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Polar Decomposition
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Polar decomposition in C"

Do mposition Let A€ C"™ ", then
A= UM, U'=U* (unitary), M = M* >0,
is called a polar decomposition of A.
Note: any matrix admits a polar decomposition as
A= (UV*)(VZVY),

where A = UXV* is the SVD of A.



Doubly Structured Polar Decompositions

Generalization of polar decompositions in finite-dim. indefinite inner product spaces

(G, H)-Polar Given A € C"™", H = H* € C"*" nonsingular, and the corresponding
Decompositions

and AREs (indefinite) inner product
Peter Benner

<X,_}/>H = <HX’.)/>

Polar

Decomposition where (., .) is the standard unitary inner product, then the H-adjoint
of M, i.e., the adjoint of M w.r.t. (., .)py, is M7 = H-1M*H.
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Generalization of polar decompositions in finite-dim. indefinite inner product spaces

(G, H)-Polar Given A € C"™", H = H* € C"*" nonsingular, and the corresponding
Decompositions

and AREs (indefinite) inner product
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<Xa)/>H = <HX’.)/>

Polar

Decomposition where (., .) is the standard unitary inner product, then the H-adjoint
of M, i.e., the adjoint of M w.r.t. (., .)py, is M7 = H-1M*H.

H-polar decomposition
A=UM, U'=U" (H-unitary), M= M".

Note: not all A € C"*" admit an H-polar decomposition!
Existence results:
— Bolshakov, van der Mee, Ran, Reichstein, Rodman (1997)
— Lins, Meade, Mehl, Rodman (2001)
— Kintzel (2003,2005)
— Mehl, Ran, Rodman (2006)
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- Uis (G, H)-unitary,
- Mis (G, H)-selfadjoint.
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Generalization of polar decompositions in finite-dim. indefinite inner product spaces

(G, H)-Polar Given A e C"™" H = H*
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and AREs (indefinite) inner product
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€ C™" nonsingular, and the corresponding

<Xa)/>H = <HX’.)/>

Decomposition where (., .) is the standard unitary inner product, then the H-adjoint
of M, i.e., the adjoint of M w.r.t. (., .)py, is M7 = H-1M*H.

(G, H)-polar decomposition [KINTZEL 2003/2005]

Let H = H*, G = G* nonsingular, then
A=UM, Ut=U°=U" M=M°*=M",

is a (G, H)-polar decomposition. In this case
- Uis (G, H)-unitary,
- Mis (G, H)-selfadjoint.
(G, H)-polar decomposition is H-semidefinite if HM > 0.
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Application: Procrustes Problems
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Decompositions
d ARE: .
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Given C,B € C™*", find U € C™*™ unitary minimizing

|UC - Bl

Application:
Procrustes
Problems

In other words, for C = [c1,. .., ¢n], B = [b1,. .., by], minimize

n

Z(Uck — bk, UCk — bk>
k=1

under the constraint U1 = U*.

Solution: U = unitary factor of polar decomposition BC* = UM.
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n

AT E (Uck — by, Uck — bi)n

Problems
k=1

under the constraint U~ = U¢ = UH.
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Application: Procrustes Problems

(G, H)-Polar
Decompositions

e ARES (G, H)-lsometric Procrustes Problem [KINTZEL 2003/2005]

Peter Benner
Given C =[c,..., 6], B =[b1,...,by] € C™*", find U € C™*™
optimizing

n

Application: Z<Uck = bk, Uck — bk>H

Procrustes
Problems
k=1

under the constraint U~ = U¢ = UH.

Solution (for H71G = y>G~H, p € R\ {0}):
existence <= there exists an H-semidefinite (G, H)-polar
decomposition

A:=BC*H+ G '*HBC*G = UM.

Then, the optimizing U is just the (G, H)-unitary factor.
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Existence Results

MC = MmH.

(G, H)-Polar Recall: want A = UM so that U™! = U® = UM and M =

Decompositions
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Peter Benner

Necessary condition
AP = AC as AH = MHUH = MCUC =

Note: if \H — G € C"*" is non-defective Hermitian matrix pencil, such
matrices impose a “normal” form of (A, H, G):

Existence
Results

(57'AS,S*HS,5*GS) = (A1 ® ... 0ALHI @ ... D H, G ... B G,
where

for real eigenvalues pj, j=1,...,r, of \H — G:
Aj € A, H; = ij*qj ® _Iqj7 G = Nj(lpj*qj ® _Iqj)7

for non-real eigenvalues pj, j=r+1,...,¢, of \H — G:
Aj = |:Aj’l Fjlpj] .

€ C2pszpj7 HJ = [ ij:| P GJ = [
Ip; flp;

Aj72:|
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Results
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Existence Results

EGEEN  Recall: want A = UM so that U™! = U® = UM and M = M = MM,
and AREs
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Necessary and sufficient condition

If \H— G € C"*" is non-defective Hermitian matrix pencil, then
AH = AC admits a (G, H) polar decomposition

<
Existence in the “normal” form of A,

Results

all blocks A; corresponding to real eigenvalues of AH — G admit
an Hj-polar decomposition,

all blocks A; corresponding to non-real eigenvalues of A\H — G
satisfy nonsymmetric algebraic Riccati equations (nARE)

A1 = UA7L U,

with U; € CP*Pi nonsingular.
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(G, H)-Polar General form of nARE:

Decompositions
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0=A+ DX — XC — XBX,
where A, B* € C"™™ C € C™™ D e C"" are given and X € C"™*™
Ny is unknown.
Algebraic Riccati . .
e Corresponding data matrix:
C B

A D
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(G, H)-Polar General form of nARE:

Decompositions
and AREs
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0=A+ DX — XC — XBX,
where A, B* € C"™™ C € C™™ D e C"" are given and X € C"™*™

[Ev— is unknown.

