Moving Frontiers in Model Reduction Using Numerical Linear Algebra

Peter Benner

Max-Planck-Institute for Dynamics of Complex Technical Systems
Computational Methods in Systems and
Control Theory Group
Magdeburg, Germany

Technische Universität Chemnitz
Fakultät für Mathematik Mathematik in Industrie und Technik

Chemnitz, Germany

> joint work with Tobias Breiten, Jens Saak (TU Chemnitz),
> Tobias Damm (TU Kaiserslautern)
iwasep 8
Berlin, June 28-July 1, 2010

Outline

(1) Introduction to Model Order Reduction

- Basic Ideas
- Large-Scale Linear Systems
(2) Balanced Truncation
- Short Introduction
- Solving Large-Scale Lyapunov Equations
- Moving Frontiers: Bilinear Model Order Reduction
(3) Interpolatory Model Reduction
- Short Introduction
- Moving Frontiers: Moment Matching for Bilinear Systems
- Moving Frontiers: Moment Matching for Quadratic-Bilinear Approximations

4 Conclusions and Outlook

Introduction to Model Order Reduction

Dynamical Systems

$$
\Sigma(p):\left\{\begin{align*}
0 & =f\left(t, x(t), \partial_{t} x(t), \partial_{t t} x(t), u(t), p\right), \quad x\left(t_{0}\right)=x_{0} \tag{a}\\
y(t) & =g\left(t, x(t), \partial_{t} x(t), u(t), p\right)
\end{align*}\right.
$$

with

- (generalized) states $x(t) \equiv x(t ; p) \in \mathcal{X}$,
- inputs $u(t) \in \mathcal{U}$,
- outputs $y(t) \equiv y(t ; p) \in \mathcal{Y},(b)$ is called output equation,
- $p \in \mathbb{R}^{d}$ is a parameter vector.

Introduction to Model Order Reduction

Dynamical Systems

$$
\Sigma(p):\left\{\begin{align*}
0 & =f\left(t, x(t), \partial_{t} x(t), \partial_{t t} x(t), u(t), p\right), \quad x\left(t_{0}\right)=x_{0} \tag{a}\\
y(t) & =g\left(t, x(t), \partial_{t} x(t), u(t), p\right)
\end{align*}\right.
$$

(a) may represent

- system of ordinary differential equations (ODEs);
- system of differential-algebraic equations (DAEs);
- system of partial differential equations (PDEs);
- a mixture thereof.

Introduction to Model Order Reduction

Basic Ideas Large-Scale Linear Systems

Dynamical Systems

$$
\Sigma(p):\left\{\begin{align*}
0 & =f\left(t, x(t), \partial_{t} x(t), \partial_{t t} x(t), u(t), p\right), \quad x\left(t_{0}\right)=x_{0} \tag{a}\\
y(t) & =g\left(t, x(t), \partial_{t} x(t), u(t), p\right)
\end{align*}\right.
$$

(a) may represent

- system of ordinary differential equations (ODEs);
- system of differential-algebraic equations (DAEs);
- system of partial differential equations (PDEs);
- a mixture thereof.

Introduction to Model Order Reduction

Dynamical Systems

$$
\Sigma(p):\left\{\begin{align*}
0 & =f\left(t, x(t), \partial_{t} x(t), \partial_{t t} x(t), u(t), p\right), \quad x\left(t_{0}\right)=x_{0} \tag{a}\\
y(t) & =g\left(t, x(t), \partial_{t} x(t), u(t), p\right)
\end{align*}\right.
$$

(a) may represent

- system of ordinary differential equations (ODEs);
- system of differential-algebraic equations (DAEs);
- system of partial differential equations (PDEs);
- a mixture thereof.

Introduction to Model Order Reduction

Dynamical Systems

$$
\Sigma(p):\left\{\begin{align*}
0 & =f\left(t, x(t), \partial_{t} x(t), \partial_{t t} x(t), u(t), p\right), \quad x\left(t_{0}\right)=x_{0} \tag{a}\\
y(t) & =g\left(t, x(t), \partial_{t} x(t), u(t), p\right)
\end{align*}\right.
$$

(a) may represent

- system of ordinary differential equations (ODEs);
- system of differential-algebraic equations (DAEs);
- system of partial differential equations (PDEs);
- a mixture thereof.

Introduction to Model Order Reduction

 Basic Ideas
Original System

$\Sigma(p):\left\{\begin{aligned} E(x, p) \dot{x} & =f(t, x, u, p), \\ y & =g(t, x, u, p),\end{aligned}\right.$

- states $x(t ; p) \in \mathbb{R}^{n}$,
- inputs $u(t) \in \mathbb{R}^{m}$.
- outputs $y(t ; p) \in \mathbb{R}^{q}$
- parameters $p \in \mathbb{R}^{d}$

Reduced-Order System

$$
\widehat{\Sigma}(p):\left\{\begin{aligned}
\hat{E}(\hat{x}, p) \dot{\hat{x}} & =\widehat{f}(t, \hat{x}, u, p), \\
\hat{y} & =\widehat{g}(t, \hat{x}, u, p) .
\end{aligned}\right.
$$

- states $\hat{x}(t ; p) \in \mathbb{R}^{r}, r \ll n$
- inputs $u(t) \in \mathbb{R}^{m}$.
- outputs $\hat{y}(t ; p) \in \mathbb{R}^{q}$
- parameters $p \in \mathbb{R}^{d}$

Introduction to Model Order Reduction

Basic Ideas

Moving Frontiers in Model
Reduction
Peter Benner

Introduction to MOR

Basic Ideas

 Large-Scale Linear Systems
Original System

$$
\Sigma(p):\left\{\begin{aligned}
E(x, p) \dot{x} & =f(t, x, u, p), \\
y & =g(t, x, u, p) .
\end{aligned}\right.
$$

- states $x(t ; p) \in \mathbb{R}^{n}$,
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $y(t ; p) \in \mathbb{R}^{q}$,
- parameters $p \in \mathbb{R}^{d}$.

Reduced-Order System

$$
\widehat{\Sigma}(p):\left\{\begin{aligned}
\hat{E}(\hat{x}, p) \dot{\hat{x}} & =\widehat{f}(t, \hat{x}, u, p) \\
\hat{y} & =\widehat{g}(t, \hat{x}, u, p)
\end{aligned}\right.
$$

- states $\hat{x}(t ; p) \in \mathbb{R}^{r}, r \ll n$
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $\hat{y}(t ; p) \in \mathbb{R}^{q}$,
- parameters $p \in \mathbb{R}^{d}$.

Main idea

Replace differential equation by low-order one while preserving input-output behavior as well as important system invariants and physical properties!

Large-Scale Linear Systems

Linear, time-invariant (LTI) systems

$$
\Sigma:\left\{\begin{array}{llll}
\dot{x}(t) & =A x+B u, & & A \in \mathbb{R}^{n \times n},
\end{array} \begin{array}{ll}
B \in \mathbb{R}^{n \times m}, \\
y(t) & =C x+D u,
\end{array} r \in \mathbb{R}^{q \times n}, \quad D \in \mathbb{R}^{q \times m} .\right.
$$

(A, B, C, D) is a realization of Σ (nonunique).
Laplace transform: state-space \rightarrow frequency domain yields transfer function of Σ :

$$
Y(s)=\underbrace{\left(C\left(s I_{n}-A\right)^{-1} B+D\right)}_{=: G(s)} U(s)
$$

Goal: find $\hat{A} \in \mathbb{R}^{r \times r}, \hat{B} \in \mathbb{R}^{r \times q}, \hat{C} \in \mathbb{R}^{q \times r}, D \in \mathbb{R}^{q \times m}$ such that

$$
\begin{aligned}
\|G-\hat{G}\| & =\left\|\left(C\left(s I_{n}-A\right)^{-1} B+D\right)-\left(\hat{C}\left(s I_{r}-\hat{A}\right)^{-1} \hat{B}+\hat{D}\right)\right\|<\text { tol } \\
& \Rightarrow\|y-\hat{y}\| \leq \operatorname{tol}\|u\|
\end{aligned}
$$

Large-Scale Linear Systems

Moving Frontiers in Model
Reduction
Peter Benner

Introduction to MOR
Basic Ideas
Large-Scale Linear Systems

Linear, time-invariant (LTI) systems

$$
\Sigma:\left\{\begin{array}{llll}
\dot{x}(t) & =A x+B u, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\
y(t) & =C x+D u, & C \in \mathbb{R}^{q \times n}, & D \in \mathbb{R}^{q \times m} .
\end{array}\right.
$$

(A, B, C, D) is a realization of Σ (nonunique).

Model order reduction by projection

Galerkin or Petrov-Galerkin-type projection of state-space onto low-dimensional subspace \mathcal{V} along \mathcal{W} : assume $x \approx V W^{\top} x=: \tilde{x}$, where

$$
\operatorname{range}(V)=\mathcal{V}, \quad \operatorname{range}(W)=\mathcal{W}, \quad W^{\top} V=I_{r}
$$

Then, with $\hat{x}=W^{\top} x$, we obtain $x \approx V \hat{x}$ and

$$
\hat{A}=W^{\top} A V, \quad \hat{B}=W^{\top} B, \quad \hat{C}=C V, \quad \hat{D}=D .
$$

where $V_{c} W_{c}^{T}$ projects onto \mathcal{V}_{c}, the complement of \mathcal{V}.

Balanced Truncation

Short Introduction

$$
\begin{aligned}
\mathcal{T}:(A, B, C, D) & \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right) \\
& =\left(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right],\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right], D\right)
\end{aligned}
$$

- Truncation $\rightsquigarrow(\hat{A}, \hat{B}, \hat{C}, \hat{D})=\left(A_{11}, B_{1}, C_{1}, D\right)$.

6/30
Idea (for simplicity, $E=I_{n}$)

- A system Σ, realized by (A, B, C, D), is called balanced, if solutions P, Q of the Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

satisfy: $P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}>0$.

