Ansätze zur numerischen Lösung hochdimensionaler Lyapunov- und Sylvestergleichungen

Peter Benner

Mathematik in Industrie und Technik Fakultät für Mathematik
TU Chemnitz

WWW.tu-chemnitz.de/~benner benner@mathematik.tu-chemnitz.de

Hagen, 28. Oktober 2004

Outline

- Linear matrix equations
- Applications
- Direct Methods: Hessenberg-Schur, Bartels-Stewart, Hammarling
- Sign function method
- Low-rank approximation
- Large, sparse Lyapunov equations
- ADI and Smith iterations
- \mathcal{H}-matrix sign function method
- Conclusions

Linear Matrix Equations

equations without symmetry

Sylvester equation discrete Sylvester equation

$$
A X+X B=W
$$

$$
A X B-X=W
$$

with data $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}, W \in \mathbb{R}^{n \times m}$ and unknown $X \in \mathbb{R}^{n \times m}$.

equations with symmetry

Lyapunov equation Stein equation (discrete Lyapunov equation)

$$
A X+X A^{T}=W \quad A X A^{T}-X=W
$$

with data $A \in \mathbb{R}^{n \times n}, W=W^{T} \in \mathbb{R}^{n \times n}$ and unknown $X \in \mathbb{R}^{n \times n}$.

Here: focus on Sylvester and Lyapunov equations; analogous results and methods for discrete versions exist.

Theoretical Background

Using the Kronecker (tensor) product, $A X+X B=W$ is equivalent to

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

Theoretical Background

Using the Kronecker (tensor) product, $A X+X B=W$ is equivalent to

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

Hence,

Sylvester equation has a unique solution

$$
M:=\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right) \text { is invertible. }
$$

Theoretical Background

Using the Kronecker (tensor) product, $A X+X B=W$ is equivalent to

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

Hence,

Sylvester equation has a unique solution

$$
M:=\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right) \text { is invertible. }
$$

$0 \notin \sigma(M)=\sigma\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right)=\left\{\lambda_{j}+\mu_{k}, \mid \lambda_{j} \in \sigma(A), \mu_{k} \in \sigma(B)\right\}$.

Theoretical Background

Using the Kronecker (tensor) product, $A X+X B=W$ is equivalent to

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

Hence,

Sylvester equation has a unique solution

$$
\Longleftrightarrow
$$

$$
M:=\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right) \text { is invertible. }
$$

$$
\Longleftrightarrow
$$

$0 \notin \sigma(M)=\sigma\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right)=\left\{\lambda_{j}+\mu_{k}, \mid \lambda_{j} \in \sigma(A), \mu_{k} \in \sigma(B)\right\}$.

$$
\sigma(A) \cap \sigma(-B)=\emptyset
$$

Complexity Issues

Solving the Sylvester equation

$$
A X+X B=W
$$

via the linear system of equations

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

requires

- LU factorization of $n \cdot m \times n \cdot m$ matrix; for $n \approx m$, the complexity is $\mathcal{O}\left(n^{6}\right)$;
- storing $n \cdot m$ unknowns; i.e., for $n \approx m$ we have n^{2} storage requirement for X.

Example:

$n=m=1000 \Rightarrow$ Gaussian elimination on a Pentium IV (2 GHz) would take $10 \frac{1}{2}$ YEARS.

Applications

Stability analysis of linear dynamical systems (Lyapunov's first method):

$$
\dot{x}=A x \text { is asymptotically (exponentially, Lyapunov) stable }
$$

$$
\Longleftrightarrow \quad A P+P A^{T}+I_{n}=0 \text { has solution } X>0
$$

$$
\Longleftrightarrow \quad V(x):=x^{T} P x \text { is a Lyapunov function for } \dot{x}=A x
$$

Feedback stabilization for $\dot{x}=A x+B u$.
Model reduction based on balancing and truncation
Block-diagonalization of matrices \rightsquigarrow decoupling techniques for ordinary and partial differential equations

Image restoration and registration
Linear vibration analysis and damper optimization

Model Reduction

- Given linear (control) system

$$
\dot{x}(t)=A x(t)+B u(t), \quad y(t)=C x(t), \quad x(t) \in \mathbb{R}^{n}
$$

with A stable $\left(\sigma(A) \subset \mathbb{C}^{-}\right)$, find reduced-order model

$$
\dot{\tilde{x}}(t)=\tilde{A} \tilde{x}(t)+\tilde{B} u(t), \quad \tilde{y}(t)=\tilde{C} \tilde{x}(t), \quad \tilde{x}(t) \in \mathbb{R}^{\ell}
$$

of degree $\ell \ll n$ such that $\|y-\tilde{y}\|$ "small".

