Doubly Structured Polar Decompositions and Algebraic Riccati Equations

Peter Benner

Professur Mathematik in Industrie und Technik Fakultät für Mathematik Technische Universität Chemnitz

(日) (日) (日) (日) (日)

The 2007 Haifa Matrix Theory Conference April 16–19, 2007

Joint work with Ulric Kintzel.

Overview

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccat Equations

Numerical Solution

Summary

1 Doubly Structured Polar Decompositions

- Polar Decomposition
- Application: Procrustes Problems
- Existence Results
- 2 Nonsymmetric Algebraic Riccati Equations

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

- 3 Numerical Solution of nAREzS
 - The Schur Vector Method
 - Newton's Method
 - The Matrix Sign Function

4 Summary

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Polar Decomposition Application: Procrustes Problems Existence Results

Nonsymmetric Algebraic Riccat Equations

Numerical Solution

Summary

Polar decomposition in \mathbb{C}^n

Let $A \in \mathbb{C}^{n \times n}$, then

$$A = UM, \quad U^{-1} = U^*$$
 (unitary), $M = M^* \ge 0,$

is called a polar decomposition of A.

Note: any matrix admits a polar decomposition as

$$A = (UV^*)(V\Sigma V^*),$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

where $A = U\Sigma V^*$ is the SVD of A.

Generalization of polar decompositions in finite-dim. indefinite inner product spaces

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Polar Decomposition Application: Procrustes Problems Existence Results

Nonsymmetric Algebraic Riccat Equations

Numerical Solution

Summary

Given $A \in \mathbb{C}^{n \times n}$, $H = H^* \in \mathbb{C}^{n \times n}$ nonsingular, and the corresponding (indefinite) inner product

$$\langle x, y \rangle_H := \langle Hx, y \rangle$$

where $\langle ., . \rangle$ is the standard unitary inner product, then the *H*-adjoint of *M*, i.e., the adjoint of *M* w.r.t. $\langle ., . \rangle_H$, is $M^H = H^{-1}M^*H$.

Generalization of polar decompositions in finite-dim. indefinite inner product spaces

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Polar Decomposition Application: Procrustes Problems Existence Results

Nonsymmetric Algebraic Riccati Equations

Numerical Solution

Summary

Given $A \in \mathbb{C}^{n \times n}$, $H = H^* \in \mathbb{C}^{n \times n}$ nonsingular, and the corresponding (indefinite) inner product

$$\langle x, y \rangle_H := \langle Hx, y \rangle$$

where $\langle ., . \rangle$ is the standard unitary inner product, then the *H*-adjoint of *M*, i.e., the adjoint of *M* w.r.t. $\langle ., . \rangle_H$, is $M^H = H^{-1}M^*H$.

H-polar decomposition

$$A = UM$$
, $U^{-1} = U^H$ (H-unitary), $M = M^H$.

Generalization of polar decompositions in finite-dim. indefinite inner product spaces

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Polar Decomposition Application: Procrustes Problems Existence Results

Nonsymmetric Algebraic Riccati Equations

Numerical Solution

Summary

Given $A \in \mathbb{C}^{n \times n}$, $H = H^* \in \mathbb{C}^{n \times n}$ nonsingular, and the corresponding (indefinite) inner product

$$\langle x, y \rangle_H := \langle Hx, y \rangle$$

where $\langle ., . \rangle$ is the standard unitary inner product, then the *H*-adjoint of *M*, i.e., the adjoint of *M* w.r.t. $\langle ., . \rangle_H$, is $M^H = H^{-1}M^*H$.

H-polar decomposition

$$A = UM$$
, $U^{-1} = U^H$ (*H*-unitary), $M = M^H$.

Note: not all $A \in \mathbb{C}^{n \times n}$ admit an *H*-polar decomposition! Existence results:

- Bolshakov, van der Mee, Ran, Reichstein, Rodman (1997)
- Lins, Meade, Mehl, Rodman (2001)
- Kintzel (2003,2005)
- Mehl, Ran, Rodman (2006)

Generalization of polar decompositions in finite-dim. indefinite inner product spaces

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Polar Decomposition Application: Procrustes Problems Existence Results

Nonsymmetric Algebraic Riccati Equations

Numerical Solution

Summary

Given $A \in \mathbb{C}^{n \times n}$, $H = H^* \in \mathbb{C}^{n \times n}$ nonsingular, and the corresponding (indefinite) inner product

$$\langle x, y \rangle_H := \langle Hx, y \rangle$$

where $\langle ., . \rangle$ is the standard unitary inner product, then the *H*-adjoint of *M*, i.e., the adjoint of *M* w.r.t. $\langle ., . \rangle_H$, is $M^H = H^{-1}M^*H$.