- $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the Hankel singular values (HSVs) of Σ.
- Compute balanced realization of the system via state-space transformation

Balanced Truncation

Short Introduction
$\mathcal{T}:(A, B, C, D) \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right)$

- Truncation $\rightsquigarrow(\hat{A}, \hat{B}, \hat{C}, \hat{D})=\left(A_{11}, B_{1}, C_{1}, D\right)$.

Balanced Truncation

Short Introduction

Moving Frontiers in Model
Reduction
Peter Benner

Introduction to MOR

Balanced Truncation
Short
Introduction
Lyapunov
Equations
Bilinear MOR
Interpolatory Model Reduction

Conclusions and Outlook

Idea (for simplicity, $E=I_{n}$)

- A system Σ, realized by (A, B, C, D), is called balanced, if solutions P, Q of the Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

satisfy: $P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}>0$.

- $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the Hankel singular values (HSVs) of Σ.
- Compute balanced realization of the system via state-space transformation

$$
\begin{aligned}
\mathcal{T}:(A, B, C, D) & \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right) \\
& =\left(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right],\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right], D\right)
\end{aligned}
$$

- Truncation $\rightsquigarrow(\hat{A}, \hat{B}, \hat{C}, \hat{D})=\left(A_{11}, B_{1}, C_{1}, D\right)$.

Balanced Truncation

Short Introduction

Moving Frontiers in Model
Reduction
Peter Benner

Introduction to MOR

Balanced Truncation
Short
Introduction
Lyapunov
Equations
Bilinear MOR
Interpolatory Model Reduction

Conclusions and Outlook

Idea (for simplicity, $E=I_{n}$)

- A system Σ, realized by (A, B, C, D), is called balanced, if solutions P, Q of the Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

satisfy: $P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}>0$.

- $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the Hankel singular values (HSVs) of Σ.
- Compute balanced realization of the system via state-space transformation

$$
\begin{aligned}
\mathcal{I}:(A, B, C, D) & \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right) \\
& =\left(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right],\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right], D\right)
\end{aligned}
$$

- Truncation $\rightsquigarrow(\hat{A}, \hat{B}, \hat{C}, \hat{D})=\left(A_{11}, B_{1}, C_{1}, D\right)$.

Balanced Truncation

Short Introduction

Moving Frontiers in Model Reduction

Peter Benner

Introduction to MOR

Balanced
Truncation
Short
Introduction
Lyapunov
Equations
Bilinear MOR
Interpolatory Model Reduction

Conclusions and Outlook

Motivation:

HSV are system invariants: they are preserved under \mathcal{T} and determine the energy transfer given by the Hankel map

$$
\mathcal{H}: L_{2}(-\infty, 0) \mapsto L_{2}(0, \infty): u_{-} \mapsto y_{+} .
$$

Balanced Truncation

Short Introduction

$$
E:=\sup _{\substack{u \in L_{2}(-\infty, 0] \\ x(0)=x_{0}}} \frac{\int_{0}^{\infty} y(t)^{T} y(t) d t}{\int_{-\infty}^{0} u(t)^{T} u(t) d t}=\frac{1}{\left\|x_{0}\right\|_{2}} \sum_{j=1}^{n} \sigma_{j}^{2} x_{0, j}^{2}
$$

HSV are system invariants: they are preserved under \mathcal{T} and determine the energy transfer given by the Hankel map

$$
\mathcal{H}: L_{2}(-\infty, 0) \mapsto L_{2}(0, \infty): u_{-} \mapsto y_{+} .
$$

In balanced coordinates.. energy transfer from u_{-}to y_{+}:

Balanced Truncation

Short Introduction

Moving Frontiers in Model
Reduction
Peter Benner

Introduction to MOR

Balanced Truncation
Short
Introduction
Lyapunov

Interpolatory Model Reduction Conclusions and Outlook

Motivation:

HSV are system invariants: they are preserved under \mathcal{T} and determine the energy transfer given by the Hankel map

$$
\mathcal{H}: L_{2}(-\infty, 0) \mapsto L_{2}(0, \infty): u_{-} \mapsto y_{+} .
$$

In balanced coordinates ... energy transfer from u_{-}to y_{+}:

$$
E:=\sup _{\substack{u \in L_{2}(-\infty, 0] \\ x(0)=x_{0}}} \frac{\int_{0}^{\infty} y(t)^{T} y(t) d t}{\int_{-\infty}^{0} u(t)^{T} u(t) d t}=\frac{1}{\left\|x_{0}\right\|_{2}} \sum_{j=1}^{n} \sigma_{j}^{2} x_{0, j}^{2}
$$

\Longrightarrow Truncate states corresponding to "small" HSVs
\Longrightarrow analogy to best approximation via SVD, therefore balancing-related methods are sometimes called SVD methods.

Balanced Truncation

Short Introduction

Moving Frontiers in Model Reduction

Peter Benner

Introduction to MOR

Balanced
Truncation
Short
Introduction
Lyapunov
Equations
Bilinear MOR
Interpolatory Model Reduction

Conclusions and Outlook

Implementation: SR Method
(1) Compute (Cholesky) factors of the solutions of the Lyapunov equations,

$$
P=S^{T} S, \quad Q=R^{T} R
$$

2 Compute SVD

$$
S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{cc}
\Sigma_{1} & \\
& \Sigma_{2}
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T} \\
V_{2}^{T}
\end{array}\right]
$$

- Set

$$
W=R^{T} V_{1} \Sigma_{1}^{-1 / 2}, \quad V=S^{T} U_{1} \Sigma_{1}^{-1 / 2} .
$$

- Reduced model is $\left(W^{\top} A V, W^{\top} B, C V, D\right)$.

Balanced Truncation

Short Introduction

- Set

$$
W=R^{T} V_{1} \Sigma_{1}^{-1 / 2}, \quad V=S^{T} U_{1} \Sigma_{1}^{-1 / 2} .
$$

- Reduced model is ($\left.W^{\top} A V, W^{\top} B, C V, D\right)$.
(1) Compute (Cholesky) factors of the solutions of the Lyapunov equations,

$$
P=S^{T} S, \quad Q=R^{T} R
$$

(2) Compute SVD

$$
S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}
\Sigma_{1} & \\
& \Sigma_{2}
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T} \\
V_{2}^{T}
\end{array}\right] .
$$

Balanced Truncation

Short Introduction
© Set

$$
W=R^{T} V_{1} \Sigma_{1}^{-1 / 2}, \quad V=S^{T} U_{1} \Sigma_{1}^{-1 / 2}
$$

((Reduced model is $\left(W^{\top} A V, W^{\top} B, C V, D\right)$.

Balanced Truncation

Short Introduction

Peter Benner

Introduction to MOR

Balanced
Truncation
Short
Introduction
Lyapunov
Equations
Bilinear MOR
Interpolatory Model Reduction

Conclusions and

 Outlook6/30

Properties:

- Reduced-order model is stable with $\mathrm{HSVs} \sigma_{1}, \ldots, \sigma_{r}$.
- Adaptive choice of r via computable error bound:

$$
\|y-\hat{y}\|_{2} \leq\left(2 \sum_{k=r+1}^{n} \sigma_{k}\right)\|u\|_{2} .
$$

- General misconception: complexity $\mathcal{O}\left(n^{3}\right)$ - true for several implementations (e.g. Matlab, SLICOT, MorLAB).

Balanced Truncation

Short Introduction

- Reduced-order model is stable with HSVs $\sigma_{1}, \ldots, \sigma_{r}$.
- Adaptive choice of r via computable error bound:

$$
\|y-\hat{y}\|_{2} \leq\left(2 \sum_{k=r+1}^{n} \sigma_{k}\right)\|u\|_{2}
$$

- General misconception: complexity $\mathcal{O}\left(n^{3}\right)$ - true for several implementations (e.g., Matlab, SLICOT, MorLAB).

Balanced Truncation

Short Introduction

Properties:

- Reduced-order model is stable with HSVs $\sigma_{1}, \ldots, \sigma_{r}$.
- Adaptive choice of r via computable error bound:

$$
\|y-\hat{y}\|_{2} \leq\left(2 \sum_{k=r+1}^{n} \sigma_{k}\right)\|u\|_{2}
$$

- General misconception: complexity $\mathcal{O}\left(n^{3}\right)$ - true for several implementations (e.g., Matlab, SLICOT, MorLAB).

But: recent developments in Numerical Linear Algebra yield matrix equation solvers with sparse linear systems complexity!

Balanced Truncation

Short Introduction

Properties:

- Reduced-order model is stable with HSVs $\sigma_{1}, \ldots, \sigma_{r}$.
- Adaptive choice of r via computable error bound:

$$
\|y-\hat{y}\|_{2} \leq\left(2 \sum_{k=r+1}^{n} \sigma_{k}\right)\|u\|_{2}
$$

- General misconception: complexity $\mathcal{O}\left(n^{3}\right)$ - true for several implementations (e.g., Matlab, SLICOT, MorLAB).

But: recent developments in Numerical Linear Algebra yield matrix equation solvers with sparse linear systems complexity!

Solving Large-Scale Lyapunov Equations

General form for $A, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $P \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{L}(Q):=A^{T} Q+Q A+W
$$

In large scale applications from semi-discretized control problems for PDEs,

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} K\right.$ for FEM $)$,
- W low-rank with $W \in\left\{B B^{T}, C^{T} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{q \times n}, p \ll n$.
- Standard (Schur decomposition-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Solving Large-Scale Lyapunov Equations
 ADI Method for Lyapunov Equations

- For $A \in \mathbb{R}^{n \times n}$ stable, $B \in \mathbb{R}^{n \times m}(w \ll n)$, consider Lyapunov equation

$$
A X+X A^{T}=-B B^{T} .
$$

- ADI Iteration:
[WAChSPress 1988]

$$
\begin{aligned}
\left(A+p_{k} I\right) X_{(k-1) / 2} & =-B B^{T}-X_{k-1}\left(A^{T}-p_{k} I\right) \\
\left(A+\overline{p_{k}} I\right) X_{k}{ }^{T} & =-B B^{T}-X_{(k-1) / 2}\left(A^{T}-\overline{p_{k}} I\right)
\end{aligned}
$$

with parameters $p_{k} \in \mathbb{C}^{-}$and $p_{k+1}=\overline{p_{k}}$ if $p_{k} \notin \mathbb{R}$.

