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Distributed Parameter Systems
Parabolic PDEs as infinite-dimensional systems

Given Hilbert spaces

X – state space,

U – control space,

Y – output space,

and linear operators

A : dom(A) ⊂ X → X ,
B : U → X ,
C : X → Y.

Linear Distributed Parameter System (DPS)

Σ :

{
ẋ = Ax + Bu,
y = Cx,

x(0) = x0 ∈ X ,

i.e., abstract evolution equation together with observation equation.
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Parabolic Systems

The state x = x(t, ξ) is a (weak) solution of a parabolic PDE with
(t, ξ) ∈ [0,T ]× Ω, Ω ⊂ Rd :

∂tx −∇(a(ξ).∇x) + b(ξ).∇x + c(ξ)x = Bpc(ξ)u(t), ξ ∈ Ω, t > 0,

with initial and boundary conditions

α(ξ)x + β(ξ)∂ηx = Bbc(ξ)u(t), ξ ∈ ∂Ω, t ∈ [0,T ],
x(0, ξ) = x0(ξ) ∈ X , ξ ∈ Ω,

y(t) = C (ξ)x , ξ ∈ Ω, t ∈ [0,T ].

Bpc = 0 =⇒ boundary control problem
Bbc = 0 =⇒ point control problem
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Infinite-Dimensional Systems

Basic assumption:

The system Σ(A,B,C ) has a transfer function

G = C(sI− A)−1B ∈ L∞.

If, in addition, A generates an exponentially stable C0-semigroup, then G
is in the Hardy space H∞.
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Infinite-Dimensional Systems

Basic assumption:

The system Σ(A,B,C ) has a transfer function

G = C(sI− A)−1B ∈ L∞.

If, in addition, A generates an exponentially stable C0-semigroup, then G
is in the Hardy space H∞.

Possible settings:
1 Basic setting in infinite-dimensional system theory:

A generates C0-semigroup T (t) on X ;
(A,B) is exponentially stabilizable, i.e., there exists F : dom(A) 7→ U
s.t. A + BF generates an exponentially stable C0-semigroup S(t);
(A,C) is exponentially detectable, i.e., (A∗,C∗) is exponentially
stabilizable;
B,C are finite-rank and bounded, e.g., U = Rm, Y = Rp.

2 Σ(A,B,C) is Pritchard-Salomon, allows certain unboundedness of B,C.

3 . . . ?

Max Planck Institute Magdeburg Peter Benner, MOR for Parabolic Systems 5/25



DPS Balanced Trunction Rational Interpolation Conclusions and Open Problems

(Exponentially) Stable Systems

G is the Laplace transform of

h(t) := CT (t)B

and symbol of the Hankel operator H : L2(0,∞; Rm) 7→ L2(0,∞; Rp),

(Hu)(t) :=

∫ ∞
0

h(t + τ)u(τ) dτ.

H is compact with countable many singular values σj , j = 1, . . . ,∞,
called the Hankel singular values (HSVs) of G. Moreover,∑∞

j=1
σj <∞.

HSVs are system invariants, used for approximation similar to truncated SVD.

The 2-induced operator norm is the H∞ norm; here,

‖G‖H∞ =
∑∞

j=1
σj .
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Controller Design for Parabolic Systems

Designing a controller for parabolic control systems requires
semi-discretization in space, control design for n-dim. system.

Feedback Controllers

A feedback controller (dynamic
compensator) is a linear system of
order N, where

input = output of plant,

output = input of plant.

Modern (LQG-/H2-/H∞-) control
design: N ≥ n

Real-time control is only possible with controllers of low complexity.

 Modern feedback control for parabolic systems w/o model reduction
impossible due to large scale of discretized systems.
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Control-Oriented Model Reduction?

If reduced-order model is to be used in (online) feedback control, the
input function u(t) is unknown a priori.

=⇒ Reduced-order models computed using snapshot-based methods or
training sets (POD, RBM, TWPL, ANN, . . . ) might not catch dynamics
induced by the control signals!