(G, H)-polar decomposition [KINTZEL 2003/2005]

Let $H = H^*, G = G^*$ nonsingular, then

$$A = UM, \quad U^{-1} = U^G = U^H, \ M = M^G = M^H,$$

is a (G, H)-polar decomposition. In this case

- U is (G, H)-unitary,
- M is (G, H)-selfadjoint.

(G, H)-polar decomposition is H-semidefinite if $HM \ge 0$.

Generalization of polar decompositions in finite-dim. indefinite inner product spaces

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Polar Decomposition Application: Procrustes Problems Existence Results

Nonsymmetric Algebraic Riccati Equations

Numerical Solution

Summary

Given $A \in \mathbb{C}^{n \times n}$, $H = H^* \in \mathbb{C}^{n \times n}$ nonsingular, and the corresponding (indefinite) inner product

$$\langle x, y \rangle_H := \langle Hx, y \rangle$$

where $\langle ., . \rangle$ is the standard unitary inner product, then the *H*-adjoint of *M*, i.e., the adjoint of *M* w.r.t. $\langle ., . \rangle_H$, is $M^H = H^{-1}M^*H$.

(G, H)-polar decomposition [KINTZEL 2003/2005]

Let $H = H^*, G = G^*$ nonsingular, then

$$A = UM, \quad U^{-1} = U^G = U^H, \ M = M^G = M^H,$$

is a (G, H)-polar decomposition. In this case

- U is (G, H)-unitary,
- M is (G, H)-selfadjoint.

(G, H)-polar decomposition is *H*-semidefinite if $HM \ge 0$.

Doubly Structured Polar Decompositions Application: Procrustes Problems

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decomposition Polar Decompositio Application: Procrustes Problems

Existence Results

Nonsymmetric Algebraic Riccati Equations

Numerical Solution

Summary

Unitary (Orthogonal) Procrustes Problems

Given $C, B \in \mathbb{C}^{m \times n}$, find $U \in \mathbb{C}^{m \times m}$ unitary minimizing

$$\|UC-B\|_F.$$

In other words, for $C = [c_1, \ldots, c_n], B = [b_1, \ldots, b_n]$, minimize

$$\sum_{k=1}^n \langle Uc_k - b_k, Uc_k - b_k \rangle.$$

under the constraint $U^{-1} = U^*$.

Solution: U = unitary factor of polar decomposition $BC^* = UM$.

Doubly Structured Polar Decompositions Application: Procrustes Problems

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions Polar Decomposition Application: Procrustes Problems

Existence Results

Nonsymmetric Algebraic Riccati Equations

Numerical Solution

Summary

(G, H)-Isometric Procrustes Problem [KINTZEL 2003/2005]

Given $C = [c_1, \ldots, c_n], B = [b_1, \ldots, b_n] \in \mathbb{C}^{m \times n}$, find $U \in \mathbb{C}^{m \times m}$ optimizing

$$\sum_{k=1}^{''} \langle Uc_k - b_k, Uc_k - b_k \rangle_H$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

under the constraint $U^{-1} = U^G = U^H$.

Doubly Structured Polar Decompositions Application: Procrustes Problems

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions Polar Decomposition Application: Procrustes Problems

Existence Results

Nonsymmetric Algebraic Riccati Equations

Numerical Solution

Summary

(*G*, *H*)-Isometric Procrustes Problem [KINTZEL 2003/2005]

Given $C = [c_1, \ldots, c_n], B = [b_1, \ldots, b_n] \in \mathbb{C}^{m \times n}$, find $U \in \mathbb{C}^{m \times m}$ optimizing

$$\sum_{k=1}^{''} \langle Uc_k - b_k, Uc_k - b_k \rangle_H$$

under the constraint $U^{-1} = U^G = U^H$.

Solution (for $H^{-1}G = \mu^2 G^{-1}H$, $\mu \in \mathbb{R} \setminus \{0\}$):

existence \iff there exists an *H*-semidefinite (*G*, *H*)-polar decomposition

```
A := BC^*H + G^{-1}HBC^*G = UM.
```

Then, the optimizing U is just the (G, H)-unitary factor.

