BALANCING－RELATED MODEL REDUCTION FOR PARABOLIC CONTROL SYSTEMS

Peter Benner

Professur Mathematik in Industrie und Technik
Fakultät für Mathematik
Technische Universität Chemnitz

Courant Institute，NYU
March 10， 2006

1 Distributed Parameter Systems
■ Parabolic Systems
■ Infinite-Dimensional Systems
2 Model Reduction Based on Balancing

- Motivation
- Balanced Truncation
- LQG Balanced Truncation

■ Computation of Reduced-Order Systems
3 Solving Large-Scale Matrix Equations
■ ADI Method for Lyapunov Equations
■ Newton's Method for AREs
4 LQR Problem
5 Numerical Results
■ Performance of Matrix Equation Solvers
■ Model Reduction Performance

- Reconstruction of the State

6 Conclusions and Open Problems

Distributed Parameter Systems
Parabolic PDEs as infinite-dimensional systems

PDE Model Reduction

Peter Benner

DPS

Parabolic
Systems
Infinite-
Dimensional Systems

Model Reduction
Based on
Balancing
Large Matrix Equations

LQR Problem
Numerical Results
Conclusions and Open Problems

Given Hilbert spaces \mathcal{X} - state space,
\mathcal{U} - control space,
\mathcal{Y} - output space,
and operators
A: $\operatorname{dom}(\mathbf{A}) \subset \mathcal{X} \rightarrow \mathcal{X}$,
B : $\mathcal{U} \rightarrow \mathcal{X}$,
C: $\mathcal{X} \rightarrow \mathcal{Y}$.

Linear Distributed Parameter System (DPS)

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}=\mathbf{A x}+\mathbf{B u}, \\
\mathbf{y}=\mathbf{C x},
\end{array} \quad \mathbf{x}(0)=\mathrm{x}_{0} \in \mathcal{X},\right.
$$

i.e., abstract evolution equation together with observation equation.

Distributed Parameter Systems

Parabolic PDEs as infinite-dimensional systems

PDE Model Reduction

Given Hilbert spaces

$$
\begin{aligned}
& \mathcal{X} \text { - state space, } \\
& \mathcal{U} \text { - control space, } \\
& \mathcal{Y} \text { - output space, }
\end{aligned}
$$

and operators
$\mathbf{A}: \operatorname{dom}(\mathbf{A}) \subset \mathcal{X} \rightarrow \mathcal{X}$,
B: $\mathcal{U} \rightarrow \mathcal{X}$,
C : $\mathcal{X} \rightarrow \mathcal{Y}$.

Linear Distributed Parameter System (DPS)

$$
\Sigma:\left\{\begin{array}{l}
\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}+\mathbf{B u}, \\
\mathbf{y}=\mathbf{C x},
\end{array} \quad \mathbf{x}(0)=\mathbf{x}_{0} \in \mathcal{X}\right.
$$

i.e., abstract evolution equation together with observation equation.

Parabolic Systems

The state $x=x(t, \xi)$ is a weak solution of a parabolic PDE with $(t, \xi) \in[0, T] \times \Omega, \Omega \subset \mathbb{R}^{d}:$

$$
\partial_{t} x-\nabla(a(\xi) . \nabla x)+b(\xi) . \nabla x+c(\xi) x=B_{p c}(\xi) u(t), \quad \xi \in \Omega, t>0
$$

with initial and boundary conditions

$$
\begin{aligned}
\alpha(\xi) x+\beta(\xi) \partial_{\eta} x & =B_{b c}(\xi) u(t), & & \xi \in \partial \Omega, \quad t \in[0, T] \\
x(0, \xi) & =x_{0}(\xi) \in \mathcal{X}, & & \xi \in \Omega, \\
y(t) & =C(\xi) x, & & \xi \in \Omega, \quad t \in[0, T] .
\end{aligned}
$$

■ $B_{p c}=0 \Longrightarrow$ boundary control problem
■ $B_{b c}=0 \Longrightarrow$ point control problem

Infinite-Dimensional Systems

PDE Model Reduction

Peter Benner

DPS

Parabolic
Systems
InfiniteDimensional Systems

Model Reduction
Based on
Balancing
Large Matrix

Equations

LQR Problem
Numerical Results
Conclusions and Open Problems

Assume

■ A generates C_{0}-semigroup $T(t)$ on \mathcal{X},

- (A,B) is exponentially stabilizable, i.e., there exists $\mathbf{F}: \operatorname{dom}(\mathbf{A}) \mapsto \mathcal{U}$ such that $\mathbf{A}+\mathbf{B F}$ generates an exponentially stable C_{0}-semigroup $\mathbf{S}(\mathbf{t})$;
- (\mathbf{A}, \mathbf{C}) is exponentially detectable, i.e., $\left(\mathbf{A}^{*}, \mathbf{C}^{*}\right)$ is exponentially stabilizable;
- B,C are finite-rank and bounded, e.g., $\mathcal{U}=\mathbb{R}^{m}, \mathcal{Y}=\mathbb{R}^{p}$.

Then the system $\Sigma(A, B, C)$ has a transfer function

$$
\mathbf{G}=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B} \in L_{\infty} .
$$

If, in addition, \mathbf{A} is exponentially stable, \mathbf{G} is in the Hardy space H_{∞}.
Weaker assumptions:
$\Sigma(A, B, C)$ is Pritchard-Salomon system, allows for certain unboundedness of B, C.

Infinite-Dimensional Systems

PDE Model Reduction

Assume

- A generates C_{0}-semigroup $T(t)$ on \mathcal{X},
$■(\mathbf{A}, \mathbf{B})$ is exponentially stabilizable, i.e., there exists $\mathbf{F}: \operatorname{dom}(\mathbf{A}) \mapsto \mathcal{U}$ such that $\mathbf{A}+\mathbf{B F}$ generates an exponentially stable C_{0}-semigroup $\mathbf{S}(\mathbf{t})$;
- (\mathbf{A}, \mathbf{C}) is exponentially detectable, i.e., $\left(\mathbf{A}^{*}, \mathbf{C}^{*}\right)$ is exponentially stabilizable;
- B,C are finite-rank and bounded, e.g., $\mathcal{U}=\mathbb{R}^{m}, \mathcal{Y}=\mathbb{R}^{p}$.

Then the system $\Sigma(A, B, C)$ has a transfer function

$$
\mathbf{G}=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B} \in L_{\infty} .
$$

If, in addition, \mathbf{A} is exponentially stable, \mathbf{G} is in the Hardy space H_{∞}.

Weaker assumptions:

$\Sigma(A, B, C)$ is Pritchard-Salomon system, allows for certain unboundedness of B, C

Infinite-Dimensional Systems

PDE Model Reduction

Assume

- A generates C_{0}-semigroup $T(t)$ on \mathcal{X},
$■(\mathbf{A}, \mathbf{B})$ is exponentially stabilizable, i.e., there exists $\mathbf{F}: \operatorname{dom}(\mathbf{A}) \mapsto \mathcal{U}$ such that $\mathbf{A}+\mathbf{B F}$ generates an exponentially stable C_{0}-semigroup $\mathbf{S}(\mathbf{t})$;
■ (\mathbf{A}, \mathbf{C}) is exponentially detectable, i.e., $\left(\mathbf{A}^{*}, \mathbf{C}^{*}\right)$ is exponentially stabilizable;
- B, C are finite-rank and bounded, e.g., $\mathcal{U}=\mathbb{R}^{m}, \mathcal{Y}=\mathbb{R}^{p}$.

Then the system $\Sigma(A, B, C)$ has a transfer function

$$
\mathbf{G}=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B} \in L_{\infty}
$$

If, in addition, \mathbf{A} is exponentially stable, \mathbf{G} is in the Hardy space H_{∞}.
Weaker assumptions:
$\Sigma(A, B, C)$ is Pritchard-Salomon system, allows for certain unboundedness of B, C.

Infinite-Dimensional Systems

Assume
■ A generates C_{0}-semigroup $T(t)$ on \mathcal{X},
$■(\mathbf{A}, \mathbf{B})$ is exponentially stabilizable, i.e., there exists $\mathbf{F}: \operatorname{dom}(\mathbf{A}) \mapsto \mathcal{U}$ such that $\mathbf{A}+\mathbf{B F}$ generates an exponentially stable C_{0}-semigroup $\mathbf{S}(\mathbf{t})$;
$\square(\mathbf{A}, \mathbf{C})$ is exponentially detectable, i.e., $\left(\mathbf{A}^{*}, \mathbf{C}^{*}\right)$ is exponentially stabilizable;
■ \mathbf{B}, \mathbf{C} are finite-rank and bounded, e.g., $\mathcal{U}=\mathbb{R}^{m}, \mathcal{Y}=\mathbb{R}^{p}$.
Then the system $\Sigma(A, B, C)$ has a transfer function

$$
\mathbf{G}=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B} \in L_{\infty}
$$

If, in addition, \mathbf{A} is exponentially stable, \mathbf{G} is in the Hardy space H_{∞}
Weaker assumptions:
$\Sigma(A, B, C)$ is Pritchard-Salomon system, allows for certain unboundedness of B, C

Infinite-Dimensional Systems

Assume
■ A generates C_{0}-semigroup $T(t)$ on \mathcal{X},
$\square(\mathbf{A}, \mathbf{B})$ is exponentially stabilizable, i.e., there exists $\mathbf{F}: \operatorname{dom}(\mathbf{A}) \mapsto \mathcal{U}$ such that $\mathbf{A}+\mathbf{B F}$ generates an exponentially stable C_{0}-semigroup $\mathbf{S}(\mathbf{t})$;
$■(\mathbf{A}, \mathbf{C})$ is exponentially detectable, i.e., $\left(\mathbf{A}^{*}, \mathbf{C}^{*}\right)$ is exponentially stabilizable;
$■ \mathbf{B}, \mathbf{C}$ are finite-rank and bounded, e.g., $\mathcal{U}=\mathbb{R}^{m}, \mathcal{Y}=\mathbb{R}^{p}$.
Then the system $\Sigma(A, B, C)$ has a transfer function

$$
\mathbf{G}=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B} \in L_{\infty}
$$

If, in addition, \mathbf{A} is exponentially stable, \mathbf{G} is in the Hardy space H_{∞}.