- Balanced truncation: compute

$$
(\tilde{A}, \tilde{B}, \tilde{C})=(Z A T, Z B, C T)
$$

where $Z:=\Sigma_{1}^{-1 / 2} V_{1}^{T} R, T:=S^{T} U_{1} \Sigma_{1}^{-1 / 2}$ are defined via the SVD

$$
S R^{T}=\left[U_{1} U_{2}\right]\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T} \\
V_{2}^{T}
\end{array}\right]
$$

and S, R satisfy the controllability and observability Lyapunov equations

$$
A S^{T} S+S^{T} S A^{T}+B B^{T}=0, \quad A^{T} R^{T} R+R^{T} R A+C^{T} C=0
$$

Direct Methods

Bartels-Stewart method for Sylvester and Lyapunov equation; Hessenberg-Schur method for Sylvester equations;
Hammarling's method for stable Lyapunov equations $A X+X A^{T}+G G^{T}=0$.
All based on the fact that if A, B^{T} are in Schur form, then

$$
M=\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right)
$$

is block-upper triangular. Hence, $M x=b$ can be solved by back-substitution.

- Clever (recursive) implementation of back-substitution process requires $n m(n+m)$ flops.
- For Sylvester equations, B in Hessenberg form is enough (\rightsquigarrow Hessenberg-Schur method).
- Hammarling's method modifies recursive process to compute Cholesky factor Y of X directly.
- All methods require Schur decomposition of A and Schur or Hessenberg decomposition of B \Rightarrow need QR algorithm which requires $25 n^{3}$ flops for Schur decomposition.

$$
\text { Not feasible for large-scale problems }(n>1000) \text {. }
$$

The Sign Function Method
 [Roberts '71]

For $Z \in \mathbb{R}^{n \times n}$ with $\sigma(Z) \cap \imath \mathbb{R}=\emptyset$ and Jordan canonical form

$$
Z=S^{-1}\left[\begin{array}{cc}
J^{+} & 0 \\
0 & J^{-}
\end{array}\right] S \quad \Longrightarrow \quad \operatorname{sign}(Z):=S\left[\begin{array}{cc}
I_{k} & 0 \\
0 & -I_{n-k}
\end{array}\right] S^{-1}
$$

($J^{ \pm}=$Jordan blocks corresponding to $\sigma(Z) \cap \mathbb{C}^{ \pm}$)
$\operatorname{sign}(Z)$ is root of $I_{n} \Longrightarrow$ use Newton's method to compute it:

$$
Z_{0} \leftarrow Z, \quad Z_{j+1} \leftarrow \frac{1}{2}\left(c_{j} Z_{j}+\frac{1}{c_{j}} Z_{j}^{-1}\right), \quad j=1,2, \ldots
$$

$\Longrightarrow \quad \operatorname{sign}(Z)=\lim _{j \rightarrow \infty} Z_{j}$.
($c_{j}>0$ is scaling parameter for convergence acceleration and rounding error minimization.)

Solving Sylvester Equations with the Sign Function Method

Consider Lyapunov equation $A X+X B+W=0, A, B$ stable.
As

$$
\operatorname{sign}\left(S^{-1} Z S\right)=S^{-1} \operatorname{sign}(Z) S
$$

and

$$
\left[\begin{array}{cc}
I_{n} & 0 \\
X & I_{m}
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
W & -B
\end{array}\right]\left[\begin{array}{cc}
I_{n} & 0 \\
-X & I_{m}
\end{array}\right]=\left[\begin{array}{cc}
A & 0 \\
0 & -B
\end{array}\right]
$$

it follows that

$$
\operatorname{sign}\left(\left[\begin{array}{cc}
A & 0 \\
W & -B
\end{array}\right]\right)=\left[\begin{array}{cc}
-I_{n} & 0 \\
2 X & I_{m}
\end{array}\right]
$$

Solution of Sylvester (Lyapunov) equation can be read off $\operatorname{sign}\left(\left[\begin{array}{cc}A & 0 \\ W & -B\end{array}\right]\right)$.