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decomposition

Polar Decompositio Application: Procrustes Problems

Existence Results

Nonsymmetric Algebraic Riccati Equations

Numerical Solution

Summary

Recall: want A = UM so that $U^{-1} = U^G = U^H$ and $M = M^G = M^H$.

Necessary condition

$$A^H = A^G$$
, as $A^H = M^H U^H = M^G U^G = A^G$.

Note: if $\lambda H - G \in \mathbb{C}^{n \times n}$ is non-defective Hermitian matrix pencil, such matrices impose a "normal" form of (A, H, G):

 $(S^{-1}AS, S^*HS, S^*GS) = (A_1 \oplus \ldots \oplus A_k, H_1 \oplus \ldots \oplus H_k, G_1 \oplus \ldots \oplus G_k),$

where

for real eigenvalues μ_j , $j = 1, \ldots, r$, of $\lambda H - G$:

$$A_j \in \mathbb{C}^{p_j \times p_j}, \quad H_j = I_{p_j - q_j} \oplus -I_{q_j}, \quad G_j = \mu_j (I_{p_j - q_j} \oplus -I_{q_j}),$$

for non-real eigenvalues μ_j , $j = r + 1, \dots, \ell$, of $\lambda H - G$:

$$A_{j} = \begin{bmatrix} A_{j,1} & \\ & A_{j,2} \end{bmatrix} \in \mathbb{C}^{2p_{j} \times 2p_{j}}, \quad H_{j} = \begin{bmatrix} & I_{p_{j}} \\ I_{p_{j}} \end{bmatrix}, \quad G_{j} = \begin{bmatrix} & \overline{\mu_{j}} I_{p_{j}} \\ & \mu_{p_{j}} \end{bmatrix}.$$

(G, H)-Polar Decompositions and AREs

Peter Benner

(*G*, *H*)-Polar Decompositions

Polar Decomposition Application: Procrustes Problems

Existence Results

Nonsymmetric Algebraic Riccati Equations

Numerical Solution

Summary

Recall: want A = UM so that $U^{-1} = U^G = U^H$ and $M = M^G = M^H$.

Necessary condition

$$A^H = A^G$$
, as $A^H = M^H U^H = M^G U^G = A^G$.

Note: if $\lambda H - G \in \mathbb{C}^{n \times n}$ is non-defective Hermitian matrix pencil, such matrices impose a "normal" form of (A, H, G):

$$(S^{-1}AS, S^*HS, S^*GS) = (A_1 \oplus \ldots \oplus A_k, H_1 \oplus \ldots \oplus H_k, G_1 \oplus \ldots \oplus G_k),$$

where

for real eigenvalues μ_j , $j = 1, \ldots, r$, of $\lambda H - G$:

$$A_j \in \mathbb{C}^{p_j \times p_j}, \quad H_j = I_{p_j - q_j} \oplus -I_{q_j}, \quad G_j = \mu_j (I_{p_j - q_j} \oplus -I_{q_j}),$$

for non-real eigenvalues μ_j , $j = r + 1, \ldots, \ell$, of $\lambda H - G$:

$$A_{j} = \begin{bmatrix} A_{j,1} & \\ & A_{j,2} \end{bmatrix} \in \mathbb{C}^{2\rho_{j} \times 2\rho_{j}}, \quad H_{j} = \begin{bmatrix} & I_{\rho_{j}} \\ I_{\rho_{j}} \end{bmatrix}, \quad G_{j} = \begin{bmatrix} & \overline{\mu_{j}} I_{\rho_{j}} \\ \mu I_{\rho_{j}} \end{bmatrix}$$

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Polar Decomposition Application: Procrustes Problems

Existence Results

Nonsymmetric Algebraic Riccati Equations

Numerical Solution

Summary

Recall: want A = UM so that $U^{-1} = U^G = U^H$ and $M = M^G = M^H$.

Necessary and sufficient condition

If $\lambda H - G \in \mathbb{C}^{n \times n}$ is non-defective Hermitian matrix pencil, then $A^H = A^G$ admits a (G, H) polar decomposition

in the "normal" form of A,

1 all blocks A_j corresponding to real eigenvalues of $\lambda H - G$ admit an H_j -polar decomposition,

 \Leftrightarrow

2 all blocks A_j corresponding to non-real eigenvalues of $\lambda H - G$ satisfy nonsymmetric algebraic Riccati equations (nARE)

$$A_{j,1}=U_jA_{j,2}^*U_j,$$

◆□▶ ◆□▶ ★∃▶ ★∃▶ → 三 - のへで

with $U_j \in \mathbb{C}^{p_j \times p_j}$ nonsingular.