Weaker assumptions:

$\Sigma(\mathbf{A}, \mathbf{B}, \mathbf{C})$ is Pritchard-Salomon system, allows for certain unboundedness
of B, C.

Infinite-Dimensional Systems

Assume
■ A generates C_{0}-semigroup $T(t)$ on \mathcal{X},
$\square(\mathbf{A}, \mathbf{B})$ is exponentially stabilizable, i.e., there exists $\mathbf{F}: \operatorname{dom}(\mathbf{A}) \mapsto \mathcal{U}$ such that $\mathbf{A}+\mathbf{B F}$ generates an exponentially stable C_{0}-semigroup $\mathbf{S}(\mathbf{t})$;
$\square(\mathbf{A}, \mathbf{C})$ is exponentially detectable, i.e., $\left(\mathbf{A}^{*}, \mathbf{C}^{*}\right)$ is exponentially stabilizable;
$■ \mathbf{B}, \mathbf{C}$ are finite-rank and bounded, e.g., $\mathcal{U}=\mathbb{R}^{m}, \mathcal{Y}=\mathbb{R}^{p}$.
Then the system $\Sigma(A, B, C)$ has a transfer function

$$
\mathbf{G}=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B} \in L_{\infty}
$$

If, in addition, \mathbf{A} is exponentially stable, \mathbf{G} is in the Hardy space H_{∞}.
Weaker assumptions:
$\Sigma(\mathbf{A}, \mathbf{B}, \mathbf{C})$ is Pritchard-Salomon system, allows for certain unboundedness of B, C.

(Exponentially) Stable Systems

PDE Model Reduction

G is the Laplace transform of

$$
\mathbf{h}(t):=\mathbf{C} T(t) \mathbf{B}
$$

and symbol of the Hankel operator $\mathbf{H}: L_{2}\left(0, \infty ; \mathbb{R}^{m}\right) \mapsto L_{2}\left(0, \infty ; \mathbb{R}^{p}\right)$,

$$
(\mathbf{H u})(t):=\int_{0}^{\infty} \mathbf{h}(t+\tau) u(\tau) d \tau
$$

\mathbf{H} is compact with countable many singular values $\sigma_{j}, j=1, \ldots, \infty$, called the Hankel singular values (HSVs) of G. Moreover,

HSVs are system invariants, used for approximation similar to truncated SVD. The 2-induced operator norm is the H_{∞} norm; here,

$$
\|\mathbf{G}\|_{H_{\infty}}=\sum_{j=1}^{\infty} \sigma_{j} .
$$

(Exponentially) Stable Systems

PDE Model Reduction

G is the Laplace transform of

$$
\mathbf{h}(t):=\mathbf{C} T(t) \mathbf{B}
$$

and symbol of the Hankel operator $\mathbf{H}: L_{2}\left(0, \infty ; \mathbb{R}^{m}\right) \mapsto L_{2}\left(0, \infty ; \mathbb{R}^{p}\right)$,

$$
(\mathbf{H u})(t):=\int_{0}^{\infty} \mathbf{h}(t+\tau) u(\tau) d \tau
$$

\mathbf{H} is compact with countable many singular values $\sigma_{j}, j=1, \ldots, \infty$, called the Hankel singular values (HSVs) of G. Moreover,

$$
\sum_{j=1}^{\infty} \sigma_{j}<\infty
$$

HSVs are system invariants, used for approximation similar to truncated SVD. The 2-induced operator norm is the H_{∞} norm; here,

$$
\|\mathbf{G}\|_{H_{\infty}}=\sum_{j=1}^{\infty} \sigma_{j}
$$

(Exponentially) Stable Systems

PDE Model Reduction
\mathbf{G} is the Laplace transform of

$$
\mathbf{h}(t):=\mathbf{C} T(t) \mathbf{B}
$$

and symbol of the Hankel operator $\mathbf{H}: L_{2}\left(0, \infty ; \mathbb{R}^{m}\right) \mapsto L_{2}\left(0, \infty ; \mathbb{R}^{p}\right)$,

$$
(\mathbf{H u})(t):=\int_{0}^{\infty} \mathbf{h}(t+\tau) u(\tau) d \tau
$$

\mathbf{H} is compact with countable many singular values $\sigma_{j}, j=1, \ldots, \infty$, called the Hankel singular values (HSVs) of G. Moreover,

$$
\sum_{j=1}^{\infty} \sigma_{j}<\infty
$$

HSVs are system invariants, used for approximation similar to truncated SVD. The 2-induced operator norm is the H_{∞} norm; here,

$$
\|\mathbf{G}\|_{H_{\infty}}=\sum_{j=1}^{\infty} \sigma_{j}
$$

Model Reduction Based on Balancing

Motivation

PDE Model Reduction

Designing a controller for parabolic control systems requires semi-discretization in space, control design for n-dim. system.

Feedback Controllers

A feedback controller (dynamic
compensator) is a linear system of order N, where

■ input $=$ output of plant,

- output $=$ input of plant.

Real-time control is only possible with controllers of low complexity.
\rightsquigarrow Modern feedback control for parabolic systems w/o model reduction impossible due to large scale of discretized systems.

Model Reduction Based on Balancing

Motivation

PDE Model Reduction

Designing a controller for parabolic control systems requires semi-discretization in space, control design for n-dim. system.

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input $=$ output of plant,
- output $=$ input of plant. Modern (LQG- $/ \mathcal{H}_{2}-/ \mathcal{H}_{\infty^{-}}$) control
 design: $N \geq n$

Real-time control is only possible with controllers of low complexity.
\rightsquigarrow Modern feedback control for parabolic systems w/o model reduction impossible due to large scale of discretized systems.

Model Reduction Based on Balancing

Motivation

PDE Model Reduction

Designing a controller for parabolic control systems requires semi-discretization in space, control design for n-dim. system.

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input $=$ output of plant,
- output $=$ input of plant.

Modern (LQG- $/ \mathcal{H}_{2}-/ \mathcal{H}_{\infty^{-}}$) control
 design: $N \geq n$

Real-time control is only possible with controllers of low complexity.
\rightsquigarrow Modern feedback control for parabolic systems w/o model reduction impossible due to large scale of discretized systems.

Model Reduction Based on Balancing

Motivation

Designing a controller for parabolic control systems requires semi-discretization in space, control design for n-dim. system.

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input $=$ output of plant,
- output $=$ input of plant.

Modern (LQG-/ $\mathcal{H}_{2}-/ \mathcal{H}_{\infty}$) control
 design: $N \geq n$

Real-time control is only possible with controllers of low complexity.
> \rightsquigarrow Modern feedback control for parabolic systems w/o model reduction impossible due to large scale of discretized systems.

Model Reduction Based on Balancing

Motivation

Designing a controller for parabolic control systems requires semi-discretization in space, control design for n-dim. system.

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input $=$ output of plant,
- output $=$ input of plant.

Modern (LQG-/ $\mathcal{H}_{2}-/ \mathcal{H}_{\infty}$) control
 design: $N \geq n$

Real-time control is only possible with controllers of low complexity.
\rightsquigarrow Modern feedback control for parabolic systems w/o model reduction impossible due to large scale of discretized systems.

Balanced Truncation
Balanced Realization

Definition: [Curtain/Glover/(Partington) 1986,1988]

For $\mathbf{G} \in H_{\infty}, \Sigma(\mathbf{A}, \mathbf{B}, \mathbf{C})$ is a balanced realization of \mathbf{G} if the controllability and observability Gramians, given by the unique self-adjoint positive semidefinite solutions of the Lyapunov equations

$$
\begin{array}{rlll}
\mathbf{A P z}+\mathbf{P A}^{*} \mathbf{z}+\mathbf{B B}^{*} \mathbf{z} & =0 & \forall \mathbf{z} \in \operatorname{dom}\left(\mathbf{A}^{*}\right) \\
\mathbf{A}^{*} \mathbf{Q} \mathbf{z}+\mathbf{Q} \mathbf{A} \mathbf{z}+\mathbf{C}^{*} \mathbf{C z} & =0 & \forall \mathbf{z} \in \operatorname{dom}(\mathbf{A})
\end{array}
$$

satisfy $\mathbf{P}=\mathbf{Q}=\operatorname{diag}\left(\sigma_{j}\right)=: \boldsymbol{\Sigma}$.

Balanced Truncation

Model reduction by truncation

Abstract balanced truncation [Glover/Curtain/Partington 1988]
Given balanced realization with

$$
\mathbf{P}=\mathbf{Q}=\operatorname{diag}\left(\sigma_{j}\right)=\boldsymbol{\Sigma}
$$

choose r with $\sigma_{r}>\sigma_{r+1}$ and partition $\Sigma(\mathbf{A}, \mathbf{B}, \mathbf{C})$ according to

$$
\mathbf{P}_{r}=\mathbf{Q}_{r}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)
$$

so that

$$
\mathbf{A}=\left[\begin{array}{cc}
\mathbf{A}_{r} & * \\
* & *
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{c}
\mathbf{B}_{r} \\
*
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{ll}
\mathbf{C}_{r} & *
\end{array}\right],
$$

then the reduced-order model is the stable system $\Sigma_{r}\left(\mathbf{A}_{r}, \mathbf{B}_{r}, \mathbf{C}_{r}\right)$ with transfer function \mathbf{G}_{r} satisfying

$$
\left\|\mathbf{G}-\mathbf{G}_{r}\right\|_{H_{\infty}} \leq 2 \sum_{j=r+1}^{\infty} \sigma_{j} .
$$

LQG Balanced Truncation
LQG Balanced Realization

PDE Model Reduction

Peter Benner

DPS

Model Reduction

Based on

Balancing
Motivation
Balanced Truncation
LQG Balanced Truncation
Computation of Reduced-Order Systems

Large Matrix Equations LQR Problem

Numerical Results
Conclusions and Open Problems

Balanced truncation only applicable for stable systems.
Now: unstable systems

Definition: [Curtain 2003].