The Sign Function Method for Sylvester Equations

Apply sign function Newton iteration $Z_{j+1} \leftarrow\left(Z_{j}+Z_{j}^{-1}\right) / 2$ to $Z=\left[\begin{array}{cc}A & 0 \\ W & -B\end{array}\right]$.

$$
\Longrightarrow \quad \operatorname{sign}(Z)=\lim _{j \rightarrow \infty} Z_{j}=\left[\begin{array}{cc}
-I_{n} & 0 \\
2 X_{*} & I_{n}
\end{array}\right] .
$$

Newton iteration (with scaling) is equivalent to

$$
\begin{aligned}
\begin{array}{l}
A_{0} \\
\text { for } j=0,1,2, \ldots \\
j
\end{array} & \leftarrow B, \quad W_{0} \leftarrow W \\
A_{j+1} & \leftarrow \frac{1}{2 c_{j}}\left(A_{j}+c_{j}^{2} A_{j}^{-1}\right), \\
B_{j+1} & \leftarrow \frac{1}{2 c_{j}}\left(B_{j}+c_{j}^{2} B_{j}^{-1}\right), \\
W_{j+1} & \leftarrow \frac{1}{2 c_{j}}\left(W_{j}+c_{j}^{2} A_{j}^{-1} W_{j} B_{j}^{-1}\right) .
\end{aligned}
$$

$$
\Longrightarrow \quad X_{*}=\frac{1}{2} \lim _{j \rightarrow \infty} W_{j}
$$

Requires explicit inverses \Rightarrow not feasible for large-scale problems $(n>1000)$.

Comparison

Compare

- Bartels-Stewart method as implemented in the Matlab Control Toolbox function lyap,
- Hessenberg-Schur method as implemented in the SLICOT-based Matlab function slsylv
- sign function method
for random Sylvester equations.

Low-Rank Approximation

Consider the stable Lyapunov equation

$$
A^{T} X+X A+C^{T} C=0, \quad A \text { stable, } C \in \mathbb{R}^{p \times n}
$$

- \exists unique solution $X \geq 0 \Longrightarrow X=Y^{T} Y$ for $Y \in \mathbb{R}^{n_{Y} \times n}, n_{Y} \leq n$.
- In almost all applications, $p \ll n$.
- Often, X has low (numerical) rank.

Example:

- "random" matrix A,
- stability margin ≈ 0.055,
- $n=500, m=10$,
- numerical rank $=31$.

Computation of Y

Standard approach:
$Y=[\bigvee] \in \mathbb{R}^{n \times n}$, Cholesky factor of $X, n_{Y}=n$.
Can be computed by Hammarling's method.

Approach here:

$Y \in \mathbb{R}^{\operatorname{rank}(X) \times n}$, full rank factor of $X, n_{Y} \ll n$.
Advantages:

- more reliable if Cholesky factor is numerically singular;
- more efficient if $\operatorname{rank}(X) \ll n$ (in particular for subsequent computations as in balanced truncation model reduction);

Sign Function Method Again

Want factor Y of solution of $A^{T} X+X A+C^{T} C=0$.
For $W_{0}=C_{0}^{T} C_{0}:=C^{T} C, C \in \mathbb{R}^{p \times n}$ obtain

$$
W_{j+1}=\frac{1}{2 c_{j}}\left(W_{j}+c_{j}^{2} A_{j}^{-T} W_{j} A_{j}^{-1}\right)=\frac{1}{2 c_{j}}\left[\begin{array}{c}
C_{j} \\
c_{j} C_{j} A_{j}^{-1}
\end{array}\right]^{T}\left[\begin{array}{c}
C_{j} \\
c_{j} C_{j} A_{j}^{-1}
\end{array}\right]
$$

\Longrightarrow re-write W_{j}-iteration:

$$
C_{0}:=C, \quad C_{j+1}:=\frac{1}{\sqrt{2 c_{j}}}\left[\begin{array}{c}
C_{j} \\
c_{j} C_{j} A_{j}^{-1}
\end{array}\right] .
$$

Problem: $C_{j} \in \mathbb{R}^{p_{j} \times n} \quad \Longrightarrow \quad C_{j+1} \in \mathbb{R}^{2 p_{j} \times n}$, i.e., the necessary workspace doubles in each iteration.