- For $X_{0}=0$ and proper choice of $p_{k}: \lim _{k \rightarrow \infty} X_{k}=X$ (super)linearly.
- Re-formulation using $X_{k}=Y_{k} Y_{k}^{T}$ yields iteration for $Y_{k} \ldots$

Solving Large-Scale Lyapunov Equations
 ADI Method for Lyapunov Equations

- For $A \in \mathbb{R}^{n \times n}$ stable, $B \in \mathbb{R}^{n \times m}(w \ll n)$, consider Lyapunov equation

$$
A X+X A^{T}=-B B^{T}
$$

- ADI Iteration:
[WACHSPRESS 1988]

$$
\begin{aligned}
\left(A+p_{k} I\right) X_{(k-1) / 2} & =-B B^{T}-X_{k-1}\left(A^{T}-p_{k} I\right) \\
\left(A+\overline{p_{k}} I\right) X_{k}^{T} & =-B B^{T}-X_{(k-1) / 2}\left(A^{T}-\overline{p_{k}} I\right)
\end{aligned}
$$

with parameters $p_{k} \in \mathbb{C}^{-}$and $p_{k+1}=\overline{p_{k}}$ if $p_{k} \notin \mathbb{R}$.

- For $X_{0}=0$ and proper choice of $p_{k}: \lim _{k \rightarrow \infty} X_{k}=X$ (super)linearly.
- Re-formulation using $X_{k}=Y_{k} Y_{k}^{T}$ yields iteration for $Y_{k} \ldots$

Factored ADI Iteration

Lyapunov equation $0=A X+X A^{T}+B B^{T}$.

Setting $X_{k}=Y_{k} Y_{k}^{\top}$, some algebraic manipulations \Longrightarrow
Algorithm [Penzl '97/'00, Li/White '99/'02, B. 04, B./Li/Penzl '99/'08]

$$
\begin{aligned}
V_{1} \leftarrow & \sqrt{-2 \operatorname{Re}\left(p_{1}\right)}\left(A+p_{1} I\right)^{-1} B, \quad Y_{1} \leftarrow V_{1} \\
\text { FOR } j=2, & 3, \ldots \\
& V_{k} \leftarrow \sqrt{\frac{\operatorname{Re}\left(p_{k}\right)}{\operatorname{Re}\left(p_{k-1}\right)}}\left(V_{k-1}-\left(p_{k}+\overline{p_{k-1}}\right)\left(A+p_{k} I\right)^{-1} V_{k-1}\right) \\
& Y_{k} \leftarrow\left[Y_{k-1} \quad V_{k}\right] \\
& Y_{k} \leftarrow \operatorname{rrlq}\left(Y_{k}, \tau\right) \quad \% \text { column compression }
\end{aligned}
$$

At convergence, $Y_{k_{\max }} Y_{k_{\text {max }}}^{\top} \approx X$, where

$$
Y_{k_{\max }}=\left[\begin{array}{lll}
V_{1} & \ldots & V_{k_{\max }}
\end{array}\right], \quad V_{k}=[] \in \mathbb{C}^{n \times m} .
$$

Note: Implementation in real arithmetic possible by combining two steps.

Factored Galerkin-ADI Iteration

Lyapunov equation $0=A X+X A^{T}+B B^{T}$

Projection-based methods for Lyapunov equations with $A+A^{T}<0$:
(1) Compute orthonormal basis range $(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^{n}, \operatorname{dim} \mathcal{Z}=r$.
(2) Set $\hat{A}:=Z^{T} A Z, \hat{B}:=Z^{T} B$.
(3) Solve small-size Lyapunov equation $\hat{A} \hat{X}+\hat{X} \hat{A}^{T}+\hat{B} \hat{B}^{T}=0$.
(4) Use $X \approx Z \hat{X} Z^{T}$.

Examples:

- Krylov subspace methods, i.e., for $m=1$:

$$
\mathcal{Z}=\mathcal{K}(A, B, r)=\operatorname{span}\left\{B, A B, A^{2} B, \ldots, A^{r-1} B\right\}
$$

[Jaimoukha/Kasenally '94, Jbilou '02-'08].

- K-PIK [Simoncini '07],

$$
\mathcal{Z}=\mathcal{K}(A, B, r) \cup \mathcal{K}\left(A^{-1}, B, r\right)
$$

Factored Galerkin-ADI Iteration

Lyapunov equation $0=A X+X A^{T}+B B^{T}$

Projection-based methods for Lyapunov equations with $A+A^{T}<0$:
(1) Compute orthonormal basis range $(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^{n}, \operatorname{dim} \mathcal{Z}=r$.
(2) Set $\hat{A}:=Z^{T} A Z, \hat{B}:=Z^{T} B$.
(3) Solve small-size Lyapunov equation $\hat{A} \hat{X}+\hat{X} \hat{A}^{T}+\hat{B} \hat{B}^{T}=0$.
(9) Use $X \approx Z \hat{X} Z^{T}$.

Examples:

- Krylov subspace methods, i.e., for $m=1$:

$$
\mathcal{Z}=\mathcal{K}(A, B, r)=\operatorname{span}\left\{B, A B, A^{2} B, \ldots, A^{r-1} B\right\}
$$

[Jaimoukha/Kasenally '94, Jbilou '02-'08].

- K-PIK [Simoncini '07],

$$
\mathcal{Z}=\mathcal{K}(A, B, r) \cup \mathcal{K}\left(A^{-1}, B, r\right) .
$$

Factored Galerkin-ADI Iteration

Lyapunov equation $0=A X+X A^{T}+B B^{T}$

Reduction
Peter Benner

Introduction to MOR

Balanced Truncation

Short
Introduction
Lyapunov
Equations
Bilinear MOR
Interpolatory Model Reduction Outlook

Projection-based methods for Lyapunov equations with $A+A^{T}<0$:
(1) Compute orthonormal basis range $(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^{n}, \operatorname{dim} \mathcal{Z}=r$.
(2) Set $\hat{A}:=Z^{T} A Z, \hat{B}:=Z^{T} B$.
(3) Solve small-size Lyapunov equation $\hat{A} \hat{X}+\hat{X} \hat{A}^{T}+\hat{B} \hat{B}^{T}=0$.
(9) Use $X \approx Z \hat{X} Z^{T}$.

Examples:

- ADI subspace [B./R.-C. Li/Truhar '08]:

$$
\mathcal{Z}=\operatorname{colspan}\left[\begin{array}{lll}
V_{1}, & \ldots, & V_{r}
\end{array}\right]
$$

Note: ADI subspace is rational Krylov subspace [J.-R. Li/White '02].

Factored Galerkin-ADI Iteration

Numerical example

FEM semi-discretized control problem for parabolic PDE:

- optimal cooling of rail profiles,
- $n=20,209, m=7, p=6$.

Good ADI shifts

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).

Factored Galerkin-ADI Iteration

Numerical example

FEM semi-discretized control problem for parabolic PDE:

- optimal cooling of rail profiles,
- $n=20,209, m=7, p=6$.

Bad ADI shifts

CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).

Balanced Truncation

Sample applications: VLSI design

Application in Microelectronics: VLSI Design

Balanced Truncation was implemented in circuit simulator TITAN (Qimonda AG, Infineon Technologies).

TITAN simulation results for industrial circuit:
14,677 resistors, 15,404 capacitors, 14 voltage sources, 4,800 MOSFETs.
14 linear subcircuits of varying order extracted and reduced.

[Günzel, Diplomarbeit '08; B. '08]

Supported by BMBF network SyreNe (includes Qimonda, Infineon, NEC), EU Marie Curie grant O-Moore-Nice! (includes NXP), industry grants.

Balanced Truncation Sample applications: electro-thermic simulation of integrated circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]

- Test circuit in Simplorer $®$ with 2 transistors.
- Conservative thermic sub-system in Simplorer: voltage \rightsquigarrow heat, current \rightsquigarrow heat flux.
- Original model: $n=270.593, m=p=2 \Rightarrow$

Computing times (CMESS on Intel Xeon dualcore 3GHz, 1 Thread):

- Solution of Lyapunov equations: $\approx 22 \mathrm{~min}$. (420/356 columns in solution factors),
- Computation of ROMs: 44sec. $(r=20)-49 \mathrm{sec}$. $(r=70)$.
- Bode diagram (Matlab on Intel Core i7, 2,67GHz, 12GB): using original system 7.5 h , with reduced system $<1 \mathrm{~min}$.

THM1

Balanced Truncation

Sample applications: electro-thermic simulation of integrated circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]

Reduction
Peter Benner

- Original model: $n=270.593, m=p=2 \Rightarrow$

Computing times (CMESS on Intel Xeon dualcore 3GHz, 1 Thread):

- Solution of Lyapunov equations: $\approx 22 \mathrm{~min}$. (420/356 columns in solution factors),
- Computation of ROMs: 44sec. $(r=20)$ - 49sec. $(r=70)$.
- Bode diagram (Matlab on Intel Core i7, 2,67GHz, 12GB): using original system 7.5 h , with reduced system <1 min.