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Polar Decomposition Application: Procrustes Problems

Existence Results

Nonsymmetric Algebraic Riccati Equations

Numerical Solution

Summary

Recall: want A = UM so that $U^{-1} = U^G = U^H$ and $M = M^G = M^H$.

Necessary and sufficient condition

If $\lambda H - G \in \mathbb{C}^{n \times n}$ is non-defective Hermitian matrix pencil, then $A^H = A^G$ admits a (G, H) polar decomposition

in the "normal" form of A,

1 all blocks A_j corresponding to real eigenvalues of $\lambda H - G$ admit an H_j -polar decomposition,

 \Leftrightarrow

2 all blocks A_j corresponding to non-real eigenvalues of $\lambda H - G$ satisfy nonsymmetric algebraic Riccati equations (nARE)

$$A_{j,1}=U_jA_{j,2}^*U_j,$$

◆□▶ ◆□▶ ★∃▶ ★∃▶ → 三 - のへで

with $U_j \in \mathbb{C}^{p_j \times p_j}$ nonsingular.

(G, H)-Polar Decompositions and AREs

Nonsymmetric Algebraic Riccati Equations

General form of nARE:

$$0 = A + DX - XC - XBX,$$

where $A, B^* \in \mathbb{C}^{n \times m}$, $C \in \mathbb{C}^{m \times m}$, $D \in \mathbb{C}^{n \times n}$ are given and $X \in \mathbb{C}^{n \times m}$ is unknown. Corresponding data matrix:

$$K = \left[\begin{array}{cc} C & B \\ A & D \end{array} \right].$$

Well-known:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

Nonsymmetric Algebraic Riccati

Summary

Equations

(G, H)-Polar Decompositions and AREs

Nonsymmetric Algebraic Riccati

Equations

Nonsymmetric Algebraic Riccati Equations

General form of nARE:

$$0 = A + DX - XC - XBX,$$

where $A, B^* \in \mathbb{C}^{n \times m}$, $C \in \mathbb{C}^{m \times m}$, $D \in \mathbb{C}^{n \times n}$ are given and $X \in \mathbb{C}^{n \times m}$ is unknown. Corresponding data matrix:

$$K = \left[\begin{array}{cc} C & B \\ A & D \end{array} \right]$$

Well-known:

 $\begin{array}{c} X \text{ is a solution} \\ \longleftrightarrow \\ \operatorname{range}\left(\begin{bmatrix} I \\ X \end{bmatrix} \right) \text{ is an } K \text{-invariant subspace corresponding to} \\ \Lambda(C + BX). \end{array}$

Nonsymmetric Algebraic Riccati Equations

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccati Equations

Numerical Solution

Summary

Here: nARE with zero Sylvester part (nAREzS)

$$0=A-XBX,$$

where $A, B \in \mathbb{C}^{n \times n}$ are given and $X \in \mathbb{C}^{n \times n}$ is unknown. Corresponding data matrix:

$$K = \left[\begin{array}{c} B \\ A \end{array} \right].$$

Well-known:

X is a solution

range $\binom{I}{X}$ is an K-invariant subspace corresponding to $\Lambda(BX)$.

◆□▶ ◆□▶ ★∃▶ ★∃▶ → 三 - のへで

Nonsymmetric Algebraic Riccati Equations

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccati Equations

Numerical Solution

Summary

Here: nARE with zero Sylvester part (nAREzS)

$$0=A-XBX,$$

where $A, B \in \mathbb{C}^{n \times n}$ are given and $X \in \mathbb{C}^{n \times n}$ is unknown. Corresponding data matrix:

$$K = \left[\begin{array}{c} B \\ A \end{array} \right]$$

Well-known:

X is a solution

range $\begin{pmatrix} I \\ X \end{pmatrix}$ is an *K*-invariant subspace corresponding to

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

Of course, with X, also Y = -X is a solution!

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccati Equations

Numerical Solution

Summary

Recall: for (G, H)-polar decomposition, need invertible solution! Trivial consequence: rank (A) = rank (B) is necessary condition.

heorem

Let $A, B \in \mathbb{C}^{n \times n}$. Then there exists a nonsingular matrix $X \in \mathbb{C}^{n \times n}$ solution of the nAREzS

0 = A - XBX

 \iff there exists a matrix square root $M \in \mathbb{C}^{n \times n}$ of *BA* with

ker $A = \ker M$ and ker $B^* = \ker M^*$.