Discretizing the control space and including snapshots for all/many basis
functions of Uh might work, but can become quite a challenging
computation.

(Possible way out: cheap basis updates in online phase. . . )

Max Planck Institute Magdeburg Peter Benner, MOR for Parabolic Systems 8/25



DPS Balanced Trunction Rational Interpolation Conclusions and Open Problems

Control-Oriented Model Reduction?

If reduced-order model is to be used in (online) feedback control, the
input function u(t) is unknown a priori.

=⇒ Reduced-order models computed using snapshot-based methods or
training sets (POD, RBM, TWPL, ANN, . . . ) might not catch dynamics
induced by the control signals!

Discretizing the control space and including snapshots for all/many basis
functions of Uh might work, but can become quite a challenging
computation.

(Possible way out: cheap basis updates in online phase. . . )

Max Planck Institute Magdeburg Peter Benner, MOR for Parabolic Systems 8/25



DPS Balanced Trunction Rational Interpolation Conclusions and Open Problems

Control-Oriented Model Reduction?

If reduced-order model is to be used in (online) feedback control, the
input function u(t) is unknown a priori.

=⇒ Reduced-order models computed using snapshot-based methods or
training sets (POD, RBM, TWPL, ANN, . . . ) might not catch dynamics
induced by the control signals!

Discretizing the control space and including snapshots for all/many basis
functions of Uh might work, but can become quite a challenging
computation.

(Possible way out: cheap basis updates in online phase. . . )

=⇒ Aim at input-independent/simulation-free methods!
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Balanced Truncation
Balanced Realization

Definition: [Curtain/Glover/(Partington) 1986,1988 ]

For G ∈ H∞, Σ(A,B,C) is a balanced realization of G if the
controllability and observability Gramians, given by the unique
self-adjoint positive semidefinite solutions of the Lyapunov equations

APz + PA∗z + BB∗z = 0 ∀ z ∈ dom(A∗)

A∗Qz + QAz + C∗Cz = 0 ∀ z ∈ dom(A)

satisfy P = Q = diag(σj) =: Σ.

Max Planck Institute Magdeburg Peter Benner, MOR for Parabolic Systems 9/25



DPS Balanced Trunction Rational Interpolation Conclusions and Open Problems

Balanced Truncation
Model Reduction by Truncation

Abstract balanced truncation [Glover/Curtain/Partington 1988]

Given balanced realization with

P = Q = diag(σj) = Σ,

choose r with σr > σr+1 and partition Σ(A,B,C) according to

Pr = Qr = diag(σ1, . . . , σr ),
so that

A =

[
Ar ∗
∗ ∗

]
, B =

[
Br

∗

]
, C =

[
Cr ∗

]
,

then the reduced-order model is the stable system Σr (Ar ,Br ,Cr ) with
transfer function Gr satisfying

‖G− Gr‖H∞ ≤ 2
∑∞

j=r+1
σj .
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LQG Balanced Truncation
LQG Balanced Realization

Balanced truncation only applicable for stable systems.
Now: unstable systems

Definition: [Curtain 2003].

For G ∈ L∞, Σ(A,B,C) is an LQG-balanced realization of G if the
unique self-adjoint, positive semidefinite, stabilizing solutions of the
operator Riccati equations

APz + PA∗z− PC∗CPz + BB∗z = 0 for z ∈ dom(A∗)

A∗Qz + QAz−QBB∗Qz + C∗Cz = 0 for z ∈ dom(A)

are bounded and satisfy P = Q = diag(γj) =: Γ.
(P stabilizing ⇔ A− PC∗C generates exponentially stable C0-semigroup.)
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LQG Balanced Truncation
Model Reduction by Truncation

Abstract LQG Balanced Truncation [Curtain 2003]

Given balanced realization with

P = Q = diag(γj) = Γ,
choose r with γr > γr+1 and partition Σ(A,B,C) according to

Pr = Qr = diag(γ1, . . . , γr ),
so that

A =

[
Ar ∗
∗ ∗

]
, B =

[
Br

∗

]
, C =

[
Cr ∗

]
,

then the reduced-order model is the LQG balanced system Σr (Ar ,Br ,Cr )
with transfer function Gr satisfying

“‖G− Gr‖L∞” ≤ 2
∞∑

j=r+1

γj√
1+γ2

j

.

