
Jan S Hesthaven	


EPFL-SB-MATHICSE-MCSS	


jan.Hesthaven@epfl.ch	



Battling bottlenecks:  
Overcoming the computational complexity of 
reduced basis methods for high-d parameter spaces

MODRED 2013, MPI Madgeburg

w/ B. Stamm (Paris VI), S. Zhang (CUHK)

Funded by AFOSR/OSD

mailto:jan.Hesthaven@epfl.ch


Problems of interest

We focus on problems with special  
characteristics	



✓ Real-time or near real time need	



✓ Many query problems	



✓ In situ needs/deployed system

We consider the need to model physical systems of the form	



!

!

where the solutions are implicitly parameterized by

L(x, µ)u(x, µ) = f(x, µ)

u(x, µ) = g(x, µ)

x � �
x � ��

µ ⇥ D � RM



Model reduction
What we need is an accurate way to evaluate the 
solution at new parameter values at reduced 
complexity.

The Reduced Basis Method
Goal

Fast input-output procedure:

input: parameter value µ � D

output: sh(µ) = l(uh(µ);µ)

Lh(uh(µ);µ) = 0
P

D
E

so
lv

er



Let us define:	



The exact solution: Find              such that 

The truth solution: Find                    such that 	



RBM 101

u(µ) � X

a(u, µ, v) = f(µ, v), �v � X

ah(uh, µ, vh) = fh(µ, vh), �vh � Xh

uh(µ) � Xh

dim(Xh) = N

The RB solution: Find                    such that 	


dim(XN ) = N

uRB(µ) � XN

N � N

ah(uRB , µ, vN ) = fh(µ, vN ),�vN � XN

We always assume that 



RBM 101
Solving for the truth is expensive - but we need to 
be able to trust the RB solution

�u(µ)� uRB(µ)� � �u(µ)� uh(µ)�+ �uh(µ)� uRB(µ)�

We assume that

�u(µ)� uh(µ)� � �

This is your favorite solver and it is assumed it can  
be as accurate as you desire - the truth

So if we can bound   we achieve two things 

✓ Certify the accuracy of the reduced basis method	


✓ Use this estimate to build the basis



RBM 101
Let us define the residual in the dual norm

RN (µ, v) := f(v, µ)� a(uRB , µ, v), �v � X

�(µ) := inf
v�X

sup
w�X

|a(v, µ, w)|
�v�X�w�X

�N (µ) := sup
v�X

|RN (µ, v)|
�v�X

�N (µ) :=
⇥N (µ)
�LB(µ)

0 < �LB(µ) � �(µ), ⇤µ ⇥ D

and require stability as

then the error is obtained as



RBM 101
Defining the effectivity 

�N (µ) :=
�N (µ)

�uh � uRB�X

One proves

1 � �N (µ), ⇤µ ⇥ D

So if the basis is known, we can estimate the error 
when using the reduced model

... but we have still to construct the reduced basis



RBM 101
We use the error estimator to construct the 
reduced basis in a greedy approach.

1. Define a (fine)training set in parameter space	


2. Choose a member randomly and solve truth.	


3. Define	



a.  Find	


b.  Compute	


c.  Orthonormalize wrt	


d.  Add new solution basis	



4. Continue until  

uRB = uh(µ1)

�train

uh(µi+1)
uRB

Resulting in uRM (µ) =
N�

i=1

ui
N (µ)�i
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Figure 11. Accuracy of the Reduced Basis Method for test case
i) (left) and ii) (right) for different values of the wave number k.
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Figure 12. Accuracy of the Reduced Basis Method for test case
iii) (left) and iv) (right) and comparison to the optimal accuracy
given by the singular values.

For scatterers with volumes we are aware of the fact that spurious modes may
interfere since we are using the EFIE. However, excluding them from the training
sample Ξ avoids that the algorithm is at any point not well posed. We justify the use
of the EFIE by the sake of its simplicity in the beginning of this project. However,
there is no reason why the combination of the Reduced Basis Method combined
with any other standard solver for the parametrized scattering problem should not
work. In particular, we will work on the Combined Field Integral Equation (CFIE)
in near future.

µi+1 = arg sup
µ��train

�N (µ)

sup
µ��train

�N � �



RBM 101
Speed relies on the affine assumption

a(u, µ, v) =
Qa�

k=1

�k(µ)ak(u, v)

This pushes majority of work off-line, e.g.

N�

i=1

�
Qa�

k=1

�k(µ)ak(�i, �j)

�
uj

N (µ) =
Qf�

k=1

�f
k(µ)fk(�j), j � [1, . . . , N ]

f(µ, v) =
Qf�

k=1

�f
k(µ)fk(v)

All operations are now independent of 
and depends solely on N and Q	



N

Also possible for error estimator



One example - 2D Pacman problem

Scattering by 2D PEC Pacman	


!
Backscatter depends very sensitively on 
cutout angle and frequency.
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Fig. 1.1. Radar cross sections for the Pacman with wave number 10 π. Three cases with different wedge angles are
plotted.

1. TM Case.

1

TM polarization

Difference in scattering is clear in fields



2D Pacman problem

3.4. The Resulting Reduced Basis Method. We are now ready to apply reduced basis method
to this problem. Here, we set the parameter domain for θW to be [8.5, 28.5].

See Figure 3.5 for the 29 parameter instances the reduced basis method picks. Note that the first
point, 18.5 is hand-picked to start the greedy algorithm.
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Fig. 3.5. The 29 θW ’s the greedy algorithm of the RBM picks to build the RB space. Top: the higher the vertical
line, the earlier that point was picked. Bottom: the points scattered on the monostatic scattering curve (θi = θr = 0), the
larger the marker, the earlier it is selected.

We plot, in Figure 3.6, the history of convergence of the RB solutions for the worst of the 120
randomly selected parameter values. Exponential convergence is clearly observed. Moreover, the error
estimate decreases exponentially. Thus, the effectivity index is roughly constant comparing with the
many magnitudes of decrease in the RBM error. With only 20 bases, we can obtain an accuracy at the
level of 10−5. Using the underlying mesh of our numerical experiment, instead of solving systems of
dimension above 200, 000× 200, 000, we only need to solve ones of dimension 60 × 60.

We also plot the monostatic scattering as a function of the wedge angle, see Figure 3.7 for the curve
computed by the truth approximations.

If we use the reduced basis approximations with merely 11 bases, we can obtain a curve that is
“roughly identical” to naked eyes. See Figure 3.8.

See the two .avi files for movies of the electric field and RCS plots. They contain 129 RBM evaluations
(20 bases) with the corresponding parameter values uniformly distributed on the parameter domain.

Next, we will study the nonlinearity of this problem in the bilinear form and linear forms (both the
right hand side f(·) and the output functional ℓ(·)). Once an appropriate magic point interpolation is
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Fig. 3.6. The worst case convergence history and the corresponding error estimate of the RBM for 120 randomly
selected parameter values.
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Fig. 3.7. The plot of the monostatic scattering (θi = θr = 0) respect to the wedge angle θW .
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Fig. 3.8. Using only 11 bases, we can obtain a very accurate plot of the monostatic scattering (θi = θr = 0) respect
to the wedge angle θW .

10

Greedy approach selects 
critical angles early in the 
selection process

Convergence of output with  
O(10) basis elements

Output of interest - backscatter



2D Pacman problemwith just 17 bases is already very trustworthy.
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Fig. 3.9. Error bounds of the RB output, RCS(10π, θW , 0, 0), for three different number of bases.

Next, we assume there is a normally-distributed 5% error in the manufacturing of the wedge angle.
The goal is to find out how this will affect the monoscattering output by running a Monte Carlo simulation
with a 29-basis RB solver. The mean, and the one(two)-standard-deviation interval are plotted in Figure
3.10.
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Convergence of error bounds over 
full parameter range

Note: Linear scale, not db scale
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Fig. 3.6. The worst case convergence history and the corresponding error estimate of the RBM for 120 randomly
selected parameter values.
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Fig. 3.7. The plot of the monostatic scattering (θi = θr = 0) respect to the wedge angle θW .
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Fig. 3.8. Using only 11 bases, we can obtain a very accurate plot of the monostatic scattering (θi = θr = 0) respect
to the wedge angle θW .

10

Exponential convergence of 
predicted error estimator and  
real error over large training set



2D Pacman prototype for UQ

Fast evaluation over parameter space allows for rapid 
uncertainty quantification

THE PACMAN SCATTERING PROBLEM

1. Problem description. We consider the scattering of TM-polarized electromagnetic waves by
a perfectly conducting 2D cylinder with a cut-out wedge. The basic problem is illustrated in Figure 1.1.
θW denotes the angle of the wedge, θi direction of the incidence wave, and θr the observation angle.
The integrating contour for the RCS is the red circle just outside of the scatterer. Curvilinear PML is
applied sufficiently far away.

