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Doubly Structured Polar Decompositions
Polar Decomposition

Polar decomposition in Cn

Let A ∈ Cn×n, then

A = UM, U−1 = U∗ (unitary), M = M∗ ≥ 0,

is called a polar decomposition of A.

Note: any matrix admits a polar decomposition as

A = (UV ∗)(VΣV ∗),

where A = UΣV ∗ is the SVD of A.
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Doubly Structured Polar Decompositions
Generalization of polar decompositions in finite-dim. indefinite inner product spaces

Given A ∈ Cn×n, H = H∗ ∈ Cn×n nonsingular, and the corresponding
(indefinite) inner product

〈x , y〉H := 〈Hx , y〉

where 〈 . , . 〉 is the standard unitary inner product, then the H-adjoint
of M, i.e., the adjoint of M w.r.t. 〈 . , . 〉H , is MH = H−1M∗H.
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Doubly Structured Polar Decompositions
Generalization of polar decompositions in finite-dim. indefinite inner product spaces

Given A ∈ Cn×n, H = H∗ ∈ Cn×n nonsingular, and the corresponding
(indefinite) inner product

〈x , y〉H := 〈Hx , y〉

where 〈 . , . 〉 is the standard unitary inner product, then the H-adjoint
of M, i.e., the adjoint of M w.r.t. 〈 . , . 〉H , is MH = H−1M∗H.

H-polar decomposition

A = UM, U−1 = UH (H-unitary), M = MH .
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Doubly Structured Polar Decompositions
Generalization of polar decompositions in finite-dim. indefinite inner product spaces

Given A ∈ Cn×n, H = H∗ ∈ Cn×n nonsingular, and the corresponding
(indefinite) inner product

〈x , y〉H := 〈Hx , y〉

where 〈 . , . 〉 is the standard unitary inner product, then the H-adjoint
of M, i.e., the adjoint of M w.r.t. 〈 . , . 〉H , is MH = H−1M∗H.

H-polar decomposition

A = UM, U−1 = UH (H-unitary), M = MH .

Note: not all A ∈ Cn×n admit an H-polar decomposition!
Existence results:

– Bolshakov, van der Mee, Ran, Reichstein, Rodman (1997)

– Lins, Meade, Mehl, Rodman (2001)

– Kintzel (2003,2005)

– Mehl, Ran, Rodman (2006)
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Doubly Structured Polar Decompositions
Generalization of polar decompositions in finite-dim. indefinite inner product spaces

Given A ∈ Cn×n, H = H∗ ∈ Cn×n nonsingular, and the corresponding
(indefinite) inner product

〈x , y〉H := 〈Hx , y〉

where 〈 . , . 〉 is the standard unitary inner product, then the H-adjoint
of M, i.e., the adjoint of M w.r.t. 〈 . , . 〉H , is MH = H−1M∗H.

(G ,H)-polar decomposition [Kintzel 2003/2005]

Let H = H∗,G = G∗ nonsingular, then

A = UM, U−1 = UG = UH , M = MG = MH ,

is a (G ,H)-polar decomposition. In this case

– U is (G ,H)-unitary,

– M is (G ,H)-selfadjoint.

(G ,H)-polar decomposition is H-semidefinite if HM ≥ 0.
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of M, i.e., the adjoint of M w.r.t. 〈 . , . 〉H , is MH = H−1M∗H.
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Let H = H∗,G = G∗ nonsingular, then
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Doubly Structured Polar Decompositions
Application: Procrustes Problems

Unitary (Orthogonal) Procrustes Problems

Given C ,B ∈ Cm×n, find U ∈ Cm×m unitary minimizing

‖UC − B‖F .

In other words, for C = [c1, . . . , cn],B = [b1, . . . , bn], minimize

n∑
k=1

〈Uck − bk ,Uck − bk〉.

under the constraint U−1 = U∗.

Solution: U = unitary factor of polar decomposition BC∗ = UM.
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Doubly Structured Polar Decompositions
Application: Procrustes Problems

(G ,H)-Isometric Procrustes Problem [Kintzel 2003/2005]

Given C = [c1, . . . , cn],B = [b1, . . . , bn] ∈ Cm×n, find U ∈ Cm×m

optimizing
n∑

k=1

〈Uck − bk ,Uck − bk〉H

under the constraint U−1 = UG = UH .
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Doubly Structured Polar Decompositions
Application: Procrustes Problems

(G ,H)-Isometric Procrustes Problem [Kintzel 2003/2005]

Given C = [c1, . . . , cn],B = [b1, . . . , bn] ∈ Cm×n, find U ∈ Cm×m

optimizing
n∑

k=1

〈Uck − bk ,Uck − bk〉H

under the constraint U−1 = UG = UH .