For $\mathbf{G} \in L_{\infty}, \Sigma(\mathbf{A}, \mathbf{B}, \mathbf{C})$ is an LQG-balanced realization of \mathbf{G} if the unique self-adjoint, positive semidefinite, stabilizing solutions of the operator Riccati equations

$$
\begin{aligned}
& \mathbf{A P z}+\mathbf{P A}^{*} \mathbf{z}-\mathbf{P} \mathbf{C}^{*} \mathbf{C P z}+\mathbf{B B}^{*} \mathbf{z}=0 \\
& \mathbf{A}^{*} \mathbf{Q} \mathbf{z}+\mathbf{Q} \mathbf{A z} \mathbf{z}-\mathbf{Q} \mathbf{z} \in \operatorname{dom}\left(\mathbf{A}^{*}\right) \\
& \mathbf{Q z}+\mathbf{C}^{*} \mathbf{C z}=0 \\
& \text { for } \mathbf{z} \in \operatorname{dom}(\mathbf{A})
\end{aligned}
$$

are bounded and satisfy $\mathbf{P}=\mathbf{Q}=\operatorname{diag}\left(\gamma_{j}\right)=$: $\boldsymbol{\Gamma}$.
(\mathbf{P} stabilizing $\Leftrightarrow \mathbf{A}-\mathbf{P C} \mathbf{C}^{*}$ generates exponentially stable C_{0}-semigroup.)

Balanced truncation only applicable for stable systems.
Now: unstable systems

Definition: [Curtain 2003].

For $\mathbf{G} \in L_{\infty}, \Sigma(\mathbf{A}, \mathbf{B}, \mathbf{C})$ is an LQG-balanced realization of \mathbf{G} if the unique self-adjoint, positive semidefinite, stabilizing solutions of the operator Riccati equations

$$
\begin{array}{rlll}
\mathbf{A P z}+\mathbf{P A}^{*} \mathbf{z}-\mathbf{P C}^{*} \mathbf{C P} \mathbf{z}+\mathbf{B B}^{*} \mathbf{z} & =0 & \text { for } \mathbf{z} \in \operatorname{dom}\left(\mathbf{A}^{*}\right) \\
\mathbf{A}^{*} \mathbf{Q z}+\mathbf{Q} \mathbf{z}-\mathbf{Q B B}^{*} \mathbf{Q} \mathbf{z}+\mathbf{C}^{*} \mathbf{C} \mathbf{z}=0 & \text { for } \mathbf{z} \in \operatorname{dom}(\mathbf{A})
\end{array}
$$

are bounded and satisfy $\mathbf{P}=\mathbf{Q}=\operatorname{diag}\left(\gamma_{j}\right)=: \boldsymbol{\Gamma}$.
(\mathbf{P} stabilizing $\Leftrightarrow \mathbf{A}-\mathbf{P C}^{*} \mathbf{C}$ generates exponentially stable C_{0}-semigroup.)

LQG Balanced Truncation

Model reduction by truncation

PDE Model
Reduction

Abstract LQG Balanced Truncation [Curtain 2003]

Given balanced realization with

$$
\mathbf{P}=\mathbf{Q}=\operatorname{diag}\left(\gamma_{j}\right)=\boldsymbol{\Gamma}
$$

choose r with $\gamma_{r}>\gamma_{r+1}$ and partition $\Sigma(\mathbf{A}, \mathbf{B}, \mathbf{C})$ according to

$$
\mathbf{P}_{r}=\mathbf{Q}_{r}=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{r}\right)
$$

so that

$$
\mathbf{A}=\left[\begin{array}{cc}
\mathbf{A}_{r} & * \\
* & *
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{c}
\mathbf{B}_{r} \\
*
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{ll}
\mathbf{C}_{r} & *
\end{array}\right]
$$

then the reduced-order model is the LQG balanced system $\Sigma_{r}\left(\mathbf{A}_{r}, \mathbf{B}_{r}, \mathbf{C}_{r}\right)$ with transfer function \mathbf{G}_{r} satisfying

$$
"\left\|\mathbf{G}-\mathbf{G}_{r}\right\|_{L_{\infty}} " \leq 2 \sum_{j=r+1}^{\infty} \frac{\gamma_{j}}{\sqrt{1+\gamma_{j}^{2}}}
$$

Computation of Reduced-Order Systems

PDE Model Reduction

Spatial discretization (FEM, FDM) \rightsquigarrow finite-dimensional system on $\mathcal{X}_{n} \subset \mathcal{X}$ with $\operatorname{dim} \mathcal{X}_{n}=n:$

$$
\begin{aligned}
\dot{x} & =A x+B u, \quad x(0)=x_{0}, \\
y & =C x,
\end{aligned}
$$

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$, with corresponding

- algebraic Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

- algebraic Riccati equations (AREs)

$$
\begin{aligned}
& 0=\mathcal{R}_{f}(P):=A P+P A^{T}-P C^{\top} C P+B B^{\top} \\
& 0=\mathcal{R}_{c}(Q):=A^{\top} Q+Q A-Q B B^{\top} Q+C^{\top} C .
\end{aligned}
$$

Computation of Reduced-Order Systems

Spatial discretization (FEM, FDM) \rightsquigarrow finite-dimensional system on $\mathcal{X}_{n} \subset \mathcal{X}$ with $\operatorname{dim} \mathcal{X}_{n}=n:$

$$
\begin{aligned}
\dot{x} & =A x+B u, \quad x(0)=x_{0}, \\
y & =C x,
\end{aligned}
$$

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$, with corresponding

- algebraic Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

- algebraic Riccati equations (AREs)

$$
\begin{aligned}
& 0=\mathcal{R}_{f}(P):=A P+P A^{T}-P C^{T} C P+B B^{T} \\
& 0=\mathcal{R}_{c}(Q):=A^{T} Q+Q A-Q B B^{T} Q+C^{T} C
\end{aligned}
$$

Computation of Reduced-Order Systems

Spatial discretization (FEM, FDM) \rightsquigarrow finite-dimensional system on $\mathcal{X}_{n} \subset \mathcal{X}$ with $\operatorname{dim} \mathcal{X}_{n}=n:$

$$
\begin{aligned}
\dot{x} & =A x+B u, \quad x(0)=x_{0}, \\
y & =C x,
\end{aligned}
$$

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$, with corresponding

- algebraic Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

- algebraic Riccati equations (AREs)

$$
\begin{aligned}
& 0=\mathcal{R}_{f}(P):=A P+P A^{T}-P C^{T} C P+B B^{T} \\
& 0=\mathcal{R}_{c}(Q):=A^{T} Q+Q A-Q B B^{T} Q+C^{T} C
\end{aligned}
$$

Convergence of Gramians

Theorem [Curtain 2003]
Under given assumptions for $\boldsymbol{\Sigma}(\mathbf{A}, \mathbf{B}, \mathbf{C})$, the solutions of the algebraic Lyapunov equations on \mathcal{X}_{n} converge in the nuclear norm to the solutions of the corresponding operator equations and the transfer functions converge in the gap topology if the n-dimensional approximations satisfy the assumptions:

- \exists orthogonal projector $\Pi_{n}: \mathcal{X} \mapsto \mathcal{X}_{n}$ such that

$$
\Pi_{n} \mathbf{z} \rightarrow \mathbf{z}(n \rightarrow \infty) \quad \forall \mathbf{z} \in \mathcal{X}, \quad B=\Pi_{n} \mathbf{B}, \quad C=\left.\mathbf{C}\right|_{\mathcal{X}_{n}}
$$

- For all $\mathbf{z} \in \mathcal{X}$ and $n \rightarrow \infty$,

$$
e^{A t} \Pi_{n} \mathbf{z} \rightarrow T(t) \mathbf{z}, \quad\left(e^{A t}\right)^{*} \Pi_{n} \mathbf{z} \rightarrow T(t)^{*} \mathbf{z}
$$

uniformly in t on bounded intervals.

- A is uniformly exponentially stable.

Convergence of Gramians

Theorem [Curtain 2003]

Under given assumptions for $\boldsymbol{\Sigma}(\mathbf{A}, \mathbf{B}, \mathbf{C})$, the stabilizing solutions of the algebraic Riccati equations on \mathcal{X}_{n} converge in the nuclear norm to the solutions of the corresponding operator equations and the transfer functions converge in the gap topology if the n-dimensional approximations satisfy the assumptions:

- \exists orthogonal projector $\Pi_{n}: \mathcal{X} \mapsto \mathcal{X}_{n}$ such that

$$
\Pi_{n} \mathbf{z} \rightarrow \mathbf{z}(n \rightarrow \infty) \quad \forall \mathbf{z} \in \mathcal{X}, \quad B=\Pi_{n} \mathbf{B}, \quad C=\left.\mathbf{C}\right|_{\mathcal{X}_{n}}
$$

- For all $\mathbf{z} \in \mathcal{X}$ and $n \rightarrow \infty$,

$$
e^{A t} \Pi_{n} \mathbf{z} \rightarrow T(t) \mathbf{z}, \quad\left(e^{A t}\right)^{*} \Pi_{n} \mathbf{z} \rightarrow T(t)^{*} \mathbf{z}
$$

uniformly in t on bounded intervals.
$\square(A, B, C)$ is uniformly exponentially stabilizable and detectable.

