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Model Reduction for Dynamical Systems

Dynamical Systems

Σ :

{
E ẋ(t) = f (t, x(t), u(t)), x(t0) = x0, (a)

y(t) = g(t, x(t), u(t)) (b)

with

(generalized) states x(t) ∈ Rn (E ∈ Rn×n),

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp, (b) is called output equation.

E singular ⇒ (a) is system of differential-algebraic equations (DAEs)
otherwise ⇒ (a) is system of ordinary differential equations (ODEs)
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Model Reduction for Dynamical Systems

Original System

Σ :


Eẋ(t) = f (t, x(t), u(t)),

y(t) = g(t, x(t), u(t)).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order System

bΣ :


Ê ˙̂x(t) = bf (t, x̂(t), u(t)),

ŷ(t) = bg(t, x̂(t), u(t)).

states x̂(t) ∈ Rr , r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goal:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.
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outputs ŷ(t) ∈ Rp.

Goal:
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Linear Systems

Linear, Time-Invariant (LTI) / Descriptor Systems

E ẋ(t) = Ax(t) + Bu(t), A,E ∈ Rn×n, B ∈ Rn×m,
y(t) = Cx(t) + Du(t), C ∈ Rp×n, D ∈ Rp×m.

Laplace Transformation / Frequency Domain

Application of Laplace transformation (x(t) 7→ x(s), ẋ(t) 7→ sx(s))
to linear system with x(0) = 0:

sEx(s) = Ax(s) + Bu(s), y(s) = Bx(s) + Du(s),

yields I/O-relation in frequency domain:

y(s) =
(

C (sE − A)−1B + D︸ ︷︷ ︸
=:G(s)

)
u(s)

G is the transfer function of Σ.
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Model Reduction for Linear Systems

Problem

Approximate the dynamical system

E ẋ = Ax + Bu, A,E ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rp×n, D ∈ Rp×m,

by reduced-order system

Ê ˙̂x = Âx̂ + B̂u, Â, Ê ∈ Rr×r , B̂ ∈ Rr×m,

ŷ = Ĉ x̂ + D̂u, Ĉ ∈ Rp×r , D̂ ∈ Rp×m,

of order r � n, such that

‖y − ŷ‖ = ‖Gu − Ĝ u‖ ≤ ‖G − Ĝ‖‖u‖ < tolerance · ‖u‖.

=⇒ Approximation problem: minorder (Ĝ)≤r ‖G − Ĝ‖.
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Application Areas
General assumptions

Here:

linear systems,

n� m, p,

n so large, that A(,E ) cannot be stored in main memory (RAM)
as n × n array: n > 5000, say, e.g., from

– semi-discretization of PDEs,
– finite element modeling of MEMS,
– VLSI design/circuit simulation, . . .

A(,E ) sparse or data-sparse, i.e., A(,E ) can be stored in O(n)
or O(n log n) memory locations, but matrix manipulations like
similarity transformations are too expensive (possible exception:
permutations, sparse factorizations).
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Application Areas
Simulation

Time-domain simulation

Evaluation of variation-of-constants formula

y(t) = C exp(At)

(
x0 +

∫ t

0

exp(−Aτ)Bu(τ)dτ

)
,

usually too expensive  numerical simulation, e.g., using backwards
Euler

yh(tk+1) = C (E − hk A)−1 (Exh(tk ) + hk Bu(tk+1)) + Du(tk+1),

Bottleneck: solution of (E − hk A)z = b, computation time can be
significantly reduced by using reduced-order model:

ŷh(tk+1) = Ĉ (Ê − hk Â)−1
(

Ê xh(tk ) + hk B̂u(tk+1)
)

+ D̂u(tk+1).
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Application Areas
Simulation

Frequency-domain simulation

Frequency response analysis, e.g., for Bode, Nyquist or Nichols plots,
requires evaluation of transfer function

G (ıωk ) = C (ıωk E − A)−1B + D, ωk ≥ 0, k = 1, . . . ,Nf .

Bottleneck: solution of (ıωk E − A)z = b.

Computation time can be significantly reduced by using
reduced-order model:

Ĝ (ıωk ) = Ĉ (ıωk Ê − Â)−1B̂ + D̂.
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Application Areas
Simulation

Frequency-domain simulation

Frequency response analysis, e.g., for Bode, Nyquist or Nichols plots,
requires evaluation of transfer function

G (ıωk ) = C (ıωk E − A)−1B + D, ωk ≥ 0, k = 1, . . . ,Nf .

Bottleneck: solution of (ıωk E − A)z = b.

Computation time can be significantly reduced by using
reduced-order model:

Ĝ (ıωk ) = Ĉ (ıωk Ê − Â)−1B̂ + D̂.

But: the cost for solving the linear systems in time/frequency domain
simulation may not benefit from smaller order, if efficient sparse direct
solver for full-size sparse system matrices is available.
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Application Areas
Simulation

An easy improvement

Significant reduction can be achieved by transforming (Â, Ê ) to
Hessenberg-triangular form using QZ algorithm, i.e., compute
orthogonal Q,Z such that

Q(λÊ − Â)Z = λ

[
@

@@

]
−
[
@
@

@
@@

]
≡
[
@
@

@
@@

]
.