θ i

θ r

θw

P

M

L

P

M

L

Fig. 1.1. The configuration of the pacman scattering problem.
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Fig. 3.10. Results of a Monte Carlo simulation with a 5% error in θW that is normally distributed. Plotted are
10log10 value of the mean of RCS(10π, θW , 0, 0), that of “mean of RCS(10π, θW , 0, 0) ± i standard deviation”. i = 1 for
the top and i = 2 for the bottom (cut below −40).

3.4.2. Others. See the two .avi files for movies of the electric field and RCS plots. They contain
129 RBM evaluations (20 bases) with the corresponding parameter values uniformly distributed on the
parameter domain.

Next, we will study the nonlinearity of this problem in the bilinear form and linear forms (both the
right hand side f(·) and the output functional ℓ(·)). Once an appropriate magic point interpolation is
incorporated, we will appreciate the tremendous speedup of the full reduced basis method with complete
offline-online decomposition.
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3.4.2. Others. See the two .avi files for movies of the electric field and RCS plots. They contain

129 RBM evaluations (20 bases) with the corresponding parameter values uniformly distributed on the

parameter domain.
Next, we will study the nonlinearity of this problem in the bilinear form and linear forms (both the

right hand side f(·) and the output functional ℓ(·)). Once an appropriate magic point interpolation is

incorporated, we will appreciate the tremendous speedup of the full reduced basis method with complete

offline-online decomposition.
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Uniformly distributed  
5% randomness in  
gap angle



Scattering example
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Figure 13. Speed-up for three different versions of the online pro-
cedure of the Reduced Basis Method with respect to the computing
time using the Boundary Element Method in function of the di-
mension of the Reduced basis. Test example iv) is considered.
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Figure 14. The time of the subtasks of the online procedure of
three different versions of the Reduced Basis Method for different
dimensions of the Reduced Basis. The time (measured in seconds)
corresponds to the average computing time of the RCS-signal for
a parameter value for the test example iv).

The use of a posteriori estimates is important in the greedy algorithm to assemble
the reduced basis. Therefore the quality of the estimate has a direct influence on
the approximation properties of the reduced basis. It is ongoing work to develop
mathematically rigorous efficient and reliable a posteriori estimates for the EFIE.
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More complex scatterer and parallelization

• 12620 complex double unknowns
• BEM matrix has 160 Mio complex double entries
• Used 160 processors with distributed memory for computations
• Solving linear system: Cyclic distribution by Scalapack: parallel LU-factorization
• Matrix-matrix, matrix-vector multiplication: Blockwise computations using blacs/blas
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Parametrized Electromagnetic Scattering
(time-harmonic ansatz)

Ei(x;µ) = �p eikx·ŝ(�,⇥)

where µ = (k, �,⇥,p) ⇥ D � R7 is a vector of parameters:
1) k: wave number
2) ŝ(�, ⇥): wave direction in spherical coordinates
3) p: polarization (is complex and lies in the plane perpendicular to ŝ(�, ⇥))

� = R3\�i

� = �⇥i

n

(perfect conductor)

�

�
�i�R3



Scattering example
Numerical results: test 1

Surface ! given by:

Convergence:

2 parameters, µ = (k, �) with D = [1, 25]� [0,⇥]
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Figure 11. Accuracy of the Reduced Basis Method for test case
i) (left) and ii) (right) for different values of the wave number k.
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Figure 12. Accuracy of the Reduced Basis Method for test case
iii) (left) and iv) (right) and comparison to the optimal accuracy
given by the singular values.

For scatterers with volumes we are aware of the fact that spurious modes may
interfere since we are using the EFIE. However, excluding them from the training
sample Ξ avoids that the algorithm is at any point not well posed. We justify the use
of the EFIE by the sake of its simplicity in the beginning of this project. However,
there is no reason why the combination of the Reduced Basis Method combined
with any other standard solver for the parametrized scattering problem should not
work. In particular, we will work on the Combined Field Integral Equation (CFIE)
in near future.

Numerical results for magic point elements

Surface ! given by:
f(x;µ) = eikŝ(�,⇥)·x, x ⇥ �,µ ⇥ D,
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Parametrized Electromagnetic Scattering
(time-harmonic ansatz)

Ei(x;µ) = �p eikx·ŝ(�,⇥)

where µ = (k, �,⇥,p) ⇥ D � R7 is a vector of parameters:
1) k: wave number
2) ŝ(�, ⇥): wave direction in spherical coordinates
3) p: polarization (is complex and lies in the plane perpendicular to ŝ(�, ⇥))
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Scattering example

Fig. 4.1. Coarse sphere. Fig. 4.2. Fine sphere. Fig. 4.3. Cavity.

first interior resonant wave number at k1 = 2.743. Figure 4.5 shows the convergence
for varying M = M

p

= M
↵

= 5, 10, 15, 20, 25, Figures 4.6 and 4.7 the convergence for
fixed M

p

= 15 resp. M
↵

= 15 and M
↵

= 5, 10, 15, 20, 25 resp. M
p

= 5, 10, 15, 20, 25.
We notice that for this example it is required that M

↵

> 10 for a proper convergence
and it seems that M

p

does not have a major influence, at least in this particular
example, on the convergence rate.
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Fig. 4.4. Profile of the inf-sup constant for

k 2 [1, 3].
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Fig. 4.5. Convergence behavior of the

SCM under variation of M = M↵ = Mp =
5, 10, 15, 20, 25.
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Fig. 4.6. Convergence behavior of the SCM

under variation of M↵ = 5, 10, 15, 20, 25 for a

fixed Mp = 15.
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Fig. 4.7. Convergence behavior of the SCM

under variation of Mp = 5, 10, 15, 20, 25 for a

fixed M↵ = 15.

Physically more interesting is to increase the interval of wave numbers under con-
sideration. We now consider k 2 [1, 5] which requires the use of a finer discretization
of the sphere, c.f. Figure 4.2, to guarantee 10 degrees of freedom per wavelength.

The parameters of the SCM are set to Tol = 0.1, M
↵

= M+ = 20 and Figure
4.8 shows the convergence of the SCM in this case. Figure 4.9 plots the lower and

16
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1

Fig. 4.11. Lower and upper bound (indistinguishable) of the inf-sup constant for k 2 [10, 20]
using the cavity (Figure 4.3) as geometry and Tol = 10�3

, M↵ = M+ = 20.

We first consider the problem associated with the sphere presented in Figure 4.2
and an interval of wave-numbers k 2 [4.52, 4.95]. As indicated in Figure 4.9 the EFIE
is not well-posed at the resonant wave-numbers and need to be excluded. Figure 4.12
shows the convergence of the maximal error (over the parameter space and measured in
the H(div,⌦)-norm) and the residual-based error estimation ⌘

N

, which, as described
in Proposition 3.1, is an upper bound of the error. The error profile during the last
iteration (N = 4) of the greedy-algorithm of the reduced basis method is illustrated
in Figure 4.13 as well as the chosen parameter values.
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Fig. 4.12. Maximal error and a posteriori error estimation over the parameter space at each

step of the greedy-algorithm during the Reduced Basis assembling process for a sphere as in Figure

4.2 with k 2 [4.52, 4.95].
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Fig. 4.13. Error profile over the parameter space at the last iteration of the greedy-algorithm

during the Reduced Basis assembling process for a sphere as in Figure 4.2 with k 2 [4.52, 4.95].

Further, we reconsider the example using the cavity (Figure 4.3) as geometry and
having parameters k 2 [10, 20] for

d̂ = �(sin(⇡/2), 0, cos(⇡/2)) and d̂0 = (sin(⇡/2), 0, cos(⇡/2)),
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Fig. 4.17. The radar cross section (RCS) for k 2 [10, 20] using the reduced basis approximation

and the boundary element method including error bars for N = 21 (top), N = 22 (middle) and

N = 23 (bottom).
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Bottlenecks

So where are the bottlenecks ?

In the offline stage - 

In the online stage - 

‣ Large number of terms in  
    the affine expansion	



!

‣ Large number of terms in basis	



a(u, µ, v) =
Qa�

k=1

�k(µ)ak(u, v)

Nd � N�d
1 , 0 < � � 1

‣ The cost of greedy approach by 
evaluating the train space 
     Also for SCM, EIM

µi+1 = arg sup
µ��train

�N (µ)



Non-affine problems

Let us consider the extension of these techniques to 
problems described by integral equations	


!
Electric field integral equation (EFIE)

REDUCED BASIS METHOD FOR THE ELECTRICAL FIELD
INTEGRAL EQUATION

Currently, we are developing, in collaboration with CERFACS (Toulouse, France),
the Reduced Basis Method for the parametrized Electrical Field Integral Equation
(EFIE), also known as the Rumsey principle. Let � be a surface on which an in-
cident plane wave is scattered obeying Maxwell’s equations. Let k be the wave
number and i the complex unity. Then, the problem consists of seeking j ⇤ V such
that

(1) ik

⇤

�⇥�
Gk(x,y)

�
j(x) · jt(y)� 1

k2 div�j(x)div�jt(y)
⇥
dxdy = F (jt)

for all jt ⇤ V and where V is some appropriate functional space. F is some linear
and continuous functional and Gk denotes the kernel function of the Helmholtz
operator and is given by

Gk(x,y) :=
eik|x�y|

|x� y| .