Computation of Reduced-Order Systems

 Computation of Reduced-Order Systems from Gramians1 Given the Gramians P, Q of the n-dimensional system from either the Lyapunov equations or AREs in factorized form

$$
P=S^{T} S, \quad Q=R^{T} R
$$

compute SVD

$$
S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}
\Sigma_{1} & \\
& \Sigma_{2}
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T} \\
V_{2}^{T}
\end{array}\right] .
$$

2 Set $W=R^{\top} V_{1} \Sigma_{1}^{-1 / 2}$ and $V=S^{\top} U_{1} \Sigma_{1}^{-1 / 2}$.
3 Then the reduced-order model is

$$
\left(A_{r}, B_{r}, C_{r}\right)=\left(W^{\top} A V, W^{\top} B, C V\right)
$$

Thus, need to solve large-scale matrix equations-but need only factors!

Computation of Reduced-Order Systems

Computation of Reduced-Order Systems from Gramians

1 Given the Gramians P, Q of the n-dimensional system from either the Lyapunov equations or AREs in factorized form

$$
P=S^{T} S, \quad Q=R^{T} R
$$

compute SVD

$$
S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}
\Sigma_{1} & \\
& \Sigma_{2}
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T} \\
V_{2}^{T}
\end{array}\right] .
$$

2 Set $W=R^{T} V_{1} \Sigma_{1}^{-1 / 2}$ and $V=S^{T} U_{1} \Sigma_{1}^{-1 / 2}$.
3 Then the reduced-order model is

$$
\left(A_{r}, B_{r}, C_{r}\right)=\left(W^{\top} A V, W^{\top} B, C V\right)
$$

Thus, need to solve large-scale matrix equations-but need only factors!

Computation of Reduced-Order Systems

Computation of Reduced-Order Systems from Gramians

1 Given the Gramians P, Q of the n-dimensional system from either the Lyapunov equations or AREs in factorized form

$$
P=S^{T} S, \quad Q=R^{T} R
$$

compute SVD

$$
S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}
\Sigma_{1} & \\
& \Sigma_{2}
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T} \\
V_{2}^{T}
\end{array}\right] .
$$

2 Set $W=R^{T} V_{1} \Sigma_{1}^{-1 / 2}$ and $V=S^{T} U_{1} \Sigma_{1}^{-1 / 2}$.
3 Then the reduced-order model is

$$
\left(A_{r}, B_{r}, C_{r}\right)=\left(W^{\top} A V, W^{\top} B, C V\right)
$$

Thus, need to solve large-scale matrix equations-but need only factors!

Computation of Reduced-Order Systems

Computation of Reduced-Order Systems from Gramians

1 Given the Gramians P, Q of the n-dimensional system from either the Lyapunov equations or AREs in factorized form

$$
P=S^{T} S, \quad Q=R^{T} R
$$

compute SVD

$$
S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{cc}
\Sigma_{1} & \\
& \Sigma_{2}
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T} \\
V_{2}^{T}
\end{array}\right] .
$$

2 Set $W=R^{T} V_{1} \Sigma_{1}^{-1 / 2}$ and $V=S^{T} U_{1} \Sigma_{1}^{-1 / 2}$.
3 Then the reduced-order model is

$$
\left(A_{r}, B_{r}, C_{r}\right)=\left(W^{\top} A V, W^{\top} B, C V\right)
$$

Thus, need to solve large-scale matrix equations-but need only factors!

Error Bounds

For control applications, want to estimate/bound

$$
\left\|\mathbf{y}-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{m}\right)} \quad \text { or } \quad\left\|\mathbf{y}(t)-y_{r}(t)\right\|_{2} .
$$

Error bound includes approximation errors caused by

- Galerkin projection/spatial FEM discretization,
- model reduction.

Ultimate goal

Balance the discretization and model reduction errors vs. each other in fully adaptive discretization scheme.

Output Error Bound

PDE Model Reduction

Balancing

Motivation
Balanced
Truncation
L@G Balanced Truncation
Computation of Reduced-Order Systems

Large Matrix

Equations

LQR Problem
Numerical Results
Conclusions and Open Problems

Assume $\mathbf{C} \in \mathcal{L}\left(\mathcal{X}, \mathbb{R}^{p}\right)$ bounded, $C=\left.\mathbf{C}\right|_{\mathcal{X}_{n}}, \mathcal{X}_{n} \subset \mathcal{X}$. Then:

$$
\left\|\mathbf{y}-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{\rho}\right)} \leq\|\mathbf{y}-y\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)}+\left\|y-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{\rho}\right)}
$$

$$
=\|\mathbf{C x}-C x\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)}+\left\|y-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)}
$$

$$
\leq \underbrace{\|\mathbf{C}\|}_{=: c} \cdot \underbrace{\|x-x\|_{L_{2}\left(0, T_{i} ; x\right)}}_{\text {FEM error }}+\underbrace{\left\|y-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)}}_{\text {model reduction error }}
$$

Corollary

Balanced truncation:

$\left\|y-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \leq c\|x-x\|_{L_{2}(0, T: X)}+2\|u\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \sum_{j=r+1}^{n} \sigma_{j}$.
LQG balanced truncation:
$\left\|\mathbf{y}-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{\rho}\right)} \leq c\|\mathbf{x}-x\|_{L_{2}(0, T ; \chi)}+2\|u\|_{L_{2}\left(0, T ; \mathbb{R}^{\rho}\right)} \sum_{j=r+1}^{n} \frac{\gamma_{j}}{\sqrt{1+\gamma_{j}^{2}}}$

Output Error Bound

PDE Model Reduction

Peter Benner

DPS

Model Reduction

Based on

Balancing
Motivation
Balanced
Truncation
LQG Balanced
Truncation
Computation of Reduced-Order Systems

Large Matrix

Equations

LQR Problem
Numerical Result:
Conclusions and Open Problems

Assume $\mathbf{C} \in \mathcal{L}\left(\mathcal{X}, \mathbb{R}^{p}\right)$ bounded, $C=\left.\mathbf{C}\right|_{\mathcal{X}_{n}}, \mathcal{X}_{n} \subset \mathcal{X}$. Then:

$$
\left\|\mathbf{y}-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \leq\|\mathbf{y}-y\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)}+\left\|y-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)}
$$

$$
=\|\mathbf{C x}-C x\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)}+\left\|y-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)}
$$

Corollary

Balanced truncation:

$\left\|\boldsymbol{y}-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \leq c\|x-x\|_{L_{2}(0, T ; X)}+2\|u\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \sum_{j=r+1}^{n} \sigma_{j}$.
LQG balanced truncation:
$\left\|\mathbf{y}-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \leq c\|x-x\|_{L_{2}(0, T ; \chi)}+2\|u\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \sum_{j=r+1}^{n} \frac{\gamma_{j}}{\sqrt{1+\gamma_{j}^{2}}}$

Output Error Bound

PDE Model Reduction

DPS

Model Reduction

Based on

Balancing
Motivation
Balanced
Truncation
LQG Balanced Truncation
Computation of Reduced-Order Systems

Large Matrix

Equations

LQR Problem
Numerical Results
Conclusions and Open Problems

Assume $\mathbf{C} \in \mathcal{L}\left(\mathcal{X}, \mathbb{R}^{p}\right)$ bounded, $C=\left.\mathbf{C}\right|_{\mathcal{X}_{n}}, \mathcal{X}_{n} \subset \mathcal{X}$. Then:

$$
\begin{aligned}
\left\|\mathbf{y}-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} & \leq\|\mathbf{y}-y\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)}+\left\|y-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \\
& =\|\mathbf{C} \mathbf{x}-C x\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)}+\left\|y-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \\
& \leq \underbrace{\|\mathbf{C}\|}_{=: c} \underbrace{\|\mathrm{x}-x\|_{L_{2}(0, T ; \mathcal{X})}}_{\text {FEM error }}+\underbrace{\left\|y-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)}}_{\text {model reduction error }} .
\end{aligned}
$$

Corollary

Balanced truncation:

$\left\|\boldsymbol{y}-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \leq c\|x-x\|_{L_{2}(0, T: X)}+2\|u\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \sum_{j=r+1}^{n} \sigma_{j}$.
LQG balanced truncation:
$\left\|\mathbf{y}-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \leq c\|x-x\|_{L_{2}(0, T ; \chi)}+2\|u\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \sum_{j=r+1}^{n} \frac{\gamma_{j}}{\sqrt{1+\gamma_{j}^{2}}}$

Output Error Bound

PDE Model Reduction

Assume $\mathbf{C} \in \mathcal{L}\left(\mathcal{X}, \mathbb{R}^{p}\right)$ bounded, $C=\left.\mathbf{C}\right|_{\mathcal{X}_{n}}, \mathcal{X}_{n} \subset \mathcal{X}$. Then:

$$
\begin{aligned}
\left\|\mathbf{y}-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} & \leq\|\mathbf{y}-y\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)}+\left\|y-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \\
& =\|\mathbf{C} \mathbf{x}-C x\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)}+\left\|y-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \\
& \leq \underbrace{\|\mathbf{C}\|}_{=: c} \cdot \underbrace{\|\mathrm{x}-x\|_{L_{2}(0, T ; \mathcal{X})}}_{\text {FEM error }}+\underbrace{\left\|y-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)}}_{\text {model reduction error }} .
\end{aligned}
$$

Corollary

Balanced truncation:

$$
\left\|\mathbf{y}-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \leq c\|\mathrm{x}-x\|_{L_{2}(0, T ; \mathcal{X})}+2\|u\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \sum_{j=r+1}^{n} \sigma_{j} .
$$