New reduced-order system: (QÊ Z ,QÂZ ,QB̂, Ĉ Z ), linear systems of
equations

(ωÊ − Â)x = b,

(Ê − hk Â)xk+1 = Ê xk + . . . , etc.

have Hessenberg form and can thus be solved using r − 1 Givens
rotations only! (Needs Hessenberg solver inside simulator.)

For symmetric systems, further reduction can be achieved.
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Application Areas
(Optimal) Control

Feedback Controllers

A feedback controller (dynamic
compensator) is a linear system of
order N, where

input = output of plant,

output = input of plant.

Modern (LQG-/H2-/H∞-) control
design: N ≥ n.

Practical controllers require small N (N ∼ 10, say) due to

– real-time constraints,

– increasing fragility for larger N.

=⇒ reduce order of plant (n) and/or controller (N).
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Application Areas
Inverse Problems

System inversion

Assume m = p, D ∈ Rm×m invertible (generalizations possible!), then

G−1(s) = −D−1C (sE − (A− BD−1C ))−1BD−1 + D−1.

Some applications like

– inverse-based control,

– identification of source terms,

reconstruct input function from reference trajectory/measured outputs: given

Y (s), the Laplace transform of y(t), compute U(s) = G−1(s)Y (s).
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Inverse Problems

System inversion

Assume m = p, D ∈ Rm×m invertible (generalizations possible!), then

G−1(s) = −D−1C (sE − (A− BD−1C ))−1BD−1 + D−1.

Some applications like

– inverse-based control,

– identification of source terms,

reconstruct input function from reference trajectory/measured outputs: given

Y (s), the Laplace transform of y(t), compute U(s) = G−1(s)Y (s).

Goal: reduced-order transfer function Ĝ (s) such that

Û(s) = Ĝ−1(s)Y (s)

has small error

‖U− Û‖ = ‖G−1Y − Ĝ−1Y ‖ ≤ ‖G−1− Ĝ−1‖‖Y ‖ ≤ tolerance · ‖Y ‖.
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Introduction
Goals

Automatic generation of compact models.

Satisfy desired error tolerance for all admissible input signals,
i.e., want

‖y − ŷ‖ < tolerance · ‖u‖ ∀u ∈ L2(R,Rm).

=⇒ Need computable error bound/estimate!

Preserve physical properties:

– stability (poles of G in C−),
– minimum phase (zeroes of G in C−),
– passivity (“system does not generate energy”),

All this can be achieved by system-theoretic me-
thods based on balancing!
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Balancing Basics
(E = In for ease of notation)

Linear, Time-Invariant (LTI) Systems

Σ :

{
ẋ(t) = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y(t) = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.

(A,B,C ,D) is a realization of Σ (nonunique).



Model Reduction
of Large-Scale

Systems

Peter Benner

Introduction

System-Theoretic
Model Reduction

Balancing

Balanced
Truncation and
Relatives

Matrix
Equations

Numerical
Examples

Conclusions and
Outlook

Balancing Basics
(E = In for ease of notation)

Linear, Time-Invariant (LTI) Systems

Σ :

{
ẋ(t) = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y(t) = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.

(A,B,C ,D) is a realization of Σ (nonunique).

Model Reduction Based on Balancing

Given P,Q ∈ Rn×n symmetric positive definite (spd), and a
contragredient transformation T : Rn → Rn,

TPT T = T−T QT−1 = diag(σ1, . . . , σn), σ1 ≥ . . . ≥ σn ≥ 0.

Balancing Σ w.r.t. P,Q:

Σ ≡ (A,B,C ,D) 7→ (TAT−1,TB,CT−1,D) ≡ Σ.

Generalization to P,Q ≥ 0 possible: if n̂ is McMillan degree of Σ, then

T (PQ)T−1 = diag(σ1, . . . , σn̂, 0, . . . , 0).
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ẋ(t) = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y(t) = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.

(A,B,C ,D) is a realization of Σ (nonunique).

Model Reduction Based on Balancing

Given P,Q ∈ Rn×n symmetric positive definite (spd), and a
contragredient transformation T : Rn → Rn,

TPT T = T−T QT−1 = diag(σ1, . . . , σn), σ1 ≥ . . . ≥ σn ≥ 0.

Balancing Σ w.r.t. P,Q:

Σ ≡ (A,B,C ,D) 7→ (TAT−1,TB,CT−1,D) ≡ Σ.

Generalization to P,Q ≥ 0 possible: if n̂ is McMillan degree of Σ, then

T (PQ)T−1 = diag(σ1, . . . , σn̂, 0, . . . , 0).



Model Reduction
of Large-Scale

Systems

Peter Benner

Introduction

System-Theoretic
Model Reduction

Balancing

Balanced
Truncation and
Relatives

Matrix
Equations

Numerical
Examples

Conclusions and
Outlook

Balancing Basics
(E = In for ease of notation)

Basic Model Reduction Procedure

1 Given Σ ≡ (A,B,C ,D) and balancing (w.r.t. given P,Q spd)
transformation T ∈ Rn×n nonsingular, compute

(A,B,C ,D) 7→ (TAT−1,TB,CT−1,D)

=

([
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[

C1 C2

]
,D

)
2 Truncation  reduced-order model:

(Â, B̂, Ĉ , D̂) = (A11,B1,C1,D).
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Balancing Basics
(E = In for ease of notation)

Implementation: SR Method

1 Compute Cholesky (square) or full-rank (maybe rectangular,
“thin”) factors of P,Q

P = ST S , Q = RT R.