This problem can be discretised using the Raviart-Thomas finite element space and
is also known as the Boundary Element Method (BEM). Well-posedness of the con-
tinuous problem and a priori estimates have been established in [1, 2, 3, 4, 5]. The
reduced basis method is then further applied as a algorithmic cooperation rather
than a algorithmic competition to solve parametrised problems. The reduced basis
method is a numerical method for the approximation of partial di⇥erential equa-
tions which contain one or several parameters. Existing applications include Stokes
and Navier–Stokes equations with variable Reynolds number, heat-flux problems
with variable conductivity, problems set on regions with variable parametrized ge-
ometrical shapes, etc. A recent and thorough review can be found in [6].

Assuming that the EFIE is parametrized by the wave number, angle of inci-
dent wave or the geometry of the scattered body and that the solution has to be
computed for many di⇥erent values of the parameters (e.g. for an optimization
procedure). Blindly applying the BEM many times is computationally expensive
and unnecessary since the solution is smoothly depending on small changes of the
parameter values. In other words, the underlying solution lies on a low dimen-
sional manifold. The reduced basis method consist of choosing a few significant
parameter values and taking the corresponding solution of the BEM as (reduced
basis) basis. For a general value of the parameter, the solution is then obtained
using a Galerkin projection (which somehow can be interpreted as an interpolation
between the ”closest” basis functions). Once the (reduced basis) basis is build,
computing the approximation of a new parameter value is inexpensive due to low
dimensionality of the spanned manifold by the basis functions. Exponential conver-
gence of the di⇥erence between the ”interpolation” and the ”truth approximation”
(which consists of the BEM approximation with the exact parameter value) can
be achieved with respect to the number of di⇥erent parameter values spanning the
(reduced basis) basis. Consider a cavity problem. The modulus of the phase of a
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Truth approximation is a 	


standard MoM solver.	


!
CERFACS



Empirical Interpolation

Basic example

Efficiency: affine parameter dependence
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f(x;µ) = x�µ

f(x;µ) �
3�

m=1

�m(µ)x�µm

[Grepl et al.  2007], [Maday et al. 2007]

Let f : � � D ⇥ C such that f( · ;µ) ⇤ C0(�) for all µ ⇤ D. The EIM is a
procedure that provides {µm}M

m=1 such that

IM (f)(x;µ) =
M�

m=1

�m(µ)f(x;µm)

is a good approximation of f(x;µ) for all (x,µ) ⇤ � � D. Uses also a greedy
algorithm to pick the parameters {µm}M

m=1.

EFIE operators

Efficiency: affine parameter dependence

Examples:
1) Non-singular part of kernel function:

Gns
k (r) = Gns(r; k) =

eikr � 1
r

, r ⇥ R+, k ⇥ R+

2) Incident plane wave:
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EIM example
Basic test case

Empirical Interpolation Method 
Numerical results
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Numerical results

0 20 40 60 80 100

k

1 ! k ! 25

1 ! k ! 50

1 ! k ! 100

0 10 20 30 40

M

1x10
-14

1x10
-13

1x10
-12

1x10
-11

1x10
-10

1x10
-9

1x10
-8

1x10
-7

1x10
-6

0.00001

0.0001

0.001

0.01

0.1

1

re
la

ti
v
e
 e

rr
o
r

1 ! k ! 25

1 ! k ! 50

1 ! k ! 100

Picked parameters km in the parameter domain
Interpolation error depending on the 

length of the expansion

f(x; k) =
eikx � 1

x
, x ⇥ (0, Rmax], k ⇥ [1, kmax]

NOTE - Length of expansion 
directly impacts online cost

f(x, µ) =
M�

m=1

�m(µ)f(x, µm)

We recall that the wave direction k̂ is parametrized by the spherical coordinates (h,u) 2 [0,p] ! [0,2p). For the previous
three test cases, we use a cavity as illustrated in Fig. 3 as surface C. It is an open box of length 1 ! 0.25 ! 0.25 m3 centered at
the origin and open towards the positive x-axis.

In the convergence plots we use the following relative L1-norm over X!D:

kf " IMðf ÞkL1ðX!DÞ

kfkL1ðX!DÞ
:

Fig. 4 shows both the error behavior depending on M and the parameter range for three different values of kmax for the test
case (i). Note that the number of basis functions needed to achieve some given tolerance increases linearly with kmax. As is
expected the distribution of the parameter value resembles, at least visually, the usual interpolation point-sets and, up to a
linear stretch, seems to be similar for all values of kmax.

In Fig. 5, we present the same plots as above but for test case (ii) and varying fixed wave numbers k. Again, observe the
linear increase, with respect to k, of the recovered basis functions to achieve a certain tolerance and a similar parameter dis-
tribution for different wave numbers.

Figs. 6 and 7 illustrate the error behavior and the distribution of the picked parameters for cases (iii) and (iv). Similar
observations as above can be made. Note that in the test case (iii) the parameter values are gathered around the value
h = p/2 which corresponds to the equator of the sphere. Due to the spherical coordinates the parameter distribution is uni-
form on the sphere but not in the parameter domain. Concerning test case (iv), we observe that the most parameter values

Fig. 3. Two different views on the surface C used for the test cases (ii), (iii) and (iv).
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Fig. 4. Relative error in the test case (i) for different values of kmax depending on the length M of the expansion (top) and the corresponding picked
parameter values (bottom).
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Integral equations

Results for EIM
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f(x;µ) = eikŝ(�,⇥)·x, x ⇥ �,µ ⇥ D,

µ = (k, �), ⇤ fixed,

D = [1, kmax]� [0,⇥]



Element based EIM

Extension to an element based EIM• Schematic illustration (2d parameter domain):

D

Efficiency: Elementwise EIM/hp-Interpolant

• Problems with large parameter domains, the expansion becomes too large and this can 
become that severe that the computing time of the RB solution (only online time) is in 
the order of a direct computation.

• As solution, the parameter domain can adaptively be split into subelements on which 
the function is approximated by a different Magic point expansion.

• Refinement until on each subdomain at certain tolerance is reached
• Parameter space only is refined
• Generalization to any dimension of parameter possibleObjective is  

to reduce  
online cost

We recall that the wave direction k̂ is parametrized by the spherical coordinates (h,u) 2 [0,p] ! [0,2p). For the previous
three test cases, we use a cavity as illustrated in Fig. 3 as surface C. It is an open box of length 1 ! 0.25 ! 0.25 m3 centered at
the origin and open towards the positive x-axis.

In the convergence plots we use the following relative L1-norm over X!D:

kf " IMðf ÞkL1ðX!DÞ

kfkL1ðX!DÞ
:

Fig. 4 shows both the error behavior depending on M and the parameter range for three different values of kmax for the test
case (i). Note that the number of basis functions needed to achieve some given tolerance increases linearly with kmax. As is
expected the distribution of the parameter value resembles, at least visually, the usual interpolation point-sets and, up to a
linear stretch, seems to be similar for all values of kmax.

In Fig. 5, we present the same plots as above but for test case (ii) and varying fixed wave numbers k. Again, observe the
linear increase, with respect to k, of the recovered basis functions to achieve a certain tolerance and a similar parameter dis-
tribution for different wave numbers.

Figs. 6 and 7 illustrate the error behavior and the distribution of the picked parameters for cases (iii) and (iv). Similar
observations as above can be made. Note that in the test case (iii) the parameter values are gathered around the value
h = p/2 which corresponds to the equator of the sphere. Due to the spherical coordinates the parameter distribution is uni-
form on the sphere but not in the parameter domain. Concerning test case (iv), we observe that the most parameter values

Fig. 3. Two different views on the surface C used for the test cases (ii), (iii) and (iv).
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Fig. 4. Relative error in the test case (i) for different values of kmax depending on the length M of the expansion (top) and the corresponding picked
parameter values (bottom).
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Fig. 10 shows the picked parameter values and the corresponding subdivision for the test case (iv). The interpolant sat-
isfies in all cases a relative error tolerance of 10!12, but achieved with different maximum lengths of the expansions. The
corresponding values of the lengths are M = 218, 151, 106, 74.