Two approaches in order to limit work space...

Compute Cholesky factor Y_{c} of X

Require $p_{j} \leq n$: for $j>\log _{2}(n / p)$ compute QR factorization

$$
\frac{1}{\sqrt{2 c_{j}}}\left[\begin{array}{c}
C_{j} \\
c_{j} C_{j} A_{j}^{-1}
\end{array}\right]=U_{j}\left[\begin{array}{c}
\hat{C}_{j} \\
0
\end{array}\right], \quad \hat{C}_{j}=[\nabla] \in \mathbb{R}^{n \times n} .
$$

$\Longrightarrow W_{j}=\hat{C}_{j}^{T} \hat{C}_{j}, \quad Y_{c}=\frac{1}{\sqrt{2}} \lim _{j \rightarrow \infty} \hat{C}_{j}$
Compute full-rank factor Y_{f} of X
In every step compute rank-revealing QR factorization:

$$
\frac{1}{\sqrt{2 c_{j}}}\left[\begin{array}{c}
C_{j} \\
c_{j} C_{j} A_{j}^{-1}
\end{array}\right]=U_{j+1}\left[\begin{array}{cc}
R_{j+1} & T_{j+1} \\
0 & S_{j+1}
\end{array}\right] \Pi_{j+1}
$$

where $R_{j+1} \in \mathbb{R}^{p_{j+1} \times p_{j+1}}, p_{j+1}=\operatorname{rank}\left(\left[\begin{array}{c}C_{j} \\ c_{j} C_{j} A_{j}^{-1}\end{array}\right]\right)$. Then

$$
C_{j+1}:=\left[R_{j+1} T_{j+1}\right] \Pi_{j+1}, \quad W_{j+1}=C_{j+1}^{T} C_{j+1}, \quad Y_{f}=\frac{1}{\sqrt{2}} \lim _{j \rightarrow \infty} C_{j}
$$

Parallelization

- Newton iteration for sign function easy to parallelize - need basic linear algebra (systems of linear equations, matrix inverse, matrix addition, matrix product).
- Use MPI, BLACS for communication, PBLAS and ScaLAPACK for numerical linear algebra \longrightarrow portable code.
- Development of software library PLiC.
- Testing on PC Cluster (Linux) with 32 Intel Xeon-2.4GHz processors with
- workspace/processor: 1 GByte,
- Myrinet Switch, bandwidth $\approx 1.4 \mathrm{Gbit} / \mathrm{sec}$, shows good efficiency and high scalability.

Factorized Solution of Sylvester Equations

Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}$ stable, $F \in \mathbb{R}^{n \times p}, G \in \mathbb{R}^{p \times m}$ and consider

$$
A X+X B+F G=0
$$

Idea: often, $\operatorname{rank}(X) \ll \min \{n, m\}$ or $X \approx \tilde{X}$ with $\operatorname{rank}(\tilde{X}) \ll n$.
$\operatorname{rank}(X)=r \Longrightarrow \exists Y, Z^{T} \in \mathbb{R}^{n \times r}$ with $X=Y Z$ (full-rank factorization, FRF).
Computing FRF with standard methods,

- Bartels-Stewart method
- Hessenberg-Schur method
would require to compute $X \in \mathbb{R}^{n \times m}$ and then use SVD or SVD-like factorization.
Here: compute FRF directly from F, G using sign function iteration.