2 Compute SVD

SRT = [ U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 Set
W = RT V1Σ

−1/2
1 , V = ST U1Σ

−1/2
1 .

4 Reduced-order model is

(Â, B̂, Ĉ , D̂) := (W T AV ,W T B,CV ,D) (≡ (A11,B1,C1,D).)
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“thin”) factors of P,Q

P = ST S , Q = RT R.

2 Compute SVD

SRT = [ U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 Set
W = RT V1Σ

−1/2
1 , V = ST U1Σ

−1/2
1 .

4 Reduced-order model is

(Â, B̂, Ĉ , D̂) := (W T AV ,W T B,CV ,D) (≡ (A11,B1,C1,D).)
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Balancing for Simulation, Control
Truncate realization, balanced w.r.t. P = Q = diag(σ1, . . . , σn) = Σ,
σ1 ≥ . . . ≥ σr > σr+1 ≥ . . . σn ≥ 0 at size r .

Classical Balanced Truncation (BT) Mullis/Roberts ’76, Moore ’81

P/Q = controllability/observability Gramian of Σ ≡ (A,B,C ,D).

For asymptotically stable systems, P,Q solve dual Lyapunov equations

AP + PAT + BBT = 0, AT Q + QA + CT C = 0.

{σBT
1 , . . . , σBT

n } are the Hankel singular values (HSVs) of Σ.

Preserves stability, extends to unstable systems w/o purely imaginary
poles using frequency domain definition of the Gramians
[Zhou/Salomon/Wu ’99].

Preserves passivity for certain symmetric systems.

Computable error bound comes for free:

‖G − ĜBT‖H∞ ≤ 2
nX

j=r+1

σBT
j ,

allows adaptive choice of r !
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Balancing for Simulation, Control
Truncate realization, balanced w.r.t. P = Q = diag(σ1, . . . , σn) = Σ,
σ1 ≥ . . . ≥ σr > σr+1 ≥ . . . σn ≥ 0 at size r .

Classical Balanced Truncation (BT) Mullis/Roberts ’76, Moore ’81

P/Q = controllability/observability Gramian of Σ ≡ (A,B,C ,D).
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n } are the Hankel singular values (HSVs) of Σ.
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poles using frequency domain definition of the Gramians
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Preserves passivity for certain symmetric systems.
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Balancing for Simulation, Control
Truncate realization, balanced w.r.t. P = Q = diag(σ1, . . . , σn) = Σ,
σ1 ≥ . . . ≥ σr > σr+1 ≥ . . . σn ≥ 0 at size r .

Linear-Quadratic Gaussian Balanced Truncation (LQGBT)
Jonckheere/Silverman ’83

P/Q = controllability/observability Gramian of closed-loop system
based on LQG compensator.

P,Q solve dual algebraic Riccati equations (AREs)

0 = AP + PAT − PCT CP + BT B,

0 = AT Q + QA− QBBT Q + CT C .

Applies to unstable systems!
(Only stabilizability & detectability are required.)

Computable error bound comes for free: if G = M−1N, Ĝ = M̂−1N̂
are left coprime factorizations with stable factors, then

‖
ˆ

N M
˜
−
ˆ

N̂ M̂
˜
‖H∞ ≤ 2

nX
j=r+1

σLQG
j

“
1 + (σLQG

j )2
” 1

2
,

allows adaptive choice of r !

Yields reduced-order LQR/LQG controller for free!
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Balancing for Simulation of Passive Systems
Truncate realization, balanced w.r.t. P = Q = diag(σ1, . . . , σn) = Σ,
σ1 ≥ . . . ≥ σr > σr+1 ≥ . . . σn ≥ 0 at size r .

Positive-Real Balanced Truncation (PRBT) Green ’88

Based on positive-real equations, related to positive real
(Kalman-Yakubovich-Popov-Anderson) lemma.

For m = p, P,Q solve dual AREs

0 = ĀP + PĀT + PCT R̄−1CP + BR̄−1BT ,

0 = ĀT Q + QĀ + QBR̄−1BT Q + CT R̄−1C ,

where R̄ = D + DT , Ā = A− BR̄−1C .

Preserves stability, strict passivity; needs stability of Ā.

Computable error bound [Gugercin/Antoulas ’03,B. ’05]:

‖G − ĜPR‖H∞ ≤ 2‖R‖2‖ĜD‖∞‖GD‖∞
nX

k=r+1

σPR
k .

(GD (s) := G(s) + DT , ĜD (s) := Ĝ(s) + DT .)



Model Reduction
of Large-Scale

Systems

Peter Benner

Introduction

System-Theoretic
Model Reduction

Balancing

Balanced
Truncation and
Relatives

Matrix
Equations

Numerical
Examples

Conclusions and
Outlook

Balancing for Simulation of Passive Systems
Truncate realization, balanced w.r.t. P = Q = diag(σ1, . . . , σn) = Σ,
σ1 ≥ . . . ≥ σr > σr+1 ≥ . . . σn ≥ 0 at size r .

Positive-Real Balanced Truncation (PRBT) Green ’88

Based on positive-real equations, related to positive real
(Kalman-Yakubovich-Popov-Anderson) lemma.