Bode Diagram (Amplitude)

Hankel Singular Values

Balanced Truncation

Sample applications: electro-thermic simulation of integrated circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]

Reduction
Peter Benner

- Original model: $n=270.593, m=p=2 \Rightarrow$

Computing times (CMESS on Intel Xeon dualcore 3GHz, 1 Thread):

- Solution of Lyapunov equations: $\approx 22 \mathrm{~min}$. (420/356 columns in solution factors),
- Computation of ROMs: 44sec. $(r=20)-49 \mathrm{sec}$. $(r=70)$.
- Bode diagram (Matlab on Intel Core i7, 2,67GHz, 12GB): using original system 7.5 h , with reduced system $<1 \mathrm{~min}$.

Absolute Error

Relative Error

Moving Frontiers: Bilinear Model Order Reduction
Balanced Truncation for Bilinear Systems
[Gray/Mesko '98, Condon/Ivanov '05, B./Damm '09]

Bilinear control system of the form

$$
\dot{x}=A x+\sum_{j=1}^{k} N_{j} x u_{j}+B u, \quad y=C x,
$$

arise, e.g., in

- control of PDEs with mixed boundary conditions,
- approximation of nonlinear systems using Carleman bilinearization.

Moving Frontiers: Bilinear Model Order Reduction

Balanced Truncation for Bilinear Systems
[Gray/Mesko '98, Condon/Ivanov '05, B./Damm '09]

Bilinear control system of the form

$$
\dot{x}=A x+\sum_{j=1}^{k} N_{j} x u_{j}+B u, \quad y=C x
$$

arise, e.g., in

- control of PDEs with mixed boundary conditions,
- approximation of nonlinear systems using Carleman bilinearization.

The solutions of the generalized Lyapunov equations

$$
A P+P A^{T}+\sum_{j=1}^{k} N_{j} P N_{j}^{T}=-B B^{T}, \quad A^{T} Q+Q A+\sum_{j=1}^{k} N_{j}^{T} Q N_{j}=-C^{T} C
$$

possess certain properties of the reachability and observability Gramians of linear systems, generalized Hankel singular values can be defined, and model reduction analogous to Balanced Truncation can be based upon them [Al-Baiyat/Bettaye '93].

Moving Frontiers: Bilinear Model Order Reduction
Balanced Truncation for Bilinear Systems
[Gray/Mesko '98, Condon/Ivanov '05, B./Damm '09]

Moving Frontiers in Model
Reduction
Peter Benner
Energy functionals [Gray/Mesko, IFAC 1998]

$$
E_{c}\left(x_{0}\right)=\min _{\substack{u \in L^{2}(-\infty, 0) \\ x(-\infty, u)=0, x(0, u)=x_{0}}}\|u\|_{L^{2}}^{2} \quad \stackrel{?}{\geq} x_{0}^{T} P^{-1} x_{0}
$$

$$
E_{o}\left(x_{0}\right)=\max _{u \in L^{2}(0, \infty),\|u\|_{L^{2}} \leq 1}\left\|y\left(\cdot, x_{0}, u\right)\right\|_{L^{2}}^{2} \stackrel{?}{\leq} x_{0}^{T} Q x_{0}
$$

Moving Frontiers: Bilinear Model Order Reduction
Balanced Truncation for Bilinear Systems
[Gray/Mesko '98, Condon/Ivanov '05, B./Damm '09]

Moving Frontiers in Model
Reduction
Peter Benner

$$
E_{o}\left(x_{0}\right)=\max _{u \in L^{2}(0, \infty),\|u\|_{L^{2}} \leq 1}\left\|y\left(\cdot, x_{0}, u\right)\right\|_{L^{2}}^{2} \stackrel{?}{\leq} x_{0}^{T} Q x_{0}
$$

Energy functionals [Gray/Mesko, IFAC 1998]

$$
E_{c}\left(x_{0}\right)=\min _{\substack{u \in L^{2}(-\infty, 0) \\ x(-\infty, u)=0, x(0, u)=x_{0}}}\|u\|_{L^{2}}^{2} \quad \stackrel{?}{\geq} x_{0}^{T} P^{-1} x_{0}
$$

$\left.\begin{array}{l}x_{0}^{T} P x_{0} \\ x_{0}^{T} Q x_{0}\end{array}\right\}$ small $\stackrel{?}{\Rightarrow}$ state x_{0} hard $\left\{\begin{array}{l}\text { to reach } \\ \text { to observe }\end{array}\right.$

Moving Frontiers: Bilinear Model Order Reduction Exact unreachability

Let $A P+P A^{T}+N P N^{T}+B B^{T}=0$.
If $P \geq 0$ then $\operatorname{im} P$ is invariant w.r.t. $\dot{x}=A x+N x u+B u$.
In particular: $\operatorname{ker} P$ is unreachable from 0 .
Analogously for (un)observability.

Moving Frontiers: Bilinear Model Order Reduction

 Exact unreachability
Theorem ($k=1$ for simplicity)

Let $A P+P A^{T}+N P N^{T}+B B^{T}=0$.
If $P \geq 0$ then $\operatorname{im} P$ is invariant w.r.t. $\dot{x}=A x+N x u+B u$.
In particular: $\operatorname{ker} P$ is unreachable from 0 .
Proof: Let $v \in \operatorname{ker} P$. Then $\quad 0=v^{T}\left(N P N^{T}+B B^{T}\right) v$

$$
\begin{aligned}
& \Rightarrow B^{T} v=0 \text { and } P N^{T} v=0 \\
& \Rightarrow N^{T} \operatorname{ker} P \subset \operatorname{ker} P \subset \operatorname{ker} B^{T} \\
& \Rightarrow P A^{T} v=0, \text { i.e. } A^{T} \operatorname{ker} P \subset \operatorname{ker} P .
\end{aligned}
$$

If $x(t) \in \operatorname{im} P=(\operatorname{ker} P)^{\perp}$ for some t, then

$$
\dot{x}(t)^{T} v=x(t)^{T} \underbrace{A^{T} v}_{\in \operatorname{ker} P}+u(t) x(t)^{T} \underbrace{N^{T} v}_{\in \operatorname{ker} P}+u(t)^{T} \underbrace{B^{T} v}_{=0}=0
$$

Hence $\dot{x}(t) \in \operatorname{im} P$, implying invariance.

Theorem ($k=1$ for simplicity)
Let $A P+P A^{T}+N P N^{T}+B B^{T}=0$.
If $P \geq 0$ then $\operatorname{im} P$ is invariant w.r.t. $\dot{x}=A x+N x u+B u$.
In particular: $\operatorname{ker} P$ is unreachable from 0 .

Consequence:

If $\left\|P x_{1}\right\|$ is small, then x_{1} should be almost unreachable.

How can this be quantified?

Moving Frontiers: Bilinear Model Order Reduction Balanced realization

Given factorizations $\quad P=L L^{T}, \quad L^{T} Q L=U \Sigma^{2} U^{T}$, the transformation $T=L U \Sigma^{-1 / 2}$ is balancing: the equivalent system

$$
\widetilde{A}=T^{-1} A T, \quad \widetilde{N}_{j}=T^{-1} N_{j} T, \quad \widetilde{B}=T^{-1} B, \quad \widetilde{C}=C T .
$$

satisfies $\widetilde{P}=\widetilde{Q}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$.
If the small Hankel singular values $\sigma_{r+1}, \ldots, \sigma_{n}$ vanish: state negligible!(?)
Projection on $\mathbb{R}^{r},(r \ll n)$.
Partition: $T=\left[T_{1}, T_{2}\right], T^{-1}=\left[\begin{array}{l}S_{1} \\ S_{2}\end{array}\right]$
Truncation: $\begin{aligned} \widetilde{A}^{(r)} & =S_{1} A T_{1} & \widetilde{N}_{j}^{(r)} & =S_{1} N_{j} T_{1} \\ \widetilde{B}^{(r)} & =S_{1} B & & \widetilde{C}^{(r)}\end{aligned}=C T_{1}$

Reduced model

$$
\dot{\tilde{x}}_{r}=\tilde{A}^{(r)} \tilde{x}_{r}+\sum_{j=1}^{m} \widetilde{N}_{j}^{(r)} \tilde{x}_{r} u_{j}+\widetilde{B}^{(r)} u \quad \tilde{y}=\widetilde{C}^{(r)} \tilde{x}_{r}
$$

Moving Frontiers: Bilinear Model Order Reduction
 Balanced realization

Given factorizations $\quad P=L L^{T}, \quad L^{T} Q L=U \Sigma^{2} U^{T}$, the transformation $T=L U \Sigma^{-1 / 2}$ is balancing: the equivalent system

$$
\widetilde{A}=T^{-1} A T, \quad \widetilde{N}_{j}=T^{-1} N_{j} T, \quad \widetilde{B}=T^{-1} B, \quad \widetilde{C}=C T .
$$

satisfies $\widetilde{P}=\widetilde{Q}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$.
If the small Hankel singular values $\sigma_{r+1}, \ldots, \sigma_{n}$ vanish: state negligible!(?)
Projection on \mathbb{R}^{r}, $\left(r^{\stackrel{\prime}{<}} n\right)$.
Partition: $T=\left[T_{1}, T_{2}\right], T^{-1}=\left[\begin{array}{l}S_{1} \\ S_{2}\end{array}\right]$.
Truncation: $\quad \widetilde{A}^{(r)}=S_{1} A T_{1} \quad \widetilde{N}_{j}^{(r)}=S_{1} N_{j} T_{1}$

$$
\widetilde{B}^{(r)}=S_{1} B \quad \widetilde{C}^{(r)}=C T_{1}
$$

Reduced model:

$$
\dot{\tilde{x}}_{r}=\widetilde{A}^{(r)} \tilde{x}_{r}+\sum_{j=1}^{m} \widetilde{N}_{j}^{(r)} \tilde{x}_{r} u_{j}+\widetilde{B}^{(r)} u \quad \tilde{y}=\widetilde{C}^{(r)} \tilde{x}_{r}
$$