Max Planck Institute Magdeburg Peter Benner, MOR for Parabolic Systems 12/25



DPS Balanced Trunction Rational Interpolation Conclusions and Open Problems

Computation of Reduced-Order Systems

Spatial discretization (FEM, FDM)  finite-dimensional system on
Xn ⊂ X with dimXn = n:

ẋ = Ax + Bu, x(0) = x0,

y = Cx ,

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, with corresponding

algebraic Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0,

algebraic Riccati equations (AREs)

0 = Rf (P) := AP + PAT − PCTCP + BBT ,

0 = Rc(Q) := ATQ + QA− QBBTQ + CTC .

Max Planck Institute Magdeburg Peter Benner, MOR for Parabolic Systems 13/25



DPS Balanced Trunction Rational Interpolation Conclusions and Open Problems

Computation of Reduced-Order Systems

Spatial discretization (FEM, FDM)  finite-dimensional system on
Xn ⊂ X with dimXn = n:
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Computation of Reduced-Order Systems
Convergence of Gramians

Theorem [Curtain 2003]

Under given assumptions for Σ(A,B,C), the solutions of the algebraic
Lyapunov equations on Xn converge in the nuclear norm to the solutions
of the corresponding operator equations and the transfer functions
converge in the gap topology if the n-dimensional approximations satisfy
the assumptions:

∃ orthogonal projector Πn : X 7→ Xn such that

Πnz→ z (n→∞) ∀z ∈ X , B = ΠnB, C = C|Xn .

For all z ∈ X and n→∞,

eAtΠnz→ T (t)z, (eAt)∗Πnz→ T (t)∗z,

uniformly in t on bounded intervals.

A is uniformly exponentially stable.

Max Planck Institute Magdeburg Peter Benner, MOR for Parabolic Systems 14/25
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Computation of Reduced-Order Systems
Convergence of Gramians

Theorem [Curtain 2003]

Under given assumptions for Σ(A,B,C), the stabilizing solutions of the
algebraic Riccati equations on Xn converge in the nuclear norm to the
solutions of the corresponding operator equations and the transfer
functions converge in the gap topology if the n-dimensional
approximations satisfy the assumptions:

∃ orthogonal projector Πn : X 7→ Xn such that

Πnz→ z (n→∞) ∀z ∈ X , B = ΠnB, C = C|Xn .

For all z ∈ X and n→∞,

eAtΠnz→ T (t)z, (eAt)∗Πnz→ T (t)∗z,

uniformly in t on bounded intervals.

(A,B,C ) is uniformly exponentially stabilizable and detectable.
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Computation of Reduced-Order Systems
Computation of Reduced-Order Systems from Gramians

1 Given the Gramians P,Q of the n-dimensional system from either
the Lyapunov equations or AREs in factorized form

P = STS , Q = RTR,

compute SVD

SRT = [ U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

2 Set W = RTV1Σ
−1/2
1 and V = STU1Σ

−1/2
1 .

3 Then the reduced-order model is

(Ar ,Br ,Cr ) = (W TAV ,W TB,CV ).

Thus, need to solve large-scale matrix equations—but need only factors!
 Efficient solvers available:

– (Galerkin-)ADI/Newton-ADI (B., Li, Penzl, Saak,. . . 1998–2011),
– K-PIK, rational Lanczos (Druskin, Heyouni, Jbilou, Simoncini,. . . 2006–2011).

Max Planck Institute Magdeburg Peter Benner, MOR for Parabolic Systems 15/25
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Error Bounds

For control applications, want to estimate/bound

‖y − yr‖L2(0,T ;Rm) or ‖y(t)− yr (t)‖2.

Error bound includes approximation errors caused by

Galerkin projection/spatial FEM discretization,

model reduction.