For m = p, P,Q solve dual AREs
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‖G − ĜPR‖H∞ ≤ 2‖R‖2‖ĜD‖∞‖GD‖∞
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Balancing for Control, Simulation, Inverse Problems
Truncate realization, balanced w.r.t. P = Q = diag(σ1, . . . , σn) = Σ,
σ1 ≥ . . . ≥ σr > σr+1 ≥ . . . σn ≥ 0 at size r .

Balanced Stochastic Truncation (BST) Desai/Pal ’84, Green ’88

P = controllability Gramian of Σ ≡ (A,B,C ,D), i.e., solution of
Lyapunov equation AP + PAT + BBT = 0.

Q = observability Gramian of right spectral factor of power spectrum
of Σ, i.e., solution of ARE

AT
W Q + QAW + QBW (DDT )−1BT

W Q + CT (DDT )−1C = 0,

where AW := A− BW (DDT )−1C , BW := BDT + PCT .
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Balancing for Control, Simulation, Inverse Problems
Truncate realization, balanced w.r.t. P = Q = diag(σ1, . . . , σn) = Σ,
σ1 ≥ . . . ≥ σr > σr+1 ≥ . . . σn ≥ 0 at size r .

Balanced Stochastic Truncation (BST) Desai/Pal ’84, Green ’88

P = controllability Gramian of Σ ≡ (A,B,C ,D), i.e., solution of
Lyapunov equation AP + PAT + BBT = 0.

Q = observability Gramian of right spectral factor of power spectrum
of Σ, i.e., solution of ARE

AT
W Q + QAW + QBW (DDT )−1BT

W Q + CT (DDT )−1C = 0,

where AW := A− BW (DDT )−1C , BW := BDT + PCT .

Preserves stability; needs stability of AW .

Computable relative error bound [Green ’88]:

‖∆BST‖H∞ = ‖G−1(G − ĜBST)‖H∞ ≤
nY

j=r+1

1 + σBST
j

1− σBST
j

− 1,

 uniform approximation quality over full frequency range.

Note: |σBST
j | ≤ 1.
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Balancing for Control, Simulation, Inverse Problems
Truncate realization, balanced w.r.t. P = Q = diag(σ1, . . . , σn) = Σ,
σ1 ≥ . . . ≥ σr > σr+1 ≥ . . . σn ≥ 0 at size r .

Balanced Stochastic Truncation (BST) Desai/Pal ’84, Green ’88

P = controllability Gramian of Σ ≡ (A,B,C ,D), i.e., solution of
Lyapunov equation AP + PAT + BBT = 0.

Q = observability Gramian of right spectral factor of power spectrum
of Σ, i.e., solution of ARE

AT
W Q + QAW + QBW (DDT )−1BT

W Q + CT (DDT )−1C = 0,

where AW := A− BW (DDT )−1C , BW := BDT + PCT .

Zeros of G(s) are preserved in Ĝ(s). =⇒
G(s) minimum-phase =⇒ Ĝ(s) minimum-phase.

Error bound for inverse system [B. ’03]

If G(s) is square, minimal, stable, minimum-phase, nonsingular on R,
then

‖G−1 − Ĝ−1‖H∞ ≤

 
nY

j=r+1

1 + σBST
j

1− σBST
j

− 1

!
‖Ĝ−1‖H∞ .
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Balanced Truncation and Relatives

Basic Principle of Balanced Truncation

Given positive semidefinite matrices P = ST S , Q = RT R, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn ≥ 0,

and truncate corresponding realization at size r with σr > σr+1.

Other Balancing-Based Methods

Bounded-real balanced truncation (BRBT) – based on bounded
real lemma [Opdenacker/Jonckheere ’88];

H∞ balanced truncation (HinfBT) – closed-loop balancing based
on H∞ compensator [Mustafa/Glover ’91].

Both approaches require solution of dual AREs.

Frequency-weighted versions of the above approaches.
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Balanced Truncation and Relatives

Basic Principle of Balanced Truncation

Given positive semidefinite matrices P = ST S , Q = RT R, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn ≥ 0,

and truncate corresponding realization at size r with σr > σr+1.

All balancing-related methods have nice theoretical proper-
ties that make them appealing for applications in simulation,
control, optimization, inverse problems.
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Balanced Truncation and Relatives

Basic Principle of Balanced Truncation

Given positive semidefinite matrices P = ST S , Q = RT R, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn ≥ 0,

and truncate corresponding realization at size r with σr > σr+1.

All balancing-related methods have nice theoretical proper-
ties that make them appealing for applications in simulation,
control, optimization, inverse problems.

But: computationally demanding w.r.t. to memory and CPU
time; need efficient solvers for linear (Lyapunov) and nonli-
near (Riccati) matrix equations!
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Solving Large-Scale Matrix Equations
Algebraic Lyapunov and Riccati Equations

General form for A,G = G T ,W = W T ∈ Rn×n given and P ∈ Rn×n

unknown:

0 = L(Q) := AT Q + QA + W ,

0 = R(Q) := AT Q + QA− QGQ + W .