Algorithm:EEIM

Algorithm 5: The Elementwise Empirical Interpolation Method
Input: Function f, X, D, M, Tol.⁄/
/⁄f : X"D! C: function to be interpolated⁄/
/⁄M: Maximal length of expansion per element⁄/
/⁄Tol: Tolerance⁄/
Output: A partition of D ¼ [N E

i¼1Di, N E parameter samples Si
M ¼ flj;igM

j¼1 and interpolation points Ti
M ¼ fxj;igM

j¼1
begin

c ¼ 1;N 1 ¼ 0;D1
1 ¼ D;Comp1

1 ¼ 1; l ¼ 1
while c > N 1 do

c = 0
for i ¼ 1; . . . ;N 1 do

if Compl
i then

/⁄Compute the interpolation error on element Dl
i ⁄/

ðIl
i;T

l
i;Q

l
i; ErrÞ EIMðf ;X;Dl

i;MÞ
if Err > Tol then

/⁄Refine element Dl
i into 2d subelements ⁄/
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cþ1; . . . ;Dlþ1
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! "
 REFINE Dl

i; I
l
i

# $
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cþi ¼ 1; 81 6 i 6 2d

c: = c + 2d

else
c = c + 1
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! "
¼ Dl
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! "
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! "
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Fig. 9. The length of the EEIM expansion M versus the number of elements needed for test case (iv) and three different error tolerances (left). Accuracy of
the EEIM with respect of the length of the EEIM expansion M for different numbers of resulting elements (right).
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Adaptive EIM hpEIM
Gravity point splitting: numerical results
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Bottlenecks

So where are the bottlenecks ?

In the offline stage - 

In the online stage - 

‣ Large number of terms in  
    the affine expansion	



!

‣ Large number of terms in basis	



a(u, µ, v) =
Qa�

k=1

�k(µ)ak(u, v)

Nd � N�d
1 , 0 < � � 1

‣ The cost of greedy approach by 
evaluating the train space 
     Also for SCM, EIM

µi+1 = arg sup
µ��train

�N (µ)



Strategy for high-d sampling

A typical greedy approach

3.1 A typical greedy algorithm

To make the algorithm more general than discussed in the above, we make several assumptions.
For each parameter µ in the parameter domain D ⇢ Rp, a µ-dependent basis function v(µ)
can be computed. Let

S
N

= {µ1, · · · ,µN}

be a collection of N parameters in D and

W
N

= {v(µ1), · · · , v(µN )}

be the collection of N basis functions based on the parameter set S
N

. For each parameter
µ 2 D, suppose that we can compute an error estimator ⌘(µ;W

N

) of the approximation based
on W

N

.
The following represent a typical greedy algorithm.

Input: A train set ⌅
train

⇢ D, a tolerance tol > 0
Output: S

N

and W
N

1: Initialization: Choose an initial parameter value µ1 2 ⌅
train

, set S1 = {µ1}, compute
v(µ1), set W1 = {v(µ1)}, and N = 1 ;

2: while maxµ2⌅ ⌘(µ;W
N

) > tol do
3: For all µ 2 ⌅

train

, compute ⌘(µ;W
N

) ;
4: Choose µN+1 = argmaxµ2⌅train

⌘(µ;W
N

);
5: Set S

N+1 = S
N

[ {µN+1};
6: Compute v(µN+1), and set W

N+1 = W
N

[ {v(µN+1)};
7: N  N + 1;
8: end while

Algorithm 1: A Typical Greedy Algorithm

Note that S
N

and W
N

are hierarchical:

S
N

⇢ S
M

, W
N

⇢W
M

if 1  N M.

3.2 An improved greedy algorithm based on a saturation assumption

As mentioned before, on step 3 of the greedy algorithm 1, we have to compute ⌘(µ;W
N

) for
every µ 2 ⌅

train

. When the size of ⌅
train

is large, the computational cost of this task is very
high. Fortunately, in many cases, the following saturation assumption holds:

Definition 3.1. Saturation Assumption
Assume that ⌘(µ;W

N

) > 0 is an error estimator depending on a parameter µ and a hier-
archical basis space W

N

. If the following property

⌘(µ;W
M

)  C
sa

⌘(µ;W
N

) for some C
sa

> 0 for all 0 < N < M (3.14)

holds, we say that the Saturation Assumption is satisfied.

Remark 3.2. When C
sa

= 1, it implies that ⌘(µ;W
N

) is not increasing for a fixed µ and
increasing N . When C

sa

< 1, this is a more aggressive assumption, ensuring that ⌘(µ;W
N

)
is strictly decreasing. This assumption with C

sa

< 1 is very common in the adaptive finite
element method community, see [1]. The assumption C

sa

> 1 is a more relaxed assumption,
allowing that ⌘(µ;W

N

) might not be monotonically decreasing, but can oscillating. Since the

6

For a high-d problem with a large training set, this is expensive
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Different interpretations	


!

‣For             - error is strictly decreasing	


‣For             - error is allowed to increase (intermittently)Csa � 1

Csa < 1

We shall use this approach to propose two different sampling	


!

‣An approach using just this saturation assumption	


‣An adaptive sampling with additional benefits



Strategy for high-d sampling

Strategy I - 	


!
When looking for the max error over the training set, 
recompute estimator only for those points where  

Csa�(µ,WN ) � errortmpmax

underlying assumption of the greedy algorithm is that ⌘(µ,W
N

) will converge to zero as N
approaches infinity, we can safely assume that even if ⌘(µ,W

N

) might exhibit intermittend
non-monotone as N is increasing, overall it is decreasing.

Utilizing this assumption, we can design an improved greedy algorithm. First, for each
parameter value µ 2 ⌅

train

, we create an error profile ⌘
saved

(µ). For instance, initially, we can
set ⌘

saved

(µ) = ⌘(µ;W0) = 1. Now suppose that S
N

and W
N

are determined and that we
aim to find the next sample point µN+1 = argmaxµ2⌅train

⌘(µ;W
N

). When µ runs through
over the train set ⌅

train

, we naturally keep updating a temporary maximum (over ⌅
train

),
until we have searched the whole set ⌅

train

. In this loop, we may require that, for each µ,
⌘

saved

(µ) = ⌘(µ;W
L

) for some L < N . Now, since the Saturation Assumption ⌘(µ;W
N

) 
C

sa

⌘(µ;W
L

) for L < N holds and if C
sa

⌘
saved

(µ) is less than the current temporary maximum,
⌘(µ,W

N

) can not be greater than the current temporary maximum. Hence, we may skip the
computation of ⌘(µ,W

N

), and leave ⌘
saved

(µ) untouched. On the other hand, if C
sa

⌘
saved

(µ)
is greater than the current temporary maximum, it is potentially the maximizer. Hence, we
compute ⌘(µ,W

N

), update ⌘
saved

(µ), and compare it with the current maximum to see if an
update of the current temporary maximum is needed. We notice that if we proceed in this
manner, then the requirement that for each µ, ⌘

saved

(µ) = ⌘(µ;W
L

) for some L < N holds.
The algorithm 2 in pseudo-code of the Saturation Assumption based algorithm is given as:

Input: A train set ⌅
train

⇢ D, C
sa

, and a tolerance tol
Output: S

N

and W
N

1: Choose an initial parameter value µ1 2 ⌅
train

, set S1 = {µ1}; compute v(µ1), set
W1 = {v(µ1)}, and N = 1;

2: Set a vector ⌘
saved

with ⌘
saved

(µ) =1 for all µ 2 ⌅
train

;
3: while maxµ2⌅train ⌘

saved

(µ) � tol do
4: error

tmpmax

= 0;
5: for all µ 2 ⌅

train

do
6: if C

sa

⌘
saved

(µ) > error
tmpmax

then
7: Compute ⌘(µ;W

N

) , and let ⌘
saved

(µ) = ⌘(µ,W
N

);
8: if ⌘

saved

(µ) > error
tmpmax

then
9: error

tmpmax

= ⌘
saved

(µ), and let µ
max

= µ;
10: end if
11: end if
12: end for
13: Choose µN+1 = µ

max

, set S
N+1 = S

N

[ {µN+1};
14: Compute v(µN+1), set W

N+1 = W
N

[ {v(µN+1)};
15: N  N + 1;
16: end while

Algorithm 2: A greedy algorithm based on a saturation assumption

Remark 3.3. Initially, we set ⌘
saved

(µ) =1 for any µ 2 ⌅
train

to make ensure every ⌘(µ,W1)
will be computed.

Remark 3.4. Due to round-o↵ errors, the error estimator may stagnate even if we add more
bases, or the greedy algorithm will select some point already in S

N

. In this case, the greedy
algorithm should be terminated.

7



Strategy for high-d sampling

Consider EIM example

4.1 Saturation assumption

We first test the saturation assumption based algorithm for two test problems with low dimen-
sional parameter spaces.

Test 4.1. Consider the complex-valued function

F1(x; k) =
eikx � 1

x

where x 2 ⌦ = (0, 2] and k 2 D = [1, 25]. The interval ⌦ is divided into a equidistant point set
of cardinality 15’000 points to build ⌦

h

where the error kF1(x;µ) � I
N

(F1)(x;µ)k
L

1(⌦h) is
computed. For the standard greedy algorithm, the train set ⌅

train

consists of 5’000 equidistant
points in D.