Solution (for H−1G = µ2G−1H, µ ∈ R \ {0}):
existence ⇐⇒ there exists an H-semidefinite (G ,H)-polar
decomposition

A := BC∗H + G−1HBC∗G = UM.

Then, the optimizing U is just the (G ,H)-unitary factor.
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Doubly Structured Polar Decompositions
Existence Results

Recall: want A = UM so that U−1 = UG = UH and M = MG = MH .

Necessary condition

AH = AG , as AH = MHUH = MGUG = AG .

Note: if λH − G ∈ Cn×n is non-defective Hermitian matrix pencil, such
matrices impose a “normal” form of (A, H, G):

(S−1AS , S∗HS , S∗GS) = (A1 ⊕ . . .⊕ Ak , H1 ⊕ . . .⊕ Hk , G1 ⊕ . . .⊕ Gk),

where

for real eigenvalues µj , j = 1, . . . , r , of λH − G :

Aj ∈ Cpj×pj , Hj = Ipj−qj ⊕−Iqj , Gj = µj(Ipj−qj ⊕−Iqj ),

for non-real eigenvalues µj , j = r + 1, . . . , `, of λH − G :

Aj =

»
Aj,1

Aj,2

–
∈ C2pj×2pj , Hj =

»
Ipj

Ipj

–
, Gj =

»
µj Ipj

µIpj

–
.
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Doubly Structured Polar Decompositions
Existence Results

Recall: want A = UM so that U−1 = UG = UH and M = MG = MH .

Necessary and sufficient condition

If λH − G ∈ Cn×n is non-defective Hermitian matrix pencil, then
AH = AG admits a (G ,H) polar decomposition

⇐⇒
in the “normal” form of A,

1 all blocks Aj corresponding to real eigenvalues of λH − G admit
an Hj -polar decomposition,

2 all blocks Aj corresponding to non-real eigenvalues of λH − G
satisfy nonsymmetric algebraic Riccati equations (nARE)

Aj,1 = UjA
∗
j,2Uj ,

with Uj ∈ Cpj×pj nonsingular.
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Doubly Structured Polar Decompositions
Existence Results

Recall: want A = UM so that U−1 = UG = UH and M = MG = MH .

Necessary and sufficient condition

If λH − G ∈ Cn×n is non-defective Hermitian matrix pencil, then
AH = AG admits a (G ,H) polar decomposition

⇐⇒
in the “normal” form of A,

1 all blocks Aj corresponding to real eigenvalues of λH − G admit
an Hj -polar decomposition,

2 all blocks Aj corresponding to non-real eigenvalues of λH − G
satisfy nonsymmetric algebraic Riccati equations (nARE)

Aj,1 = UjA
∗
j,2Uj ,

with Uj ∈ Cpj×pj nonsingular.
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Nonsymmetric Algebraic Riccati Equations

General form of nARE:

0 = A + DX − XC − XBX ,

where A,B∗ ∈ Cn×m, C ∈ Cm×m, D ∈ Cn×n are given and X ∈ Cn×m

is unknown.
Corresponding data matrix:

K =

[
C B

A D

]
.

Well-known:

X is a solution
⇐⇒

range
([

I
X

])
is an K -invariant subspace corresponding to
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Nonsymmetric Algebraic Riccati Equations

General form of nARE:

0 = A + DX − XC − XBX ,

where A,B∗ ∈ Cn×m, C ∈ Cm×m, D ∈ Cn×n are given and X ∈ Cn×m

is unknown.
Corresponding data matrix:

K =

[
C B

A D

]
.

Well-known:

X is a solution
⇐⇒

range
([

I
X

])
is an K -invariant subspace corresponding to

Λ (C + BX ).
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Nonsymmetric Algebraic Riccati Equations

Here: nARE with zero Sylvester part (nAREzS)

0 = A− XBX ,

where A,B ∈ Cn×n are given and X ∈ Cn×n is unknown.
Corresponding data matrix:

K =

[
B

A

]
.

Well-known:

X is a solution
⇐⇒

range
([

I
X

])
is an K -invariant subspace corresponding to Λ (BX ).
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Nonsymmetric Algebraic Riccati Equations

Here: nARE with zero Sylvester part (nAREzS)

0 = A− XBX ,

where A,B ∈ Cn×n are given and X ∈ Cn×n is unknown.
Corresponding data matrix:

K =

[
B

A

]
.