In large scale applications from semi-discretized control problems for
PDEs,

n = 103 – 106 (=⇒ 106 – 1012 unknowns!),

A has sparse representation (A = −M−1K for FEM),

G ,W low-rank with G ,W ∈ {BBT ,C T C}, where
B ∈ Rn×m, m� n, C ∈ Rp×n, p � n.

Standard (eigenproblem-based) O(n3) methods are not
applicable!
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Low-Rank Approximation
ARE 0 = AT Q + QA− QBBT Q + CC T

Consider spectrum of ARE solution (analogous for Lyapunov
equations).

Example:

Linear 1D heat equation with
point control,

Ω = [ 0, 1 ],

FEM discretization using linear
B-splines,

h = 1/100 =⇒ n = 101.

Idea: Q = QT ≥ 0 =⇒

Q = ZZ T =
n∑

k=1

λk zk zT
k ≈ Z (r)(Z (r))T =

r∑
k=1

λk zk zT
k .
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Ω = [ 0, 1 ],

FEM discretization using linear
B-splines,

h = 1/100 =⇒ n = 101.

Idea: Q = QT ≥ 0 =⇒

Q = ZZ T =
n∑

k=1

λk zk zT
k ≈ Z (r)(Z (r))T =

r∑
k=1

λk zk zT
k .
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Solving Large-Scale Matrix Equations
ADI Method for Lyapunov Equations

For A ∈ Rn×n stable, B ∈ Rn×m (w � n), consider Lyapunov
equation

AX + XAT = −BBT .

ADI Iteration: [Wachspress 1988]

(A + pk I )X(j−1)/2 = −BBT − Xk−1(AT − pk I )

(A + pk I )Xk
T = −BBT − X(j−1)/2(AT − pk I )

with parameters pk ∈ C− and pk+1 = pk if pk 6∈ R.

For X0 = 0 and proper choice of pk : lim
k→∞

Xk = X superlinear.

Re-formulation using Xk = Yk Y T
k yields iteration for Yk ...
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Solving Large-Scale Matrix Equations
ADI Method for Lyapunov Equations

For A ∈ Rn×n stable, B ∈ Rn×m (w � n), consider Lyapunov
equation

AX + XAT = −BBT .

ADI Iteration: [Wachspress 1988]

(A + pk I )X(j−1)/2 = −BBT − Xk−1(AT − pk I )

(A + pk I )Xk
T = −BBT − X(j−1)/2(AT − pk I )

with parameters pk ∈ C− and pk+1 = pk if pk 6∈ R.

For X0 = 0 and proper choice of pk : lim
k→∞

Xk = X superlinear.

Re-formulation using Xk = Yk Y T
k yields iteration for Yk ...
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Factored ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT .

Setting Xk = Yk Y T
k , some algebraic manipulations =⇒

Algorithm [Penzl ’97/’00, Li/White ’99/’02, B. 04, B./Li/Penzl ’99/’08]

V1 ←
p
−2Re (p1)(A + p1I )−1B, Y1 ← V1

FOR j = 2, 3, . . .

Vk ←
q

Re (pk )
Re (pk−1)

`
Vk−1 − (pk + pk−1)(A + pk I )−1Vk−1

´
Yk ←

ˆ
Yk−1 Vk

˜
Yk ← rrlq(Yk , τ) % column compression

At convergence, Ykmax Y T
kmax
≈ X , where

Ykmax =
[

V1 . . . Vkmax

]
, Vk = ∈ Cn×m.

Note: Implementation in real arithmetic possible by combining two steps.
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Factored ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT .

Setting Xk = Yk Y T
k , some algebraic manipulations =⇒

Algorithm [Penzl ’97/’00, Li/White ’99/’02, B. 04, B./Li/Penzl ’99/’08]

V1 ←
p
−2Re (p1)(A + p1I )−1B, Y1 ← V1

FOR j = 2, 3, . . .

Vk ←
q

Re (pk )
Re (pk−1)

`
Vk−1 − (pk + pk−1)(A + pk I )−1Vk−1

´
Yk ←

ˆ
Yk−1 Vk

˜
Yk ← rrlq(Yk , τ) % column compression

At convergence, Ykmax Y T
kmax
≈ X , where

Ykmax =
[

V1 . . . Vkmax

]
, Vk = ∈ Cn×m.

Note: Implementation in real arithmetic possible by combining two steps.
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Factored Galerkin-ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace
Z ⊂ Rn, dimZ = r .

2 Set Â := ZT AZ , B̂ := ZT B.
3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4 Use X ≈ ZX̂ZT .

Examples:

Krylov subspace methods, i.e., for m = 1:

Z = K(A,B, r) = span{B,AB,A2B, . . . ,Ar−1B}

[Jaimoukha/Kasenally ’94, Jbilou ’02–’08].

K-PIK [Simoncini ’07],

Z = K(A,B, r) ∪ K(A−1,B, r).
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Factored Galerkin-ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace
Z ⊂ Rn, dimZ = r .

2 Set Â := ZT AZ , B̂ := ZT B.
3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4 Use X ≈ ZX̂ZT .

Examples:

Krylov subspace methods, i.e., for m = 1:

Z = K(A,B, r) = span{B,AB,A2B, . . . ,Ar−1B}

[Jaimoukha/Kasenally ’94, Jbilou ’02–’08].