LQG balanced truncation:

$$
\left\|\mathbf{y}-y_{r}\right\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \leq c\|\mathrm{x}-x\|_{L_{2}(0, T ; \mathcal{X})}+2\|u\|_{L_{2}\left(0, T ; \mathbb{R}^{p}\right)} \sum_{j=r+1}^{n} \frac{\gamma_{j}}{\sqrt{1+\gamma_{j}^{2}}} .
$$

Solving Large-Scale Matrix Equations

Large-Scale Algebraic Lyapunov and Riccati Equations

PDE Model Reduction

General form for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $P \in \mathbb{R}^{n \times n}$ unknown:

$$
\begin{aligned}
& 0=\mathcal{L}(Q):=A^{T} Q+Q A+W \\
& 0=\mathcal{R}(Q):=A^{T} Q+Q A-Q G Q+W
\end{aligned}
$$

In large scale applications from semi-discretized control problems for PDEs,

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} K\right.$ for FEM),
- G, W low-rank with $G, W \in\left\{B B^{T}, C^{T} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Solving Large-Scale Matrix Equations

Large-Scale Algebraic Lyapunov and Riccati Equations

General form for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $P \in \mathbb{R}^{n \times n}$ unknown:

$$
\begin{aligned}
& 0=\mathcal{L}(Q):=A^{T} Q+Q A+W \\
& 0=\mathcal{R}(Q):=A^{T} Q+Q A-Q G Q+W
\end{aligned}
$$

In large scale applications from semi-discretized control problems for PDEs,

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation ($A=-M^{-1} K$ for FEM),
- G, W low-rank with $G, W \in\left\{B B^{T}, C^{T} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Solving Large-Scale Matrix Equations

Large-Scale Algebraic Lyapunov and Riccati Equations

General form for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $P \in \mathbb{R}^{n \times n}$ unknown:

$$
\begin{aligned}
& 0=\mathcal{L}(Q):=A^{T} Q+Q A+W \\
& 0=\mathcal{R}(Q):=A^{T} Q+Q A-Q G Q+W
\end{aligned}
$$

In large scale applications from semi-discretized control problems for PDEs,

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} K\right.$ for FEM $)$,
- G, W low-rank with $G, W \in\left\{B B^{T}, C^{\top} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Solving Large-Scale Matrix Equations
 Large-Scale Algebraic Lyapunov and Riccati Equations

General form for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $P \in \mathbb{R}^{n \times n}$ unknown:

$$
\begin{aligned}
& 0=\mathcal{L}(Q):=A^{T} Q+Q A+W \\
& 0=\mathcal{R}(Q):=A^{T} Q+Q A-Q G Q+W
\end{aligned}
$$

In large scale applications from semi-discretized control problems for PDEs,

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} K\right.$ for FEM $)$,

■ G, W low-rank with $G, W \in\left\{B B^{T}, C^{T} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.

- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Solving Large-Scale Matrix Equations
 Large-Scale Algebraic Lyapunov and Riccati Equations

General form for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $P \in \mathbb{R}^{n \times n}$ unknown:

$$
\begin{aligned}
& 0=\mathcal{L}(Q):=A^{T} Q+Q A+W \\
& 0=\mathcal{R}(Q):=A^{T} Q+Q A-Q G Q+W
\end{aligned}
$$

In large scale applications from semi-discretized control problems for PDEs,

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} K\right.$ for FEM $)$,

■ G, W low-rank with $G, W \in\left\{B B^{T}, C^{T} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.

- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Low-Rank Approximation ARE $0=A^{T} Q+Q A-Q B B^{T} Q+C C^{T}$

PDE Model Reduction

Balancing

Large Matrix Equations
ADI for
Lyapunoy
Newton's
Method for AREs
LQR Problem
Numerical Results
Conctusions and Open Problems

Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:

- Linear 1D heat equation with point control,
- $\Omega=[0,1]$,
- FEM discretization using linear B-splines,
- $h=1 / 100 \Longrightarrow n=101$.

eigenvalues of P_{h} for $\mathrm{h}=0.01$

$$
Q=Z Z^{T}=\sum_{k=1}^{n} \lambda_{k} z_{k} z_{k}^{T} \approx Z^{(r)}\left(Z^{(r)}\right)^{T}=\sum_{k=1}^{r} \lambda_{k} z_{k} z_{k}^{T}
$$

Low-Rank Approximation $A R E 0=A^{T} Q+Q A-Q B B^{T} Q+C C^{T}$

PDE Model
Reduction

Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:

- Linear 1D heat equation with point control,
- $\Omega=[0,1]$,
- FEM discretization using linear B-splines,
- $h=1 / 100 \Longrightarrow n=101$.

$$
\text { Idea: } Q=Q^{T} \geq 0 \Longrightarrow
$$

$$
Q=Z Z^{T}=\sum_{k=1}^{n} \lambda_{k} z_{k} z_{k}^{T} \approx Z^{(r)}\left(Z^{(r)}\right)^{T}=\sum_{k=1}^{r} \lambda_{k} z_{k} z_{k}^{T} .
$$

Low-Rank Approximation

 $A R E 0=A^{T} Q+Q A-Q B B^{T} Q+C C^{T}$Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:

- Linear 1D heat equation with point control,
- $\Omega=[0,1]$,
- FEM discretization using linear B-splines,
- $h=1 / 100 \Longrightarrow n=101$.

Idea: $Q=Q^{T} \geq 0 \Longrightarrow$

$$
Q=Z Z^{T}=\sum_{k=1}^{n} \lambda_{k} z_{k} z_{k}^{T} \approx Z^{(r)}\left(Z^{(r)}\right)^{T}=\sum_{k=1}^{r} \lambda_{k} z_{k} z_{k}^{T} .
$$

ADI Method for Lyapunov Equations

PDE Model Reduction

■ For $A \in \mathbb{R}^{n \times n}$ stable, $B \in \mathbb{R}^{n \times m}(w \ll n)$, consider Lyapunov equation

$$
A X+X A^{T}=-B B^{T} .
$$

■ ADI Iteration:
with parameters $p_{k} \in \mathbb{C}^{-}$and $p_{k+1}=\overline{p_{k}}$ if $p_{k} \notin \mathbb{R}$.

- For $X_{0}=0$ and proper choice of $p_{k}: \lim _{k \rightarrow \infty} X_{k}=X$ superlinear.
- Re-formulation using $X_{k}=Y_{k} Y_{k}^{T}$ yields iteration for $Y_{k} \ldots$

ADI Method for Lyapunov Equations

- For $A \in \mathbb{R}^{n \times n}$ stable, $B \in \mathbb{R}^{n \times m}(w \ll n)$, consider Lyapunov equation

$$
A X+X A^{T}=-B B^{T}
$$

- ADI Iteration:
[WAChSPress 1988]

$$
\begin{aligned}
\left(A+p_{k} I\right) X_{(j-1) / 2} & =-B B^{T}-X_{k-1}\left(A^{T}-p_{k} I\right) \\
\left(A+\overline{p_{k}} I\right) X_{k}{ }^{T} & =-B B^{T}-X_{(j-1) / 2}\left(A^{T}-\overline{p_{k}} I\right)
\end{aligned}
$$

with parameters $p_{k} \in \mathbb{C}^{-}$and $p_{k+1}=\overline{p_{k}}$ if $p_{k} \notin \mathbb{R}$.

- For $X_{0}=0$ and proper choice of $p_{k}: \lim _{k \rightarrow \infty} X_{k}=X$ superlinear.
- Re-formulation using $X_{k}=Y_{k} Y_{k}^{T}$ yields iteration for $Y_{k} \ldots$

ADI Method for Lyapunov Equations

■ For $A \in \mathbb{R}^{n \times n}$ stable, $B \in \mathbb{R}^{n \times m}(w \ll n)$, consider Lyapunov equation

$$
A X+X A^{T}=-B B^{T} .
$$

■ ADI Iteration:
[WACHSPRESS 1988]

$$
\begin{aligned}
\left(A+p_{k} I\right) X_{(j-1) / 2} & =-B B^{T}-X_{k-1}\left(A^{T}-p_{k} I\right) \\
\left(A+\overline{p_{k}} I\right) X_{k}^{T} & =-B B^{T}-X_{(j-1) / 2}\left(A^{T}-\overline{p_{k}} I\right)
\end{aligned}
$$

with parameters $p_{k} \in \mathbb{C}^{-}$and $p_{k+1}=\overline{p_{k}}$ if $p_{k} \notin \mathbb{R}$.
■ For $X_{0}=0$ and proper choice of $p_{k}: \lim _{k \rightarrow \infty} X_{k}=X$ superlinear.

- Re-formulation using $X_{k}=Y_{k} Y_{k}^{T}$ yields iteration for $Y_{k} \ldots$

ADI Method for Lyapunov Equations

■ For $A \in \mathbb{R}^{n \times n}$ stable, $B \in \mathbb{R}^{n \times m}(w \ll n)$, consider Lyapunov equation

$$
A X+X A^{T}=-B B^{T} .
$$

■ ADI Iteration:
[WACHSPRESS 1988]

$$
\begin{aligned}
\left(A+p_{k} I\right) X_{(j-1) / 2} & =-B B^{T}-X_{k-1}\left(A^{T}-p_{k} I\right) \\
\left(A+\overline{p_{k}} I\right) X_{k}^{T} & =-B B^{T}-X_{(j-1) / 2}\left(A^{T}-\overline{p_{k}} I\right)
\end{aligned}
$$

with parameters $p_{k} \in \mathbb{C}^{-}$and $p_{k+1}=\overline{p_{k}}$ if $p_{k} \notin \mathbb{R}$.
\square For $X_{0}=0$ and proper choice of $p_{k}: \lim _{k \rightarrow \infty} X_{k}=X$ superlinear.
■ Re-formulation using $X_{k}=Y_{k} Y_{k}^{T}$ yields iteration for $Y_{k} \ldots$

Factored ADI Iteration

Lyapunov equation $0=A X+X A^{T}=-B B^{T}$.