Moving Frontiers in Model Reduction

> Peter Benner

Nonlinear control system (SISO):

$$
\begin{aligned}
& \dot{v}(t)=f(v(t))+g(v(t)) u(t), \\
& y(t)=c^{T} v(t), \quad v(0)=0, f(0)=0
\end{aligned}
$$

where $f, g: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ are nonlinear and analytic in v.

$$
f(v) \approx A_{1} v+\frac{1}{2} A_{2} v \otimes v, \quad g(v) \approx B_{0}+B_{1} v
$$

with $B_{0} \in \mathbb{R}^{N}, A_{1}, B_{1} \in \mathbb{R}^{N \times N}, A_{2} \in \mathbb{R}^{N \times N^{2}}$,

$$
\begin{gathered}
x=\left[\begin{array}{c}
v \\
v \otimes v
\end{array}\right], A=\left[\begin{array}{cc}
A_{1} & \frac{1}{2} A_{2} \\
0 & A_{1} \otimes I+I \otimes A_{1}
\end{array}\right], \\
N=\left[\begin{array}{cc}
B_{1} & 0 \\
B_{0} \otimes I+I \otimes B_{0} & 0
\end{array}\right], B=\left[\begin{array}{c}
B_{0} \\
0
\end{array}\right], C=\left[\begin{array}{ll}
c^{T} & 0
\end{array}\right] .
\end{gathered}
$$

Moving Frontiers: Bilinear Model Order Reduction Numerical examples

Moving Frontiers in Model Reduction

Peter Benner

Introduction to MOR

Balanced

Truncation

Short
Introduction
Lyapunov
Equations
Bilinear MOR
Interpolatory Model Reduction

Conclusions and Outlook

$$
g(v)=\exp (40 v)+v-1, u(t)=\cos (t)
$$

- Nonlinear RC circuit [Chen/White '00, Bai/Skoogh '06].
- Carleman bilinearization \rightsquigarrow bilinear system with $n=2,550$, $k=1$.
- Compare bilinear Balanced Truncation with Krylov subspace method taken from [Bai/Skoogh '06].

$$
u(t)=e^{-t}
$$

- Nonlinear RC circuit [Chen/White '00, Bai/Skoogh '06].
- Carleman bilinearization \rightsquigarrow bilinear system with $n=2,550$, $k=1$.
- Compare bilinear Balanced Truncation with Krylov subspace method taken from [Bai/Skoogh '06].

$$
u(t)=\left(\cos \frac{2 \pi t}{10}+1\right) / 2
$$

Numerical Solution of Bilinear Lyapunov Equations

Bilinear balanced truncation both require solutions of
Bilinear Lyapunov Equation

$$
A X E^{T}+E X A^{T}+N X N^{T}+B B^{T}=0
$$

Naive attempt based on fixed-point iteration

$$
X_{j+1}=-N^{-1}\left(A X E^{T}+E X A^{T}+B B^{T}\right) N^{-T}
$$

not applicable as N often singular.
Current best available method: ADI-preconditioned Krylov subspace methods [Damm '08], using

$$
\mathcal{L}_{s}^{-1}\left(\mathcal{L}(X)+\mathcal{P}(X)+B B^{T}\right)=0
$$

where
$-\mathcal{L}: X \rightarrow A X E^{\top}+E X A^{\top}$ is the associated Lyapunov operator,
$-\mathcal{P}: X \rightarrow N X N^{\top}$ is a positive operator,

- \mathcal{L}_{s}^{-1} is a preconditioner, obtained by running a fixed (low) number s of ADI steps on the Lyapunov part.

Problem: equations beyond $n=1,000$ hardly solvable as no version computing low-rank approximations to X is known yet!

Numerical Solution of Bilinear Lyapunov Equations

Moving Frontiers in Model Reduction

Peter Benner

Introduction to MOR

Balanced Truncation
Short
Introduction
Lyapunov
Equations
Bilinear MOR
Interpolatory Model Reduction

Conclusions and Outlook

Bilinear balanced truncation both require solutions of

Bilinear Lyapunov Equation

$$
A X E^{T}+E X A^{T}+N X N^{T}+B B^{T}=0
$$

Naive attempt based on fixed-point iteration

$$
X_{j+1}=-N^{-1}\left(A X E^{T}+E X A^{T}+B B^{T}\right) N^{-T}
$$

not applicable as N often singular.
Current best available method: ADI-preconditioned Krylov subspace methods [Damm '08], using

$$
\mathcal{L}_{s}^{-1}\left(\mathcal{L}(X)+\mathcal{P}(X)+B B^{T}\right)=0
$$

where

- $\mathcal{L}: X \rightarrow A X E^{\top}+E X A^{\top}$ is the associated Lyapunov operator,
$-\mathcal{P}: X \rightarrow N X N^{\top}$ is a positive operator,
$-\mathcal{L}_{s}^{-1}$ is a preconditioner, obtained by running a fixed (low) number s of ADI steps on the Lyapunov part.

Problem: equations beyond $n=1,000$ hardly solvable as no version
computing low-rank approximations to X is known yet!

Numerical Solution of Bilinear Lyapunov Equations

Bilinear balanced truncation both require solutions of

Bilinear Lyapunov Equation

$$
A X E^{T}+E X A^{T}+N X N^{T}+B B^{T}=0
$$

Naive attempt based on fixed-point iteration

$$
X_{j+1}=-N^{-1}\left(A X E^{T}+E X A^{T}+B B^{T}\right) N^{-T}
$$

not applicable as N often singular.
Current best available method: ADI-preconditioned Krylov subspace methods [Damm '08], using

$$
\mathcal{L}_{s}^{-1}\left(\mathcal{L}(X)+\mathcal{P}(X)+B B^{T}\right)=0
$$

where

- $\mathcal{L}: X \rightarrow A X E^{T}+E X A^{T}$ is the associated Lyapunov operator,
$-\mathcal{P}: X \rightarrow N X N^{T}$ is a positive operator,
- \mathcal{L}_{s}^{-1} is a preconditioner, obtained by running a fixed (low) number s of ADI steps on the Lyapunov part.

Problem: equations beyond $n=1,000$ hardly solvable as no version

Numerical Solution of Bilinear Lyapunov Equations

Bilinear balanced truncation both require solutions of

Bilinear Lyapunov Equation

$$
A X E^{T}+E X A^{T}+N X N^{T}+B B^{T}=0
$$

Naive attempt based on fixed-point iteration

$$
X_{j+1}=-N^{-1}\left(A X E^{T}+E X A^{T}+B B^{T}\right) N^{-T}
$$

not applicable as N often singular.
Current best available method: ADI-preconditioned Krylov subspace methods [Damm '08], using

$$
\mathcal{L}_{s}^{-1}\left(\mathcal{L}(X)+\mathcal{P}(X)+B B^{T}\right)=0
$$

where
$-\mathcal{L}: X \rightarrow A X E^{T}+E X A^{T}$ is the associated Lyapunov operator,
$-\mathcal{P}: X \rightarrow N X N^{T}$ is a positive operator,

- \mathcal{L}_{s}^{-1} is a preconditioner, obtained by running a fixed (low) number s of ADI steps on the Lyapunov part.

Problem: equations beyond $n=1,000$ hardly solvable as no version computing low-rank approximations to X is known yet!

Interpolatory Model Reduction

 Short Introduction
Computation of reduced-order model by projection

Given a linear (descriptor) system $E \dot{x}=A x+B u, y=C x \quad$ with transfer function $\quad G(s)=C(s E-A)^{-1} B, \quad$ a reduced-order model is obtained using projection matrices $V, W \in \mathbb{R}^{n \times r}$ with $W^{\top} V=I_{r}$ $\left(\rightsquigarrow\left(V W^{T}\right)^{2}=V W^{T}\right.$ is projector) by computing

$$
\hat{E}=W^{\top} E V, \hat{A}=W^{T} A V, \hat{B}=W^{\top} B, \hat{C}=C V
$$

Petrov-Galerkin-type (two-sided) projection: $W \neq V$, Galerkin-type (one-sided) projection: $W=V$.

Interpolatory Model Reduction

Short Introduction

Moving Frontiers in Model
Reduction
Peter Benner

Computation of reduced-order model by projection

Given a linear (descriptor) system $E \dot{x}=A x+B u, y=C x$ with transfer function $\quad G(s)=C(s E-A)^{-1} B$, a reduced-order model is obtained using projection matrices $V, W \in \mathbb{R}^{n \times r}$ with $W^{T} V=I_{r}$ $\left(\rightsquigarrow\left(V W^{T}\right)^{2}=V W^{T}\right.$ is projector) by computing

$$
\hat{E}=W^{T} E V, \hat{A}=W^{T} A V, \hat{B}=W^{\top} B, \hat{C}=C V
$$

Petrov-Galerkin-type (two-sided) projection: $W \neq V$,
Galerkin-type (one-sided) projection: $W=V$.