K-PIK [Simoncini ’07],

Z = K(A,B, r) ∪ K(A−1,B, r).
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Factored Galerkin-ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace
Z ⊂ Rn, dimZ = r .

2 Set Â := ZT AZ , B̂ := ZT B.
3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4 Use X ≈ ZX̂ZT .

Examples:

ADI subspace [B./R.-C. Li/Truhar ’08]:

Z = colspan
[

V1, . . . , Vr

]
.

Note: ADI subspace is rational Krylov subspace [J.-R. Li/White ’02].
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Factored Galerkin-ADI Iteration
Numerical example

FEM semi-discretized control problem for parabolic PDE:

optimal cooling of rail profiles ( later),

n = 20, 209, m = 7, p = 6.

Good ADI shifts

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).

Computations by Jens Saak.
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Factored Galerkin-ADI Iteration
Numerical example

FEM semi-discretized control problem for parabolic PDE:

optimal cooling of rail profiles ( later),

n = 20, 209, m = 7, p = 6.

Bad ADI shifts

CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).

Computations by Jens Saak.
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Newton’s Method for AREs
[Kleinman ’68, Mehrmann ’91, Lancaster/Rodman ’95,
B./Byers ’94/’98, B. ’97, Guo/Laub ’99]

Consider 0 = R(Q) = C T C + AT Q + QA− QBBT Q.

Frechét derivative of R(Q) at Q:

R′Q : Z → (A− BBT Q)T Z + Z (A− BBT Q).

Newton-Kantorovich method:

Qj+1 = Qj −
(
R′Qj

)−1

R(Qj ), j = 0, 1, 2, . . .

Newton’s method (with line search) for AREs

FOR j = 0, 1, . . .

1 Aj ← A− BBT Qj =: A− BKj .

2 Solve the Lyapunov equation AT
j Nj + Nj Aj = −R(Qj ).

3 Qj+1 ← Qj + tj Nj .

END FOR j
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Newton’s Method for AREs
[Kleinman ’68, Mehrmann ’91, Lancaster/Rodman ’95,
B./Byers ’94/’98, B. ’97, Guo/Laub ’99]

Consider 0 = R(Q) = C T C + AT Q + QA− QBBT Q.

Frechét derivative of R(Q) at Q:

R′Q : Z → (A− BBT Q)T Z + Z (A− BBT Q).

Newton-Kantorovich method:

Qj+1 = Qj −
(
R′Qj

)−1

R(Qj ), j = 0, 1, 2, . . .

Newton’s method (with line search) for AREs

FOR j = 0, 1, . . .

1 Aj ← A− BBT Qj =: A− BKj .

2 Solve the Lyapunov equation AT
j Nj + Nj Aj = −R(Qj ).

3 Qj+1 ← Qj + tj Nj .

END FOR j
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Low-Rank Newton-ADI for AREs

Re-write Newton’s method for AREs

AT
j Nj + Nj Aj = −R(Qj )

⇐⇒

AT
j (Qj + Nj )︸ ︷︷ ︸

=Qj+1

+ (Qj + Nj )︸ ︷︷ ︸
=Qj+1

Aj = −C T C − Qj BBT Qj︸ ︷︷ ︸
=:−Wj W T

j

Set Qj = Zj Z
T
j for rank (Zj )� n =⇒

AT
j

(
Zj+1Z T

j+1

)
+
(
Zj+1Z T

j+1

)
Aj = −Wj W

T
j

Factored Newton Iteration [B./Li/Penzl ’99/’08]

Solve Lyapunov equations for Zj+1 directly by factored ADI iteration
and use ‘sparse + low-rank’ structure of Aj .



Model Reduction
of Large-Scale

Systems

Peter Benner

Introduction

System-Theoretic
Model Reduction

Balancing

Balanced
Truncation and
Relatives

Matrix
Equations

Numerical
Examples

Conclusions and
Outlook

Low-Rank Newton-ADI for AREs

Re-write Newton’s method for AREs

AT
j Nj + Nj Aj = −R(Qj )

⇐⇒

AT
j (Qj + Nj )︸ ︷︷ ︸

=Qj+1

+ (Qj + Nj )︸ ︷︷ ︸
=Qj+1

Aj = −C T C − Qj BBT Qj︸ ︷︷ ︸
=:−Wj W T

j

Set Qj = Zj Z
T
j for rank (Zj )� n =⇒

AT
j

(
Zj+1Z T

j+1

)
+
(
Zj+1Z T

j+1

)
Aj = −Wj W

T
j

Factored Newton Iteration [B./Li/Penzl ’99/’08]

Solve Lyapunov equations for Zj+1 directly by factored ADI iteration
and use ‘sparse + low-rank’ structure of Aj .
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Solving Large-Scale Matrix Equations
Performance of Matrix Equation Solvers

Linear 2D heat equation with homogeneous Dirichlet boundary
and point control/observation.
FD discretization on uniform 150× 150 grid.
n = 22.500, m = p = 1, 10 shifts for ADI iterations.
Convergence of large-scale matrix equation solvers:
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Solving Large-Scale Matrix Equations
Performance of matrix equation solvers

Performance of Newton’s method for accuracy ∼ 1/n

grid unknowns
‖R(P)‖F

‖P‖F
it. (ADI it.) CPU (sec.)

