Peter Benner

Max Planck Institute for Dynamics of Complex Technical Systems
Computational Methods in Systems and Control Theory
Magdeburg

Overview

(1) Distributed Parameter Systems

- Parabolic Systems
- Infinite-Dimensional Systems
(2) Model Reduction Based on Balancing
- Balanced Truncation
- LQG Balanced Truncation
- Computation of Reduced-Order Systems
- Numerical Results
(3) Model Reduction Based on Rational Interpolation
- Short Introduction
- Moment Matching using Quadratic-Bilinear Models
- Numerical Examples
(4) Conclusions and Open Problems

Distributed Parameter Systems

Parabolic PDEs as infinite-dimensional systems
Given Hilbert spaces

$$
\begin{aligned}
& \mathcal{X} \text { - state space, } \\
& \mathcal{U} \text { - control space, } \\
& \mathcal{Y} \text { - output space, }
\end{aligned}
$$

and linear operators

$$
\begin{aligned}
& \text { A: } \quad \operatorname{dom}(\mathbf{A}) \subset \mathcal{X} \rightarrow \mathcal{X}, \\
& \text { B: } \mathcal{U} \rightarrow \mathcal{X}, \\
& \mathbf{C}: \mathcal{X} \rightarrow \mathcal{Y} .
\end{aligned}
$$

Linear Distributed Parameter System (DPS)

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}=\mathbf{A} \mathbf{x}+\mathbf{B u}, \\
y=\mathbf{x},
\end{array} \quad x(0)=x_{0} \in \mathcal{X},\right.
$$

i.e., abstract evolution equation together with observation equation.

Distributed Parameter Systems

Parabolic PDEs as infinite-dimensional systems
Given Hilbert spaces

$$
\begin{aligned}
& \mathcal{X} \text { - state space, } \\
& \mathcal{U} \text { - control space, } \\
& \mathcal{Y} \text { - output space, }
\end{aligned}
$$

and linear operators

$$
\begin{aligned}
& \mathbf{A}: \quad \operatorname{dom}(\mathbf{A}) \subset \mathcal{X} \rightarrow \mathcal{X}, \\
& \mathbf{B}: \mathcal{U} \rightarrow \mathcal{X} \\
& \mathbf{C}: \mathcal{X} \rightarrow \mathcal{Y}
\end{aligned}
$$

Linear Distributed Parameter System (DPS)

$$
\Sigma:\left\{\begin{array}{l}
\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}+\mathbf{B u}, \\
\mathbf{y}=\mathbf{C} \mathbf{x},
\end{array} \quad \mathbf{x}(0)=\mathbf{x}_{0} \in \mathcal{X}\right.
$$

i.e., abstract evolution equation together with observation equation.

Parabolic Systems

The state $x=x(t, \xi)$ is a (weak) solution of a parabolic PDE with $(t, \xi) \in[0, T] \times \Omega, \Omega \subset \mathbb{R}^{d}:$

$$
\partial_{t} x-\nabla(a(\xi) \cdot \nabla x)+b(\xi) \cdot \nabla x+c(\xi) x=B_{p c}(\xi) u(t), \quad \xi \in \Omega, t>0,
$$

with initial and boundary conditions

$$
\begin{array}{rlrl}
\alpha(\xi) x+\beta(\xi) \partial_{\eta} x & =B_{b c}(\xi) u(t), & & \xi \in \partial \Omega, \\
x(0, \xi) & =x_{0}(\xi) \in[0, T], \\
y(t) & =C(\xi) x, & & \xi \in \Omega, \\
& & \xi \in \Omega, & t \in[0, T] .
\end{array}
$$

- $B_{p c}=0 \Longrightarrow$ boundary control problem
- $B_{b c}=0 \Longrightarrow$ point control problem

Infinite-Dimensional Systems

Basic assumption:

The system $\Sigma(A, B, C)$ has a transfer function

$$
\mathbf{G}=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B} \in L_{\infty} .
$$

If, in addition, \mathbf{A} generates an exponentially stable C_{0}-semigroup, then \mathbf{G} is in the Hardy space H_{∞}.

Infinite-Dimensional Systems

Basic assumption:

The system $\Sigma(A, B, C)$ has a transfer function

$$
\mathbf{G}=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B} \in L_{\infty} .
$$

If, in addition, \mathbf{A} generates an exponentially stable C_{0}-semigroup, then \mathbf{G} is in the Hardy space H_{∞}.

Possible settings:

(1) Basic setting in infinite-dimensional system theory:

- A generates C_{0}-semigroup $T(t)$ on \mathcal{X};
- (A,B) is exponentially stabilizable, i.e., there exists $\mathbf{F}: \operatorname{dom}(\mathbf{A}) \mapsto \mathcal{U}$ s.t. $\mathbf{A}+\mathbf{B F}$ generates an exponentially stable C_{0}-semigroup $\mathbf{S}(\mathbf{t})$;
- (\mathbf{A}, \mathbf{C}) is exponentially detectable, i.e., $\left(\mathbf{A}^{*}, \mathbf{C}^{*}\right)$ is exponentially stabilizable;
- \mathbf{B}, \mathbf{C} are finite-rank and bounded, e.g., $\mathcal{U}=\mathbb{R}^{m}, \mathcal{Y}=\mathbb{R}^{p}$.
(2) $\Sigma(\mathbf{A}, \mathbf{B}, \mathbf{C})$ is Pritchard-Salomon, allows certain unboundedness of \mathbf{B}, \mathbf{C}.
(3)..?

(Exponentially) Stable Systems

G is the Laplace transform of

$$
\mathbf{h}(t):=\mathbf{C} T(t) \mathbf{B}
$$

and symbol of the Hankel operator $\mathbf{H}: L_{2}\left(0, \infty ; \mathbb{R}^{m}\right) \mapsto L_{2}\left(0, \infty ; \mathbb{R}^{p}\right)$,

$$
(\mathbf{H u})(t):=\int_{0}^{\infty} \mathbf{h}(t+\tau) u(\tau) d \tau
$$

\mathbf{H} is compact with countable many singular values $\sigma_{j}, j=1, \ldots, \infty$, called the Hankel singular values (HSVs) of G. Moreover,

HSVs are system invariants, used for approximation similar to truncated SVD.
The 2-induced operator norm is the H_{∞} norm; here,

(Exponentially) Stable Systems

\mathbf{G} is the Laplace transform of

$$
\mathbf{h}(t):=\mathbf{C} T(t) \mathbf{B}
$$

and symbol of the Hankel operator $\mathbf{H}: L_{2}\left(0, \infty ; \mathbb{R}^{m}\right) \mapsto L_{2}\left(0, \infty ; \mathbb{R}^{p}\right)$,

$$
(\mathbf{H u})(t):=\int_{0}^{\infty} \mathbf{h}(t+\tau) u(\tau) d \tau
$$

\mathbf{H} is compact with countable many singular values $\sigma_{j}, j=1, \ldots, \infty$, called the Hankel singular values (HSVs) of G. Moreover,

$$
\sum_{j=1}^{\infty} \sigma_{j}<\infty
$$

HSVs are system invariants, used for approximation similar to truncated SVD.
The 2-induced operator norm is the H_{∞} norm; here,

(Exponentially) Stable Systems

\mathbf{G} is the Laplace transform of

$$
\mathbf{h}(t):=\mathbf{C} T(t) \mathbf{B}
$$

and symbol of the Hankel operator $\mathbf{H}: L_{2}\left(0, \infty ; \mathbb{R}^{m}\right) \mapsto L_{2}\left(0, \infty ; \mathbb{R}^{p}\right)$,

$$
(\mathbf{H u})(t):=\int_{0}^{\infty} \mathbf{h}(t+\tau) u(\tau) d \tau
$$

\mathbf{H} is compact with countable many singular values $\sigma_{j}, j=1, \ldots, \infty$, called the Hankel singular values (HSVs) of G. Moreover,

$$
\sum_{j=1}^{\infty} \sigma_{j}<\infty
$$

HSVs are system invariants, used for approximation similar to truncated SVD.
The 2-induced operator norm is the H_{∞} norm; here,

$$
\|\mathbf{G}\|_{H_{\infty}}=\sum_{j=1}^{\infty} \sigma_{j}
$$

Controller Design for Parabolic Systems

Designing a controller for parabolic control systems requires semi-discretization in space, control design for n-dim. system.