Rational Interpolation/Moment-Matching

Choose V, W such that

$$
G\left(s_{j}\right)=\hat{G}\left(s_{j}\right), \quad j=1, \ldots, k
$$

and

$$
\frac{d^{i}}{d s^{i}} G\left(s_{j}\right)=\frac{d^{i}}{d s^{i}} \hat{G}\left(s_{j}\right), \quad i=1, \ldots, K_{j}, \quad j=1, \ldots, k
$$

Interpolatory Model Reduction Short Introduction

Moving Frontiers

 in Model ReductionPeter Benner

Introduction to MOR

Balanced Truncation

Interpolatory Model Reduction Introduction Bilinear MOR Nonlinear MOR Conclusions and Outlook

Theorem (simplified) [Grimme '97, Villemagne/Skelton '87]
If

$$
\begin{array}{rll}
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-1} B, \ldots,\left(s_{k} E-A\right)^{-1} B\right\} & \subset \operatorname{Ran}(V), \\
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-T} C^{T}, \ldots,\left(s_{k} E-A\right)^{-T} C^{T}\right\} & \subset \operatorname{Ran}(W),
\end{array}
$$

then

$$
G\left(s_{j}\right)=\hat{G}\left(s_{j}\right), \quad \frac{d}{d s} G\left(s_{j}\right)=\frac{d}{d s} \hat{G}\left(s_{j}\right), \quad \text { for } j=1, \ldots, k
$$

Interpolatory Model Reduction

 Short IntroductionTheorem (simplified) [Grimme '97, Villemagne/Skelton '87]
If

$$
\begin{aligned}
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-1} B, \ldots,\left(s_{k} E-A\right)^{-1} B\right\} & \subset \operatorname{Ran}(V), \\
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-T} C^{T}, \ldots,\left(s_{k} E-A\right)^{-T} C^{T}\right\} & \subset \operatorname{Ran}(W),
\end{aligned}
$$

then

$$
G\left(s_{j}\right)=\hat{G}\left(s_{j}\right), \quad \frac{d}{d s} G\left(s_{j}\right)=\frac{d}{d s} \hat{G}\left(s_{j}\right), \quad \text { for } j=1, \ldots, k .
$$

Remarks:
computation of V, W from rational Krylov subspaces, e.g.,

- dual rational Arnoldi/Lanczos [Grimme '97],
- Iterative Rational Krylov-Algo. [Antoulas/Beattie/Gugercin '07].

Interpolatory Model Reduction

 Short IntroductionMoving Frontiers in Model Reduction

Peter Benner

Introduction to MOR

Balanced Truncation

Interpolatory Model Reduction

Introduction

 Bilinear MOR Nonlinear MOR
Theorem (simplified) [Grimme '97, Villemagne/Skelton '87]

If

$$
\begin{aligned}
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-1} B, \ldots,\left(s_{k} E-A\right)^{-1} B\right\} & \subset \operatorname{Ran}(V), \\
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-T} C^{T}, \ldots,\left(s_{k} E-A\right)^{-T} C^{T}\right\} & \subset \operatorname{Ran}(W),
\end{aligned}
$$

then

$$
G\left(s_{j}\right)=\hat{G}\left(s_{j}\right), \quad \frac{d}{d s} G\left(s_{j}\right)=\frac{d}{d s} \hat{G}\left(s_{j}\right), \quad \text { for } j=1, \ldots, k
$$

Remarks:

using Galerkin/one-sided projection yields $G\left(s_{j}\right)=\hat{G}\left(s_{j}\right)$, but in general

$$
\frac{d}{d s} G\left(s_{j}\right) \neq \frac{d}{d s} \hat{G}\left(s_{j}\right)
$$

Interpolatory Model Reduction

 Short IntroductionMoving Frontiers in Model Reduction

Peter Benner

Introduction to MOR

Balanced
Truncation
Interpolatory Model Reduction

Introduction Bilinear MOR Nonlinear MOR Outlook

Theorem (simplified) [Grimme '97, Villemagne/Skelton '87]
If

$$
\begin{aligned}
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-1} B, \ldots,\left(s_{k} E-A\right)^{-1} B\right\} & \subset \operatorname{Ran}(V), \\
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-T} C^{T}, \ldots,\left(s_{k} E-A\right)^{-T} C^{T}\right\} & \subset \operatorname{Ran}(W),
\end{aligned}
$$

then

$$
G\left(s_{j}\right)=\hat{G}\left(s_{j}\right), \quad \frac{d}{d s} G\left(s_{j}\right)=\frac{d}{d s} \hat{G}\left(s_{j}\right), \quad \text { for } j=1, \ldots, k .
$$

Remarks:

$k=1$, standard Krylov subspace(s) of dimension $K \rightsquigarrow$ moment-matching methods/Padé approximation,

$$
\frac{d^{i}}{d s^{i}} G\left(s_{1}\right)=\frac{d^{i}}{d s^{i}} \hat{G}\left(s_{1}\right), \quad i=0, \ldots, K-1(+K)
$$

$h\left(t_{1}, t_{2}, \ldots, t_{k}\right)=c^{T} e^{A t_{k}} N \cdots e^{A t_{2}} N e^{A t_{1}} b$
\rightarrow degree- k kernel
§ multivariable Laplace transform

$$
H\left(s_{1}, s_{2}, \ldots, s_{k}\right)=c^{T}\left(s_{k} I-A\right)^{-1} N \cdots\left(s_{2} I-A\right)^{-1} N\left(s_{1} I-A\right)^{-1} b
$$

$\rightarrow k$-th transfer function

Moving Frontiers
in Model
Reduction
Peter Benner

Introduction to MOR

Balanced Truncation

Interpolatory Model Reduction Introduction Bilinear MOR Nonlinear MOR
Conclusions and Outlook

$$
\begin{aligned}
& s_{i}=\xi_{i}^{-1}: \\
& H\left(s_{1}, \ldots, s_{k}\right)=c^{T}\left(s_{k} I-A\right)^{-1} N \cdots\left(s_{2} I-A\right)^{-1} N\left(s_{1} I-A\right)^{-1} b \\
&=c^{T}\left(\xi_{k}^{-1} I-A\right)^{-1} N \cdots\left(\xi_{2}^{-1} I-A\right)^{-1} N\left(\xi_{1}^{-1} I-A\right)^{-1} b \\
&=c^{T} \xi_{k}\left(I-\xi_{k} A\right)^{-1} N \cdots \xi_{2}\left(I-\xi_{2} A\right)^{-1} N \xi_{1}\left(I-\xi_{1} A\right)^{-1} b
\end{aligned}
$$

for $\xi_{i} \rightarrow 0\left(s_{i} \rightarrow \infty\right)$ use Neumann expansion:

$$
\begin{gathered}
\left(I-\xi_{i} A\right)^{-1}=\sum_{l_{i}=0}^{\infty} \xi_{i}^{l_{i}} A^{l_{i}} \\
H\left(s_{1}, \ldots, s_{k}\right)=\sum_{l_{k}=1}^{\infty} \ldots \sum_{l_{1}=1}^{\infty} m\left(I_{1}, \ldots, I_{k}\right) s_{1}^{-I_{1}} \cdots s_{k}^{-I_{k}} \\
m\left(I_{1}, \ldots, I_{k}\right)=c^{T} A^{l_{k}-1} N \cdots A^{l_{2}-1} N A^{l_{1}-1} b
\end{gathered}
$$

\rightarrow high frequency multimoments

Moving Frontiers
in Model
Reduction
Peter Benner

Introduction to MOR

Balanced Truncation

Interpolatory Model Reduction Introduction Bilinear MOR Nonlinear MOR
Conclusions and Outlook

$$
\begin{aligned}
& s_{i}=\xi_{i}^{-1}: \\
& H\left(s_{1}, \ldots, s_{k}\right)=c^{T}\left(s_{k} I-A\right)^{-1} N \cdots\left(s_{2} I-A\right)^{-1} N\left(s_{1} I-A\right)^{-1} b \\
&=c^{T}\left(\xi_{k}^{-1} I-A\right)^{-1} N \cdots\left(\xi_{2}^{-1} I-A\right)^{-1} N\left(\xi_{1}^{-1} I-A\right)^{-1} b \\
&=c^{T} \xi_{k}\left(I-\xi_{k} A\right)^{-1} N \cdots \xi_{2}\left(I-\xi_{2} A\right)^{-1} N \xi_{1}\left(I-\xi_{1} A\right)^{-1} b
\end{aligned}
$$

for $\xi_{i} \rightarrow 0\left(s_{i} \rightarrow \infty\right)$ use Neumann expansion:

$$
\left(I-\xi_{i} A\right)^{-1}=\sum_{l_{i}=0}^{\infty} \xi_{i}^{l_{i}} A^{l_{i}}
$$

$$
\begin{aligned}
& m\left(l_{1}\right)=c^{T} A^{l_{1}-1} b \quad \text { Markov parameters } \\
& m\left(I_{1}, l_{2}\right)=c^{T} A^{I_{2}-1} N A^{l_{1}-1} b \\
& m\left(l_{1}, l_{2}, l_{3}\right)=c^{T} A^{l_{3}-1} N A^{I_{2}-1} N A^{l_{1}-1} b
\end{aligned}
$$

Similar for $s_{i} \rightarrow \sigma_{i} \in \mathbb{C}$:

$$
\begin{aligned}
& H\left(s_{1}, \ldots, s_{k}\right)=\sum_{I_{k}=1}^{\infty} \ldots \sum_{l_{1}=1}^{\infty} m\left(I_{1}, \ldots, I_{k}\right) s_{1}^{I_{1}-1} \cdots s_{k}^{I_{k}-1} \\
& m\left(l_{1}, \ldots, l_{k}\right)=(-1)^{k} c^{T}\left(A-\sigma_{k} I\right)^{-I_{k}} N \cdots\left(A-\sigma_{2} I\right)^{-l_{2}} N\left(A-\sigma_{1} I\right)^{-l_{1}} b
\end{aligned}
$$

$$
\text { special case } \sigma_{i}=0:
$$

$$
m\left(I_{1}, \ldots, I_{k}\right)=(-1)^{k} c^{T} A^{-I_{k}} N \cdots A^{-I_{2}} N A^{-I_{1}} b
$$

\rightarrow low frequency multimoments

Matching multi-moments:

- multimoments locally characterize input-output behaviour
- construct reduced system Σ that matches q^{k} multimoments of the first r subsystems of the original system

$$
m\left(l_{1}, \ldots, I_{k}\right) \stackrel{!}{=} \hat{m}\left(l_{1}, \ldots, I_{k}\right), \quad k=1, \ldots, r, \quad l_{j}=1, \ldots, q
$$

