + F (t)v(t), t > t0 (1)

x(t0) = x0 + η0, u(t) ∈ U , x(t) ∈ X .

The output is given as y(t) = C (t)x(t) + w(t), y ∈ Y.

v(t),w(t) are unknown Gaussian disturbance processes

If (1) is an ODE  finite-dimensional problem

If (1) is a PDE  infinite-dimensional problem
→ semi-discretization (space)  ODE
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MPC/LQG Strategy

1 Prediction step on [ti , ti + Tp]:
Linearize the nonlinear system dynamics around a reference
(xr (t), ur (t)) to obtain the linear stochastic time-varying system

ż(t) = A(t) z(t) + B(t) ũ(t) + F (t)v(t), z(ti ) = zti ,
ỹ(t) = C (t)z(t) + w(t),

with z(t) = x(t)− xr (t), ũ(t) = u(t)− ur (t) and A(t) := f ′(xr (t)).
If B, F , C , Q and R are time-invariant ⇒ use an operating point x̄r

and A := f ′(x̄r ) to obtain an LTI system.

2 Optimization step on [ti , ti + To ], To ≤ Tp:

3 Implementation step on [ti , ti + Tc ], Tc ≤ To :

4 Receding horizon step:
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MPC/LQG Strategy

1 Prediction step on [ti , ti + Tp]:

2 Optimization step on [ti , ti + To ], To ≤ Tp:
Find the optimal control for the linear problem via the solutions of
Riccati equations when applying an LQG approach.

3 Implementation step on [ti , ti + Tc ], Tc ≤ To :

4 Receding horizon step:
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MPC/LQG Strategy

1 Prediction step on [ti , ti + Tp]:
2 Optimization step on [ti , ti + To ], To ≤ Tp:

Find the optimal control for the linear problem via the solutions of
Riccati equations when applying an LQG approach.
Solve the DRE and FDRE
Ẋ (t) = −AT (t)X (t)− X (t)A(t) + X (t)B(t)R−1(t)BT (t)X (t)− Q̃(t) ,

with X (ti + Tp) = G and Q̃(t) = CT (t)Q(t)C (t),

Σ̇(t) = A(t)Σ(t) + Σ(t)AT (t)− Σ(t)CT (t)W−1C(t)Σ(t) + F (t)VFT (t) ,

with Σ(ti ) = Σi .

Optimal control on [ti , ti + To ]:

u∗(t) = ur (t)− R−1(t)BT (t)X∗(t)(x̂(t)− xr (t)),

where x̂(t) is the estimated state resulting from the Kalman filter
˙̂x(t) = A(t)x̂(t)+B(t)u(t)+L(t)(y(t)−C (t)x̂(t))+f (xr (t))−A(t)xr (t)
and L(t) = Σ∗(t)CT (t)W−1.

3 Implementation step on [ti , ti + Tc ], Tc ≤ To :
4 Receding horizon step:
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MPC/LQG Strategy

1 Prediction step on [ti , ti + Tp]:

2 Optimization step on [ti , ti + To ], To ≤ Tp:
LTI case:
Solve the ARE and FARE

0 = ATX + XA− XBR−1BTX + CTQC ,

0 = AΣ + ΣAT − ΣCTW−1CΣ + FVFT .

Optimal control on [ti , ti + To ] is given by

u∗(t) = ur (t)− R−1BTX∗(x̂(t)− xr (t)).

3 Implementation step on [ti , ti + Tc ], Tc ≤ To :

4 Receding horizon step:
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MPC/LQG Strategy

1 Prediction step on [ti , ti + Tp]:

2 Optimization step on [ti , ti + To ], To ≤ Tp:

3 Implementation step on [ti , ti + Tc ], Tc ≤ To :
Feed the original system with

u∗(t) = ur (t)− R−1(t)BT (t)X∗(t)(x̂(t)− xr (t)),

using the measurements y(t) for estimating x̂(t) (by solving the
corresponding ODEs).