Computing Full-Rank Factors of Solution

\Longrightarrow re-write (unscaled) W_{j} iteration converging to $2 X_{*}$ as

$$
F_{j+1} G_{j+1}=W_{j+1} \leftarrow \frac{1}{2}\left(W_{j}+A_{j}^{-1} W_{j} B_{j}^{-1}\right)=\frac{1}{2}\left(F_{j} G_{j}+\left(A_{j}^{-1} F_{j}\right)\left(G_{j} B_{j}^{-1}\right)\right)
$$

yielding

$$
\begin{aligned}
F_{0} & :=F, \quad F_{j+1}=\frac{1}{\sqrt{2}}\left[F_{j}, A_{j}^{-1} F_{j}\right] \\
G_{0} & :=G, \quad G_{j+1}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
G_{j} \\
G_{j} B_{j}^{-1}
\end{array}\right] .
\end{aligned}
$$

Again: $F_{j} \in \mathbb{R}^{n \times p_{j}} \Longrightarrow F_{j+1} \in \mathbb{R}^{n \times 2 p_{j}}$, i.e., workspace doubles per iteration.
In order to limit workspace during iteration, compute full-rank factorization in each iteration step directly from F_{j+1}, G_{j+1}.

Keeping the Rank Small

ALGORITHM

1. Compute rank-revealing QR factorization (RRQR) $\left[\begin{array}{c}G_{j} \\ G_{j} B_{j}^{-1}\end{array}\right]=: U\left[\begin{array}{c}R_{1} \\ 0\end{array}\right] \Pi_{G}$, with U orthogonal, Π_{G} a permutation matrix, $R_{1} \in \mathbb{R}^{r \times m}$ upper triangular of full row-rank.
2. Compute RRQR $\left[F_{j}, A_{j}^{-1} F_{j}\right] U=V\left[\begin{array}{c}T_{1} \\ 0\end{array}\right] \Pi_{F}$,
with V orthogonal, Π_{F} a permutation matrix, $T_{1} \in \mathbb{R}^{t \times 2 p_{j}}$ upper triangular of full row-rank.
3. Partition $V=\left[V_{1}, V_{2}\right], V_{1} \in \mathbb{R}^{n \times t}$, and compute [$\left.T_{11}, T_{12}\right]:=T_{1} \Pi_{F}$, where $T_{11} \in \mathbb{R}^{t \times r}$.
4. Set $F_{j+1}:=V_{1} T_{11}, \quad G_{j+1}:=R_{1} \Pi_{G}$.

THEOREM

$W_{j+1}=F_{j+1} G_{j+1}, \quad Y_{*}:=\frac{1}{\sqrt{2}} \lim _{j \rightarrow \infty} F_{j} \quad$ and $\quad Z_{*}:=\frac{1}{\sqrt{2}} \lim _{j \rightarrow \infty} G_{j} \quad$ exist,
and $X_{*}=Y_{*} Z_{*}$ is FRF.

Numerical Example

- $n=50: 50: 2000, n=500: 500: 4000, m=1, \operatorname{sep}(A, B)=\frac{2}{n}$.
- Compare sign function based method and SLICOT-based implementation of the HessenbergSchur method.
- Use Matlab Release 14 on a Xeon 3GHz workstation with 8GB Ram.
- 8-14 iterations for sign function iteration.
- For $n=4000, Y, Z^{T} \in \mathbb{R}^{2000 \times 47}$, i.e., 1.4 MB instead of 122 MB storage required for solution.

Timings

Methods for Large, Sparse Lyapunov Equations

- Apply adapted splitting methods (Gauß-Seidel, SSOR, etc.)
- Apply adapted iterative solvers (GMRES, TFQMR, etc.)
- $X \approx V \tilde{X} V^{T}$ for solution \tilde{X} of projected Lyapunov equation

$$
\left(V^{T} A V\right) \tilde{X}+\tilde{X}\left(V^{T} A V\right)^{T}=V^{T} W V, \quad V \in \mathbb{R}^{n \times \ell}
$$

Can be computed via Krylov subspace methods.

None of these approaches is efficient in general.

Idea: try to compute low-rank approximation to X via (approximation to) full-rank factor Y.