Test 4.2. As a second and slightly more complicated example, consider the complex-valued
function

F2(x;µ) = eikk̂·x

where the directional unit vector k̂ is given by

k̂ = �(sin ✓ cos ', sin ✓ sin', cos ✓)T

and µ = (k, ✓,') 2 D = [1, 5]⇥[0,⇡]⇥[0, 2⇡]. As domain ⌦ we take a unit sphere. For practical
purpose, we take a polyhedral approximation to the sphere, as illustrated in Figure 1, and the
discrete number of points ⌦

h

(where again the error kF2(x;µ)� I
N

(F2)(x;µ)k
L

1(⌦h) is com-
puted) consists of the three Gauss points on each triangle. For the standard greedy algorithm,
the train set ⌅

train

consists of a rectangular grid of 50 ⇥ 50 ⇥ 50 points. In computational

Figure 1: Discrete surface for the unit sphere.

electromagnetics, this function is widely used since pF2(x;µ) represents a plane wave with
wave direction k̂ and polarization p ? k̂ impinging onto the sphere. See [8].

In Figure 2 we show the evolution of the average and maximum value of

C(N) =
⌘(µ,W

N

)
⌘(µ,W

N�1)
(4.15)

over ⌅
train

along with the standard greedy sampling process Algorithm 1. This quantity is an
indication of C

sa

. We observe that assuming, in this particular case, that C
sa

= 2 is a safe
choice, for both cases. For this particular choice of C

sa

, we illustrate in Figure 3 the savings
in the loop over ⌅

train

at each iteration of the standard greedy sampling. Indeed, the result
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electromagnetics, this function is widely used since pF2(x;µ) represents a plane wave with
wave direction k̂ and polarization p ? k̂ impinging onto the sphere. See [8].

In Figure 2 we show the evolution of the average and maximum value of
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over ⌅
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along with the standard greedy sampling process Algorithm 1. This quantity is an
indication of C

sa

. We observe that assuming, in this particular case, that C
sa

= 2 is a safe
choice, for both cases. For this particular choice of C

sa

, we illustrate in Figure 3 the savings
in the loop over ⌅

train

at each iteration of the standard greedy sampling. Indeed, the result
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Figure 2: Evolution of the quantity (4.15) along the greedy sampling for F1 (left) and F2
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indicates, that at each step N , the percentage of the work that needs to be done by using the
saturation assumption compared to using the standard greedy algorithm and thus compares
the di↵erent workloads, at each loop over ⌅

train

of Algorithm 1 and 2. One observes that,
while for the first example the improvement is already significant, one achieves an average
(over the di↵erent values of N) saving of workload of about 50% (dotted red line) for the
second example.
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Figure 3: Percentage of work at each step N , using the Saturation Assumption based greedy
algorithm, compared to the workload using the standard greedy algorithm, for F1 (left) and
F2 (right).

4.2 Adaptively enriching greedy algorithm

Let us also test the adaptively enriching greedy algorithm (for convenience denoted by AEGA)
first for the previously introduced function F2, and then for two test problems with high
dimensional parameter spaces.

Considering F2, we set M = 1’000, 5’000, 25’000, N
sc

= 125’000 and C
sc

= 2. In Figure 4
we plot the convergence of the new algorithm (in red solid lines) and the corresponding error
over the large control set ⌅

train

(in dotted lines) consisting of 125’000 equidistant points. For
comparison, we illustrate the convergence of the standard greedy algorithm using the train set
⌅

train

(in dashed lines).
We observe that as we increase the value of M , the convergence error provided by the

AEGA and the error of the AEGA over the larger control set become (not surprisingly) closer
and closer and converge to the error provided by the standard EIM using training set ⌅

train

.

11

4.1 Saturation assumption

We first test the saturation assumption based algorithm for two test problems with low dimen-
sional parameter spaces.

Test 4.1. Consider the complex-valued function

F1(x; k) =
eikx � 1

x

where x 2 ⌦ = (0, 2] and k 2 D = [1, 25]. The interval ⌦ is divided into a equidistant point set
of cardinality 15’000 points to build ⌦

h

where the error kF1(x;µ) � I
N

(F1)(x;µ)k
L

1(⌦h) is
computed. For the standard greedy algorithm, the train set ⌅

train

consists of 5’000 equidistant
points in D.

Test 4.2. As a second and slightly more complicated example, consider the complex-valued
function

F2(x;µ) = eikk̂·x

where the directional unit vector k̂ is given by

k̂ = �(sin ✓ cos ', sin ✓ sin', cos ✓)T

and µ = (k, ✓,') 2 D = [1, 5]⇥[0,⇡]⇥[0, 2⇡]. As domain ⌦ we take a unit sphere. For practical
purpose, we take a polyhedral approximation to the sphere, as illustrated in Figure 1, and the
discrete number of points ⌦

h

(where again the error kF2(x;µ)� I
N

(F2)(x;µ)k
L

1(⌦h) is com-
puted) consists of the three Gauss points on each triangle. For the standard greedy algorithm,
the train set ⌅

train

consists of a rectangular grid of 50 ⇥ 50 ⇥ 50 points. In computational

Figure 1: Discrete surface for the unit sphere.

electromagnetics, this function is widely used since pF2(x;µ) represents a plane wave with
wave direction k̂ and polarization p ? k̂ impinging onto the sphere. See [8].

In Figure 2 we show the evolution of the average and maximum value of

C(N) =
⌘(µ,W

N

)
⌘(µ,W

N�1)
(4.15)

over ⌅
train

along with the standard greedy sampling process Algorithm 1. This quantity is an
indication of C

sa

. We observe that assuming, in this particular case, that C
sa

= 2 is a safe
choice, for both cases. For this particular choice of C

sa

, we illustrate in Figure 3 the savings
in the loop over ⌅

train

at each iteration of the standard greedy sampling. Indeed, the result

10

2 4 6 8 10 12 14 16
N

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Mean of C(N) constant
Max of C(N) constant

0 50 100 150 200 250
N

0

0.5

1

1.5

2

Mean of C(N) constant
Max of C(N) constant

Figure 2: Evolution of the quantity (4.15) along the greedy sampling for F1 (left) and F2

(right).

indicates, that at each step N , the percentage of the work that needs to be done by using the
saturation assumption compared to using the standard greedy algorithm and thus compares
the di↵erent workloads, at each loop over ⌅

train

of Algorithm 1 and 2. One observes that,
while for the first example the improvement is already significant, one achieves an average
(over the di↵erent values of N) saving of workload of about 50% (dotted red line) for the
second example.

2 4 6 8 10 12 14 16
N

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f f
ul

l c
os

t

0 50 100 150 200 250
N

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f f
ul

l c
os

t

Figure 3: Percentage of work at each step N , using the Saturation Assumption based greedy
algorithm, compared to the workload using the standard greedy algorithm, for F1 (left) and
F2 (right).

4.2 Adaptively enriching greedy algorithm

Let us also test the adaptively enriching greedy algorithm (for convenience denoted by AEGA)
first for the previously introduced function F2, and then for two test problems with high
dimensional parameter spaces.

Considering F2, we set M = 1’000, 5’000, 25’000, N
sc

= 125’000 and C
sc

= 2. In Figure 4
we plot the convergence of the new algorithm (in red solid lines) and the corresponding error
over the large control set ⌅

train

(in dotted lines) consisting of 125’000 equidistant points. For
comparison, we illustrate the convergence of the standard greedy algorithm using the train set
⌅

train

(in dashed lines).
We observe that as we increase the value of M , the convergence error provided by the

AEGA and the error of the AEGA over the larger control set become (not surprisingly) closer
and closer and converge to the error provided by the standard EIM using training set ⌅

train

.

11



Strategy for high-d sampling

Consider a RBM example

1

23

3

N = 1, · · · , 5. Then, for all points µ in ⌅
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), N = 1, · · · , 5 is computed. Figure 12
shows the plots of ⌘ for each points in ⌅
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with number of reduced basis = 1, · · · , 5. Clearly,
we see that for each point µ 2 ⌅
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, ⌘(µ;W5)  ⌘(µ;W4)  ⌘(µ;W3)  ⌘(µ;W2)  ⌘(µ;W1).
For this problem, the saturation assumption is clearly satisfied for C
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Figure 12: A verification of Saturation Assumption for a symmetric positive definite problem
with 1 parameter.

Test 5.2. We now test the potential for cost savings when the saturation assumption based
algorithm is used in connection with the reduced basis method.

For equation (5.25), we decompose the domain ⌦ into 3 subdomains: R1 = (0, 0.5)⇥(0.5, 1),
R2 = (0.5, 1)⇥ (0, 0.5), and R3 = (0, 1)2\(R1 [R2). The di↵usion constant ↵ is set to be

↵ =
⇢

↵
i

= 1002µi�1, x 2 R
i

, i = 1, 2,
↵3 = 1, x 2 R3,

where µ = (µ1, µ2) 2 [0, 1]2. The domain of ↵
i

, i = 1, 2 is set to [1/100, 100]. The bilinear form
then becomes

a(u, v;µ) =
2X

i=1

1002µi�1
Z

Ri

ru ·rvdx +
Z

R3

ru ·rvdx. (5.28)

All other forms and spaces are identical to the ones of Test 5.1. Further, let N100 = {0, 1, 2, · · · , 100},
the train set is given by

⌅
train

= {(x(i), y(j)) : x(i) = i

100 , y(j) = j

100 , for i 2 N100, j 2 N100}.