Well-known:

X is a solution
⇐⇒

range
([

I
X

])
is an K -invariant subspace corresponding to

Of course, with X , also Y = −X is a solution!
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Nonsymmetric Algebraic Riccati Equations
Existence of Nonsingular Solutions

Recall: for (G ,H)-polar decomposition, need invertible solution!
Trivial consequence: rank (A) = rank (B) is necessary condition.

Theorem

Let A,B ∈ Cn×n. Then there exists a nonsingular matrix X ∈ Cn×n

solution of the nAREzS

0 = A− XBX

⇐⇒ there exists a matrix square root M ∈ Cn×n of BA with

ker A = ker M and ker B∗ = ker M∗.

Proof:
[⇒] Let X be a nonsingular solution. For M = X−1A = BX : BA = M2 as
well as ker A = ker M. Since X ∗B∗ = M∗, we also have ker B∗ = ker M∗.
[⇐] if rank (A) = rank (B) = n, then X = AM−1 is a solution. Otherwise,
construct suitable generalized inverse of M.
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Nonsymmetric Algebraic Riccati Equations
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Numerical Solution of nAREzS

Many possibilities:

use explicit solution X = AM−1 (matrix square root of BA can be
computed without forming product BA [B./Faßbender 2001]),

or special versions of

Schur vector method [Laub 1979],

Newton’s method [Demmel 1987],

sign function method,

. . .
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Numerical Solution of nAREzS

Many possibilities:

use explicit solution X = AM−1 (matrix square root of BA can be
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Newton’s method [Demmel 1987],

sign function method,
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Numerical Solution of nAREzS
The Schur Vector Method

Compute Schur decomposition[
B

A

] [
U1 U2

V1 V2

]
=

[
U1 U2

V1 V2

] [
T1 S

T2

]
.

Then: if U1 is invertible, then

X = ±V1U
−1
1

are solutions to 0 = A− XBX .

Open questions:

Under which conditions is U1 nonsingular?

Under which conditions is X nonsingular?
(Obviously, if rank (V1) = n, but . . . )

How to exploit zero blocks in K?
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=
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.
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Numerical Solution of nAREzS
Newton’s Method

For R(X ) = A− XBX , Newton-Kantorovich method

R′Xj
(Zj) = −R(Xj), Xj+1 = Xj + Zj ,

can be written as

Solve Sylvester equation (XjB)Zj + Zj(BXj) = A− XjBXj .

Set Xj+1 = Xj + Zj .

Conjecture: convergence from X0 = In for Λ (AB) ∩ R−0 = ∅.
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Numerical Solution of nAREzS
Newton’s Method

For R(X ) = A− XBX , Newton-Kantorovich method

R′Xj
(Zj) = −R(Xj), Xj+1 = Xj + Zj ,

can be written as

Solve Sylvester equation (XjB)Zj + Zj(BXj) = A− XjBXj .

Set Xj+1 = Xj + Zj .

Conjecture: convergence from X0 = In for Λ (AB) ∩ R−0 = ∅.
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Numerical Solution of nAREzS
The Matrix Sign Function

Definition

For Z ∈ Rn×n with Λ (Z ) ∩ ıR = ∅ and Jordan canonical form

Z = S−1

[
J+ 0

0 J−

]
S

the matrix sign function is

sign (Z ) := S

[
Ik 0

0 −In−k

]
S−1.
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Numerical Solution of nAREzS
The Matrix Sign Function

Computation of sign (Z )

sign (Z ) is root of In =⇒ use Newton’s method to compute it:

Z0 ← Z , Zj+1 ←
1

2

(
Zj + Z−1

j

)
, j = 1, 2, . . .

=⇒ sign (Z ) = limj→∞ Zj .
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Numerical Solution of nAREzS
The Matrix Sign Function

Computation of sign (Z )

sign (Z ) is root of In =⇒ use Newton’s method to compute it:

Z0 ← Z , Zj+1 ←
1

2

(
Zj + Z−1

j

)
, j = 1, 2, . . .

=⇒ sign (Z ) = limj→∞ Zj .

Application to K =
[

A
B

]
yields for A0 = A,B0 = B:

Aj+1 ←
1

2

(
Aj + B−1

j

)
, Bj+1 ←

1

2

(
Bj + A−1

j

)
,

for j = 1, 2, . . . and X = limj→∞ Aj if Λ (AB) ∩ R−0 = ∅.
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Summary

(G ,H)-polar decompositions can be used to solve generalized
Procrustes problems in non-Euclidian geometries — useful in
psychometrics/multidimensional scaling.

Construction of (G ,H)-polar decompositions leads to
nonsymmetric algebraic Riccati equations with zero Sylvester
(linear) part.

Efficient numerical algorithms for nAREzS not yet fully
developed — work in progress!

Thanks for your attention!
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