4 Receding horizon step:
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MPC/LQG Strategy

1 Prediction step on [ti , ti + Tp]:

2 Optimization step on [ti , ti + To ], To ≤ Tp:

3 Implementation step on [ti , ti + Tc ], Tc ≤ To :

4 Receding horizon step:
Set ti := ti + Tc .
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Formulation of the Problem - LTI Case

Nonlinear Optimal Control Problem

minJ (u) := 〈xTf
,GxTf

〉X +

Tf∫
0

〈x(t),C∗QCx(t)〉X + 〈u(t),Ru(t)〉U dt,

subject to ẋ(t) = f (x(t)) + Bu(t) + Fv(t), t > 0,

y(t) = Cx(t) + w(t), t > 0,

x(0) = x0 + η.

X , Y, U are Hilbert spaces, f : D(f ) ⊆ X → X nonlinear map
B ∈ L(U ,X ), F ∈ L(U ,X ), C ∈ L(X ,Y), G ∈ L(X ),
Q ∈ L(Y) , R,R−1 ∈ L(U), all self-adjoint and nonnegative and
〈ν,Rν〉 ≥ α||ν||2 for all ν ∈ U and some α > 0,
x0 ∈ X and η is a zero mean Gaussian random variable on X with
covariance Σ0,
v(t) and w(t) are Wiener processes (Gaussian and zero mean) on
Hilbert spaces U and Y with incremental covariance operators
V ∈ L(U) and W ,W−1 ∈ L(Y), respectively.
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Linearization - LTI Case

Assume that f (x) is Fréchet-differentiable.

Linearization on small intervals [ti , ti + Tp] around a reference pair
(xr (t), ur (t)) and partially replace xr (t) by a stationary operating
point x̄r .

LTI Problem in Differential Form on [ti , ti + Tp]

dz(t) = Az(t)dt + Bũ(t)dt + Fdv(t), ti < t < ti + Tp,

dỹ(t) = Cz(t)dt + dw(t), ti < t < ti + Tp,

z(ti ) = zti ,

with z(t) := h(t) = x(t)− xr (t), ũ(t) = u(t)− ur (t) and

f (xr + h)(t) ≈ f (xr (t)) + Ah(t),

where A := f ′(x̄r ) is the Fréchet derivative, evaluated at xr (t) = x̄r .
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Linearization - LTI Case

To avoid problems of existence and uniqueness we use the

Integral Form on [ti , ti + Tp]

z(t) = Tt−ti z(ti ) +

t∫
ti

Tt−sBũ(s) ds +

t∫
ti

Tt−sF dv(s),

ti ≤ s ≤ t ≤ ti + Tp,

ỹ(t) =

t∫
ti

Cz(s) ds + w(t), ti < t ≤ ti + Tp,

z(ti ) = zti ,

where Tt is a strongly continuous semigroup on X generated by A on
[ti , ti + Tp].
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Solution of the MPC/LQG/LTI Problem on [ti , ti + Tp], Tp <∞

Optimal control u∗(t) = ur (t)− R−1B∗Π(t)
(
x̂∗(t)− xr (t)

)
.

Estimated state is given by

x̂∗(t) = U(t, ti )x̂(ti )+
tR

ti

U(t, s)Σ(s)C∗W−1dy(s)+
tR

ti

U(t, s)(f (xr (s))−Axr (s))ds,

where U(t, s) is the quasi-evolution operator generated by

A− BR−1B∗Π(t)− Σ(t)C∗W−1C ,

and Π(t) and Σ(t) are the unique solutions of the ODRE
d
dt 〈Π(t)ϕ,ψ〉 =

〈Π(t)BR−1B∗Π(t)ϕ,ψ〉 − 〈Π(t)ϕ,Aψ〉 − 〈Aϕ,Π(t)ψ〉 − 〈ϕ,C∗QCψ〉,
for all ϕ,ψ ∈ D(A) and Π(ti + Tp) = G and the OFDRE

d
dt 〈Σ(t)ϕ,ψ〉 =

〈Σ(t)ϕ,A∗ψ〉+ 〈A∗ϕ,Σ(t)ψ〉 − 〈Σ(t)C∗W−1CΣ(t)ϕ,ψ〉+ 〈ϕ,FVF ∗ψ〉,
for all ϕ,ψ ∈ D(A∗) and Σ(ti ) = Σ0.
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Solution to the MPC/LQG/LTI Problem on [ti , ti + Tp], Tp =∞