Proof:

[⇒] Let X be a nonsingular solution. For $M = X^{-1}A = BX$: $BA = M^2$ as well as ker $A = \ker M$. Since $X^*B^* = M^*$, we also have ker $B^* = \ker M^*$. [⇐] if rank (A) = rank (B) = n, then $X = AM^{-1}$ is a solution. Otherwise, construct suitable generalized inverse of M.

・ロト ・西ト ・ヨト ・ヨト ・ ウヘマ

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccati Equations

Numerical Solution

Summary

Recall: for (G, H)-polar decomposition, need invertible solution! Trivial consequence: rank (A) = rank (B) is necessary condition.

heorem

Let $A, B \in \mathbb{C}^{n \times n}$. Then there exists a nonsingular matrix $X \in \mathbb{C}^{n \times n}$ solution of the nAREzS

$$0 = A - XBX$$

 \iff there exists a matrix square root $M \in \mathbb{C}^{n \times n}$ of *BA* with

ker $A = \ker M$ and ker $B^* = \ker M^*$.

Proof:

[⇒] Let X be a nonsingular solution. For $M = X^{-1}A = BX$: $BA = M^2$ as well as ker A = ker M. Since $X^*B^* = M^*$, we also have ker $B^* = \text{ker } M^*$. [⇐] if rank (A) = rank (B) = n, then $X = AM^{-1}$ is a solution. Otherwise, construct suitable generalized inverse of M.

▲ロト ▲母 ト ▲目 ト ▲目 ト 一旦 - のへぐ

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccati Equations

Numerical Solution

Summary

Recall: for (G, H)-polar decomposition, need invertible solution! Trivial consequence: rank (A) = rank (B) is necessary condition.

Theorem

Let $A, B \in \mathbb{C}^{n \times n}$. Then there exists a nonsingular matrix $X \in \mathbb{C}^{n \times n}$ solution of the nAREzS

$$0 = A - XBX$$

 \iff there exists a matrix square root $M \in \mathbb{C}^{n \times n}$ of *BA* with

 $\ker A = \ker M \quad \text{and} \quad \ker B^* = \ker M^*.$

Proof:

[⇒] Let X be a nonsingular solution. For $M = X^{-1}A = BX$: $BA = M^2$ as well as ker $A = \ker M$. Since $X^*B^* = M^*$, we also have ker $B^* = \ker M^*$. [⇐] if rank (A) = rank (B) = n, then $X = AM^{-1}$ is a solution. Otherwise, construct suitable generalized inverse of M.

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccati Equations

Numerical Solution

Summary

Recall: for (G, H)-polar decomposition, need invertible solution! Trivial consequence: rank (A) = rank (B) is necessary condition.

Theorem

Let $A, B \in \mathbb{C}^{n \times n}$. Then there exists a nonsingular matrix $X \in \mathbb{C}^{n \times n}$ solution of the nAREzS

$$0 = A - XBX$$

 \iff there exists a matrix square root $M \in \mathbb{C}^{n \times n}$ of *BA* with

 $\ker A = \ker M$ and $\ker B^* = \ker M^*$.

Proof:

[⇒] Let X be a nonsingular solution. For $M = X^{-1}A = BX$: $BA = M^2$ as well as ker A = ker M. Since $X^*B^* = M^*$, we also have ker $B^* = \text{ker } M^*$. [⇐] if rank (A) = rank (B) = n, then $X = AM^{-1}$ is a solution. Otherwise, construct suitable generalized inverse of M.

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccati Equations

Numerical Solution

Summary

Recall: for (G, H)-polar decomposition, need invertible solution! Trivial consequence: rank (A) = rank (B) is necessary condition.

Theorem

Let $A, B \in \mathbb{C}^{n \times n}$. Then there exists a nonsingular matrix $X \in \mathbb{C}^{n \times n}$ solution of the nAREzS

$$0 = A - XBX$$

 \iff there exists a matrix square root $M \in \mathbb{C}^{n \times n}$ of *BA* with

 $\ker A = \ker M \quad \text{and} \quad \ker B^* = \ker M^*.$

Proof:

[⇒] Let X be a nonsingular solution. For $M = X^{-1}A = BX$: $BA = M^2$ as well as ker $A = \ker M$. Since $X^*B^* = M^*$, we also have ker $B^* = \ker M^*$. [⇐] if rank (A) = rank (B) = n, then $X = AM^{-1}$ is a solution. Otherwise, construct suitable generalized inverse of M.