ADI Method for Lyapunov Equations

- For $A \in \mathbb{R}^{n \times n}$ stable, $W \in \mathbb{R}^{n \times w}(w \ll n)$, consider Lyapunov equation

$$
A^{T} X+X A=-B B^{T}
$$

- ADI Iteration:
[Wachspress '88]

$$
\begin{aligned}
\left(A^{T}+p_{k} I\right) X_{(j-1) / 2} & =-B B^{T}-X_{k-1}\left(A-p_{k} I\right) \\
\left(A^{T}+\overline{p_{k}} I\right) X_{k}^{T} & =-B B^{T}-X_{(j-1) / 2}\left(A-\overline{p_{k}} I\right)
\end{aligned}
$$

with parameters $p_{k} \in \mathbb{C}^{-}$and $p_{k+1}=\overline{p_{k}}$ if $p_{k} \notin \mathbb{R}$.

- For $X_{0}=0$ and proper choice of $p_{k}: \lim _{k \rightarrow \infty} X_{k}=X$ superlinear.
- Re-formulation using $X_{k}=Y_{k} Y_{k}^{T}$ yields iteration for $Y_{k} \ldots$

Factored ADI Iteration

[Penzl '97, Li/Wang/White '99, B./Li/Penz]]
Set $X_{k}=Y_{k} Y_{k}^{T}$, some algebraic manipulations \Longrightarrow

$$
\begin{aligned}
& V_{1} \leftarrow \sqrt{-2 \operatorname{Re}\left(p_{1}\right)}\left(A^{T}+p_{1} I\right)^{-1} B, \quad Y_{1} \leftarrow V_{1} \\
& \text { FOR } j=2,3, \ldots \\
& \qquad V_{k} \leftarrow \sqrt{\frac{\operatorname{Re}\left(p_{k}\right)}{\operatorname{Re}\left(p_{k-1}\right)}}\left(I-\left(p_{k}+\overline{p_{k-1}}\right)\left(A^{T}+p_{k} I\right)^{-1}\right) V_{k-1}, \quad Y_{k} \leftarrow\left[\begin{array}{ll}
Y_{k-1} & V_{k}
\end{array}\right] \\
& \Downarrow \\
& Y_{k_{\max }}=\left[\begin{array}{lll}
V_{1} & \ldots & V_{k_{\max }}
\end{array}\right]
\end{aligned}
$$

where

$$
V_{k}=\rrbracket \in \mathbb{C}^{n \times w}
$$

and

$$
Y_{k_{\max }} Y_{k_{\max }}^{T} \approx X
$$

Note: Implementation in real arithmetic possible by combining two steps.

Low-rank ADI in Action

- Solve $A X+X A^{T}+B B^{T}=0$.
- Finite differences method for 2D heat equation with boundary control.
- $n=10,000, m=1$.
- Use LYAPACK implementation [Penzl '99].
- Need $k_{\text {max }}=57$ iterations, i.e., $Y_{k_{\max }} \in \mathbb{R}^{10,000 \times 57}$.

- ca. 25 sec . on Centrino 1.4 GHz notebook

Smith Iteration

For Stein equations

$$
\begin{equation*}
F X F^{H}-X=G \tag{1}
\end{equation*}
$$

with $\|F\|<1$, the fix point iteration

$$
X_{k+1}=F X_{k} F^{H}-G, \quad k=0,1, \ldots \quad\left(X_{0}=0\right)
$$

converges to the unique solution X_{*}.
Smith iteration for Lyapunov equations: if X_{*} is a solution of

$$
A X+X A^{T}=W
$$

then it is a solution of (1) with

$$
F=\left(I_{n}+\mu A\right)^{-1}\left(I_{n}-\bar{\mu} A\right), \quad G=2(\mu+\bar{\mu})\left(I_{n}+\mu A\right)^{-1} W\left(I_{n}+\mu A\right)^{-H}
$$

Choosing μ such that $\sigma(F) \subset\{|z|<1\}$, we can compute X_{*} as the limit of

$$
X_{k+1}=\left(I_{n}+\mu A\right)^{-1}\left(\left(I_{n}-\bar{\mu} A\right) X_{k}\left(I_{n}-\mu A\right)^{H}+2(\mu+\bar{\mu}) W\right)\left(I_{n}+\mu A\right)^{-H}
$$