We set the tolerance to be 10�3 and use the error estimator defined in (5.24).
Both the standard greedy algorithm and the saturation assumption based greedy algorithm

requires 20 reduced bases to reduce the estimated error to less than the tolerance. For this
problem, if the error is measured in the intrinsic energy norm, we can choose C

sa

= 1 as
indicated above. Due to the inaccuracy of the error estimator, the saturation assumption
based algorithm chooses a slightly di↵erent set of S

N

. If we choose C
sa

= 1.1 slightly larger,
we get however the same set S

N

as the standard greedy algorithm.
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In the second stage, we shall use the ANOVA expansion of the output functional to identify
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1

, · · · , µ
p

)
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be a numerical approximation of s with a partially fixed parameter µ⇤. A simple triangle
inequality shows that

|s(µ)� srb(µ⇤)|  |s(µ)� s(µ⇤)| + |s(µ⇤)� srb(µ⇤)|. (4.24)

If we can guarantee the first term of the righthand side of this inequality to under control then
we only need to approximate the reduced parameter problem.

The goal of the second stage of the RB-ANOVA-RB algorithm is to identify these (few)
important parameters, and freeze the parameters of less importance. For this we apply the
approximate ANOVA expansion based on sparse grid quadrature of the coarse reduced model
computed as the first stage of the approach.

With the second step, we can now have a rough estimate the first term on the righthand
side of (4.24). The last stage of the approach is then to build a new and accurate reduced
model for the reduced parameter model.

As mentioned, there are several advantages associated with on the reduced model over
the smaller parameter space. First, since a smaller number of parameters makes the behavior
of the solutions of the problem simpler, we generally need less basis elements to reduce the
error to below a certain tolerance Secondly, a smaller number of parameters makes the a�ne
decomposition (see (2.3)) of a, f , and s shorter, thus reducing both the o✏ine and online
computational costs. This is especially true for the non-a�ne problems, where the numbers
Q

a

, Q
f

, and Q
`

often are large if there is a large number of parameters.

5 Numerical Experiments for RB-ANOVA-RB method

In the following we shall discuss the application of the RB-ANOVA-RB approach for two
di↵erent problem types.

Thermal block problem

In the first experiment, we consider a thermal block problem [12, 15]. Let ⌦ = (0, 1)2, and
assume it is decomposed into 16 subdomains: R

k

= ( i�1

4

, i

4

) ⇥ ( j�1

4

, j

4

), for i = 1, 2, 3, 4,
j = 1, 2, 3, 4, and k = 4(i� 1) + j. The problem under consideration is

8
>><

>>:

�r · (↵ru) = 0 in ⌦,
u = 0 on �

top

= {x 2 (0, 1), y = 1},
↵ru · n = 0 on �

side

= {x = 0 and x = 1, y 2 (0, 1)},
↵ru · n = 1 on �

base

= {x 2 (0, 1), y = 0},

(5.25)

where the di↵usion constant ↵ is assumed to be

↵ =
⇢

↵
k

= 1002µ

k

�1, x 2 R
k

, k = 1, 5, 9, 13,
↵

k

= 1.12µ

k

�1, x 2 R
k

, k = 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16.

where µ = (µ
1

, µ
2

, · · · , µ
16

) 2 [0, 1]16. Define H1

D

= {v 2 H1 : v|
�

top

= 0}. The goal is to
evaluate the output functional

s(µ) =
Z

�

base

u(µ)ds, (5.26)

7

In the second stage, we shall use the ANOVA expansion of the output functional to identify
important parameters through the sensitivity analysis. To motivate this, let µ⇤ = (µ

1

, · · · , µ
p

)
be a parameter vector in Ap with some parameters µ

i

, i 2 Q ⇢ {1, · · · , p} frozen. Let srb(µ⇤)
be a numerical approximation of s with a partially fixed parameter µ⇤. A simple triangle
inequality shows that

|s(µ)� srb(µ⇤)|  |s(µ)� s(µ⇤)| + |s(µ⇤)� srb(µ⇤)|. (4.24)

If we can guarantee the first term of the righthand side of this inequality to under control then
we only need to approximate the reduced parameter problem.

The goal of the second stage of the RB-ANOVA-RB algorithm is to identify these (few)
important parameters, and freeze the parameters of less importance. For this we apply the
approximate ANOVA expansion based on sparse grid quadrature of the coarse reduced model
computed as the first stage of the approach.

With the second step, we can now have a rough estimate the first term on the righthand
side of (4.24). The last stage of the approach is then to build a new and accurate reduced
model for the reduced parameter model.

As mentioned, there are several advantages associated with on the reduced model over
the smaller parameter space. First, since a smaller number of parameters makes the behavior
of the solutions of the problem simpler, we generally need less basis elements to reduce the
error to below a certain tolerance Secondly, a smaller number of parameters makes the a�ne
decomposition (see (2.3)) of a, f , and s shorter, thus reducing both the o✏ine and online
computational costs. This is especially true for the non-a�ne problems, where the numbers
Q

a

, Q
f

, and Q
`

often are large if there is a large number of parameters.

5 Numerical Experiments for RB-ANOVA-RB method

In the following we shall discuss the application of the RB-ANOVA-RB approach for two
di↵erent problem types.

Thermal block problem

In the first experiment, we consider a thermal block problem [12, 15]. Let ⌦ = (0, 1)2, and
assume it is decomposed into 16 subdomains: R

k

= ( i�1

4

, i

4

) ⇥ ( j�1

4

, j

4

), for i = 1, 2, 3, 4,
j = 1, 2, 3, 4, and k = 4(i� 1) + j. The problem under consideration is

8
>><

>>:

�r · (↵ru) = 0 in ⌦,
u = 0 on �

top

= {x 2 (0, 1), y = 1},
↵ru · n = 0 on �

side

= {x = 0 and x = 1, y 2 (0, 1)},
↵ru · n = 1 on �

base

= {x 2 (0, 1), y = 0},

(5.25)

where the di↵usion constant ↵ is assumed to be

↵ =
⇢

↵
k

= 1002µ

k

�1, x 2 R
k

, k = 1, 5, 9, 13,
↵

k

= 1.12µ

k

�1, x 2 R
k

, k = 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16.

where µ = (µ
1

, µ
2

, · · · , µ
16

) 2 [0, 1]16. Define H1

D

= {v 2 H1 : v|
�

top

= 0}. The goal is to
evaluate the output functional

s(µ) =
Z

�

base

u(µ)ds, (5.26)

7

In the second stage, we shall use the ANOVA expansion of the output functional to identify
important parameters through the sensitivity analysis. To motivate this, let µ⇤ = (µ

1

, · · · , µ
p

)
be a parameter vector in Ap with some parameters µ

i

, i 2 Q ⇢ {1, · · · , p} frozen. Let srb(µ⇤)
be a numerical approximation of s with a partially fixed parameter µ⇤. A simple triangle
inequality shows that

|s(µ)� srb(µ⇤)|  |s(µ)� s(µ⇤)| + |s(µ⇤)� srb(µ⇤)|. (4.24)

If we can guarantee the first term of the righthand side of this inequality to under control then
we only need to approximate the reduced parameter problem.

The goal of the second stage of the RB-ANOVA-RB algorithm is to identify these (few)
important parameters, and freeze the parameters of less importance. For this we apply the
approximate ANOVA expansion based on sparse grid quadrature of the coarse reduced model
computed as the first stage of the approach.

With the second step, we can now have a rough estimate the first term on the righthand
side of (4.24). The last stage of the approach is then to build a new and accurate reduced
model for the reduced parameter model.

As mentioned, there are several advantages associated with on the reduced model over
the smaller parameter space. First, since a smaller number of parameters makes the behavior
of the solutions of the problem simpler, we generally need less basis elements to reduce the
error to below a certain tolerance Secondly, a smaller number of parameters makes the a�ne
decomposition (see (2.3)) of a, f , and s shorter, thus reducing both the o✏ine and online
computational costs. This is especially true for the non-a�ne problems, where the numbers
Q

a

, Q
f

, and Q
`

often are large if there is a large number of parameters.

5 Numerical Experiments for RB-ANOVA-RB method

In the following we shall discuss the application of the RB-ANOVA-RB approach for two
di↵erent problem types.