The optimal control and corresponding estimated state on [ti , ti + Tp] are
given by

u∗(t) = ur (t)− R−1B∗Π∞
(
x̂∗(t)− xr (t)

)
,

x̂∗(t) = Tti x̂(ti ) +

t∫
ti

Tt−sΣ∞C∗W−1 dy(s) +

t∫
ti

Tt−s(f (xr (s))− Axr (s)) ds,

where Tt is the strongly continuous semigroup generated by

A− BR−1B∗Π∞ − Σ∞C∗W−1C ,

and Π∞ and Σ∞ are the unique nonnegative, self-adjoint solutions of the
OARE and OFARE

0 = A∗Π + ΠA− ΠBR−1B∗Π + C∗QC ,

0 = AΣ + ΣA∗ − ΣC∗W−1CΣ + FVF ∗ .
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Formulation of the Problem — LTV Case

Integral Form after Linearization on [ti , ti + Tp]

z(t) = U(t, ti )z(ti ) +

t∫
ti

U(t, s)B(s)ũ(s) ds +

t∫
ti

U(t, s)F (s) dv(s),

ti ≤ s ≤ t ≤ ti + Tp,

z(ti ) = z0 + η if t = 0 or z(ti ) is given from the last interval for t > 0,

ỹ(t) =

t∫
ti

C (s)z(s) ds + w(t),

where U(t, s) is the mild evolution operator associated with A(t).

X , Y and Z are real Hilbert spaces,

B ∈ B∞(ti , ti + Tp;L(U ,X )), F ∈ B∞(ti , ti + Tp;L(U ,X )),

C ∈ B∞(ti , ti + Tp;L(X ,Y)), Q ∈ B∞(ti , ti + Tp;L(Y)),

R ∈ B∞(ti , ti + Tp;L(U)), V ∈ L(U), W ∈ L(Y) and z0 ∈ X
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Solution to the MPC/LQG/LTV Problem on [ti , ti + Tp]

The optimal control and corresponding estimated state on [ti , ti + Tp] are
given by

u∗(t) = ur (t)− R−1(t)B∗(t)Π(t)
(
x̂∗(t)− xr (t)

)
,

x̂∗(t) = UΠΣ(t, ti )x̂(ti ) +

t∫
ti

UΠΣ(t, s)Σ(s)C∗(s)W−1 dỹ(s)

+

t∫
ti

UΠΣ(t, s)(f (xr (s))− Axr (s)) ds,

where UΠΣ(t, s) is the quasi-evolution operator generated by

A(t)− B(t)R−1(t)B∗(t)Π(t)− Σ(t)C∗(t)W−1C (t)

and Π(t) and Σ(t) are the unique solutions of the IRE and FIRE.
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Solution to the MPC/LQG/LTV Problem on [ti , ti + Tp]

IRE and FIRE:

Π(t)ϕ=

ti +Tp∫
t

U∗Π(s, t)
[
C∗(s)Q(s)C (s) + Π(s)B(s)R−1(s)B∗(s)Π(s)

]
UΠ(s, t)ϕ ds

+U∗Π(ti + Tp, t)GUΠ(ti + Tp, t)ϕ,

Σ(t)ϕ=

t∫
ti

UΣ(t, s)
[
F (s)VF ∗(s) + Σ(s)C∗(s)W−1C (s)Σ(s)