Feedback Controlers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input $=$ output of plant,
- output $=$ input of plant.

Real-time control is only possible with controllers of low complexity.
\rightsquigarrow Modern feedback control for parabolic systems w/o model reduction impossible due to large scale of discretized systems.

Controller Design for Parabolic Systems

Designing a controller for parabolic control systems requires semi-discretization in space, control design for n-dim. system.

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output $=$ input of plant. Modern (LQG- $/ \mathcal{H}_{2^{-}} / \mathcal{H}_{\infty^{-}}$) control design: $N \geq n$

Real-time control is only possible with controllers of low complexity.
\rightsquigarrow Modern feedback control for parabolic systems w/o model reduction impossible due to large scale of discretized systems.

Controller Design for Parabolic Systems

Designing a controller for parabolic control systems requires semi-discretization in space, control design for n-dim. system.

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output $=$ input of plant.

Modern (LQG- $/ \mathcal{H}_{2}-/ \mathcal{H}_{\infty^{-}}$) control
 design: $N \geq n$

> Real-time control is only possible with controllers of low complexity.
> \rightsquigarrow Modern feedback control for parabolic systems w/o model reduction impossible due to large scale of discretized systems.

Controller Design for Parabolic Systems

Designing a controller for parabolic control systems requires semi-discretization in space, control design for n-dim. system.

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output $=$ input of plant.

Modern (LQG- $/ \mathcal{H}_{2^{-}} / \mathcal{H}_{\infty^{-}}$) control
 design: $N \geq n$

Real-time control is only possible with controllers of low complexity.
\rightsquigarrow Modern feedback control for parabolic systems w/o model reduction impossible due to large scale of discretized systems.

Controller Design for Parabolic Systems

Designing a controller for parabolic control systems requires semi-discretization in space, control design for n-dim. system.

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output $=$ input of plant.

Modern (LQG- $/ \mathcal{H}_{2^{-}} / \mathcal{H}_{\infty^{-}}$) control
 design: $N \geq n$

Real-time control is only possible with controllers of low complexity.
\rightsquigarrow Modern feedback control for parabolic systems w/o model reduction impossible due to large scale of discretized systems.

Control-Oriented Model Reduction?

If reduced-order model is to be used in (online) feedback control, the input function $u(t)$ is unknown a priori.
\Longrightarrow Reduced-order models computed using snapshot-based methods or training sets (POD, RBM, TWPL, ANN, ...) might not catch dynamics induced by the control signals!

Discretizing the control space and including snapshots for all/many basis functions of \mathcal{U}_{h} might work, but can become quite a challenging computation.
(Possible way out: cheap basis updates in online phase...)

Control-Oriented Model Reduction?

If reduced-order model is to be used in (online) feedback control, the input function $u(t)$ is unknown a priori.
\Longrightarrow Reduced-order models computed using snapshot-based methods or training sets (POD, RBM, TWPL, ANN, ...) might not catch dynamics induced by the control signals!

Discretizing the control space and including snapshots for all/many basis functions of \mathcal{U}_{h} might work, but can become quite a challenging computation.
(Possible way out: cheap basis updates in online phase...)

Control-Oriented Model Reduction?

If reduced-order model is to be used in (online) feedback control, the input function $u(t)$ is unknown a priori.
\Longrightarrow Reduced-order models computed using snapshot-based methods or training sets (POD, RBM, TWPL, ANN, ...) might not catch dynamics induced by the control signals!

Discretizing the control space and including snapshots for all/many basis functions of \mathcal{U}_{h} might work, but can become quite a challenging computation.
(Possible way out: cheap basis updates in online phase...)
\Longrightarrow Aim at input-independent/simulation-free methods!

Balanced Truncation

Balanced Realization

Definition: [Curtain/Glover/(Partington) 1986,1988]

For $\mathbf{G} \in H_{\infty}, \Sigma(\mathbf{A}, \mathbf{B}, \mathbf{C})$ is a balanced realization of \mathbf{G} if the controllability and observability Gramians, given by the unique self-adjoint positive semidefinite solutions of the Lyapunov equations

$$
\begin{array}{rlll}
\mathbf{A P z}+\mathbf{P A}^{*} \mathbf{z}+\mathbf{B B}^{*} \mathbf{z} & =0 & \forall \mathbf{z} \in \operatorname{dom}\left(\mathbf{A}^{*}\right) \\
\mathbf{A}^{*} \mathbf{Q z}+\mathbf{Q} \mathbf{A z}+\mathbf{C}^{*} \mathbf{C z} & =0 & \forall \mathbf{z} \in \operatorname{dom}(\mathbf{A})
\end{array}
$$

satisfy $\mathbf{P}=\mathbf{Q}=\operatorname{diag}\left(\sigma_{j}\right)=: \boldsymbol{\Sigma}$.

Balanced Truncation

Model Reduction by Truncation

Abstract balanced truncation [Glover/Curtain/Partington 1988]

Given balanced realization with

$$
\mathbf{P}=\mathbf{Q}=\operatorname{diag}\left(\sigma_{j}\right)=\boldsymbol{\Sigma},
$$

choose r with $\sigma_{r}>\sigma_{r+1}$ and partition $\Sigma(\mathbf{A}, \mathbf{B}, \mathbf{C})$ according to

$$
\mathbf{P}_{r}=\mathbf{Q}_{r}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right),
$$

so that

$$
\mathbf{A}=\left[\begin{array}{cc}
\mathbf{A}_{r} & * \\
* & *
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{c}
\mathbf{B}_{r} \\
*
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{ll}
\mathbf{C}_{r} & *
\end{array}\right],
$$

then the reduced-order model is the stable system $\Sigma_{r}\left(\mathbf{A}_{r}, \mathbf{B}_{r}, \mathbf{C}_{r}\right)$ with transfer function \mathbf{G}_{r} satisfying

$$
\left\|\mathbf{G}-\mathbf{G}_{r}\right\|_{H_{\infty}} \leq 2 \sum_{j=r+1}^{\infty} \sigma_{j} .
$$

LQG Balanced Truncation

LQG Balanced Realization

Balanced truncation only applicable for stable systems. Now: unstable systems

```
Definition: [CURTAIN 2003]
For G}\in\mp@subsup{L}{\infty}{},\Sigma(\mathbf{A},\mathbf{B},\mathbf{C})\mathrm{ is an LQG-balanced realization of G if the
unique self-adjoint, positive semidefinite, stabilizing solutions of the
operator Riccati equations
\[
\begin{aligned}
& \mathbf{A P z}+\mathbf{P A}^{*} \mathbf{z}-\mathbf{P C} \mathbf{*}^{*} \mathbf{C P z}+\mathbf{B} \mathbf{B}^{*} \mathbf{z}=0 \\
& \mathbf{A}^{*} \mathbf{Q} \mathbf{z}+\mathbf{Q} \mathbf{A z} \mathbf{z}-\mathbf{Q} \in \operatorname{B} \mathbf{B}^{*} \mathbf{Q} \mathbf{z}+\mathbf{C}^{*} \mathbf{C z}\left(\mathbf{A}^{*}\right) \\
&=0 \text { for } \mathbf{z} \in \operatorname{dom}(\mathbf{A})
\end{aligned}
\]
\[
\text { are bounded and satisfy } \mathbf{P}=\mathbf{Q}=\operatorname{diag}\left(\gamma_{j}\right)=: \boldsymbol{\Gamma}
\]
\[
\text { ( } \mathbf{P} \text { stabilizing } \Leftrightarrow \mathbf{A}-\mathbf{P C}^{*} \mathbf{C} \text { generates exponentially stable } C_{0} \text {-semigroup.) }
\]
```


LQG Balanced Truncation

LQG Balanced Realization

Balanced truncation only applicable for stable systems.
Now: unstable systems

Definition: [CURTAIN 2003].