Ultimate goal

Balance the discretization and model reduction errors vs. each other in
fully adaptive discretization scheme.

Max Planck Institute Magdeburg Peter Benner, MOR for Parabolic Systems 16/25
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Output Error Bound

Corollary

Assume C ∈ L(X ,Rp) bounded (c := ‖C‖), C = C|Xn , Xn ⊂ X . Then:

Balanced truncation:

‖y − yr‖L2(0,T ;Rp) ≤ c‖x− x‖L2(0,T ;X ) + 2‖u‖L2(0,T ;Rp)

∑n
j=r+1 σj .

LQG balanced truncation:

‖y − yr‖L2(0,T ;Rp) ≤ c‖x− x‖L2(0,T ;X ) + 2‖u‖L2(0,T ;Rp)

∑n
j=r+1

γj√
1+γ2

j

.

Max Planck Institute Magdeburg Peter Benner, MOR for Parabolic Systems 17/25
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Numerical Results
Model Reduction Performance

Linear 2D heat equation with homogeneous Dirichlet boundary and
point control/observation.

FD discretization on uniform 150× 150 grid.

n = 22.500, m = p = 1, 10 shifts for ADI iterations.

Convergence of large-scale matrix equation solvers:

Max Planck Institute Magdeburg Peter Benner, MOR for Parabolic Systems 18/25
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Numerical Results
Model Reduction Performance

Numerical ranks of Gramians are 31 and 26, respectively.

Computed reduced-order model (BT): r = 6 (σ7 = 5.8 · 10−4),

BT error bound δ = 1.7 · 10−3.

Max Planck Institute Magdeburg Peter Benner, MOR for Parabolic Systems 18/25
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Numerical Results
Model Reduction Performance

Computed reduced-order model (BT): r = 6, BT error bound
δ = 1.7 · 10−3.

Solve LQR problem: quadratic cost functional, solution is linear
state feedback.

Computed controls and outputs (implicit Euler):

Max Planck Institute Magdeburg Peter Benner, MOR for Parabolic Systems 18/25
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Numerical Results
Model Reduction Performance

Computed reduced-order model (BT): r = 6, BT error bound
δ = 1.7 · 10−3.

Solve LQR problem: quadratic cost functional, solution is linear
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Errors in controls and outputs:
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Model Reduction Based on Rational Interpolation
Short Introduction

Computation of reduced-order model by projection

Given a linear (descriptor) system Eẋ = Ax + Bu, y = Cx with transfer
function G(s) = C(sE − A)−1B, a reduced-order model is obtained using
projection matrices V ,W ∈ Rn×r with W TV = Ir
( (VW T )2 = VW T is projector) by computing

Ê = W TEV , Â = W TAV , B̂ = W TB, Ĉ = CV .

Petrov-Galerkin-type (two-sided) projection: W 6= V ,

Galerkin-type (one-sided) projection: W = V .
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Model Reduction Based on Rational Interpolation
Short Introduction

Computation of reduced-order model by projection

Given a linear (descriptor) system Eẋ = Ax + Bu, y = Cx with transfer
function G(s) = C(sE − A)−1B, a reduced-order model is obtained using
projection matrices V ,W ∈ Rn×r with W TV = Ir
( (VW T )2 = VW T is projector) by computing

Ê = W TEV , Â = W TAV , B̂ = W TB, Ĉ = CV .

Petrov-Galerkin-type (two-sided) projection: W 6= V ,

Galerkin-type (one-sided) projection: W = V .