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccat Equations

Numerical Solution

The Schur Vector Method Newton's Method Sign Function

Summary

Many possibilities:

use explicit solution $X = AM^{-1}$ (matrix square root of *BA* can be computed without forming product *BA* [B./FASSBENDER 2001]),

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

or special versions of

. . . .

- Schur vector method [LAUB 1979],
- Newton's method [DEMMEL 1987],
- sign function method,

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccat Equations

Numerical Solution

The Schur Vector Method Newton's Method Sign Function

Summary

Many possibilities:

use explicit solution $X = AM^{-1}$ (matrix square root of *BA* can be computed without forming product *BA* [B./FASSBENDER 2001]),

◆□▶ ◆□▶ ★∃▶ ★∃▶ → 三 - のへで

or special versions of

. . . .

- Schur vector method [LAUB 1979],
- Newton's method [DEMMEL 1987],
- sign function method,

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccat Equations

Numerical Solution

The Schur Vector Method

Newton's Method Sign Function

Summary

Compute Schur decomposition

$$\begin{bmatrix} B \\ A \end{bmatrix} \begin{bmatrix} U_1 & U_2 \\ V_1 & V_2 \end{bmatrix} = \begin{bmatrix} U_1 & U_2 \\ V_1 & V_2 \end{bmatrix} \begin{bmatrix} T_1 & S \\ T_2 \end{bmatrix}.$$

Then: if U_1 is invertible, then

$$X = \pm V_1 U_1^{-1}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

are solutions to 0 = A - XBX.

Open questions:

- Under which conditions is U₁ nonsingular?
- Under which conditions is X nonsingular? (Obviously, if rank (V₁) = n, but ...)
- How to exploit zero blocks in K?

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccat Equations

Numerical Solution

The Schur Vector Method

Newton's Method Sign Function

Summary

Compute Schur decomposition

$$\begin{bmatrix} B \\ A \end{bmatrix} \begin{bmatrix} U_1 & U_2 \\ V_1 & V_2 \end{bmatrix} = \begin{bmatrix} U_1 & U_2 \\ V_1 & V_2 \end{bmatrix} \begin{bmatrix} T_1 & S \\ T_2 \end{bmatrix}.$$

Then: if U_1 is invertible, then

$$X = \pm V_1 U_1^{-1}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

are solutions to 0 = A - XBX.

Open questions:

- Under which conditions is *U*¹ nonsingular?
- Under which conditions is X nonsingular? (Obviously, if rank (V₁) = n, but ...)
- How to exploit zero blocks in K?

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccat Equations

Numerical Solution

The Schur Vector Method

Newton's Method Sign Function

Summary

Compute Schur decomposition

$$\begin{bmatrix} B \\ A \end{bmatrix} \begin{bmatrix} U_1 & U_2 \\ V_1 & V_2 \end{bmatrix} = \begin{bmatrix} U_1 & U_2 \\ V_1 & V_2 \end{bmatrix} \begin{bmatrix} T_1 & S \\ T_2 \end{bmatrix}.$$

Then: if U_1 is invertible, then

$$X = \pm V_1 U_1^{-1}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

are solutions to 0 = A - XBX.

Open questions:

- Under which conditions is *U*¹ nonsingular?
- Under which conditions is X nonsingular? (Obviously, if rank (V₁) = n, but ...)

■ How to exploit zero blocks in *K*?

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccat Equations

Numerical Solution

The Schur Vector Method

Newton's Method Sign Function

Summary

Compute Schur decomposition

$$\begin{bmatrix} B \\ A \end{bmatrix} \begin{bmatrix} U_1 & U_2 \\ V_1 & V_2 \end{bmatrix} = \begin{bmatrix} U_1 & U_2 \\ V_1 & V_2 \end{bmatrix} \begin{bmatrix} T_1 & S \\ T_2 \end{bmatrix}.$$

Then: if U_1 is invertible, then

$$X = \pm V_1 U_1^{-1}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

are solutions to 0 = A - XBX.

Open questions:

- Under which conditions is *U*¹ nonsingular?
- Under which conditions is X nonsingular? (Obviously, if rank (V₁) = n, but ...)
- How to exploit zero blocks in K?