For $\mathbf{G} \in L_{\infty}, \Sigma(\mathbf{A}, \mathbf{B}, \mathbf{C})$ is an LQG-balanced realization of \mathbf{G} if the unique self-adjoint, positive semidefinite, stabilizing solutions of the operator Riccati equations

$$
\begin{array}{rlll}
\mathbf{A P z}+\mathbf{P A}^{*} \mathbf{z}-\mathbf{P C}^{*} \mathbf{C P} \mathbf{z}+\mathbf{B B}^{*} \mathbf{z} & =0 & \text { for } \mathbf{z} \in \operatorname{dom}\left(\mathbf{A}^{*}\right) \\
\mathbf{A}^{*} \mathbf{Q z}+\mathbf{Q} \mathbf{z}-\mathbf{Q B B}^{*} \mathbf{Q} \mathbf{z}+\mathbf{C}^{*} \mathbf{C} \mathbf{z}=0 & \text { for } \mathbf{z} \in \operatorname{dom}(\mathbf{A})
\end{array}
$$

are bounded and satisfy $\mathbf{P}=\mathbf{Q}=\operatorname{diag}\left(\gamma_{j}\right)=: \boldsymbol{\Gamma}$.
(\mathbf{P} stabilizing $\Leftrightarrow \mathbf{A}-\mathbf{P C}^{*} \mathbf{C}$ generates exponentially stable C_{0}-semigroup.)

LQG Balanced Truncation

Model Reduction by Truncation

Abstract LQG Balanced Truncation [Curtain 2003]

Given balanced realization with

$$
\mathbf{P}=\mathbf{Q}=\operatorname{diag}\left(\gamma_{j}\right)=\boldsymbol{\Gamma}
$$

choose r with $\gamma_{r}>\gamma_{r+1}$ and partition $\Sigma(\mathbf{A}, \mathbf{B}, \mathbf{C})$ according to

$$
\mathbf{P}_{r}=\mathbf{Q}_{r}=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{r}\right)
$$

so that

$$
\mathbf{A}=\left[\begin{array}{cc}
\mathbf{A}_{r} & * \\
* & *
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{c}
\mathbf{B}_{r} \\
*
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{ll}
\mathbf{C}_{r} & *
\end{array}\right]
$$

then the reduced-order model is the LQG balanced system $\Sigma_{r}\left(\mathbf{A}_{r}, \mathbf{B}_{r}, \mathbf{C}_{r}\right)$ with transfer function \mathbf{G}_{r} satisfying

$$
"\left\|\mathbf{G}-\mathbf{G}_{r}\right\|_{L_{\infty}} " \leq 2 \sum_{j=r+1}^{\infty} \frac{\gamma_{j}}{\sqrt{1+\gamma_{j}^{2}}}
$$

Computation of Reduced-Order Systems

Spatial discretization (FEM, FDM) \rightsquigarrow finite-dimensional system on $\mathcal{X}_{n} \subset \mathcal{X}$ with $\operatorname{dim} \mathcal{X}_{n}=n:$

$$
\begin{aligned}
& \dot{x}=A x+B u, \quad x(0)=x_{0}, \\
& y=C x,
\end{aligned}
$$

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$, with corresponding

- algebraic Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

- algebraic Riccati equations (AREs)

$$
\begin{aligned}
& 0=\mathcal{R}_{f}(P):=A P+P A^{T}-P C^{\top} C P+B B^{\top} \\
& 0=\mathcal{R}_{c}(Q):=A^{\top} Q+Q A-Q B B^{\top} Q+C^{\top} C .
\end{aligned}
$$

Computation of Reduced-Order Systems

Spatial discretization (FEM, FDM) \rightsquigarrow finite-dimensional system on $\mathcal{X}_{n} \subset \mathcal{X}$ with $\operatorname{dim} \mathcal{X}_{n}=n:$

$$
\begin{aligned}
\dot{x} & =A x+B u, \quad x(0)=x_{0}, \\
y & =C x,
\end{aligned}
$$

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$, with corresponding

- algebraic Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

- algebraic Riccati equations (AREs)

Computation of Reduced-Order Systems

Spatial discretization (FEM, FDM) \rightsquigarrow finite-dimensional system on $\mathcal{X}_{n} \subset \mathcal{X}$ with $\operatorname{dim} \mathcal{X}_{n}=n:$

$$
\begin{aligned}
\dot{x} & =A x+B u, \quad x(0)=x_{0}, \\
y & =C x,
\end{aligned}
$$

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$, with corresponding

- algebraic Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

- algebraic Riccati equations (AREs)

$$
\begin{aligned}
& 0=\mathcal{R}_{f}(P):=A P+P A^{T}-P C^{T} C P+B B^{T}, \\
& 0=\mathcal{R}_{c}(Q):=A^{T} Q+Q A-Q B B^{T} Q+C^{T} C .
\end{aligned}
$$

Computation of Reduced-Order Systems

Convergence of Gramians

Theorem [Curtain 2003]

Under given assumptions for $\boldsymbol{\Sigma}(\mathbf{A}, \mathbf{B}, \mathbf{C})$, the solutions of the algebraic Lyapunov equations on \mathcal{X}_{n} converge in the nuclear norm to the solutions of the corresponding operator equations and the transfer functions converge in the gap topology if the n-dimensional approximations satisfy the assumptions:

- \exists orthogonal projector $\Pi_{n}: \mathcal{X} \mapsto \mathcal{X}_{n}$ such that

$$
\Pi_{n} \mathbf{z} \rightarrow \mathbf{z}(n \rightarrow \infty) \quad \forall \mathbf{z} \in \mathcal{X}, \quad B=\Pi_{n} \mathbf{B}, \quad C=\left.\mathbf{C}\right|_{\mathcal{X}_{n}}
$$

- For all $\mathbf{z} \in \mathcal{X}$ and $n \rightarrow \infty$,

$$
e^{A t} \Pi_{n} \mathbf{z} \rightarrow T(t) \mathbf{z}, \quad\left(e^{A t}\right)^{*} \Pi_{n} \mathbf{z} \rightarrow T(t)^{*} \mathbf{z}
$$

uniformly in t on bounded intervals.

- A is uniformly exponentially stable.

Computation of Reduced-Order Systems

Convergence of Gramians

Theorem [Curtain 2003]

Under given assumptions for $\boldsymbol{\Sigma}(\mathbf{A}, \mathbf{B}, \mathbf{C})$, the stabilizing solutions of the algebraic Riccati equations on \mathcal{X}_{n} converge in the nuclear norm to the solutions of the corresponding operator equations and the transfer functions converge in the gap topology if the n-dimensional approximations satisfy the assumptions:

- \exists orthogonal projector $\Pi_{n}: \mathcal{X} \mapsto \mathcal{X}_{n}$ such that

$$
\Pi_{n} \mathbf{z} \rightarrow \mathbf{z}(n \rightarrow \infty) \quad \forall \mathbf{z} \in \mathcal{X}, \quad B=\Pi_{n} \mathbf{B}, \quad C=\left.\mathbf{C}\right|_{\mathcal{X}_{n}}
$$

- For all $\mathbf{z} \in \mathcal{X}$ and $n \rightarrow \infty$,

$$
e^{A t} \Pi_{n} \mathbf{z} \rightarrow T(t) \mathbf{z}, \quad\left(e^{A t}\right)^{*} \Pi_{n} \mathbf{z} \rightarrow T(t)^{*} \mathbf{z}
$$

uniformly in t on bounded intervals.

- (A, B, C) is uniformly exponentially stabilizable and detectable.

Computation of Reduced-Order Systems

Computation of Reduced-Order Systems from Gramians

(1) Given the Gramians P, Q of the n-dimensional system from either the Lyapunov equations or AREs in factorized form

$$
P=S^{T} S, \quad Q=R^{T} R,
$$

compute SVD

$$
S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}
\Sigma_{1} & \\
& \Sigma_{2}
\end{array}\right]\left[\begin{array}{l}
V_{1}^{T} \\
V_{2}^{T}
\end{array}\right] .
$$

© Set $W=R^{T} V_{1} \Sigma_{1}^{-1 / 2}$ and $V=S^{T} U_{1} \Sigma_{1}^{-1 / 2}$

- Then the reduced-order model is

$$
\left(A_{r}, B_{r}, C_{r}\right)=\left(W^{\top} A V, W^{\top} B, C V\right) .
$$

Thus, need to solve large-scale matrix equations-but need only factors!
\rightsquigarrow Efficient solvers available:

- (Galerkin-)ADI/Newton-ADI (B., Li, Penzl, Saak,... 1998-2011),
- K-PIK, rational Lanczos (Druskin, Heyouni, Jbilou, Simoncini, ... 2006-2011).