Details and Extensions

- If A is stable, any $\mu \in \mathbb{C}^{-}$can be used.
\rightsquigarrow Select μ in order to optimize convergence rate $\left(\rho(F)^{2}\right)$.
For $\sigma(A) \subset \mathbb{R}^{-}, \mu=-\sqrt{\lambda_{\max } \lambda_{\min }}$ is optimal. [Varga '62, Rosen/Wang '95]
- Convergence can be accelerated by changing the shift μ in each iteration; in order to limit work needed for factorizations, use finite number ℓ of different shifts and apply them cyclically, store and re-use the ℓ different factorizations if workspace permits.
\rightsquigarrow (cyclic) Smith (ℓ) method.
[Penzl '00].
- Low-rank version possible if $W=B B^{T}$, mathematically equivalent to low rank ADI with parameters applied cyclically.
[Penzl '00].
Number of columns in $Y_{k}\left(X_{k}=Y_{k} Y_{k}^{H}\right)$ can be reduced by column compression technique.
[Antoulas/Sorensen/Gugercin '03].

\mathcal{H}-Matrix Implementation of the Sign Function Method

Recall: solution of the Lyapunov equation

$$
A X+X A^{T}+W=0
$$

with the sign function method:

$$
\begin{aligned}
A_{0} & =A, \quad W_{0}=B B^{T} \\
A_{j+1} & =\frac{1}{2}\left(A_{j}+A_{j}^{-1}\right) \\
W_{j+1} & =\frac{1}{2}\left(W_{j}+A_{j}^{-T} W_{j} A_{j}^{-1}\right)
\end{aligned}
$$

involves the inversion, addition and multiplication of $n \times n$ matrices \hookrightarrow complexity: $\mathcal{O}\left(n^{3}\right)$
Approximation of A in \mathcal{H}-matrix format, use of the formatted \mathcal{H}-matrix arithmetic \hookrightarrow complexity: $\mathcal{O}\left(n \log ^{2} n\right)$.

Hierarchical Matrices: Short Introduction

Hierarchical $(\mathcal{H}-)$ matrices are a data-sparse approximation of large, dense matrices arising

- from the discretization of non-local integral operators occurring in BEM,
- as inverses of FEM discretized elliptic differential operators,
but can also be used to represent FEM matrices directly.

Properties of \mathcal{H}-matrices:

- only few data are needed for the representation of the matrix,
- matrix-vector multiplication can be performed in almost linear complexity $(\mathcal{O}(n \log n))$,
- building sums, products, inverses is of "almost" linear complexity.

Hierarchical Matrices: Construction

Consider matrices over a product index set $I \times I$.
Partition $I \times I$ by the \mathcal{H}-tree $T_{I \times I}$, where a problem dependent admissibility condition is used to decide whether a block $t \times s \subset I \times I$ allows for a low rank approximation.

Definition: Hierarchical matrices (\mathcal{H}-matrices)
The set of the hierarchical matrices is defined by
$\mathcal{H}\left(T_{I \times I}, k\right):=\left\{M \in \mathbb{R}^{I \times I} \mid \operatorname{rank}\left(\left.M\right|_{t \times s}\right) \leq k \forall\right.$ admissible leaves $t \times s$ of $\left.T_{I \times I}\right\}$

Submatrices of $M \in \mathcal{H}\left(T_{I \times I}, k\right)$ corresponding to inadmissible leaves are stored as dense blocks whereas those corresponding to admissible leaves are stored in factorized form as rank- k matrices, called R_{k}-format.