Numerical Solution of nAREzS Newton's Method

(G, H)-Polar Decompositions and AREs

Peter Benne

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccat Equations

Numerical Solution

The Schur Vector Metho

Newton's Method Sign Function

Summary

For $\mathcal{R}(X) = A - XBX$, Newton-Kantorovich method

$$\mathcal{R}'_{X_j}(Z_j) = -\mathcal{R}(X_j), \quad X_{j+1} = X_j + Z_j,$$

can be written as

- Solve Sylvester equation $(X_jB)Z_j + Z_j(BX_j) = A X_jBX_j$.
- Set $X_{j+1} = X_j + Z_j$.

Conjecture: convergence from $X_0 = I_n$ for $\Lambda(AB) \cap \mathbb{R}_0^- = \emptyset$.

Numerical Solution of nAREzS Newton's Method

(G, H)-Polar Decompositions and AREs

Peter Benne

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccat Equations

Numerical Solution

The Schur Vector Metho

Newton's Method Sign Function

Summary

For $\mathcal{R}(X) = A - XBX$, Newton-Kantorovich method

$$\mathcal{R}'_{X_j}(Z_j) = -\mathcal{R}(X_j), \quad X_{j+1} = X_j + Z_j,$$

can be written as

- Solve Sylvester equation $(X_jB)Z_j + Z_j(BX_j) = A X_jBX_j$.
- Set $X_{j+1} = X_j + Z_j$.

Conjecture: convergence from $X_0 = I_n$ for $\Lambda(AB) \cap \mathbb{R}_0^- = \emptyset$.

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccat Equations

Numerical Solution

The Schur Vector Metho Newton's Method

Sign Function

Summary

Definition

For $Z \in \mathbb{R}^{n \times n}$ with $\Lambda(Z) \cap i\mathbb{R} = \emptyset$ and Jordan canonical form

$$Z = S^{-1} \left[\begin{array}{cc} J^+ & 0 \\ 0 & J^- \end{array} \right] S$$

the matrix sign function is

$$\operatorname{sign}\left(Z\right) := S \left[\begin{array}{cc} I_k & 0 \\ 0 & -I_{n-k} \end{array} \right] S^{-1}$$

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccat Equations

Numerical Solution

The Schur Vector Meth Newton's Method

Sign Function

Summary

Computation of sign (Z)

sign (Z) is root of $I_n \implies$ use Newton's method to compute it:

$$Z_0 \leftarrow Z, \qquad Z_{j+1} \leftarrow \frac{1}{2} \left(Z_j + Z_j^{-1} \right), \qquad j = 1, 2, \dots$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

 $\Rightarrow \quad \operatorname{sign}(Z) = \lim_{j \to \infty} Z_j.$

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccat Equations

Numerical Solution

The Schur Vector Metho Newton's Method

Sign Function

Summary

sign (Z) is root of $I_n \implies$ use Newton's method to compute it: $Z_0 \leftarrow Z, \qquad Z_{j+1} \leftarrow \frac{1}{2} \left(Z_j + Z_j^{-1} \right), \qquad j = 1, 2, \dots$

$$\Rightarrow \quad \operatorname{sign}(Z) = \lim_{j \to \infty} Z_j.$$

Computation of sign (Z)

Application to
$$K = \begin{bmatrix} A \end{bmatrix}$$
 yields for $A_0 = A, B_0 = B$:
 $A_{j+1} \leftarrow \frac{1}{2} \left(A_j + B_j^{-1} \right), \quad B_{j+1} \leftarrow \frac{1}{2} \left(B_j + A_j^{-1} \right),$
for $j = 1, 2, \dots$ and $X = \lim_{j \to \infty} A_j$ if $\Lambda (AB) \cap \mathbb{R}_0^- = \emptyset.$

Summary

(G, H)-Polar Decompositions and AREs

Peter Benner

(G, H)-Polar Decompositions

Nonsymmetric Algebraic Riccati Equations

Numerical Solution

Summary

- (G, H)-polar decompositions can be used to solve generalized Procrustes problems in non-Euclidian geometries — useful in psychometrics/multidimensional scaling.
- Construction of (G, H)-polar decompositions leads to nonsymmetric algebraic Riccati equations with zero Sylvester (linear) part.
- Efficient numerical algorithms for nAREzS not yet fully developed work in progress!

Thanks for your attention!