Computation of Reduced-Order Systems

Computation of Reduced-Order Systems from Gramians

(1) Given the Gramians P, Q of the n-dimensional system from either the Lyapunov equations or AREs in factorized form

$$
P=S^{T} S, \quad Q=R^{T} R,
$$

compute SVD

$$
S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}
\Sigma_{1} & \\
& \Sigma_{2}
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T} \\
V_{2}^{T}
\end{array}\right] .
$$

(2) Set $W=R^{T} V_{1} \Sigma_{1}^{-1 / 2}$ and $V=S^{T} U_{1} \Sigma_{1}^{-1 / 2}$.

- Then the reduced-order model is

$$
\left(A_{r}, B_{r}, C_{r}\right)=\left(W^{\top} A V, W^{\top} B, C V\right) .
$$

Thus, need to solve large-scale matrix equations-but need only factors!
\rightsquigarrow Efficient solvers available:

- (Galerkin-)ADI/Newton-ADI (B., Li, Penzl, Saak,... 1998-2011),
- K-PIK, rational Lanczos (Druskin, Heyouni, Jbilou, Simoncini, .. 2006-2011).

Computation of Reduced-Order Systems

Computation of Reduced-Order Systems from Gramians

(1) Given the Gramians P, Q of the n-dimensional system from either the Lyapunov equations or AREs in factorized form

$$
P=S^{T} S, \quad Q=R^{T} R,
$$

compute SVD

$$
S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}
\Sigma_{1} & \\
& \Sigma_{2}
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T} \\
V_{2}^{T}
\end{array}\right] .
$$

(2) Set $W=R^{T} V_{1} \Sigma_{1}^{-1 / 2}$ and $V=S^{T} U_{1} \Sigma_{1}^{-1 / 2}$.

- Then the reduced-order model is

$$
\left(A_{r}, B_{r}, C_{r}\right)=\left(W^{\top} A V, W^{\top} B, C V\right)
$$

Thus, need to solve large-scale matrix equations-but need only factors!
\rightsquigarrow Efficient solvers available:

- (Galerkin-)ADI/Newton-ADI (B., Li, Penzl, Saak,... 1998-2011),
- K-PIK, rational Lanczos (Druskin, Heyouni, Jbilou, Simoncini, ... 2006-2011).

Computation of Reduced-Order Systems

Computation of Reduced-Order Systems from Gramians

(1) Given the Gramians P, Q of the n-dimensional system from either the Lyapunov equations or AREs in factorized form

$$
P=S^{T} S, \quad Q=R^{T} R
$$

compute SVD

$$
S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{cc}
\Sigma_{1} & \\
& \Sigma_{2}
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T} \\
V_{2}^{T}
\end{array}\right] .
$$

(2) Set $W=R^{T} V_{1} \Sigma_{1}^{-1 / 2}$ and $V=S^{T} U_{1} \Sigma_{1}^{-1 / 2}$.

- Then the reduced-order model is

$$
\left(A_{r}, B_{r}, C_{r}\right)=\left(W^{\top} A V, W^{\top} B, C V\right)
$$

Thus, need to solve large-scale matrix equations-but need only factors!
\rightsquigarrow Efficient solvers available:

- (Galerkin-)ADI/Newton-ADI (B., Li, Penzl, Saak,... 1998-2011),
- K-PIK, rational Lanczos (Druskin, Heyouni, Jbilou, Simoncini,. .. 2006-2011).

Computation of Reduced-Order Systems

Computation of Reduced-Order Systems from Gramians

(1) Given the Gramians P, Q of the n-dimensional system from either the Lyapunov equations or AREs in factorized form

$$
P=S^{T} S, \quad Q=R^{T} R,
$$

compute SVD

$$
S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{cc}
\Sigma_{1} & \\
& \Sigma_{2}
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T} \\
V_{2}^{T}
\end{array}\right] .
$$

(2) Set $W=R^{T} V_{1} \Sigma_{1}^{-1 / 2}$ and $V=S^{T} U_{1} \Sigma_{1}^{-1 / 2}$.

- Then the reduced-order model is

$$
\left(A_{r}, B_{r}, C_{r}\right)=\left(W^{\top} A V, W^{\top} B, C V\right)
$$

Thus, need to solve large-scale matrix equations-but need only factors!
\rightsquigarrow Efficient solvers available:

- (Galerkin-)ADI/Newton-ADI (B., Li, Penzl, Saak,... 1998-2011),
- K-PIK, rational Lanczos (Druskin, Heyouni, Jbilou, Simoncini,. . 2006-2011).

Error Bounds

For control applications, want to estimate/bound

$$
\left\|\mathbf{y}-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{m}\right)} \quad \text { or } \quad\left\|\mathbf{y}(t)-y_{r}(t)\right\|_{2} .
$$

Error bound includes approximation errors caused by

- Galerkin projection/spatial FEM discretization,
- model reduction.

Ultimate goal

Balance the discretization and model reduction errors vs. each other in fully adaptive discretization scheme.

Output Error Bound

Corollary

Assume $\mathbf{C} \in \mathcal{L}\left(\mathcal{X}, \mathbb{R}^{p}\right)$ bounded $(c:=\|C\|), C=\left.\mathbf{C}\right|_{\mathcal{X}_{n}}, \mathcal{X}_{n} \subset \mathcal{X}$. Then:
Balanced truncation:
$\left\|\mathbf{y}-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \leq c\|\mathrm{x}-x\|_{L_{2}(0, T ; \mathcal{X})}+2\|u\|_{L_{2}\left(0, T ; \mathbb{R}^{\boldsymbol{P}}\right)} \sum_{j=r+1}^{n} \sigma_{j}$.
LQG balanced truncation:
$\left\|\mathbf{y}-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{\rho}\right)} \leq c\|\mathrm{x}-x\|_{L_{2}(0, T ; \mathcal{X})}+2\|u\|_{L_{2}\left(0, T ; \mathbb{R}^{\rho}\right)} \sum_{j=r+1}^{n} \frac{\gamma_{j}}{\sqrt{1+\gamma_{j}^{2}}}$.

Numerical Results

Model Reduction Performance

- Linear 2D heat equation with homogeneous Dirichlet boundary and point control/observation.
- FD discretization on uniform 150×150 grid.
- $n=22.500, m=p=1,10$ shifts for ADI iterations.
- Convergence of large-scale matrix equation solvers:

Numerical Results

Model Reduction Performance

- Numerical ranks of Gramians are 31 and 26, respectively.
- Computed reduced-order model (BT): $r=6\left(\sigma_{7}=5.8 \cdot 10^{-4}\right)$,
- BT error bound $\delta=1.7 \cdot 10^{-3}$.

Numerical Results

Model Reduction Performance

- Computed reduced-order model (BT): $r=6$, BT error bound $\delta=1.7 \cdot 10^{-3}$.
- Solve LQR problem: quadratic cost functional, solution is linear state feedback.
- Computed controls and outputs (implicit Euler):

Numerical Results

Model Reduction Performance

- Computed reduced-order model (BT): $r=6$, BT error bound $\delta=1.7 \cdot 10^{-3}$.
- Solve LQR problem: quadratic cost functional, solution is linear state feedback.
- Errors in controls and outputs:

Numerical Results

Model Reduction Performance: BT vs. LQG BT

- Boundary control problem for 2D heat flow in copper on rectangular domain; control acts on two sides via Robins BC.
- FDM $\rightsquigarrow n=4496, m=2 ; 4$ sensor locations $\rightsquigarrow p=4$.
- Numerical ranks of BT Gramians are 68 and 124, respectively, for LQG BT both have rank 210.
- Computed reduced-order model: $r=10$.