]
U∗Σ(t, s)ϕ ds

+UΣ(t, ti )Σ0U
∗
Σ(t, ti )ϕ,

where UΠ is the quasi-evolution operator generated by

A(t)− B(t)R−1(t)B∗(t)Π(t)

and UΣ is the quasi-evolution operator generated by

A(t)− Σ(t)C∗(t)W−1C (t).
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An Example: The Burgers Equation

Burgers Equation

xt(t, ξ) = ν xξξ(t, ξ)− x(t, ξ) xξ(t, ξ), on (0,Tf ]× (0, 1)

x(t, 0) = x(t, 1) = 0, t ∈ (0,Tf ],

x(0, ξ) = x0(ξ), ξ ∈ (0, 1)

Choose X = L2(0, 1) and define Dξz = dz
dξ with

D(Dξ) = {z ∈ L2(0, 1) | z is absolutely continuous, dz
dx ∈ L2(0, 1), z(0) =

z(1) = 0}.

Abstract Burgers Equation

ẋ(t) = f (x(t)), x(0) = x0, with f (x) = νD2
ξx − xDξx

Linearization: A(t)h = f ′(xr )h = νD2
ξh − Dξ(xrh)

Replace xr (t) by stationary operating point x̄r :

Ah = f ′(x̄r )h = νD2
ξh − Dξ(x̄rh)
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An Example: The Burgers Equation

Abstract Burgers Equation

ẋ(t) = f (x(t)), x(0) = x0, with f (x) = νD2
ξx − xDξx

Ah = f ′(x̄r )h = νD2
ξh − Dξ(x̄rh)

Question

Does A generates a strongly continuous semigroup?

Lemma [Curtain/Zwart ’95]

A closed, densely defined operator on a Hilbert space is an infinitesimal
generator of a strongly continuous semigroup satisfying ||Tt || ≤ eωt ,
ω < 0, if

<〈Az , z〉 ≤ ω||z ||2 for z ∈ D(A),

<〈A∗z , z〉 ≤ ω||z ||2 for z ∈ D(A).
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An Example: The Burgers Equation

Ah = f ′(x̄r )h = νD2
ξh − Dξ(x̄rh)

It can be shown that Dξ and D2
ξ are densely defined, closed operators,

see [Curtain/Zwart ’95 ].
⇒ A is a densely defined, closed operator.

Could show (using the Poincaré inequality and the Cauchy inequality with
ε = ν

2 ):

〈Az , z〉 ≤
(
||xr ||2∞

2ν
− ν

2
λ0

)
||z ||2.

Corollary

If ||xr ||2∞ ≤ 2ων + ν2λ0 the requirement 〈Az , z〉 ≤ ω||z ||2 can be fulfilled
and A generates a strongly continuous semigroup. In the case of ω = 0
and ||xr ||2∞ satisfying ||xr ||2∞ ≤ ν2λ0, the operator A is dissipative and
generates a contraction semigroup.

The same can be shown for the adjoint operator.
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Numerical Results: 3D-Reaction-Diffusion System

Aim: model a chemical or biological
process where the species involved are
subjected to diffusion and reaction
among each other.

Modeled by a coupled system of
reaction-diffusion equations (i = 1, 2):

(ci )t(x , t) = Di∆ci (x , t)− kc1(x , t)c2(x , t) on Ω× (0,T ),

ci (x , 0) = ci0(x) + ηi (x) on Ω,

∂

∂n
c1(x , t) = 0 on δΩ× (0,T ),

∂

∂n
c2(x , t) = 0 on (δΩ \ δΩu)× (0,T ),

∂

∂n
c2(x , t) = α(x , t)u(t) on δΩu × (0,T ).

α models a counter-clockwise revolving nozzle around the upper
annular surface.
u(t) describes the intensity of the spray.

Source: Griesse/Volkwein, SIAM J. Cont. Optim., 44(2), 2005.
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Numerical Results: 3D-Reaction-Diffusion System

Aim: model a chemical or biological
process where the species involved are
subjected to diffusion and reaction
among each other.