Rational Interpolation/Moment-Matching

Choose V ,W such that

G(sj) = Ĝ(sj), j = 1, . . . , k,

and
d i

ds i
G(sj) =

d i

ds i
Ĝ(sj), i = 1, . . . ,Kj , j = 1, . . . , k.
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Model Reduction Based on Rational Interpolation
Short Introduction

Theorem (simplified) [Grimme 1997, Villemagne/Skelton 1987]

If

span
{

(s1E − A)−1B, . . . , (skE − A)−1B
}
⊂ Ran(V ),

span
{

(s1E − A)−TCT , . . . , (skE − A)−TCT
}
⊂ Ran(W ),

then

G (sj) = Ĝ (sj),
d

ds
G (sj) =

d

ds
Ĝ (sj), for j = 1, . . . , k.
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⊂ Ran(V ),
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{

(s1E − A)−TCT , . . . , (skE − A)−TCT
}
⊂ Ran(W ),

then

G (sj) = Ĝ (sj),
d

ds
G (sj) =

d

ds
Ĝ (sj), for j = 1, . . . , k.

Remarks:

computation of V ,W from rational Krylov subspaces, e.g.,

– dual rational Arnoldi/Lanczos [Grimme ’97],

– Iterative Rational Krylov-Algo. [Antoulas/Beattie/Gugercin ’07].

Max Planck Institute Magdeburg Peter Benner, MOR for Parabolic Systems 20/25



DPS Balanced Trunction Rational Interpolation Conclusions and Open Problems

Model Reduction Based on Rational Interpolation
Short Introduction
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then

G (sj) = Ĝ (sj),
d
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G (sj) =

d

ds
Ĝ (sj), for j = 1, . . . , k.

Remarks:

using Galerkin/one-sided projection yields G(sj) = Ĝ(sj), but in general

d

ds
G(sj) 6=

d

ds
Ĝ(sj).
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Short Introduction

Theorem (simplified) [Grimme 1997, Villemagne/Skelton 1987]

If

span
{

(s1E − A)−1B, . . . , (skE − A)−1B
}
⊂ Ran(V ),

span
{

(s1E − A)−TCT , . . . , (skE − A)−TCT
}
⊂ Ran(W ),

then

G (sj) = Ĝ (sj),
d

ds
G (sj) =

d

ds
Ĝ (sj), for j = 1, . . . , k.

Remarks:

k = 1, standard Krylov subspace(s) of dimension K  moment-matching meth-
ods/Padé approximation,

d i

ds i
G(s1) =

d i

ds i
Ĝ(s1), i = 0, . . . ,K − 1(+K).
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Moment Matching using Quadratic-Bilinear Models

Key observation: Many nonlinear dynamics can be modeled by
quadratic bilinear differential algebraic equations (QBDAEs), i.e.

Eẋ = A1x + A2x ⊗ x + Nxu + bu,

y = cx ,

where E ,A1,N ∈ Rn×n,A2 ∈ Rn×n2

, b, cT ∈ Rn.

Combination of quadratic and bilinear control systems.

Variational analysis allows characterization of input-output behavior
via generalized transfer functions, e.g.

H1(s) = c (sE − A1)−1b| {z }
G(s)

,

H2(s1, s2) =
1

2
c ((s1 + s2) E − A1)−1 [A2(G(s1)⊗ G(s2) + G(s2)⊗ G(s1))

+N (G(s1) + G(s2))]
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Moment Matching using Quadratic-Bilinear Models

Which systems can be transformed?

Theorem [Gu 2009]

Assume that the state equation of a nonlinear system Σ is given by

ẋ = a0x + a1g1(x) + . . .+ akgk(x) + bu,

where gi (x) : Rn → Rn are compositions of rational, exponential,
logarithmic, trigonometric or root functions, respectively.
Then Σ can be transformed into a quadratic bilinear differential algebraic
equation of dimension N > n.

Transformation is not unique.

Original system has to be increased before reduction is possible.

Minimal dimension N?
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Moment Matching using Quadratic-Bilinear Models

Example

Consider the following two dimensional nonlinear control system:

ẋ1 = exp(−x2) ·
q

x2
1 + 1,

ẋ2 = sin x2 + u.

Introduce useful new state variables, e.g.

x3 := exp(−x2), x4 :=
q

x2
1 + 1, x5 := sin x2, x6 := cos x2.