Construct reduced system by Petrov-Galerkin projection:

$$
\hat{\Sigma}: \quad\left\{\begin{array}{l}
\dot{\hat{x}}(t)=\underbrace{W^{\top} A V}_{\hat{A}} \hat{x}(t)+\underbrace{W^{\top} N V}_{\hat{N}} \hat{x}(t) u(t)+\underbrace{W^{\top} b}_{\hat{b}} u(t), \\
\hat{y}(t)=\underbrace{c^{\top} V}_{\hat{c}^{\top}} \hat{x}(t), \quad x(t) \approx V \hat{x}(t)
\end{array}\right.
$$

with $V, W \in \mathbb{R}^{n \times k}, W^{\top} V=I$.
Use sequence of nested Krylov subspaces

$$
\mathcal{K}_{q}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{q-1} b\right\}, \quad A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}
$$

Moving Frontiers: Moment Matching for Bilinear Systems

 Model reduction IngredientsMatching multi-moments:

- multimoments locally characterize input-output behaviour
- construct reduced system Σ that matches q^{k} multimoments of the first r subsystems of the original system

$$
m\left(l_{1}, \ldots, I_{k}\right) \stackrel{!}{=} \hat{m}\left(l_{1}, \ldots, I_{k}\right), \quad k=1, \ldots, r, \quad l_{j}=1, \ldots, q
$$

Construct reduced system by Petrov-Galerkin projection:

$$
\hat{\Sigma}:\left\{\begin{array}{l}
\dot{\hat{x}}(t)=\underbrace{W^{T} A V}_{\hat{A}} \hat{x}(t)+\underbrace{W^{T} N V}_{\hat{N}} \hat{x}(t) u(t)+\underbrace{W^{T} b}_{\hat{b}} u(t), \\
\hat{y}(t)=\underbrace{c^{T} V}_{\hat{c}^{T}} \hat{x}(t), \quad x(t) \approx V \hat{x}(t)
\end{array}\right.
$$

with $V, W \in \mathbb{R}^{n \times k}, W^{T} V=I$.

Use sequence of nested Krylov subspaces

$$
\mathcal{K}_{q}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{q-1} b\right\}, \quad A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}
$$

Matching multi-moments:

- multimoments locally characterize input-output behaviour
- construct reduced system Σ that matches q^{k} multimoments of the first r subsystems of the original system

$$
m\left(l_{1}, \ldots, I_{k}\right) \stackrel{!}{=} \hat{m}\left(l_{1}, \ldots, I_{k}\right), \quad k=1, \ldots, r, \quad l_{j}=1, \ldots, q
$$

Construct reduced system by Petrov-Galerkin projection:

$$
\hat{\Sigma}:\left\{\begin{array}{l}
\dot{\hat{x}}(t)=\underbrace{W^{T} A V}_{\hat{A}} \hat{x}(t)+\underbrace{W^{T} N V}_{\hat{N}} \hat{x}(t) u(t)+\underbrace{W^{T} b}_{\hat{b}} u(t), \\
\hat{y}(t)=\underbrace{c^{T} V}_{\hat{c}^{T}} \hat{x}(t), \quad x(t) \approx V \hat{x}(t)
\end{array}\right.
$$

with $V, W \in \mathbb{R}^{n \times k}, W^{T} V=I$.
Use sequence of nested Krylov subspaces

$$
\mathcal{K}_{q}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{q-1} b\right\}, \quad A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}
$$

Example:

$$
V^{(1)}=\mathcal{K}_{10}(A, b), \quad V^{(2)}=\mathcal{K}_{4}\left(A, N V_{[4]}^{(1)}\right)
$$

$$
\begin{aligned}
c^{T} A^{l_{1}-1} b & =\hat{c}^{T} \hat{A}^{l_{1}-1} \hat{b} \\
c^{T} A^{l_{2}-1} N A^{l_{1}-1} b & =\hat{c}^{T} \hat{A}^{I_{2}-1} \hat{N} \hat{A}^{I_{1}-1} \hat{b}
\end{aligned}
$$

$$
\begin{array}{r}
I_{1}=1, \ldots, 10 \\
I_{1}, I_{2}=1, \ldots, 4
\end{array}
$$

Example:

$$
\begin{array}{rlr}
V^{(1)}=\mathcal{K}_{10}(A, b), & V^{(2)}=\mathcal{K}_{4}\left(A, N V_{[4]}^{(1)}\right) & \\
c^{T} A^{l_{1}-1} b=\hat{c}^{T} \hat{A}^{I_{1}-1} \hat{b}, & I_{1}=1, \ldots, 10 \\
c^{T} A^{l_{2}-1} N A^{l_{1}-1} b=\hat{c}^{T} \hat{A}^{I_{2}-1} \hat{N} \hat{A}^{I_{1}-1} \hat{b}, & I_{1}, I_{2}=1, \ldots, 4
\end{array}
$$

Moving Frontiers in Model
Reduction
Peter Benner

Introduction to MOR

Balanced
Truncation
Interpolatory Model Reduction Introduction Bilinear MOR Nonlinear MOR Outlook

Multimoment-matching for different expansion points to cover broader frequency range:

Theorem

Let a bilinear SISO system Σ be given.

- $\operatorname{span}\left\{V^{(1)}\right\}=\mathcal{K}_{q}\left(\left(A-\sigma_{1} I\right)^{-1},\left(A-\sigma_{1} I\right)^{-1} b\right)$,
- $\operatorname{span}\left\{V^{(k)}\right\}=\mathcal{K}_{q}\left(\left(A-\sigma_{k} I\right)^{-1},\left(A-\sigma_{k} I\right)^{-1} N V^{(k-1)}\right)$,
- $\operatorname{span}\{V\}=\operatorname{span}\left\{\bigcup_{k=1}^{r} \operatorname{span}\left\{V^{(k)}\right\}\right\}$
- W arbitrary left inverse of V

$$
\rightarrow m\left(I_{1}, \ldots, I_{k}\right)=\hat{m}\left(I_{1}, \ldots, I_{k}\right), k=1, \ldots, r, I_{j}=1, \ldots, q
$$

Special cases:

- $V^{T} V=I, W^{T}=V^{T}$
\rightarrow orthogonal projection
\rightarrow first approach, proposed by [Phillips '03], see also [B./FENG '07] for multi-moment matching proof.

Moving Frontiers in Model
Reduction
Peter Benner

Introduction to MOR

Balanced
Truncation
Interpolatory Model Reduction Introduction Bilinear MOR Nonlinear MOR Outlook

Multimoment-matching for different expansion points to cover broader frequency range:

Theorem

Let a bilinear SISO system Σ be given.

- $\operatorname{span}\left\{V^{(1)}\right\}=\mathcal{K}_{q}\left(\left(A-\sigma_{1} I\right)^{-1},\left(A-\sigma_{1} I\right)^{-1} b\right)$,
- $\operatorname{span}\left\{V^{(k)}\right\}=\mathcal{K}_{q}\left(\left(A-\sigma_{k} I\right)^{-1},\left(A-\sigma_{k} I\right)^{-1} N V^{(k-1)}\right)$,
- $\operatorname{span}\{V\}=\operatorname{span}\left\{\bigcup_{k=1}^{r} \operatorname{span}\left\{V^{(k)}\right\}\right\}$
- W arbitrary left inverse of V

$$
\rightarrow m\left(I_{1}, \ldots, I_{k}\right)=\hat{m}\left(I_{1}, \ldots, I_{k}\right), k=1, \ldots, r, I_{j}=1, \ldots, q
$$

Special cases:

- $V^{T} V=I, W^{T}=\left(V^{\top} A^{-1} V\right)^{-1} V^{T} A^{-1}$
\rightarrow multiply state equation by A^{-1}, proposed by [SKOOGH/BAI '06]
\rightarrow seems to yield better results for bilinearized systems.

Better choices for projection matrix W ?

- $\operatorname{span}\left\{W^{(1)}\right\}=\mathcal{K}_{q}\left(A^{T}, c\right)$,
- $\operatorname{span}\left\{W^{(k)}\right\}=\mathcal{K}_{q}\left(A^{T}, N^{T} W^{(k-1)}\right), \quad k=2, \ldots, r$
- $\operatorname{span}\{W\}=\operatorname{span}\left\{\bigcup_{k=1}^{r} \operatorname{span}\left\{W^{(k)}\right\}\right\}$

$$
\begin{aligned}
& V^{(1)}=\mathcal{K}_{6}(A, b), \quad W^{(1)}=\mathcal{K}_{6}\left(A^{T}, c\right) \\
& \quad m\left(I_{1}\right)=\hat{m}\left(I_{1}\right), I_{1}=1, \ldots, 12, \quad m\left(I_{1}, I_{2}\right)=\hat{m}\left(I_{1}, I_{2}\right), I_{1}, I_{2}=1, \ldots, 6
\end{aligned}
$$

\rightarrow significantly more multimoments are preserved.
\rightarrow Number of matched subsystems automatically doubles.

Moving Frontiers in Model
Reduction
Peter Benner

Introduction to MOR

Balanced
Truncation
Interpolatory Model Reduction

Introduction

Bilinear MOR

 Nonlinear MORConclusions and Outlook

$v(t)$: node voltages $v_{1}(t), \ldots, v_{N}(t), \quad N=50 \rightarrow \operatorname{dim} \Sigma=2550$
$u(t)$: independent current source, $C=1, g(v)=\exp (40 v)+v-1$
$y(t)$: voltage between node 1 and ground

Projection subspaces:

- High frequency multimoments (∞):

$$
\begin{aligned}
& V^{(1)}=\mathcal{K}_{19}(A, b), \\
& V^{(2)}=\mathcal{K}_{4}\left(A, N V_{[4]}^{(1)}\right) \\
& V=V^{(1)} \cup V^{(2)}, \quad V^{T} V=I
\end{aligned}
$$

- Low frequency multimoments $\left(\sigma_{j}=0\right)$:

$$
\begin{aligned}
& V^{(1)}=\mathcal{K}_{19}\left(A^{-1}, A^{-1} b\right), \\
& V^{(2)}=\mathcal{K}_{4}\left(A^{-1}, A^{-1} N V_{[4]}^{(1)}\right) \\
& V=V^{(1)} \cup V^{(2)}, \quad V^{T} V=I
\end{aligned}
$$

- Multiple interpolation points $\left(\sigma_{j}=0,1,10,100, \infty\right)$:

$$
\text { e.g. } \sigma_{j}=10
$$

$$
\begin{aligned}
& V^{(1)}=\mathcal{K}_{q_{1}}\left((A-10 \cdot I)^{-1},(A-10 \cdot I)^{-1} b\right) \\
& V^{(2)}=\mathcal{K}_{q_{2}}\left((A-10 \cdot I)^{-1},(A-10 \cdot I)^{-1} N V_{[p]}^{(1)}\right)
\end{aligned}
$$

\rightarrow First and second order multimoments are preserved.