Modeled by a coupled system of
reaction-diffusion equations (i = 1, 2):

(ci )t(x , t) = Di∆ci (x , t)− kc1(x , t)c2(x , t) on Ω× (0,T ),

ci (x , 0) = ci0(x) + ηi (x) on Ω,

∂

∂n
c1(x , t) = 0 on δΩ× (0,T ),

∂

∂n
c2(x , t) = 0 on (δΩ \ δΩu)× (0,T ),

∂

∂n
c2(x , t) = α(x , t)u(t) on δΩu × (0,T ).

Goal: control intensity u(t) to achieve desired terminal concentrations of
the substances.
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Numerical Results: 3D-Reaction-Diffusion System

Semi-discretization in space by
using piecewise linear and globally
continuous (P1) finite elements on
tetrahedra.

After linearization on each interval
we obtain the linear system

Mż(t) = A(t)z(t) + B(t)(ũ(t) + v(t)), z(ti ) = zti , on [ti , ti + Tp],

with

A =

[
−D1K − kMdiag(cr2(t)) −kMdiag(cr1(t))
−kMdiag(cr2(t)) −D2K − kMdiag(cr1(t))

]
,

M =

[
M 0
0 M

]
, B =

[
0

G (ti )

]
, z(t) =

[
z1(t)
z2(t)

]
.
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Numerical Results: 3D-Reaction-Diffusion System

LTI/ARE time-invariant system matrices on each horizon, nozzle is
fixed in the middle of the control interval, solve AREs
LTI/DRE time-invariant system matrices on each horizon, nozzle is
fixed in the middle of the control interval, solve DREs
LTV/DRE-At time-varying A, nozzle is fixed in the middle of the
control interval, solve DREs
LTV/DRE-AtBt time-varying system matrices on each horizon,
nozzle position changes in each time step, solve DREs

Parameters:

D1 = 0.15, D2 = 0.2, k = 1, c10 = 1, c20 = 0, T = 1, dt = 0.01,
C = Q = I594, R = 10, σ(v) = σ(w) = 0.5, η = 0

Aim: Steer c1 to zero by spraying the second substance onto the reactor.

Software:

Matlab: basic routines, Femlab: FEM, LyaPack 1.8: AREs
DREs were solved with an adapted BDF code [Mena 07]
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Numerical Results: 3D-Reaction-Diffusion System

Tp Tc Type J
T̃∫
0

zT
1 z1 dt

T̃∫
0

zT
2 z2 dt

T̃∫
0

ũT ũ dt

0.1 0.05

LTI/ARE 0.644872 0.067804 0.521638 0.005543
LTI/DRE 0.623733 0.070703 0.524184 0.002885
LTV-At 0.624833 0.070120 0.525954 0.002876
LTV-AtBt 0.129287 0.068377 0.057168 0.000374

0.05 0.05

LTI/ARE 0.646785 0.067504 0.523364 0.005592
LTI/DRE 0.612729 0.068944 0.529253 0.001453
LTV-At 0.612223 0.068680 0.529031 0.001451
LTV-AtBt 0.131773 0.068104 0.061985 0.000168

0.1 0.1

LTI/ARE 0.823303 0.061546 0.687169 0.007459
LTI/DRE 0.812116 0.061004 0.724103 0.002701
LTV-At 0.809999 0.060147 0.722932 0.002692
LTV-AtBt 0.145055 0.067758 0.073827 0.000347

J =
T̃∫
0

zTQz + ũTRũ dt, T̃ = 0.91
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Numerical Results: 3D-Reaction-Diffusion System
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Numerical Results: 3D-Reaction-Diffusion System
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Numerical Results: 3D-Reaction-Diffusion System

Optimized trajectory, no disturbances

22/22 Peter Benner MPC for disturbed∞-dim. control problems



Introduction/Motivation MPC/LQG for Finite-Dimensional Problems MPC/LQG for Infinite-Dimensional Problems Numerical Results: 3D-Reaction-Diffusion System

Numerical Results: 3D-Reaction-Diffusion System

Disturbed trajectory, with MPC/LQG feedback
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