System can be replaced by a QBDAE of dimension 6:

ẋ1 = x3 · x4, ẋ2 = x5 + u,

ẋ3 = −x3 · (x5 + u), ẋ4 =
2 · x1 · x3 · x4

2 · x4
= x1 · x3,

ẋ5 = x6 · (x5 + u), ẋ6 = −x5 · (x5 + u).
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ẋ3 = −x3 · (x5 + u), ẋ4 =
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ẋ5 = x6 · (x5 + u), ẋ6 = −x5 · (x5 + u).

Max Planck Institute Magdeburg Peter Benner, MOR for Parabolic Systems 21/25



DPS Balanced Trunction Rational Interpolation Conclusions and Open Problems

Moment Matching using Quadratic-Bilinear Models

Example

Consider the following two dimensional nonlinear control system:
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ẋ3 = −x3 · (x5 + u), ẋ4 =
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Moment Matching using Quadratic-Bilinear Models

Multi-Moment-Matching for QBDAEs

Construct reduced order model by projection:

Ê = ZTEZ , Â1 = ZTA1Z , N̂ = ZTNZ ,

Â2 = ZTA2Z ⊗ Z , b̂ = ZTb, ĉ = cZ

Approximate values and derivatives (”multi-moments”) of transfer
functions about an expansion point σ using Krylov spaces, e.g.

span{V } = K6 (AσE ,Aσb)

span{W1} = K3 (A2σE ,A2σ(A2V1 ⊗ V1 − N1V1))

span{W2} = K2 (A2σE ,A2σ(A2(V2 ⊗ V1 + V1 ⊗ V2)− N1V2))

span{W3} = K1 (A2σE ,A2σ(A2(V2 ⊗ V2 + V2 ⊗ V2)))

span{W4} = K1 (A2σE ,A2σ(A2(V3 ⊗ V1 + V1 ⊗ V3)− N1V3)) ,

with Aσ = (A1 − σE)−1 and Vi denoting the i-th column of V ,
span Z = span [V ,W1, . . .].
→ derivatives match up to order 5 (H1) and 2 (H2), respectively.
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Numerical Examples
FitzHugh-Nagumo System

Simple model for neuron (de-)activation.

εvt(x , t) = ε2vxx(x , t) + f (v(x , t))− w(x , t) + g ,

wt(x , t) = hv(x , t)− γw(x , t) + g ,

with f (v) = v(v − 0.1)(1− v) and initial and boundary conditions

v(x , 0) = 0, w(x , 0) = 0, x ∈ [0, 1]

vx(0, t) = −i0(t), vx(1, t) = 0, t ≥ 0,

where
ε = 0.015, h = 0.5, γ = 2, g = 0.05, i0(t) = 50000t3 exp(−15t).

[Chaturantabut/Sorensen 2009]

Parameter g handled as an additional input.

Original state dimension n = 2 · 400, QBDAE dimension N = 3 · 400,
reduced QBDAE dimension r = 26, chosen expansion point σ = 1.
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Numerical Examples
FitzHugh-Nagumo System

3d Phase Space

[B./Breiten 2010]
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Numerical Examples
Jet Diffusion Flame Model [Galbally/Willcox 2009]

Consider a nonlinear PDE arising in jet-diffusion flame models

∂w

∂t
+ U · ∇w −∇(κ∇w) + f (w) = 0, (x , t) ∈ (0, 1)× (0,T ),

with Arrhenius type term f (w) = Aw(c − w)e−
E

d−w and constant param-
eters U,A,E , c , d , κ.
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Numerical Examples
Jet Diffusion Flame Model [Galbally/Willcox 2009]

Consider a nonlinear PDE arising in jet-diffusion flame models

∂w

∂t
+ U · ∇w −∇(κ∇w) + f (w) = 0, (x , t) ∈ (0, 1)× (0,T ),

with Arrhenius type term f (w) = Aw(c − w)e−
E

d−w and constant param-
eters U,A,E , c , d , κ.

Initial and boundary conditions:

w(x , 0) = 0, x ∈ [0, 1],

w(0, t) = u(t), t ≥ 0,

w(1, t) = 0, t ≥ 0,

wcenter =
[
0 1 0

]
.