Source: COMPle l_{e} ib v1.1, www. compleib.de.

Numerical Results

Model Reduction Performance: BT vs. LQG BT

- Boundary control problem for 2D heat flow in copper on rectangular domain; control acts on two sides via Robins BC.
- FDM $\rightsquigarrow n=4496, m=2 ; 4$ sensor locations $\rightsquigarrow p=4$.
- Numerical ranks of BT Gramians are 68 and 124, respectively, for LQG BT both have rank 210.
- Computed reduced-order model: $r=10$.

Source: $C O M P l_{e} i b$ v1.1, www. compleib.de.

Numerical Results

Model Reduction Performance: BT vs. LQG BT

- Boundary control problem for 2D heat flow in copper on rectangular domain; control acts on two sides via Robins BC.
- FDM $\rightsquigarrow n=4496, m=2 ; 4$ sensor locations $\rightsquigarrow p=4$.
- Numerical ranks of BT Gramians are 68 and 124, respectively, for LQG BT both have rank 210.
- Computed reduced-order model: $r=10$.

Source: $C O M P l_{e} i b$ v1.1, www. compleib.de.

Model Reduction Based on Rational Interpolation

Short Introduction

Computation of reduced-order model by projection

Given a linear (descriptor) system $E \dot{x}=A x+B u, y=C x \quad$ with transfer function $\quad G(s)=C(s E-A)^{-1} B$, a reduced-order model is obtained using projection matrices $V, W \in \mathbb{R}^{n \times r}$ with $W^{T} V=I_{r}$
$\left(\rightsquigarrow\left(V W^{T}\right)^{2}=V W^{T}\right.$ is projector) by computing

$$
\hat{E}=W^{\top} E V, \hat{A}=W^{\top} A V, \hat{B}=W^{\top} B, \hat{C}=C V
$$

Petrov-Galerkin-type (two-sided) projection: $W \neq V$, Galerkin-type (one-sided) projection: $W=V$.

Model Reduction Based on Rational Interpolation

Short Introduction

Computation of reduced-order model by projection

Given a linear (descriptor) system $E \dot{x}=A x+B u, y=C x \quad$ with transfer function $\quad G(s)=C(s E-A)^{-1} B$, a reduced-order model is obtained using projection matrices $V, W \in \mathbb{R}^{n \times r}$ with $W^{T} V=I_{r}$
$\left(\rightsquigarrow\left(V W^{T}\right)^{2}=V W^{T}\right.$ is projector) by computing

$$
\hat{E}=W^{\top} E V, \hat{A}=W^{\top} A V, \hat{B}=W^{\top} B, \hat{C}=C V
$$

Petrov-Galerkin-type (two-sided) projection: $W \neq V$,
Galerkin-type (one-sided) projection: $W=V$.

Rational Interpolation/Moment-Matching

Choose V, W such that

$$
G\left(s_{j}\right)=\hat{G}\left(s_{j}\right), \quad j=1, \ldots, k
$$

and

$$
\frac{d^{i}}{d s^{i}} G\left(s_{j}\right)=\frac{d^{i}}{d s^{i}} \hat{G}\left(s_{j}\right), \quad i=1, \ldots, K_{j}, \quad j=1, \ldots, k
$$

Model Reduction Based on Rational Interpolation

Short Introduction

Theorem (simplified) [Grimme 1997, Villemagne/Skelton 1987]

If

$$
\begin{array}{rll}
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-1} B, \ldots,\left(s_{k} E-A\right)^{-1} B\right\} & \subset \operatorname{Ran}(V), \\
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-T} C^{T}, \ldots,\left(s_{k} E-A\right)^{-T} C^{T}\right\} & \subset \operatorname{Ran}(W),
\end{array}
$$

then

$$
G\left(s_{j}\right)=\hat{G}\left(s_{j}\right), \quad \frac{d}{d s} G\left(s_{j}\right)=\frac{d}{d s} \hat{G}\left(s_{j}\right), \quad \text { for } j=1, \ldots, k
$$

Model Reduction Based on Rational Interpolation

Short Introduction

Theorem (simplified) [Grimme 1997, Villemagne/Skelton 1987]

If

$$
\begin{array}{rll}
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-1} B, \ldots,\left(s_{k} E-A\right)^{-1} B\right\} & \subset \operatorname{Ran}(V), \\
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-T} C^{T}, \ldots,\left(s_{k} E-A\right)^{-T} C^{T}\right\} & \subset \operatorname{Ran}(W),
\end{array}
$$

then

$$
G\left(s_{j}\right)=\hat{G}\left(s_{j}\right), \quad \frac{d}{d s} G\left(s_{j}\right)=\frac{d}{d s} \hat{G}\left(s_{j}\right), \quad \text { for } j=1, \ldots, k .
$$

Remarks:

computation of V, W from rational Krylov subspaces, e.g.,

- dual rational Arnoldi/Lanczos [Grimme '97],
- Iterative Rational Krylov-Algo. [Antoulas/Beattie/Gugercin '07].

Model Reduction Based on Rational Interpolation

Short Introduction

Theorem (simplified) [Grimme 1997, Villemagne/Skelton 1987]

If

$$
\begin{array}{rll}
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-1} B, \ldots,\left(s_{k} E-A\right)^{-1} B\right\} & \subset \operatorname{Ran}(V), \\
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-T} C^{T}, \ldots,\left(s_{k} E-A\right)^{-T} C^{T}\right\} & \subset \operatorname{Ran}(W),
\end{array}
$$

then

$$
G\left(s_{j}\right)=\hat{G}\left(s_{j}\right), \quad \frac{d}{d s} G\left(s_{j}\right)=\frac{d}{d s} \hat{G}\left(s_{j}\right), \quad \text { for } j=1, \ldots, k .
$$

Remarks:

using Galerkin/one-sided projection yields $G\left(s_{j}\right)=\hat{G}\left(s_{j}\right)$, but in general

$$
\frac{d}{d s} G\left(s_{j}\right) \neq \frac{d}{d s} \hat{G}\left(s_{j}\right) .
$$

Model Reduction Based on Rational Interpolation

Short Introduction

Theorem (simplified) [Grimme 1997, Villemagne/Skelton 1987]

If

$$
\begin{aligned}
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-1} B, \ldots,\left(s_{k} E-A\right)^{-1} B\right\} & \subset \operatorname{Ran}(V), \\
\operatorname{span}\left\{\left(s_{1} E-A\right)^{-T} C^{T}, \ldots,\left(s_{k} E-A\right)^{-T} C^{T}\right\} & \subset \operatorname{Ran}(W),
\end{aligned}
$$

then

$$
G\left(s_{j}\right)=\hat{G}\left(s_{j}\right), \quad \frac{d}{d s} G\left(s_{j}\right)=\frac{d}{d s} \hat{G}\left(s_{j}\right), \quad \text { for } j=1, \ldots, k .
$$

Remarks:

$k=1$, standard Krylov subspace(s) of dimension $K \rightsquigarrow$ moment-matching methods/Padé approximation,

$$
\frac{d^{i}}{d s^{i}} G\left(s_{1}\right)=\frac{d^{i}}{d s^{i}} \hat{G}\left(s_{1}\right), \quad i=0, \ldots, K-1(+K) .
$$

Moment Matching using Quadratic-Bilinear Models

- Key observation: Many nonlinear dynamics can be modeled by quadratic bilinear differential algebraic equations (QBDAEs), i.e.

$$
\begin{aligned}
E \dot{x} & =A_{1} x+A_{2} x \otimes x+N x u+b u \\
y & =c x
\end{aligned}
$$

where $E, A_{1}, N \in \mathbb{R}^{n \times n}, A_{2} \in \mathbb{R}^{n \times n^{2}}, b, c^{T} \in \mathbb{R}^{n}$.