8× 8 2,080 4.7e-7 2 (8) 0.47
16× 16 32,896 1.6e-6 2 (10) 0.49
32× 32 524,800 1.8e-5 2 (11) 0.91
64× 64 8,390,656 1.8e-5 3 (14) 7.98

128× 128 134,225,920 3.7e-6 3 (19) 79.46

Here,

Convection-diffusion equation,

m = 1 input and p = 2 outputs,

P = PT ∈ Rn×n ⇒ n(n+1)
2 unknowns.

Confirms mesh independence principle for Newton-Kleinman
[Burns/Sachs/Zietsmann 2006].
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Numerical Examples: Simulation
Microthruster (MEMS)

Co-integration of solid fuel with
silicon micro-machined system.

Goal: Ignition of solid fuel cells by
electric impulse.

Application: nano satellites.

Thermo-dynamical model, ignition
via heating an electric resistance by
applying voltage source.

Design problem: reach ignition
temperature of fuel cell w/o firing
neighboring cells.

Spatial FEM discretization of
thermo-dynamical model  linear
system, m = 1, p = 7.

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark

Courtesy of C. Rossi, LAAS-CNRS/EU project “Micropyros”.

http://www.imtek.de/simulation/benchmark
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Numerical Examples: Simulation
Microthruster (MEMS)

axial-symmetric 2D model

FEM discretization using linear (quadratic) elements  n = 4, 257
(11, 445) m = 1, p = 7.

Reduced model computed using SpaRed, modal truncation using
ARPACK, and Z. Bai’s PVL implementation.
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Numerical Examples: Simulation
Microthruster (MEMS)

axial-symmetric 2D model

FEM discretization using linear (quadratic) elements  n = 4, 257
(11, 445) m = 1, p = 7.

Reduced model computed using SpaRed, modal truncation using
ARPACK, and Z. Bai’s PVL implementation.

Relative error n = 4, 257
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Numerical Examples: Simulation
Microthruster (MEMS)

axial-symmetric 2D model

FEM discretization using linear (quadratic) elements  n = 4, 257
(11, 445) m = 1, p = 7.

Reduced model computed using SpaRed, modal truncation using
ARPACK, and Z. Bai’s PVL implementation.

Relative error n = 4, 257 Relative error n = 11, 445
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Numerical Examples: Simulation
Microthruster (MEMS)

axial-symmetric 2D model

FEM discretization using linear (quadratic) elements  n = 4, 257
(11, 445) m = 1, p = 7.

Reduced model computed using SpaRed, modal truncation using
ARPACK, and Z. Bai’s PVL implementation.

Frequency Response BT/PVL
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Numerical Examples: Simulation
Microthruster (MEMS)

axial-symmetric 2D model

FEM discretization using linear (quadratic) elements  n = 4, 257
(11, 445) m = 1, p = 7.

Reduced model computed using SpaRed, modal truncation using
ARPACK, and Z. Bai’s PVL implementation.

Frequency Response BT/PVL Frequency Response BT/MT
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Numerical Examples: Simulation
Spiral Inductor (Micro Electronics)

Passive device used for RF filters etc.

n = 1, 434, m = 1, p = 1.

Numerical rank of Gramians is 34/41.

r = 20 passive model computed by
PRBT (MorLab).

Frequency Response Analysis Absolute Error

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark

http://www.imtek.de/simulation/benchmark
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Numerical Examples: Simulation
Spiral Inductor (Micro Electronics)

Passive device used for RF filters etc.

n = 1, 434, m = 1, p = 1.

Numerical rank of Gramians is 34/41.

r = 20 passive model computed by
PRBT (MorLab).

Frequency Response Analysis Absolute Error

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark

http://www.imtek.de/simulation/benchmark
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Numerical Examples: Control
Optimal Cooling of Steel Profiles

Mathematical model: boundary control
for linearized 2D heat equation.

c · ρ ∂
∂t

x = λ∆x , ξ ∈ Ω

λ
∂

∂n
x = κ(uk − x), ξ ∈ Γk , 1 ≤ k ≤ 7,

∂

∂n
x = 0, ξ ∈ Γ7.

=⇒ m = 7, p = 6.

FEM Discretization, different models
for initial mesh (n = 371),
1, 2, 3, 4 steps of mesh refinement ⇒
n = 1357, 5177, 20209, 79841.

2

3
4

9 10

1516

22

34

43

47

51

55

60 63

83
92

Source: Physical model: courtesy of Mannesmann/Demag.

Math. model: Tröltzsch/Unger ’99/’01, Penzl ’99, Saak ’03.
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Numerical Examples: Control
Optimal Cooling of Steel Profiles

n = 1357, Absolute Error

– BT model computed with sign
function method,

– MT w/o static condensation,
same order as BT model.

n = 79841, Absolute error

– BT model computed using
SpaRed,

– computation time: 8 min.
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Numerical Examples: Control
2D Heat Control

FD discretized linear 2D heat equation with homogeneous Dirichlet
boundary and point control/observation.
n = 22.500, m = p = 1.
Computed reduced-order model (BT): r = 6, BT error bound
δ = 1.7 · 10−3.
Solve LQR problem: quadratic cost functional, solution is linear state
feedback.