PDE Model Reduction

$$
\operatorname{FOR} j=2,3, \ldots
$$

Setting $X_{k}=Y_{k} Y_{k}^{T}$, some algebraic manipulations \Longrightarrow

Algorithm [Penzl 1997, Li/White 2002, B./Li/Penzl 1999/2006]

$$
V_{1} \leftarrow \sqrt{-2 \operatorname{Re}\left(p_{1}\right)}\left(A+p_{1} I\right)^{-1} B, \quad Y_{1} \leftarrow V_{1}
$$

$$
\begin{aligned}
& V_{k} \leftarrow \sqrt{\frac{\operatorname{Re}\left(p_{k}\right)}{\operatorname{Re}\left(p_{k-1}\right)}}\left(V_{k-1}-\left(p_{k}+\overline{p_{k-1}}\right)\left(A+p_{k} I\right)^{-1} V_{k-1}\right), \\
& Y_{k} \leftarrow\left[\begin{array}{ll}
Y_{k-1} & V_{k}
\end{array}\right]
\end{aligned}
$$

At convergence, $Y_{k_{\max }} Y_{k_{\max }}^{T} \approx X$, where

$$
Y_{k_{\max }}=\left[\begin{array}{lll}
V_{1} & \ldots & V_{k_{\max }}
\end{array}\right], \quad V_{k}=\rrbracket \in \mathbb{C}^{n \times m}
$$

Note: Implementation in real arithmetic possible by combining two steps.

Factored ADI Iteration

Lyapunov equation $0=A X+X A^{T}=-B B^{T}$.

PDE Model
Reduction
Peter Benner

Setting $X_{k}=Y_{k} Y_{k}^{T}$, some algebraic manipulations \Longrightarrow

Algorithm [Penzl 1997, Li/White 2002, B./Li/Penzl 1999/2006]

$$
\begin{aligned}
& V_{1} \leftarrow \sqrt{-2 \operatorname{Re}\left(p_{1}\right)}\left(A+p_{1} I\right)^{-1} B, \quad Y_{1} \leftarrow V_{1} \\
& \text { FOR } j=2,3, \ldots
\end{aligned}
$$

$$
\begin{aligned}
& V_{k} \leftarrow \sqrt{\frac{\operatorname{Re}\left(p_{k}\right)}{\operatorname{Re}\left(p_{k-1}\right)}}\left(V_{k-1}-\left(p_{k}+\overline{p_{k-1}}\right)\left(A+p_{k} I\right)^{-1} V_{k-1}\right), \\
& Y_{k} \leftarrow\left[\begin{array}{ll}
Y_{k-1} & V_{k}
\end{array}\right]
\end{aligned}
$$

At convergence, $Y_{k_{\max }} Y_{k_{\text {max }}}^{\top} \approx X$, where

$$
\left.Y_{k_{\max }}=\left[\begin{array}{lll}
V_{1} & \ldots & V_{k_{\max }}
\end{array}\right], \quad V_{k}=\right] \in \mathbb{C}^{n \times m}
$$

Note: Implementation in real arithmetic possible by combining two steps.

Newton's Method for AREs

[Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

PDE Model Reduction

DPS

Model Reduction

Based on

Balancing
Large Matrix
Equations
ADI for
Lyapunov
Newton's Method for AREs
LQR Problem
Numerical Results
Conclusions and Open Problems

- Consider $\quad 0=\mathcal{R}(Q)=C^{T} C+A^{T} Q+Q A-Q B B^{T} Q$.
- Frechét derivative of $\mathcal{R}(Q)$ at Q :

$$
\mathcal{R}_{Q}^{\prime}: Z \rightarrow\left(A-B B^{\top} Q\right)^{\top} Z+Z\left(A-B B^{T} Q\right) .
$$

- Newton-Kantorovich method:

$$
Q_{j+1}=Q_{j}-\left(\mathcal{R}_{Q_{j}}^{\prime}\right)^{-1} \mathcal{R}\left(Q_{j}\right), \quad j=0,1,2, \ldots
$$

Newton's method (with line search) for AREs

$$
\text { FOR } j=0,1, \ldots
$$

$\llbracket A_{j} \leftarrow A-B B^{T} Q_{j}=: A-B K_{j}$.
2 Solve the Lyapunov equation $A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(Q_{j}\right)$.
(3) $Q_{j+1} \leftarrow Q_{j}+t_{j} N_{j}$.

END FOR j

Newton's Method for AREs

[Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

PDE Model Reduction

- Consider $\quad 0=\mathcal{R}(Q)=C^{T} C+A^{T} Q+Q A-Q B B^{T} Q$.
- Frechét derivative of $\mathcal{R}(Q)$ at Q :

$$
\mathcal{R}_{Q}^{\prime}: Z \rightarrow\left(A-B B^{T} Q\right)^{T} Z+Z\left(A-B B^{T} Q\right)
$$

- Newton-Kantorovich method:

$$
Q_{j+1}=Q_{j}-\left(\mathcal{R}_{Q_{j}}^{\prime}\right)^{-1} \mathcal{R}\left(Q_{j}\right), \quad j=0,1,2, \ldots
$$

Newton's method (with line search) for AREs

$$
\text { FOR } j=0,1,
$$

(1) $A_{j} \leftarrow A-B B^{T} Q_{j}=: A-B K_{j}$.

2 Solve the Lyapunov equation $A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(Q_{j}\right)$.
${ }^{13} Q_{j+1} \leftarrow Q_{j}+t_{j} N_{j}$.

END FOR j

Newton's Method for AREs

[Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

PDE Model Reduction

- Consider $\quad 0=\mathcal{R}(Q)=C^{T} C+A^{T} Q+Q A-Q B B^{T} Q$.
- Frechét derivative of $\mathcal{R}(Q)$ at Q :

$$
\mathcal{R}_{Q}^{\prime}: Z \rightarrow\left(A-B B^{T} Q\right)^{T} Z+Z\left(A-B B^{T} Q\right)
$$

- Newton-Kantorovich method:

$$
Q_{j+1}=Q_{j}-\left(\mathcal{R}_{Q_{j}}^{\prime}\right)^{-1} \mathcal{R}\left(Q_{j}\right), \quad j=0,1,2, \ldots
$$

Newton's method (with line search) for AREs

FOR $j=0,1$,
II $A_{j} \leftarrow A-B B^{T} Q_{j}=: A-B K_{j}$.
2 Solve the Lyapunov equation $A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(Q_{j}\right)$.
${ }^{3} Q_{j+1} \leftarrow Q_{j}+t_{j} N_{j}$.

END FOR j

Newton's Method for AREs
[Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

PDE Model Reduction

- Consider $\quad 0=\mathcal{R}(Q)=C^{T} C+A^{T} Q+Q A-Q B B^{T} Q$.
- Frechét derivative of $\mathcal{R}(Q)$ at Q :

$$
\mathcal{R}_{Q}^{\prime}: Z \rightarrow\left(A-B B^{T} Q\right)^{T} Z+Z\left(A-B B^{T} Q\right)
$$

- Newton-Kantorovich method:

$$
Q_{j+1}=Q_{j}-\left(\mathcal{R}_{Q_{j}}^{\prime}\right)^{-1} \mathcal{R}\left(Q_{j}\right), \quad j=0,1,2, \ldots
$$

Newton's method (with line search) for AREs
FOR $j=0,1, \ldots$
$1 A_{j} \leftarrow A-B B^{T} Q_{j}=: A-B K_{j}$.
2 Solve the Lyapunov equation $A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(Q_{j}\right)$.
3 $Q_{j+1} \leftarrow Q_{j}+t_{j} N_{j}$.
END FOR j

Newton's Method for AREs

Properties and Implementation

PDE Model Reduction

Peter Benner

DPS

Model Reduction

Based on

Balancing

Large Matrix
Equations
ADI for
Lyapunov
Newton's Method for AREs

LQR Problem

Numerical Results
Conclusions and Open Problems

- Convergence for K_{0} stabilizing:
- $A_{j}=A-B K_{j}=A-B B^{T} Q_{j}$ is stable $\forall j \geq 0$.
- $\lim _{j \rightarrow \infty}\left\|\mathcal{R}\left(Q_{j}\right)\right\|_{F}=0$ (monotonically).
- $\lim _{j \rightarrow \infty} Q_{j}=Q_{*} \geq 0$ (locally quadratic).

■ Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_{j} :

- $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$
\left(A-B K_{j}\right)^{-1}=\left(I_{n}+A^{-1} B\left(I_{m}-K_{j} A^{-1} B\right)^{-1} K_{j}\right) A^{-1} .
$$

- BUT: $Q=Q^{T} \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1) / 2$ unknowns!

Newton's Method for AREs

Properties and Implementation

■ Convergence for K_{0} stabilizing:

- $A_{j}=A-B K_{j}=A-B B^{T} Q_{j}$ is stable $\forall j \geq 0$.

■ $\lim _{j \rightarrow \infty}\left\|\mathcal{R}\left(Q_{j}\right)\right\|_{F}=0$ (monotonically).
■ $\lim _{j \rightarrow \infty} Q_{j}=Q_{*} \geq 0$ (locally quadratic).
■ Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_{j} :

- $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$
\left(A-B K_{j}\right)^{-1}=\left(I_{n}+A^{-1} B\left(I_{m}-K_{j} A^{-1} B\right)^{-1} K_{j}\right) A^{-1}
$$

- BUT: $Q=Q^{T} \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1) / 2$ unknowns!