- Combination of quadratic and bilinear control systems.
- Variational analysis allows characterization of input-output behavior via generalized transfer functions, e.g.

$$
\begin{aligned}
& H_{1}(s)= c \underbrace{\left(s E-A_{1}\right)^{-1} b}_{G(s)}, \\
& \begin{aligned}
H_{2}\left(s_{1}, s_{2}\right)= & \frac{1}{2} c\left(\left(s_{1}+s_{2}\right) E-A_{1}\right)^{-1} \\
& {\left[A_{2}\left(G\left(s_{1}\right) \otimes G\left(s_{2}\right)+G\left(s_{2}\right) \otimes G\left(s_{1}\right)\right)\right.} \\
& \left.+N\left(G\left(s_{1}\right)+G\left(s_{2}\right)\right)\right]
\end{aligned}
\end{aligned}
$$

Moment Matching using Quadratic-Bilinear Models

Which systems can be transformed?
Theorem [Gu 2009]
Assume that the state equation of a nonlinear system Σ is given by

$$
\dot{x}=a_{0} x+a_{1} g_{1}(x)+\ldots+a_{k} g_{k}(x)+b u,
$$

where $g_{i}(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are compositions of rational, exponential, logarithmic, trigonometric or root functions, respectively. Then Σ can be transformed into a quadratic bilinear differential algebraic equation of dimension $N>n$.

- Transformation is not unique.
- Original system has to be increased before reduction is possible.
- Minimal dimension N ?

Moment Matching using Quadratic-Bilinear Models

Example

- Consider the following two dimensional nonlinear control system:

$$
\begin{aligned}
& \dot{x}_{1}=\exp \left(-x_{2}\right) \cdot \sqrt{x_{1}^{2}+1} \\
& \dot{x}_{2}=\sin x_{2}+u
\end{aligned}
$$

- Introduce useful new state variables, e.g.

$$
x_{3}:=\exp \left(-x_{2}\right), \quad x_{4}:=\sqrt{x_{1}^{2}+1}, \quad x_{5}:=\sin x_{2}, \quad x_{6}:=\cos x_{2}
$$

- System can be replaced by a QBDAE of dimension 6:

$$
\begin{aligned}
& \dot{x}_{1}=x_{3} \cdot x_{4}, \\
& \dot{x}_{3}=-x_{3} \cdot\left(x_{5}+u\right), \\
& \dot{x}_{5}=x_{6} \cdot\left(x_{5}+u\right),
\end{aligned}
$$

$$
\begin{aligned}
& \dot{x}_{2}=x_{5}+u \\
& \dot{x}_{4}=\frac{2 \cdot x_{1} \cdot x_{3} \cdot x_{4}}{2 \cdot x_{4}}=x_{1} \cdot x_{3} \\
& \dot{x}_{6}=-x_{5} \cdot\left(x_{5}+u\right)
\end{aligned}
$$

Moment Matching using Quadratic-Bilinear Models

Example

- Consider the following two dimensional nonlinear control system:

$$
\begin{aligned}
& \dot{x}_{1}=\exp \left(-x_{2}\right) \cdot \sqrt{x_{1}^{2}+1} \\
& \dot{x}_{2}=\sin x_{2}+u
\end{aligned}
$$

- Introduce useful new state variables, e.g.

$$
x_{3}:=\exp \left(-x_{2}\right), \quad x_{4}:=\sqrt{x_{1}^{2}+1}, \quad x_{5}:=\sin x_{2}, \quad x_{6}:=\cos x_{2}
$$

- System can be replaced by a QBDAE of dimension 6 :

$$
\begin{aligned}
& \dot{x}_{1}=x_{3} \cdot x_{4} \\
& \dot{x}_{3}=-x_{3} \cdot\left(x_{5}+u\right), \\
& \dot{x}_{5}=x_{6} \cdot\left(x_{5}+u\right),
\end{aligned}
$$

$$
\begin{aligned}
& \dot{x}_{2}=x_{5}+u \\
& \dot{x}_{4}=\frac{2 \cdot x_{1} \cdot x_{3} \cdot x_{4}}{2 \cdot x_{4}}=x_{1} \cdot x_{3} \\
& \dot{x}_{6}=-x_{5} \cdot\left(x_{5}+u\right)
\end{aligned}
$$

Moment Matching using Quadratic-Bilinear Models

Example

- Consider the following two dimensional nonlinear control system:

$$
\begin{aligned}
& \dot{x}_{1}=\exp \left(-x_{2}\right) \cdot \sqrt{x_{1}^{2}+1} \\
& \dot{x}_{2}=\sin x_{2}+u
\end{aligned}
$$

- Introduce useful new state variables, e.g.

$$
x_{3}:=\exp \left(-x_{2}\right), \quad x_{4}:=\sqrt{x_{1}^{2}+1}, \quad x_{5}:=\sin x_{2}, \quad x_{6}:=\cos x_{2}
$$

- System can be replaced by a QBDAE of dimension 6 :

$$
\begin{array}{ll}
\dot{x}_{1}=x_{3} \cdot x_{4}, & \dot{x}_{2}=x_{5}+u \\
\dot{x}_{3}=-x_{3} \cdot\left(x_{5}+u\right), & \dot{x}_{4}=\frac{2 \cdot x_{1} \cdot x_{3} \cdot x_{4}}{2 \cdot x_{4}}=x_{1} \cdot x_{3} \\
\dot{x}_{5}=x_{6} \cdot\left(x_{5}+u\right), & \dot{x}_{6}=-x_{5} \cdot\left(x_{5}+u\right)
\end{array}
$$

Moment Matching using Quadratic-Bilinear Models

Example

- Consider the following two dimensional nonlinear control system:

$$
\begin{aligned}
& \dot{x}_{1}=\exp \left(-x_{2}\right) \cdot \sqrt{x_{1}^{2}+1} \\
& \dot{x}_{2}=\sin x_{2}+u
\end{aligned}
$$

- Introduce useful new state variables, e.g.

$$
x_{3}:=\exp \left(-x_{2}\right), \quad x_{4}:=\sqrt{x_{1}^{2}+1}, \quad x_{5}:=\sin x_{2}, \quad x_{6}:=\cos x_{2}
$$

- System can be replaced by a QBDAE of dimension 6 :

$$
\begin{array}{ll}
\dot{x}_{1}=x_{3} \cdot x_{4}, & \dot{x}_{2}=x_{5}+u, \\
\dot{x}_{3}=-x_{3} \cdot\left(x_{5}+u\right), & \dot{x}_{4}=\frac{2 \cdot x_{1} \cdot x_{3} \cdot x_{4}}{2 \cdot x_{4}}= \\
\dot{x}_{5}=x_{6} \cdot\left(x_{5}+u\right), & \dot{x}_{6}=-x_{5} \cdot\left(x_{5}+u\right) .
\end{array}
$$

Moment Matching using Quadratic-Bilinear Models

Example

- Consider the following two dimensional nonlinear control system:

$$
\begin{aligned}
& \dot{x}_{1}=\exp \left(-x_{2}\right) \cdot \sqrt{x_{1}^{2}+1} \\
& \dot{x}_{2}=\sin x_{2}+u
\end{aligned}
$$

- Introduce useful new state variables, e.g.

$$
x_{3}:=\exp \left(-x_{2}\right), \quad x_{4}:=\sqrt{x_{1}^{2}+1}, \quad x_{5}:=\sin x_{2}, \quad x_{6}:=\cos x_{2}
$$

- System can be replaced by a QBDAE of dimension 6:

$$
\begin{array}{ll}
\dot{x}_{1}=x_{3} \cdot x_{4}, & \dot{x}_{2}=x_{5}+u, \\
\dot{x}_{3}=-x_{3} \cdot\left(x_{5}+u\right), & \dot{x}_{4}=\frac{2 \cdot x_{1} \cdot x_{3} \cdot x_{4}}{2 \cdot x_{4}}=x_{1} \cdot x_{3}, \\
\dot{x}_{5}=x_{6} \cdot\left(x_{5}+u\right), & \dot{x}_{6}=-x_{5} \cdot\left(x_{5}+u\right) .
\end{array}
$$