Example

Stiffness matrix of 2D heat equation with distributed control and isolation BC

$$
n=1024 \text { and } k=4
$$

Hierarchical Matrices: Formatted Arithmetic

$\mathcal{H}\left(T_{I \times I}, k\right)$ is not a linear subspace of $\mathbb{R}^{I \times I} \rightsquigarrow$ formatted arithmetics \rightsquigarrow projection of the sum, product and inverse into $\mathcal{H}\left(T_{I \times I}, k\right)$

1. Formatted Addition (\oplus)
with complexity $\mathcal{N}_{\mathcal{H} \oplus \mathcal{H}}=\mathcal{O}\left(n k^{2} \log n\right)$) (for sparse $\left.T_{I \times I}\right)$
Corresponds to best approximation (in the Frobenius-norm).
2. Formatted Multiplication (\odot)
$\mathcal{N}_{\mathcal{H} \odot \mathcal{H}}=\mathcal{O}\left(n k^{2} \log ^{2} n\right)$ (under some technical assumptions on $\left.T_{I \times I}\right)$
3. Formatted inversion $(\widetilde{\operatorname{Inv}})$
$\mathcal{N}_{\mathcal{H}, \overparen{I n v}}=\mathcal{O}\left(n k^{2} \log ^{2} n\right)$ (under some technical assumptions on $\left.T_{I \times I}\right)$

\mathcal{H}-Matrix Sign Function Method

Sign function iteration with formatted \mathcal{H}-matrix arithmetic:

$$
\tilde{A}_{0}=(A)_{\mathcal{H}}, \quad \tilde{A}_{j+1}=\frac{1}{2}\left(\tilde{A}_{j} \oplus \widetilde{\operatorname{Inv}}\left(A_{j}\right)\right)
$$

Accuracy control for iterates $\left.\rightsquigarrow k=\mathcal{O}\left(\log \frac{1}{\delta}+\log \frac{1}{\rho}\right)\right)$, where

$$
\begin{aligned}
\left\|\left(\tilde{A}_{j}^{-1}-\widetilde{\operatorname{Inv}}\left(\tilde{A}_{j}\right)\right)\right\|_{2} & \leq \delta \\
\left\|\left(\tilde{A}_{j}^{-1}+\widetilde{\operatorname{Inv}}\left(\tilde{A}_{j}\right)\right)-\left(\tilde{A}_{j}^{-1} \oplus \widetilde{\operatorname{Inv}}\left(\tilde{A}_{j}\right)\right)\right\|_{2} & \leq \rho
\end{aligned}
$$

\Longrightarrow forward error bound (assuming $c_{j}(\delta+\rho)\left\|A_{j}^{-1}\right\|_{2}<1 \forall j$):

$$
\left\|\tilde{A}_{j}-A_{j}\right\|_{2} \leq c_{j}(\delta+\rho)
$$

where

$$
c_{0}=\left\|\tilde{A}_{0}-A\right\|_{2}(\delta+\rho)^{-1}, \quad c_{j+1}=\frac{1}{2}\left(1+c_{j}+c_{j} \frac{\left\|A_{j}^{-1}\right\|_{2}^{2}}{1-c_{j}(\delta+\rho)\left\|A_{j}^{-1}\right\|_{2}}\right) .
$$

Numerical Performance

- Solve $A X+X A^{T}+B B^{T}=0$.
- FEM discretization of 2D heat equation with boundary control.
- Accuracy and rank of computed factor

n	r	$\frac{\left\\|A X+X A^{T}+B B^{T}\right\\|_{2}}{2\\|A\\|_{2}\\|X\\|_{2}+\left\\|B B^{T}\right\\|_{2}}$
256	11	$8.4 \cdot 10^{-8}$
1024	13	$4.4 \cdot 10^{-6}$
4096	14	$5.3 \cdot 10^{-6}$
16384	15	$4.8 \cdot 10^{-6}$

- For $n=262,144$ (that is, 34 billion unknowns in X) we get $r=21$ $\Rightarrow 5 \mathrm{MB}$ for solution instead of 64 GB !

results by U. Baur

Conclusions

- Large-scale dense problems can be efficiently solved using parallel implementation of the sign function method.
- Large-scale dense, but data-sparse problems can be efficiently solved using \mathcal{H}-matrix implementation of the sign function method.
- The most promising methods for large-scale sparse problems are low-rank Smith and ADI methods; selection of acceleration shifts remains a tricky issue.
- Krylov subspace methods and splitting methods are not competitive in general.
- To-Do:
- \mathcal{H}-matrix sign function for Sylvester equations
- Low-rank ADI method for Sylvester equations
- Low-rank Smith method for Sylvester equations