Algebraic Riccati . .

B Corresponding data matrix:
C B
A D

Well-known:

X is a solution
<~
range ([)'(D is an K-invariant subspace corresponding to
A(C + BX).
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Here: nARE with zero Sylvester part (nAREzS)
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where A, B € C"*" are given and X € C"™" is unknown.
Corresponding data matrix:

Nonsymmetric
Algebraic Riccati
Equations

K =

A

Well-known:

X is a solution
<
range ({)'(D is an K-invariant subspace corresponding to A (BX).
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Here: nARE with zero Sylvester part (nAREzS)
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and AREs
0=A— XBX,

Peter Benner
where A, B € C"*" are given and X € C"™" is unknown.
Corresponding data matrix:

Nonsymmetric
Algebraic Riccati
Equations

K =

A

Well-known:

X is a solution
—
range ([)'(D is an K-invariant subspace corresponding to

Of course, with X, also Y = —X is a solution!
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Existence of Nonsingular Solutions

(G, H)-Polar

Decomposions Recall: for (G, H)-polar decomposition, need invertible solution!
and ARES
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[=] Let X be a nonsingular solution. For M = X 'A = BX: BA= M? as
well as ker A = ker M. Since X*B* = M*, we also have ker B* = ker M*.
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Existence of Nonsingular Solutions

(G, H)-Polar - . . .
Decompositions Recall: for (G, H)-polar decomposition, need invertible solution!

and AREs A X .
Trivial consequence: rank (A) = rank (B) is necessary condition.

Nonsymmetric Let A, B € C"™". Then there exists a nonsingular matrix X € C"*"
Algebraic Riccati

Eanciain solution of the nAREZzS

Peter Benner

0=A—-XBX
<> there exists a matrix square root M € C"*" of BA with

ker A=kerM and ker B = ker M*.

Proof:

[=] Let X be a nonsingular solution. For M = X 'A = BX: BA= M? as
well as ker A = ker M. Since X*B* = M*, we also have ker B* = ker M*.
[«=] if rank (A) = rank (B) = n, then X = AM™! is a solution. Otherwise,
construct suitable generalized inverse of M.
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Many possibilities:

use explicit solution X = AM~1 (matrix square root of BA can be
computed without forming product BA [B./FASSBENDER 2001]),

Numerical
Solution
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Many possibilities:

use explicit solution X = AM~1 (matrix square root of BA can be
computed without forming product BA [B./FASSBENDER 2001]),

Numerical
Solution

or special versions of
m Schur vector method [LAuUB 1979,
m Newton's method [DEMMEL 1987],
m sign function method,
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The Schur Vector Method

(G, H)-Polar
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and AREs Compute Schur decomposition
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i W,

Then: if U; is invertible, then
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B

A

U U, T. S
Vi W |

X =+vUut

The Schur
Vector Method

are solutions to 0 = A — XBX.

Open questions:

m Under which conditions is U; nonsingular?

m Under which conditions is X nonsingular?
(Obviously, if rank (V4) = n, but ...)

m How to exploit zero blocks in K7
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For R(X) = A — XBX, Newton-Kantorovich method

Rx(Zj) = =R(X), Xjr1 =X+ Z,
can be written as

m Solve Sylvester equation (X;B)Z; + Z;j(BX;) = A — X;BX;.
Method® = Set Xj11 = X; + Z;.
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Newton's Method

(G, H)-Polar
Decompositions
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For R(X) = A — XBX, Newton-Kantorovich method

Rx(Zj) = =R(X), Xjr1 =X+ Z,
can be written as

m Solve Sylvester equation (X;B)Z; + Z;j(BX;) = A — X;BX;.
Method® = Set Xj11 = X; + Z;.

Conjecture: convergence from Xo = I, for A(AB)NR, = 0.



Numerical Solution of nAREZS

The Matrix Sign Function

(G, H)-Polar
Decompositions

2nd AREs Definition
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For Z € R™*" with A(Z) MR = () and Jordan canonical form
Jt 0
Z=5"1 S
0
the matrix sign function is

Sign Function Ik 0 1
sign(Z) =S S




Numerical Solution of nAREZS

The Matrix Sign Function

(G, H)-Polar
Decompositions

and AREs Computation of sign (Z)

Peter Benner

sign (Z) is root of /, => use Newton's method to compute it:
1 1 .
ZO(_Za Zj+1<_ §<ZJ+ZJ )7 ./:1727
= sign(2) =limj_« Zj.

Sign Function
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The Matrix Sign Function

(G, H)-Polar
Decompositions
and AREs

Computation of sign (Z)

Peter Benner

sign (Z) is root of /, => use Newton's method to compute it:
Z — Z, ZJ+1<——<Z+Z ) j=12,...
= sign(2) =limj_« Z;.

Sign Function

Application to K = [A B] yields for Ay = A, By = B:

1
A= 5 (Aj + Bj‘l) , Bl - (B, + A 1)

forj=1,2,...and X =lim;_.o Aj if \(AB) N R, = 0.
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m (G, H)-polar decompositions can be used to solve generalized
Procrustes problems in non-Euclidian geometries — useful in
psychometrics/multidimensional scaling.

m Construction of (G, H)-polar decompositions leads to
nonsymmetric algebraic Riccati equations with zero Sylvester

S (linear) part.

m Efficient numerical algorithms for nAREzS not yet fully
developed — work in progress!

Thanks for your attention!
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