Moment Matching using Quadratic-Bilinear Models

Example

- Consider the following two dimensional nonlinear control system:

$$
\begin{aligned}
& \dot{x}_{1}=\exp \left(-x_{2}\right) \cdot \sqrt{x_{1}^{2}+1} \\
& \dot{x}_{2}=\sin x_{2}+u
\end{aligned}
$$

- Introduce useful new state variables, e.g.

$$
x_{3}:=\exp \left(-x_{2}\right), \quad x_{4}:=\sqrt{x_{1}^{2}+1}, \quad x_{5}:=\sin x_{2}, \quad x_{6}:=\cos x_{2}
$$

- System can be replaced by a QBDAE of dimension 6:

$$
\begin{array}{ll}
\dot{x}_{1}=x_{3} \cdot x_{4}, & \dot{x}_{2}=x_{5}+u \\
\dot{x}_{3}=-x_{3} \cdot\left(x_{5}+u\right), & \dot{x}_{4}=\frac{2 \cdot x_{1} \cdot x_{3} \cdot x_{4}}{2 \cdot x_{4}}=x_{1} \cdot x_{3} \\
\dot{x}_{5}=x_{6} \cdot\left(x_{5}+u\right), & \dot{x}_{6}=-x_{5} \cdot\left(x_{5}+u\right)
\end{array}
$$

Moment Matching using Quadratic-Bilinear Models

Example

- Consider the following two dimensional nonlinear control system:

$$
\begin{aligned}
& \dot{x}_{1}=\exp \left(-x_{2}\right) \cdot \sqrt{x_{1}^{2}+1} \\
& \dot{x}_{2}=\sin x_{2}+u
\end{aligned}
$$

- Introduce useful new state variables, e.g.

$$
x_{3}:=\exp \left(-x_{2}\right), \quad x_{4}:=\sqrt{x_{1}^{2}+1}, \quad x_{5}:=\sin x_{2}, \quad x_{6}:=\cos x_{2}
$$

- System can be replaced by a QBDAE of dimension 6:

$$
\begin{array}{ll}
\dot{x}_{1}=x_{3} \cdot x_{4}, & \dot{x}_{2}=x_{5}+u, \\
\dot{x}_{3}=-x_{3} \cdot\left(x_{5}+u\right), & \dot{x}_{4}=\frac{2 \cdot x_{1} \cdot x_{3} \cdot x_{4}}{2 \cdot x_{4}}=x_{1} \cdot x_{3} \\
\dot{x}_{5}=x_{6} \cdot\left(x_{5}+u\right), & \dot{x}_{6}=-x_{5} \cdot\left(x_{5}+u\right) .
\end{array}
$$

Moment Matching using Quadratic-Bilinear Models

Multi-Moment-Matching for QBDAEs

- Construct reduced order model by projection:

$$
\begin{aligned}
& \hat{E}=Z^{\top} E Z, \quad \hat{A}_{1}=Z^{\top} A_{1} Z, \quad \hat{N}=Z^{\top} N Z, \\
& \hat{A}_{2}=Z^{\top} A_{2} Z \otimes Z, \quad \hat{b}=Z^{\top} b, \quad \hat{c}=c Z
\end{aligned}
$$

- Approximate values and derivatives (" multi-moments") of transfer functions about an expansion point σ using Krylov spaces, e.g.

$$
\begin{aligned}
\operatorname{span}\{V\} & =\mathcal{K}_{6}\left(A_{\sigma} E, A_{\sigma} b\right) \\
\operatorname{span}\left\{W_{1}\right\} & =\mathcal{K}_{3}\left(A_{2 \sigma} E, A_{2 \sigma}\left(A_{2} V_{1} \otimes V_{1}-N_{1} V_{1}\right)\right) \\
\operatorname{span}\left\{W_{2}\right\} & =\mathcal{K}_{2}\left(A_{2 \sigma} E, A_{2 \sigma}\left(A_{2}\left(V_{2} \otimes V_{1}+V_{1} \otimes V_{2}\right)-N_{1} V_{2}\right)\right) \\
\operatorname{span}\left\{W_{3}\right\} & =\mathcal{K}_{1}\left(A_{2 \sigma} E, A_{2 \sigma}\left(A_{2}\left(V_{2} \otimes V_{2}+V_{2} \otimes V_{2}\right)\right)\right) \\
\operatorname{span}\left\{W_{4}\right\} & =\mathcal{K}_{1}\left(A_{2 \sigma} E, A_{2 \sigma}\left(A_{2}\left(V_{3} \otimes V_{1}+V_{1} \otimes V_{3}\right)-N_{1} V_{3}\right)\right),
\end{aligned}
$$

with $A_{\sigma}=\left(A_{1}-\sigma E\right)^{-1}$ and V_{i} denoting the i-th column of V, $\operatorname{span} Z=\operatorname{span}\left[V, W_{1}, \ldots\right]$.
\rightarrow derivatives match up to order $5\left(H_{1}\right)$ and $2\left(H_{2}\right)$, respectively.

Numerical Examples

FitzHugh-Nagumo System

- Simple model for neuron (de-)activation.

$$
\begin{aligned}
\epsilon v_{t}(x, t) & =\epsilon^{2} v_{x x}(x, t)+f(v(x, t))-w(x, t)+g \\
w_{t}(x, t) & =h v(x, t)-\gamma w(x, t)+g
\end{aligned}
$$

with $f(v)=v(v-0.1)(1-v)$ and initial and boundary conditions

$$
\begin{array}{llr}
v(x, 0)=0, & w(x, 0)=0, & x \in[0,1] \\
v_{x}(0, t)=-i_{0}(t), & v_{x}(1, t)=0, & t \geq 0
\end{array}
$$

where

$$
\epsilon=0.015, h=0.5, \gamma=2, g=0.05, i_{0}(t)=50000 t^{3} \exp (-15 t)
$$

[Chaturantabut/Sorensen 2009]

- Parameter g handled as an additional input.
- Original state dimension $n=2 \cdot 400$, QBDAE dimension $N=3 \cdot 400$, reduced QBDAE dimension $r=26$, chosen expansion point $\sigma=1$.

Numerical Examples

FitzHugh-Nagumo System

3d Phase Space
[B./Breiten 2010]

Numerical Examples

Jet Diffusion Flame Model [Galbally/Willcox 2009]
Consider a nonlinear PDE arising in jet-diffusion flame models

$$
\frac{\partial w}{\partial t}+U \cdot \nabla w-\nabla(\kappa \nabla w)+f(w)=0, \quad(x, t) \in(0,1) \times(0, T),
$$

with Arrhenius type term $f(w)=A w(c-w) e^{-\frac{E}{d-w}}$ and constant parameters U, A, E, c, d, κ.

Numerical Examples

Jet Diffusion Flame Model [Galbally/Willcox 2009]
Consider a nonlinear PDE arising in jet-diffusion flame models

$$
\frac{\partial w}{\partial t}+U \cdot \nabla w-\nabla(\kappa \nabla w)+f(w)=0, \quad(x, t) \in(0,1) \times(0, T)
$$

with Arrhenius type term $f(w)=A w(c-w) e^{-\frac{E}{d-w}}$ and constant parameters U, A, E, c, d, κ.

Initial and boundary conditions:

$$
\left.\begin{array}{rl}
w(x, 0) & =0, \quad x \in[0,1
\end{array}\right], \quad \begin{aligned}
w(0, t) & =u(t), \quad t \geq 0 \\
w(1, t) & =0, \quad t \geq 0 \\
w_{\text {center }} & =\left[\begin{array}{lll}
\mathbf{0} & 1 & \mathbf{0}
\end{array}\right]
\end{aligned}
$$

Figure: [Kurose]

Numerical Examples

Jet Diffusion Flame Model [Galbally/Willcox 2009]
Consider a nonlinear PDE arising in jet-diffusion flame models

$$
\frac{\partial w}{\partial t}+U \cdot \nabla w-\nabla(\kappa \nabla w)+f(w)=0, \quad(x, t) \in(0,1) \times(0, T),
$$

with Arrhenius type term $f(w)=A w(c-w) e^{-\frac{E}{d-w}}$ and constant parameters U, A, E, c, d, κ.