Newton's Method for AREs

Properties and Implementation

■ Convergence for K_{0} stabilizing:

- $A_{j}=A-B K_{j}=A-B B^{T} Q_{j}$ is stable $\forall j \geq 0$.

■ $\lim _{j \rightarrow \infty}\left\|\mathcal{R}\left(Q_{j}\right)\right\|_{F}=0$ (monotonically).

- $\lim _{j \rightarrow \infty} Q_{j}=Q_{*} \geq 0$ (locally quadratic).

■ Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_{j} :

■ $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$
\left(A-B K_{j}\right)^{-1}=\left(I_{n}+A^{-1} B\left(I_{m}-K_{j} A^{-1} B\right)^{-1} K_{j}\right) A^{-1}
$$

- BUT: $Q=Q^{T} \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1) / 2$ unknowns!

Newton's Method for AREs

Properties and Implementation

■ Convergence for K_{0} stabilizing:

- $A_{j}=A-B K_{j}=A-B B^{T} Q_{j}$ is stable $\forall j \geq 0$.

■ $\lim _{j \rightarrow \infty}\left\|\mathcal{R}\left(Q_{j}\right)\right\|_{F}=0$ (monotonically).

- $\lim _{j \rightarrow \infty} Q_{j}=Q_{*} \geq 0$ (locally quadratic).

■ Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_{j} :

■ $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$
\left(A-B K_{j}\right)^{-1}=\left(I_{n}+A^{-1} B\left(I_{m}-K_{j} A^{-1} B\right)^{-1} K_{j}\right) A^{-1}
$$

■ BUT: $Q=Q^{T} \in \mathbb{R}^{n \times n} \Longrightarrow n(n+1) / 2$ unknowns!

Low-Rank Newton-ADI for AREs

PDE Model Reduction

Peter Benner

DPS

Model Reduction
Based on
Balancing
Large Matrix
Equations
ADI for
Lyapunov
Newton's Method for AREs
LQR Problem
Numerical Results
Conclusions and Open Problems

Re-write Newton's method for AREs

$$
\begin{gathered}
A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(Q_{j}\right) \\
\Longleftrightarrow \\
A_{j}^{T} \underbrace{\left(Q_{j}+N_{j}\right)}_{=Q_{j+1}}+\underbrace{\left(Q_{j}+N_{j}\right)}_{=Q_{j+1}} A_{j}=\underbrace{-C^{T} C-Q_{j} B B^{T} Q_{j}}_{=:-W_{j} W_{j}^{T}}
\end{gathered}
$$

$$
\begin{gathered}
\text { Set } Q_{j}=Z_{j} Z_{j}^{T} \text { for } \operatorname{rank}\left(Z_{j}\right) \ll n \Longrightarrow \\
A_{j}^{T}\left(Z_{j+1} Z_{j+1}^{T}\right)+\left(Z_{j+1} Z_{j+1}^{T}\right) A_{j}=-W_{j} W_{j}^{T}
\end{gathered}
$$

Factored Newton Iteration [B./Li/Penzl 1999/2006]

Solve Iyapunov equations for Z_{j+1} directly by factored ADI iteration and use 'sparse + low-rank' structure of A_{j}.

Low-Rank Newton-ADI for AREs

PDE Model
Reduction
Peter Benner
DPS
Model Reduction
Based on
Balancing
Large Matrix
Equations
ADI for
Newton's Method for AREs

Re-write Newton's method for AREs

$$
\begin{gathered}
A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(Q_{j}\right) \\
\Longleftrightarrow \\
A_{j}^{T} \underbrace{\left(Q_{j}+N_{j}\right)}_{=Q_{j+1}}+\underbrace{\left(Q_{j}+N_{j}\right)}_{=Q_{j+1}} A_{j}=\underbrace{-C^{T} C-Q_{j} B B^{T} Q_{j}}_{=:-W_{j} W_{j}^{T}}
\end{gathered}
$$

$$
\begin{gathered}
\text { Set } Q_{j}=Z_{j} Z_{j}^{T} \text { for } \operatorname{rank}\left(Z_{j}\right) \ll n \Longrightarrow \\
A_{j}^{T}\left(Z_{j+1} Z_{j+1}^{T}\right)+\left(Z_{j+1} Z_{j+1}^{T}\right) A_{j}=-W_{j} W_{j}^{T}
\end{gathered}
$$

Factored Newton Iteration [B./Li/Penzl 1999/2006]

Solve Lyapunov equations for Z_{j+1} directly by factored ADI iteration and use 'sparse + low-rank' structure of A_{j}.

LQR Problem

PDE Model Reduction

Linear-Quadratic Regulator Problem

Linear-quadratic optimization problem w/o control/state constraints:

$$
\min _{\mathbf{u} \in L_{2}} \int_{0}^{\infty}\langle\mathbf{C} \mathbf{x}(t), \mathbf{C} \mathbf{x}(t)\rangle_{\mathcal{Y}}+\langle\mathbf{u}(t), \mathbf{u}(t)\rangle_{\mathcal{U}} d t
$$

subject to $\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}, \mathbf{x}(0)=\mathbf{x}_{0}$.
Solution: feedback control law (\rightsquigarrow static feedback controller)

$$
\mathbf{u}(t)=\mathbf{K} \mathbf{x}(t):=\mathbf{B}^{*} \mathbf{Q} \mathbf{x}(t)
$$

(with Q as in LQG operator Riccati equation).
Finite-dimensional approximation is

$$
u(t)=K_{*} x(t):=B^{T} Q_{*} x(t),
$$

where Q_{*} is the stabilizing solution of the corresponding ARE.

LQR Problem

Linear-Quadratic Regulator Problem

Linear-quadratic optimization problem w/o control/state constraints:

$$
\min _{\mathbf{u} \in L_{2}} \int_{0}^{\infty}\langle\mathbf{C} \mathbf{x}(t), \mathbf{C} \mathbf{x}(t)\rangle_{\mathcal{Y}}+\langle\mathbf{u}(t), \mathbf{u}(t)\rangle_{\mathcal{U}} d t
$$

subject to $\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}, \mathbf{x}(0)=\mathbf{x}_{0}$.
Solution: feedback control law (\rightsquigarrow static feedback controller)

$$
\mathbf{u}(t)=\mathbf{K} \mathbf{x}(t):=\mathbf{B}^{*} \mathbf{Q} \mathbf{x}(t)
$$

(with \mathbf{Q} as in LQG operator Riccati equation).
Finite-dimensional approximation is

$$
u(t)=K_{*} x(t):=B^{T} Q_{*} x(t)
$$

where Q_{*} is the stabilizing solution of the corresponding ARE.

LQR Problem

Linear-Quadratic Regulator Problem

Linear-quadratic optimization problem w/o control/state constraints:

$$
\min _{\mathbf{u} \in L_{2}} \int_{0}^{\infty}\langle\mathbf{C} \mathbf{x}(t), \mathbf{C} \mathbf{x}(t)\rangle_{\mathcal{Y}}+\langle\mathbf{u}(t), \mathbf{u}(t)\rangle_{\mathcal{U}} d t
$$

subject to $\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}, \mathbf{x}(0)=\mathbf{x}_{0}$.
Solution: feedback control law (\rightsquigarrow static feedback controller)

$$
\mathbf{u}(t)=\mathbf{K} \mathbf{x}(t):=\mathbf{B}^{*} \mathbf{Q} \mathbf{x}(t)
$$

(with \mathbf{Q} as in LQG operator Riccati equation).
Finite-dimensional approximation is

$$
u(t)=K_{*} x(t):=B^{T} Q_{*} x(t)
$$

where Q_{*} is the stabilizing solution of the corresponding ARE.

Application to LQR Problem

Feedback Iteration

PDE Model Reduction

DPS

Model Reduction

Based on

 BalancingLarge Matrix Equations

LQR Problem
Numerical Result:
Conclusions and Open Problems
K_{*} can be computed by direct feedback iteration:

- j th Newton iteration:

$$
K_{j}=B^{T} Z_{j} Z_{j}^{T}=\sum_{k=1}^{k_{\max }}\left(B^{T} V_{j, k}\right) V_{j, k}^{T} \xrightarrow{j \rightarrow \infty} \quad K_{*}=B^{T} Z_{*} Z_{*}^{T}
$$

■ K_{j} can be updated in ADI iteration, no need to even form Z_{j}, need only fixed workspace for $K_{j} \in \mathbb{R}^{m \times n}$!

Optimal Control from Reduced-Order Model

LQR solution for the reduced-order model yields

$$
u_{r}(t)=K_{r, *} x_{r}(t):=B_{r} Q_{r, *} x_{r}(t) .
$$

Theorem

Let K_{*} be the feedback matrix computed from finite-dimensional approximation to LQR problem, $K_{r, *}$ the feedback matrix obtained from the LQR problem for the LQG reduced-order model obtained using the projector $V W^{T}$, then

$$
K_{r, *}=K_{*} V^{\top} .
$$

Consequence: the reduced-order optimal control can be computed as by-product in the model reduction process!
Similar result for LQG controller.

Optimal Control from Reduced-Order Model

LQR solution for the reduced-order model yields

$$
u_{r}(t)=K_{r, *} x_{r}(t):=B_{r} Q_{r, *} x_{r}(t) .
$$

Theorem

Let K_{*} be the feedback matrix computed from finite-dimensional approximation to LQR problem, $K_{r, *}$ the feedback matrix obtained from the LQR problem for the LQG reduced-order model obtained using the projector $V W^{T}$, then

$$
K_{r, *}=K_{*} V^{\top} .
$$

Consequence: the reduced-order optimal control can be computed as by-product in the model reduction process!
Similar result for LQG controller.