Transfer function approximation
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Numerical Examples: Control
2D Heat Control

FD discretized linear 2D heat equation with homogeneous Dirichlet
boundary and point control/observation.
n = 22.500, m = p = 1.
Computed reduced-order model (BT): r = 6, BT error bound
δ = 1.7 · 10−3.
Solve LQR problem: quadratic cost functional, solution is linear state
feedback.

Computed controls and outputs (implicit Euler)
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Numerical Examples: Control
2D Heat Control

FD discretized linear 2D heat equation with homogeneous Dirichlet
boundary and point control/observation.
n = 22.500, m = p = 1.
Computed reduced-order model (BT): r = 6, BT error bound
δ = 1.7 · 10−3.
Solve LQR problem: quadratic cost functional, solution is linear state
feedback.

Errors in controls and outputs
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Numerical Examples: Control
BT vs. LQG BT

Boundary control problem for 2D heat flow in copper on rectangular
domain; control acts on two sides via Robins BC.

FDM  n = 4496, m = 2; 4 sensor locations  p = 4.

Numerical ranks of BT Gramians are 68 and 124, respectively, for
LQG BT both have rank 210.

Computed reduced-order model: r = 10.

Source: COMPle ib v1.1, www.compleib.de.

www.compleib.de
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Numerical Examples: Control
BT vs. LQG BT

Boundary control problem for 2D heat flow in copper on rectangular
domain; control acts on two sides via Robins BC.

FDM  n = 4496, m = 2; 4 sensor locations  p = 4.

Numerical ranks of BT Gramians are 68 and 124, respectively, for
LQG BT both have rank 210.

Computed reduced-order model: r = 10.

Source: COMPle ib v1.1, www.compleib.de.

www.compleib.de
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Numerical Examples: Control
BT vs. LQG BT

Boundary control problem for 2D heat flow in copper on rectangular
domain; control acts on two sides via Robins BC.

FDM  n = 4496, m = 2; 4 sensor locations  p = 4.

Numerical ranks of BT Gramians are 68 and 124, respectively, for
LQG BT both have rank 210.

Computed reduced-order model: r = 10.

Source: COMPle ib v1.1, www.compleib.de.

www.compleib.de
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Conclusions and Outlook

Main message:

Balanced truncation and family are applicable to large-scale systems.

(If efficient numerical algorithms are employed.)

Applications: nanoelectronics, microsystems technology, optimal
control, machine tool design, systems biology, . . .

Efficiency of numerical algorithms can be further enhanced, several
details require deeper investigation.

Algorithms for data-sparse systems using formatted arithmetic for
H-matrices [Baur/B. ’06/’08].

Application to 2nd order systems  talk of Jens Saak.

Extension to descriptor systems possible.
[Stykel since ’02, B. 03/’08, Freitas/Martins/Rommes ’08,

Heinkenschloß/Sorensen/Sun ’06/’08].

Combination of BT with sparse grid interpolation for parametric
model reduction [Baur/B. ’08/’09].



Model Reduction
of Large-Scale

Systems

Peter Benner

Introduction

System-Theoretic
Model Reduction

Numerical
Examples

Conclusions and
Outlook

Conclusions and Outlook

Main message:

Balanced truncation and family are applicable to large-scale systems.

(If efficient numerical algorithms are employed.)

Applications: nanoelectronics, microsystems technology, optimal
control, machine tool design, systems biology, . . .

Efficiency of numerical algorithms can be further enhanced, several
details require deeper investigation.

Extension to nonlinear systems employing Carleman bilinearization
and tensor product structure of Krylov subspaces in combination with
balanced truncation for bilinear systems [B./Damm ’09] quite
promising, in particular for polynomial nonlinearities as often
encountered in biological systems.

Theory and numerical algorithm for application to stochastic systems:
[B./Damm ’09]; need algorithmic enhancements for really large-scale
problems.
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Support

BMBF research network SyreNe

System Reduction for Nanoscale 
IC Design

TU Berlin (T. Stykel, A. Steinbrecher)
TU Braunschweig (H. Faßbender, J. Amorocho,

M. Bollhöfer, A. Eppler)
TU Chemnitz (P. Benner, A. Schneider, T. Mach)
U Hamburg (M. Hinze, M. Vierling, M. Kunkel)
FhG-ITWM Kaiserslautern (P. Lang, O. Schmidt)
Infineon Technologies AG (P. Rotter)
NEC Europe Ltd. (A. Basermann, C. Neff)
Qimonda AG (G. Denk)
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Support

O-MOORE-NICE!
Operational model order reduction for nanoscale IC electronics

EU support via Marie Curie Host Fellowships for the Transfer of Knowledge
(ToK) Industry-Academia Partnership Scheme.

TU Chemnitz (P. Benner, M. Striebel)
TU Eindhoven (W. Schilders, D. Harutyunyan)
U Antwerpen (T. Dhaene, L. Di Tommasi)
NXP Semiconductors (J. ter Maten, J. Rommes)
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DFG Projects

Automatic, Parameter-Preserving Model Reduction for
Applications in Microsystems Technology.
Jointly with Jan Gerrit Korvink (IMTEK/U Freiburg and FRIAS).

Integrated Simulation of the System ”Machine Tool – Drive
System – Stock Removal Process” Using Reduced-Order
Structural FE Models.
Jointly with Michael Zäh (iwb/TU München) and Heike
Faßbender (ICM/TU Braunschweig).
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