Thermal block problem

In the first experiment, we consider a thermal block problem [12, 15]. Let ⌦ = (0, 1)2, and
assume it is decomposed into 16 subdomains: R

k

= ( i�1

4

, i

4

) ⇥ ( j�1

4

, j

4

), for i = 1, 2, 3, 4,
j = 1, 2, 3, 4, and k = 4(i� 1) + j. The problem under consideration is

8
>><

>>:

�r · (↵ru) = 0 in ⌦,
u = 0 on �

top

= {x 2 (0, 1), y = 1},
↵ru · n = 0 on �

side

= {x = 0 and x = 1, y 2 (0, 1)},
↵ru · n = 1 on �

base

= {x 2 (0, 1), y = 0},

(5.25)

where the di↵usion constant ↵ is assumed to be

↵ =
⇢

↵
k

= 1002µ

k

�1, x 2 R
k

, k = 1, 5, 9, 13,
↵

k

= 1.12µ

k

�1, x 2 R
k

, k = 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16.

where µ = (µ
1

, µ
2

, · · · , µ
16

) 2 [0, 1]16. Define H1

D

= {v 2 H1 : v|
�

top

= 0}. The goal is to
evaluate the output functional

s(µ) =
Z

�

base

u(µ)ds, (5.26)

7

In the second stage, we shall use the ANOVA expansion of the output functional to identify
important parameters through the sensitivity analysis. To motivate this, let µ⇤ = (µ

1

, · · · , µ
p

)
be a parameter vector in Ap with some parameters µ

i

, i 2 Q ⇢ {1, · · · , p} frozen. Let srb(µ⇤)
be a numerical approximation of s with a partially fixed parameter µ⇤. A simple triangle
inequality shows that

|s(µ)� srb(µ⇤)|  |s(µ)� s(µ⇤)| + |s(µ⇤)� srb(µ⇤)|. (4.24)

If we can guarantee the first term of the righthand side of this inequality to under control then
we only need to approximate the reduced parameter problem.

The goal of the second stage of the RB-ANOVA-RB algorithm is to identify these (few)
important parameters, and freeze the parameters of less importance. For this we apply the
approximate ANOVA expansion based on sparse grid quadrature of the coarse reduced model
computed as the first stage of the approach.

With the second step, we can now have a rough estimate the first term on the righthand
side of (4.24). The last stage of the approach is then to build a new and accurate reduced
model for the reduced parameter model.

As mentioned, there are several advantages associated with on the reduced model over
the smaller parameter space. First, since a smaller number of parameters makes the behavior
of the solutions of the problem simpler, we generally need less basis elements to reduce the
error to below a certain tolerance Secondly, a smaller number of parameters makes the a�ne
decomposition (see (2.3)) of a, f , and s shorter, thus reducing both the o✏ine and online
computational costs. This is especially true for the non-a�ne problems, where the numbers
Q

a

, Q
f

, and Q
`

often are large if there is a large number of parameters.

5 Numerical Experiments for RB-ANOVA-RB method

In the following we shall discuss the application of the RB-ANOVA-RB approach for two
di↵erent problem types.

Thermal block problem

In the first experiment, we consider a thermal block problem [12, 15]. Let ⌦ = (0, 1)2, and
assume it is decomposed into 16 subdomains: R

k

= ( i�1

4

, i

4

) ⇥ ( j�1

4

, j

4

), for i = 1, 2, 3, 4,
j = 1, 2, 3, 4, and k = 4(i� 1) + j. The problem under consideration is

8
>><

>>:

�r · (↵ru) = 0 in ⌦,
u = 0 on �

top

= {x 2 (0, 1), y = 1},
↵ru · n = 0 on �

side

= {x = 0 and x = 1, y 2 (0, 1)},
↵ru · n = 1 on �

base

= {x 2 (0, 1), y = 0},

(5.25)

where the di↵usion constant ↵ is assumed to be

↵ =
⇢

↵
k

= 1002µ

k

�1, x 2 R
k

, k = 1, 5, 9, 13,
↵

k

= 1.12µ

k

�1, x 2 R
k

, k = 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16.

where µ = (µ
1

, µ
2

, · · · , µ
16

) 2 [0, 1]16. Define H1

D

= {v 2 H1 : v|
�

top

= 0}. The goal is to
evaluate the output functional

s(µ) =
Z

�

base

u(µ)ds, (5.26)

7

N = 1, · · · , 5. Then, for all points µ in ⌅
train

, ⌘(µ;W
N

), N = 1, · · · , 5 is computed. Figure 12
shows the plots of ⌘ for each points in ⌅

train

with number of reduced basis = 1, · · · , 5. Clearly,
we see that for each point µ 2 ⌅

train

, ⌘(µ;W5)  ⌘(µ;W4)  ⌘(µ;W3)  ⌘(µ;W2)  ⌘(µ;W1).
For this problem, the saturation assumption is clearly satisfied for C

sa

= 1 in the first several
steps.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−6

10−4

10−2

100

va
lu

es
 o

f e
rro

r e
st

im
at

or

distribution of samples in train set
 

 

N = 1
N = 2
N = 3
N = 4
N = 5

Figure 12: A verification of Saturation Assumption for a symmetric positive definite problem
with 1 parameter.

Test 5.2. We now test the potential for cost savings when the saturation assumption based
algorithm is used in connection with the reduced basis method.

For equation (5.25), we decompose the domain ⌦ into 3 subdomains: R1 = (0, 0.5)⇥(0.5, 1),
R2 = (0.5, 1)⇥ (0, 0.5), and R3 = (0, 1)2\(R1 [R2). The di↵usion constant ↵ is set to be

↵ =
⇢

↵
i

= 1002µi�1, x 2 R
i

, i = 1, 2,
↵3 = 1, x 2 R3,

where µ = (µ1, µ2) 2 [0, 1]2. The domain of ↵
i

, i = 1, 2 is set to [1/100, 100]. The bilinear form
then becomes

a(u, v;µ) =
2X

i=1

1002µi�1
Z

Ri

ru ·rvdx +
Z

R3

ru ·rvdx. (5.28)

All other forms and spaces are identical to the ones of Test 5.1. Further, let N100 = {0, 1, 2, · · · , 100},
the train set is given by

⌅
train

= {(x(i), y(j)) : x(i) = i

100 , y(j) = j

100 , for i 2 N100, j 2 N100}.

We set the tolerance to be 10�3 and use the error estimator defined in (5.24).
Both the standard greedy algorithm and the saturation assumption based greedy algorithm

requires 20 reduced bases to reduce the estimated error to less than the tolerance. For this
problem, if the error is measured in the intrinsic energy norm, we can choose C

sa

= 1 as
indicated above. Due to the inaccuracy of the error estimator, the saturation assumption
based algorithm chooses a slightly di↵erent set of S

N

. If we choose C
sa

= 1.1 slightly larger,
we get however the same set S

N

as the standard greedy algorithm.
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See Fig. 13 for a comparisons of the workloads using the standard algorithm and the
new approach based on the saturation assumption with C

sa

= 1 and C
sa

= 1.1, respectively.
The mean percentage is computed as

P
N

i=1(percentage at step i)/N . The mean percentages
of C

sa

= 1 and C
sa

= 1.1 is about 32% and 34% respectively. Since the computational cost for
each evaluation of ⌘(µ;N) is of O(N3), the average percentages do not represent the average
time saving, and only give a sense of the saving of the workloads at each step.

In Fig. 14, we present the selections of the sample points S
N

by the standard algorithm
and the Saturation Assumption based greedy algorithm with C

sa

= 1. Many sample points
are identical. In the case C

sa

= 1.1, the samples S
N

are identical to the ones of the standard
algorithm.
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Figure 13: Percentage of work at each step N
using saturation assumption based greedy al-
gorithm with C

sa

= 1, compared to the work-
load using the standard greedy algorithm for
Test 5.2.
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Figure 14: S
N

obtained by standard and sat-
uration assumption based greedy algorithms
for Test 5.2.

Test 5.3. We continue and test a problem with 3 parameters. For (5.25), we decompose the
domain ⌦ into 4 subdomains: R

k

= ( i�1
2 , i

2)⇥( j�1
2 , j

2), for i = 1, 2, j = 1, 2, and k = 2(i�1)+j.
The di↵usion constant ↵ is set to be

↵ =
⇢

↵
k

= 1002µk�1 x 2 R
k

, k = 1, 2, 3,
↵4 = 1 x 2 R4,

where µ = (µ1, µ2, µ3) 2 [0, 1]3. The bilinear form is

a(u, v;µ) =
3X

k=1

1002µk�1
Z

Rk

ru ·rvdx +
Z

R4

ru ·rvdx, (5.29)

All other forms and spaces are identical to the ones of Test 5.1. We again choose the output
functional based error estimator as Test 4.1 and the tolerance is set to be 10�3. Let N50 =
{0, 1, 2, · · · , 50}, the train set is given by

⌅
train

= {(x(i), y(j), z(k)) : x(i) = i

50 , y(j) = j

50 , z(k) = k

50 , i 2 N50, j 2 N50, k 2 N50}.