Numerical Results

Performance of Matrix Equation Solvers

- Linear 2D heat equation with homogeneous Dirichlet boundary and point control/observation.
- FD discretization on uniform 150×150 grid.
- $n=22.500, m=p=1,10$ shifts for ADI iterations.
- Convergence of large-scale matrix equation solvers:

LQR Problem
Numerical Results
Matrix Equation Solvers
Model Reduction Performance Reconstruction of the State

Conclusions and Open Problems

Numerical Results

Performance of matrix equation solvers

PDE Model Reduction

Peter Benner
Performance of Newton's method for accuracy $\sim 1 / n$

Numerical Result

Matrix Equation Solvers

grid	unknowns	$\frac{\\|\mathcal{R}(P)\\|_{F}}{\\|P\\|_{F}}$	it. (ADI it.)	CPU (sec.)
8×8	2,080	$4.7 \mathrm{e}-7$	$2(8)$	0.47
16×16	32,896	$1.6 \mathrm{e}-6$	$2(10)$	0.49
32×32	524,800	$1.8 \mathrm{e}-5$	$2(11)$	0.91
64×64	$8,390,656$	$1.8 \mathrm{e}-5$	$3(14)$	7.98
128×128	$134,225,920$	$3.7 \mathrm{e}-6$	$3(19)$	79.46

Here,

- Convection-diffusion equation,
- $m=1$ input and $p=2$ outputs,
- $Q=Q^{T} \in \mathbb{R}^{n \times n} \Rightarrow \frac{n(n+1)}{2}$ unknowns.

PDE Model Reduction Peter Benner

DPS

Model Reduction Based on Balancing

Large Matrix Equations

LQR Problem
Numerical Results Matrix Equation Solvers
Model Reduction Performance
Reconstruction of the State

Conclusions and Open Problems

■ Numerical ranks of Gramians are 31 and 26, respectively.
■ Computed reduced-order model (BT): $r=6\left(\sigma_{7}=5.8 \cdot 10^{-4}\right)$,

- BT error bound $\delta=1.7 \cdot 10^{-3}$.

PDE Model
Reduction
Peter Benner

DPS
Model Reduction
Based on
Balancing
Large Matrix Equations

LQR Problem
Numerical Results Matrix Equation Solvers
Model Reduction Performance
Reconstruction of the State

Conclusions and Open Problems

■ Computed reduced-order model (BT): $r=6$, BT error bound $\delta=1.7 \cdot 10^{-3}$.

- Solve LQR problem: quadratic cost functional, solution is linear state feedback.
- Computed controls and outputs (implicit Euler):

Numerical Results

Model Reduction Performance

PDE Model
Reduction
Peter Benner

Model Reduction Based on Balancing

Large Matrix Equations

LQR Problem
Numerical Results Matrix Equation Solvers
Model Reduction Performance
Reconstruction of the State

Conclusions and Open Problems

■ Computed reduced-order model (BT): $r=6$, BT error bound $\delta=1.7 \cdot 10^{-3}$.

- Solve LQR problem: quadratic cost functional, solution is linear state feedback.
- Errors in controls and outputs:

PDE Model
Reduction
Peter Benner

DPS
Model Reduction
Based on Balancing

Large Matrix Equations

LQR Problem
Numerical Results Matrix Equation Solvers
Model Reduction Performance Reconstruction of the State

Conclusions and Open Problems

- Boundary control problem for 2D heat flow in copper on rectangular domain; control acts on two sides via Robins BC.
- FDM $\rightsquigarrow n=4496, m=2$; 4 sensor locations $\rightsquigarrow p=4$.
- Numerical ranks of BT Gramians are 68 and 124, respectively, for LQG BT both have rank 210.
- Computed reduced-order model: $r=10$.

Source: COMPleib v1.1, www.compleib.de.

Numerical Results

Model Reduction Performance: BT vs. LQG BT

PDE Model
Reduction
Peter Benner

DPS
Model Reduction Based on Balancing

Large Matrix Equations

LQR Problem
Numerical Results Matrix Equation Model Reduction Performance Reconstruction of the State

Conclusions and Open Problems

- Boundary control problem for 2D heat flow in copper on rectangular domain; control acts on two sides via Robins BC.
- FDM $\rightsquigarrow n=4496, m=2$; 4 sensor locations $\rightsquigarrow p=4$.
- Numerical ranks of BT Gramians are 68 and 124, respectively, for LQG BT both have rank 210.
- Computed reduced-order model: $r=10$.

Source: COMPle ib v1.1, www. compleib.de.

Numerical Results

Model Reduction Performance: BT vs. LQG BT

PDE Model
Reduction
Peter Benner

DPS
Model Reduction Based on Balancing

Large Matrix Equations

LQR Problem
Numerical Results Matrix Equation Model Reduction Performance Reconstruction of the State

Conclusions and Open Problems

- Boundary control problem for 2D heat flow in copper on rectangular domain; control acts on two sides via Robins BC.
- FDM $\rightsquigarrow n=4496, m=2$; 4 sensor locations $\rightsquigarrow p=4$.
- Numerical ranks of BT Gramians are 68 and 124, respectively, for LQG BT both have rank 210.
- Computed reduced-order model: $r=10$.

Source: COMPleib v1.1, www. compleib.de.

Numerical Results

Reconstruction of the State

PDE Model
Reduction
Peter Benner

DPS
Model Reduction
Based on
Balancing
Large Matrix Equations

LQR Problem
Numerical Results Matrix Equation Solvers
Model Reduction Performance
Reconstruction of the State

BT is often criticized for its bias towards the input-output behavior of the system. But states can also be reconstructed using

$$
x(t) \approx V x_{r}(t)
$$

Example: 2D heat equation with localized heat source, 64×64 grid, $r=6$ model by BT, simulation for $u(t)=10 \cos (t)$.

Numerical Results

Reconstruction of the State

PDE Model
Reduction

BT is often criticized for its bias towards the input-output behavior of the system. But states can also be reconstructed using

$$
x(t) \approx V x_{r}(t)
$$

Example: 2D heat equation with localized heat source, 64×64 grid, $r=6$ model by BT, simulation for $u(t)=10 \cos (t)$.

Numerical Results

PDE Model Reduction

BT is often criticized for its bias towards the input-output behavior of the system. But states can also be reconstructed using

$$
x(t) \approx V x_{r}(t)
$$

Example: 2D heat equation with localized heat source, 64×64 grid, $r=6$ model by BT, simulation for $u(t)=10 \cos (t)$.

Numerical Results

BT modes are intelligent ansatz functions for Galerkin projection

PDE Model Reduction

Peter Benner

DPS

Model Reduction
Based on
Balancing
Large Matrix Equations

LQR Problem
Numerical Results Matrix Equation Solvers
Model Reduction Performance
Reconstruction of the State

Conclusions and Open Problems

BT mode $v_{1}(n=4096)$

BT mode $v_{2}(n=4096)$

BT mode $v_{5}(n=4096)$

BT mode $v_{3}(n=4096)$

BT mode $\gamma_{6}(n=4096)$

Conclusions and Open Problems

- BT (and LQG) BT perform well for model reduction of (as of yet, simple) parabolic PDE control problems.
- Robust control design can be based on LQG BT (see Curtain 2004).
- Need more numerical tests.
- Find implementations for other balancing schemes (H_{∞}-/bounded real BT,...).
- Open Problems:

Conclusions and Open Problems

- BT (and LQG) BT perform well for model reduction of (as of yet, simple) parabolic PDE control problems.
■ Robust control design can be based on LQG BT (see Curtain 2004).
- Need more numerical tests.
- Find implementations for other balancing schemes (H_{∞}-/bounded real BT,...).
- Open Problems:
- Optimal combination of FEM and BT error estimates/bounds use convergence of Hankel singular values for control of mesh refinement?
- BT modes are intelligent ansatz functions for (Petrov-) Galerkin projection-how to exploit?
- Application to nonlinear problems: for some semilinear problems, BT approaches seem to work well.

Conclusions and Open Problems

- BT (and LQG) BT perform well for model reduction of (as of yet, simple) parabolic PDE control problems.
■ Robust control design can be based on LQG BT (see Curtain 2004).
- Need more numerical tests.
- Find implementations for other balancing schemes (H_{∞}-/bounded real BT,...).
- Open Problems:

■ Optimal combination of FEM and BT error estimates/bounds use convergence of Hankel singular values for control of mesh refinement?

- BT modes are intelligent ansatz functions for (Petrov-) Galerkin projection-how to exploit?
- Application to nonlinear problems: for some semilinear problems, BT approaches seem to work well.

Conclusions and Open Problems

- BT (and LQG) BT perform well for model reduction of (as of yet, simple) parabolic PDE control problems.
■ Robust control design can be based on LQG BT (see Curtain 2004).
- Need more numerical tests.

■ Find implementations for other balancing schemes (H_{∞}-/bounded real BT,...).

- Open Problems:

■ Optimal combination of FEM and BT error estimates/bounds use convergence of Hankel singular values for control of mesh refinement?
■ BT modes are intelligent ansatz functions for (Petrov-) Galerkin projection-how to exploit?

- Application to nonlinear problems: for some semilinear problems, BT approaches seem to work well.

Conclusions and Open Problems

- BT (and LQG) BT perform well for model reduction of (as of yet, simple) parabolic PDE control problems.
■ Robust control design can be based on LQG BT (see Curtain 2004).
- Need more numerical tests.
- Find implementations for other balancing schemes (H_{∞}-/bounded real BT,...).
- Open Problems:

■ Optimal combination of FEM and BT error estimates/bounds use convergence of Hankel singular values for control of mesh refinement?

- BT modes are intelligent ansatz functions for (Petrov-) Galerkin projection-how to exploit?
- Application to nonlinear problems: for some semilinear problems, BT approaches seem to work well.

Thank you for your attention!