Figure: [Kurose]
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Numerical Examples
Jet Diffusion Flame Model [Galbally/Willcox 2009]

Consider a nonlinear PDE arising in jet-diffusion flame models

∂w

∂t
+ U · ∇w −∇(κ∇w) + f (w) = 0, (x , t) ∈ (0, 1)× (0,T ),

with Arrhenius type term f (w) = Aw(c − w)e−
E

d−w and constant param-
eters U,A,E , c , d , κ.

After spatial discretization of order k , define new state variables

zi := − β

δ − wi
, qi := ezi ,

and iteratively construct a system of QBDAEs
 state dimension increases to n = 8 · k .
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Numerical Examples
Jet Diffusion Flame Model [Galbally/Willcox 2009]

Transient responses for k = 1500 and u(t) = e−t
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Conclusions and Open Problems
Linear Control Systems

BT (and LQG) BT perform well for model reduction of (as of yet, simple)
parabolic PDE control problems.

Robust control design can be based on LQG BT (see Curtain 2004).

State reconstruction using (LGQ)BT modes possible.

Need more numerical tests.

Open Problems:

Optimal combination of FEM and BT error estimates/bounds — use
convergence of Hankel singular values for control of mesh
refinement?
Application to nonlinear problems: for some semilinear problems, BT
approaches seem to work well.
Rather than Discretize-then-reduced use reduce-then-discretize?

[Reis 2010:] BT in function space. Extension to LQG BT?

Interpolation in function space:

G = C(sk I− A)−1B = Ĉ(sk I− Â)−1B̂ =: Ĝ, k = 1, . . . , r ,

where Â : Xr → Xr , Xr ⊂ X , etc.
 solve r Helmholtz-type problems L(x)− skx = −Bu.

Max Planck Institute Magdeburg Peter Benner, MOR for Parabolic Systems 24/25



DPS Balanced Trunction Rational Interpolation Conclusions and Open Problems

Conclusions and Open Problems
Linear Control Systems

BT (and LQG) BT perform well for model reduction of (as of yet, simple)
parabolic PDE control problems.

Robust control design can be based on LQG BT (see Curtain 2004).

State reconstruction using (LGQ)BT modes possible.

Need more numerical tests.

Open Problems:

Optimal combination of FEM and BT error estimates/bounds — use
convergence of Hankel singular values for control of mesh
refinement?
Application to nonlinear problems: for some semilinear problems, BT
approaches seem to work well.
Rather than Discretize-then-reduced use reduce-then-discretize?

[Reis 2010:] BT in function space. Extension to LQG BT?

Interpolation in function space:

G = C(sk I− A)−1B = Ĉ(sk I− Â)−1B̂ =: Ĝ, k = 1, . . . , r ,
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Linear Control Systems

BT (and LQG) BT perform well for model reduction of (as of yet, simple)
parabolic PDE control problems.

Robust control design can be based on LQG BT (see Curtain 2004).

State reconstruction using (LGQ)BT modes possible.

Need more numerical tests.

Open Problems:

Optimal combination of FEM and BT error estimates/bounds — use
convergence of Hankel singular values for control of mesh
refinement?
Application to nonlinear problems: for some semilinear problems, BT
approaches seem to work well.
Rather than Discretize-then-reduced use reduce-then-discretize?

[Reis 2010:] BT in function space. Extension to LQG BT?
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Conclusions and Open Problems
Nonlinear Control Systems

QBDAE approach allows input-independent reduced-order models, no
training set/snapshots needed.

QBDAE approach very suitable for systems with homogeneous
nonlinearity, but also possible for other types of problems (e.g., biogas
reactor model at MPI Magdeburg).

Work in Progress:

Computation of Krylov spaces involves tensor products, requires efficient
tensor calculus.

Two-sided projection methods (interpolate twice as many derivatives with
same reduced order).

Optimal expansion points (greedy-type algorithm) (with B. Haasdonk).

Automatic generation of QBDAE system using computer algebra?

Optimal QBDAE model?
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