Moving Frontiers
in Model
Reduction
Peter Benner

Introduction to MOR

Balanced
Truncation
Interpolatory Model Reduction
Introduction
Bilinear MOR
Nonlinear MOR
Conclusions and Outlook

Simulation results:

$28 / 30$
in Model
Reduction
Peter Benner

Introduction to MOR

Balanced

Truncation

Interpolatory Model Reduction
Introduction
Bilinear MOR
Nonlinear MOR
Conclusions and Outlook

Simulation results:

Moving Frontiers
in Model
Reduction
Peter Benner

Introduction to

 MORBalanced
Truncation
Interpolatory Model Reduction
Introduction
Bilinear MOR
Nonlinear MOR
Conclusions and Outlook

Relative errors, $n=2550, u(t)=\sin (200 \cdot t)$

Moving Frontiers
in Model
Reduction
Peter Benner

Introduction to MOR

Balanced
Truncation
Interpolatory Model Reduction
Introduction
Bilinear MOR
Nonlinear MOR
Conclusions and Outlook

Simulation results:

Moving Frontiers: Moment Matching for Quadratic-Bilinear Approximations

- Many nonlinear dynamics can be modeled by quadratic bilinear differential algebraic equations (QBDAEs), i.e.

$$
\begin{aligned}
E \dot{x} & =A_{1} x+A_{2} x \otimes x+N x u+b u \\
y & =c x
\end{aligned}
$$

where $E, A_{1}, N \in \mathbb{R}^{n \times n}, A_{2} \in \mathbb{R}^{n \times n^{2}}, b, c^{T} \in \mathbb{R}^{n}$.

- Combination of quadratic and bilinear control systems.
- Variational analysis allows characterization of input-output behavior via generalized transfer functions, e.g.

$$
\begin{aligned}
& H_{1}(s)= c \underbrace{\left(s E-A_{1}\right)^{-1} b}_{G(s)}, \\
& \begin{aligned}
H_{2}\left(s_{1}, s_{2}\right)= & \frac{1}{2} c\left(\left(s_{1}+s_{2}\right) E-A_{1}\right)^{-1}\left[A_{2}\left(G\left(s_{1}\right) \otimes G\left(s_{2}\right)+G\left(s_{2}\right) \otimes G\left(s_{1}\right)\right)\right. \\
& \left.+N\left(G\left(s_{1}\right)+G\left(s_{2}\right)\right)\right]
\end{aligned}
\end{aligned}
$$

Moving Frontiers: Moment Matching for Quadratic-Bilinear Approximations

Moving Frontiers in Model
Reduction
Peter Benner

Introduction to MOR

Which systems can be transformed?
Theorem [Gu '09]
Assume that the state equation of a nonlinear system Σ is given by

$$
\dot{x}=a_{0} x+a_{1} g_{1}(x)+\ldots+a_{k} g_{k}(x)+b u,
$$

where $g_{i}(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are compositions of rational, exponential, logarithmic, trigonometric or root functions, respectively. Then Σ can be transformed into a quadratic bilinear differential algebraic equation of dimension $N>n$.

- transformation is not unique
- original system has to be increased before reduction is possible
- minimal dimension N ?

Moving Frontiers: Moment Matching for Quadratic-Bilinear Approximations

Example

- Consider the following two dimensional nonlinear control system:

$$
\begin{aligned}
& \dot{x}_{1}=\exp \left(-x_{2}\right) \cdot \sqrt{x_{1}^{2}+1} \\
& \dot{x}_{2}=\sin x_{2}+u
\end{aligned}
$$

- Introduce useful new state variables, e.g.

$$
x_{3}:=\exp \left(-x_{2}\right), x_{4}:=\sqrt{x_{1}^{2}+1}, x_{5}:=\sin x_{2}, x_{6}:=\cos x_{2}
$$

- System can be replaced by a QBDAE of dimension 6:

$$
\begin{array}{ll}
\dot{x}_{1}=x_{3} \cdot x_{4}, & \dot{x}_{2}=x_{5}+u \\
\dot{x}_{3}=-x_{3} \cdot\left(x_{5}+u\right), & \dot{x}_{4}=\frac{2 \cdot x_{1} \cdot x_{3} \cdot x_{4}}{2 \cdot x_{4}} \\
\dot{x}_{5}=x_{6} \cdot\left(x_{5}+u\right), & \dot{x}_{6}=-x_{5} \cdot\left(x_{5}+u\right) .
\end{array}
$$

Moving Frontiers: Moment Matching for Quadratic-Bilinear Approximations

Moving Frontiers in Model
Reduction

Peter Benner

Multi-moment-Matching for QBDAEs

- Construct reduced order model by projection:

$$
\begin{aligned}
\hat{E} & =Z^{T} E Z, \quad \hat{A}_{1}=Z^{T} A_{1} Z, \quad \hat{N}=Z^{T} N Z, \\
\hat{A}_{2} & =Z^{T} A_{2} Z \otimes Z, \quad \hat{b}=Z^{T} b, \quad \hat{c}=c Z
\end{aligned}
$$

- Approximate values and derivatives ("multi-moments") of transfer functions about an expansion point σ using Krylov spaces, e.g.

$$
\begin{aligned}
\operatorname{span}\{V\} & =\mathcal{K}_{6}\left(A_{\sigma} E, A_{\sigma} b\right) \\
\operatorname{span}\left\{W_{1}\right\} & =\mathcal{K}_{3}\left(A_{2 \sigma} E, A_{2 \sigma}\left(A_{2} V_{1} \otimes V_{1}-N_{1} V_{1}\right)\right) \\
\operatorname{span}\left\{W_{2}\right\} & =\mathcal{K}_{2}\left(A_{2 \sigma} E, A_{2 \sigma}\left(A_{2}\left(V_{2} \otimes V_{1}+V_{1} \otimes V_{2}\right)-N_{1} V_{2}\right)\right) \\
\operatorname{span}\left\{W_{3}\right\} & =\mathcal{K}_{1}\left(A_{2 \sigma} E, A_{2 \sigma}\left(A_{2}\left(V_{2} \otimes V_{2}+V_{2} \otimes V_{2}\right)\right)\right) \\
\operatorname{span}\left\{W_{4}\right\} & =\mathcal{K}_{1}\left(A_{2 \sigma} E, A_{2 \sigma}\left(A_{2}\left(V_{3} \otimes V_{1}+V_{1} \otimes V_{3}\right)-N_{1} V_{3}\right)\right),
\end{aligned}
$$

with $A_{\sigma}=\left(A_{1}-\sigma E\right)^{-1}$ and V_{i} denoting the i-th column of V \rightarrow derivatives match up to order $5\left(H_{1}\right)$ and $2\left(H_{2}\right)$, respectively.

Moving Frontiers: Moment Matching for Quadratic-Bilinear Approximations

Numerical Example

- FitzHugh-Nagumo system: simple model for neuron (de-)activation.

$$
\begin{aligned}
\epsilon v_{t}(x, t) & =\epsilon^{2} v_{x x}(x, t)+f(v(x, t))-w(x, t)+g \\
w_{t}(x, t) & =h v(x, t)-\gamma w(x, t)+g
\end{aligned}
$$

with $f(v)=v(v-0.1)(1-v)$ and initial and boundary conditions

$$
\begin{array}{llr}
v(x, 0)=0, & w(x, 0)=0, & x \in[0,1] \\
v_{x}(0, t)=-i_{0}(t), & v_{x}(1, t)=0, & t \geq 0,
\end{array}
$$

where $\epsilon=0.015, h=0.5, \gamma=2, g=0.05, i_{0}(t)=50000 t^{3} \exp (-15 t)$

- parameter g handled as an additional input
- original state dimension $n=2 \cdot 400$, QBDAE dimension $N=3 \cdot 400$, reduced QBDAE dimension $r=26$, chosen expansion point $\sigma=1$
[B./Breiten 2010]

Moving Frontiers: Moment Matching for Quadratic-Bilinear Approximations

Numerical Example

Moving Frontiers: Moment Matching for Quadratic-Bilinear Approximations

Numerical Example

3d Phase Space

Conclusions and Outlook

Reduction

Model reduction for nonlinear systems based on

- Carleman bilinearization and bilinear Balanced Truncation,
- QBDAE transformation and multi-moment matching
has high potential for many classes of nonlinear dynamical systems.

Current work:

- High dimensions can be dealt with using tensor product structures of coefficient matrices - already done for bilinear Krylov subspaces [Condon/Ivanov '07], for Gramian computation in progress [B./Damm].
- QBDAE is exact for many nonlinearities, e.g.
+ reaction-diffusion systems and population balances;
+ various PDEs with nonlinear convective terms $\mathbf{x} . \nabla \mathbf{x}$:
Burgers, Euler, Navier-Stokes, Kuramoto-Sivashinsky eqns;
hence, reduced-order model will have the same nonlinear structure.
- Enhance efficiency of QBDAE approach using tensor decomposition, low-rank and sparse approximations.

Conclusions and Outlook

Model reduction for nonlinear systems based on

- Carleman bilinearization and bilinear Balanced Truncation,
- QBDAE transformation and multi-moment matching
has high potential for many classes of nonlinear dynamical systems.

Thank you for your attention!