After spatial discretization of order k, define new state variables

$$
z_{i}:=-\frac{\beta}{\delta-w_{i}}, \quad q_{i}:=e^{z_{i}},
$$

and iteratively construct a system of QBDAEs
\rightsquigarrow state dimension increases to $n=8 \cdot k$.

Numerical Examples

Jet Diffusion Flame Model [Galbally/Willcox 2009]

Transient responses for $k=1500$ and $u(t)=e^{-t}$

Numerical Examples

Jet Diffusion Flame Model [Galbally/Willcox 2009]
Relative errors for $k=1500$ and $u(t)=e^{-t}$

Numerical Examples

Jet Diffusion Flame Model [Galbally/Willcox 2009]
Transient responses for $k=1500$ and $u(t)=\frac{1}{2} \cos \left(\frac{\pi t}{5}+1\right)$

Numerical Examples

Jet Diffusion Flame Model [Galbally/Willcox 2009]
Relative errors for $k=1500$ and $u(t)=\frac{1}{2} \cos \left(\frac{\pi t}{5}+1\right)$

Conclusions and Open Problems

Linear Control Systems

- BT (and LQG) BT perform well for model reduction of (as of yet, simple) parabolic PDE control problems.
- Robust control design can be based on LQG BT (see Curtain 2004).
- State reconstruction using (LGQ)BT modes possible.
- Need more numerical tests.
- Open Problems:

Conclusions and Open Problems

Linear Control Systems

- BT (and LQG) BT perform well for model reduction of (as of yet, simple) parabolic PDE control problems.
- Robust control design can be based on LQG BT (see Curtain 2004).
- State reconstruction using (LGQ)BT modes possible.
- Need more numerical tests.
- Open Problems:
- Optimal combination of FEM and BT error estimates/bounds - use convergence of Hankel singular values for control of mesh refinement?
- Application to nonlinear problems: for some semilinear problems, BT approaches seem to work well.
- Rather than Discretize-then-reduced use reduce-then-discretize?
[Reis 2010:] BT in function space. Extension to LQG BT?
Interpolation in function space:

$$
\mathbf{G}=\mathbf{C}\left(s_{k}!-\mathbf{A}\right)^{-1} \mathbf{B}=\hat{\mathbf{C}}\left(s_{k} \mathbf{I}-\hat{\mathbf{A}}\right)^{-1} \hat{\mathbf{B}}=: \hat{\mathbf{G}}, k=1, \ldots, r,
$$

where $\hat{\mathbf{A}}: \mathcal{X}_{r} \rightarrow \mathcal{X}_{r}, \quad \mathcal{X}_{r} \subset \mathcal{X}$, etc.
\rightsquigarrow solve r Helmholtz-type problems $L(x)-s_{k} x=-B u$.

00000

Conclusions and Open Problems

Linear Control Systems

- BT (and LQG) BT perform well for model reduction of (as of yet, simple) parabolic PDE control problems.
- Robust control design can be based on LQG BT (see Curtain 2004).
- State reconstruction using (LGQ)BT modes possible.
- Need more numerical tests.
- Open Problems:
- Optimal combination of FEM and BT error estimates/bounds - use convergence of Hankel singular values for control of mesh refinement?
- Application to nonlinear problems: for some semilinear problems, BT approaches seem to work well.
- Rather than Discretize-then-reduced use reduce-then-discretize?
[Reis 2010:] BT in function space. Extension to LQG BT?
Interpolation in function space:

$$
\mathbf{G}=\mathbf{C}\left(s_{k}!-\mathbf{A}\right)^{-1} \mathbf{B}=\hat{\mathbf{C}}\left(s_{k} \mathbf{I}-\hat{\mathbf{A}}\right)^{-1} \hat{\mathbf{B}}=: \hat{\mathbf{G}}, k=1, \ldots, r,
$$

where $\hat{\mathbf{A}}: \mathcal{X}_{r} \rightarrow \mathcal{X}_{r}, \quad \mathcal{X}_{r} \subset \mathcal{X}$, etc.
\rightsquigarrow solve r Helmholtz-type problems $L(x)-s_{k} x=-B u$.

Conclusions and Open Problems

Linear Control Systems

- BT (and LQG) BT perform well for model reduction of (as of yet, simple) parabolic PDE control problems.
- Robust control design can be based on LQG BT (see Curtain 2004).
- State reconstruction using (LGQ)BT modes possible.
- Need more numerical tests.
- Open Problems:
- Optimal combination of FEM and BT error estimates/bounds - use convergence of Hankel singular values for control of mesh refinement?
- Application to nonlinear problems: for some semilinear problems, BT approaches seem to work well.
- Rather than Discretize-then-reduced use reduce-then-discretize?
[Reis 2010:] BT in function space. Extension to LQG BT?
Interpolation in function space:

$$
\mathbf{G}=\mathbf{C}\left(s_{k} \mathbf{I}-\mathbf{A}\right)^{-1} \mathbf{B}=\hat{\mathbf{C}}\left(s_{k} \mathbf{I}-\hat{\mathbf{A}}\right)^{-1} \hat{\mathbf{B}}=: \hat{\mathbf{G}}, k=1, \ldots, r,
$$

where $\hat{\mathbf{A}}: \mathcal{X}_{r} \rightarrow \mathcal{X}_{r}, \quad \mathcal{X}_{r} \subset \mathcal{X}$, etc.
\rightsquigarrow solve r Helmholtz-type problems $\mathbf{L}(x)-s_{k} x=-\mathrm{Bu}$.

Conclusions and Open Problems

Linear Control Systems

- BT (and LQG) BT perform well for model reduction of (as of yet, simple) parabolic PDE control problems.
- Robust control design can be based on LQG BT (see Curtain 2004).
- State reconstruction using (LGQ)BT modes possible.
- Need more numerical tests.
- Open Problems:
- Optimal combination of FEM and BT error estimates/bounds - use convergence of Hankel singular values for control of mesh refinement?
- Application to nonlinear problems: for some semilinear problems, BT approaches seem to work well.
- Rather than Discretize-then-reduced use reduce-then-discretize?
[Reis 2010:] BT in function space. Extension to LQG BT?
Interpolation in function space:

$$
\mathbf{G}=\mathbf{C}\left(s_{k} \mathbf{I}-\mathbf{A}\right)^{-1} \mathbf{B}=\hat{\mathbf{C}}\left(s_{k} \mathbf{I}-\hat{\mathbf{A}}\right)^{-1} \hat{\mathbf{B}}=: \hat{\mathbf{G}}, k=1, \ldots, r,
$$

where $\hat{\mathbf{A}}: \mathcal{X}_{r} \rightarrow \mathcal{X}_{r}, \quad \mathcal{X}_{r} \subset \mathcal{X}$, etc.
\rightsquigarrow solve r Helmholtz-type problems $\mathbf{L}(\mathbf{x})-s_{k} \mathbf{x}=-\mathbf{B u}$.

Conclusions and Open Problems

Nonlinear Control Systems

- QBDAE approach allows input-independent reduced-order models, no training set/snapshots needed.
- QBDAE approach very suitable for systems with homogeneous nonlinearity, but also possible for other types of problems (e.g., biogas reactor model at MPI Magdeburg).

Work in Progress:

- Computation of Krylov spaces involves tensor products, requires efficient tensor calculus.
- Two-sided projection methods (interpolate twice as many derivatives with same reduced order).
- Optimal expansion points (greedy-type algorithm) (with B. Haasdonk).
- Automatic generation of QBDAE system using computer algebra?
- Optimal QBDAE model?

Conclusions and Open Problems

Nonlinear Control Systems

- QBDAE approach allows input-independent reduced-order models, no training set/snapshots needed.
- QBDAE approach very suitable for systems with homogeneous nonlinearity, but also possible for other types of problems (e.g., biogas reactor model at MPI Magdeburg).

Work in Progress:

- Computation of Krylov spaces involves tensor products, requires efficient tensor calculus.
- Two-sided projection methods (interpolate twice as many derivatives with same reduced order).
- Optimal expansion points (greedy-type algorithm) (with B. Haasdonk).
- Automatic generation of QBDAE system using computer algebra?
- Optimal QBDAE model?