The standard greedy algorithm needs 24 reduced bases to reduce the estimated error less than
the tolerance. If C

sa

is chosen to be 1, 25 reduced bases are needed to reduce the estimated error
less than the tolerance. The set S

N

obtained by the Saturation Assumption based algorithm
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Strategy for high-d sampling

Dependence on safety factor

with C
sa

= 1 is also di↵erent from the standard algorithm. As discussed before, this is mainly
caused by the inaccuracy of the error estimator. If we choose C

sa

= 3, we obtain the same
sample points S

N

as the standard greedy algorithm. See Figure 15 for the comparisons of the
workloads using the standard algorithm and the saturation assumption based algorithm with
C

sa

= 1 and C
sa

= 3, respectively. The mean percentages of workload for C
sa

= 1 and C
sa

= 3
are 21.6% and 33.7%, respectively.
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Figure 15: Percentage of work at each step N
using saturation assumption based greedy al-
gorithm with C

sa

= 1 and C
sa

= 3, compared
to the work load using the standard greedy
algorithm for Test 5.3.
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Figure 16: Convergence behavior of the
adaptively enriching greedy algorithm for
Test 5.4 with M = 100, 500, and 1’000.

Remark 5.1. For the type of compliance problem discussed in Tests 5.1, 5.2 and 5.3, other
types of error estimator are suggested in [14]:

⌘e(µ,W
N

) :=
kr(·;µ)k(Xfe)0

�fe(µ)1/2|urb

N

(µ)|
and ⌘s(µ,W

N

) :=
kr(·;µ)k2

(Xfe)0

�fe(µ)|srb

N

(µ)|
. (5.30)

As discussed above, the most important term in the error estimator of the Saturation Assump-
tion is the dual norm of the residual kr(·;µ)k(Xfe)0. For the error estimator ⌘e(µ;W

N

), the
behavior is similar to that of ⌘(µ;W

N

). For the error estimator ⌘s(µ;W
N

), the dual norm of
the residual is squared. The dual norm is computed with respect to a parameter independent
reference norm. The square makes the di↵erence between the dual norm based on the intrinsic
energy norm and on the reference norm larger. Normally, if the error estimator ⌘s(µ;W

N

) is
used, we need a more conservative C

sa

. Numerical tests show that even if C
sa

= 20 is set for
Test 5.3, the workload of the saturation assumption based algorithm is still only about 45% (on
average) of the standard greedy algorithm.

5.2 Adaptively enriching greedy algorithm

Test 5.4 We test the adaptively enriching greedy algorithm for the reduced basis method for
a problem with 15 parameters.

For (5.25), we decompose the domain ⌦ into 16 subdomains: R
k

= ( i�1
4 , i

4)⇥ ( j�1
4 , j

4), for
i = 1, 2, 3, 4, j = 1, 2, 3, 4, and k = 4(i� 1) + j. The di↵usion constant ↵ is set to be

↵ =
⇢

↵
k

= 52µk�1, x 2 R
k

, k = 1, 2, · · · , 15,
↵16 = 1, x 2 R16.
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Observations - 	


‣Easy modification of standard greedy	


‣Relies on a reasonable assumption of convergence	


‣Potential offline saving of close to an order of magnitude	


‣Still requires a fixed (large) training set



Strategy for high-d sampling

Strategy II - 	


!

‣Choose training set size as can be afforded and  
       sample randomly	


‣Resample #points for which	


‣Perform a safety check 

�(µ,WN ) < tol

Input: M : the number of sample points in each round of searching,
N

sc

: the number of sample points to pass the safety check,
C

sa

, and a tolerance tol.
Output: S

N

and W
N

1: Set Nsafe = ceil(N
sc

/M);
2: Generate an initial train set ⌅

train

with M parameter samples (randomly, or do your
best);

3: Choose an initial parameter value µ1 2 ⌅
train

and set S1 = {µ1} and N = 1;
4: Set a vector ⌘

saved

with ⌘
saved

(µ) =1 for all µ 2 ⌅
train

;
5: Compute v(µ1), set W1 = {v(µ1)}, set safe = 0, error

tmpmax

= 2 ⇤ tol;
6: while (error

tmpmax

� tol or safe  Nsafe) do
7: error

tmpmax

= 0;
8: for all µ 2 ⌅ do
9: if C

sa

⌘
saved

(µ) > error
tmpmax

then
10: Compute ⌘(µ;W

N

) , and let ⌘
saved

(µ) = ⌘(µ,W
N

);
11: if ⌘

saved

(µ) > error
tmpmax

then
12: error

tmpmax

= ⌘
saved

(µ), and let µ
max

= µ;
13: end if
14: if ⌘

saved

(µ) < tol then
15: flag µ; // all flagged parameters will be removed later

16: end if
17: end if
18: end for
19: if error

tmpmax

> tol then
20: Choose µN+1 = µ

max

, set S
N+1 = S

N

[ µN+1;
21: Compute v(µN+1), set W

N+1 = W
N

[ {v(µN+1)};
22: Discard all flagged parameters from ⌅

train

and their corresponding saved error
estimation in ⌘

saved

;
23: Generate M � sizeof(⌅

train

) new samples, add them into ⌅
train

such that
sizeof(⌅

train

) = M ; set ⌘
saved

of all new points to 1;
24: N  N + 1;
25: safe =0;
26: else
27: safe = safe +1;
28: Discard ⌅

train

, generate M new parameters to form ⌅
train

and set ⌘
saved

to be 1 for
all µ 2 ⌅

train

;
29: end if
30: end while

Algorithm 3: An Adaptively Enriching Greedy Algorithm
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Strategy for high-d sampling

Consider EIM example

4.1 Saturation assumption

We first test the saturation assumption based algorithm for two test problems with low dimen-
sional parameter spaces.

Test 4.1. Consider the complex-valued function

F1(x; k) =
eikx � 1

x

where x 2 ⌦ = (0, 2] and k 2 D = [1, 25]. The interval ⌦ is divided into a equidistant point set
of cardinality 15’000 points to build ⌦

h

where the error kF1(x;µ) � I
N

(F1)(x;µ)k
L

1(⌦h) is
computed. For the standard greedy algorithm, the train set ⌅

train

consists of 5’000 equidistant
points in D.

Test 4.2. As a second and slightly more complicated example, consider the complex-valued
function

F2(x;µ) = eikk̂·x

where the directional unit vector k̂ is given by

k̂ = �(sin ✓ cos ', sin ✓ sin', cos ✓)T

and µ = (k, ✓,') 2 D = [1, 5]⇥[0,⇡]⇥[0, 2⇡]. As domain ⌦ we take a unit sphere. For practical
purpose, we take a polyhedral approximation to the sphere, as illustrated in Figure 1, and the
discrete number of points ⌦

h

(where again the error kF2(x;µ)� I
N

(F2)(x;µ)k
L

1(⌦h) is com-
puted) consists of the three Gauss points on each triangle. For the standard greedy algorithm,
the train set ⌅

train

consists of a rectangular grid of 50 ⇥ 50 ⇥ 50 points. In computational

Figure 1: Discrete surface for the unit sphere.

electromagnetics, this function is widely used since pF2(x;µ) represents a plane wave with
wave direction k̂ and polarization p ? k̂ impinging onto the sphere. See [8].

In Figure 2 we show the evolution of the average and maximum value of

C(N) =
⌘(µ,W

N

)
⌘(µ,W

N�1)
(4.15)

over ⌅
train

along with the standard greedy sampling process Algorithm 1. This quantity is an
indication of C

sa

. We observe that assuming, in this particular case, that C
sa

= 2 is a safe
choice, for both cases. For this particular choice of C

sa

, we illustrate in Figure 3 the savings
in the loop over ⌅

train

at each iteration of the standard greedy sampling. Indeed, the result
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Figure 4: Convergence behavior of the adaptively enriching greedy algorithm for F2 with
M = 1’000 (left), M = 5’000 (middle) and M = 25’000 (right).
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Figure 5: Evolution of the number of points where the accuracy is
checked of the adaptively enriching greedy algorithm for di↵erent
values of M (Safety check not included).

Figure 5 shows the evolution of the number of points which were part of the train set during
new greedy algorithm for all values of M . We observe that in all three cases the error was
also tested on at least 125’000 di↵erent points over the iterations of the algorithm, but of low
number M at each iteration.

In Fig. 6, we present, for all values of M , two quantities. The first one consists of the
percentage of work (w.r.t. M), at each step N , that needs to be e↵ected and cannot be
skipped by using the saturation assumption. The second one consists of the percentage of
points (w.r.t. M) that remain in the train set after each step N . One can observe that at the
end, almost all points in the train set are withdrawn (and thus the corresponding errors need
to be computed). During a long time, we observe that the algorithm works with the initial
train set until the error tolerance is satisfied on those points before they are withdrawn. In
consequence, the accuracy need only to be checked for a low percentage of points of the trial
set using the saturation assumption. Towards the end, the number of points that remain in
the train set after each iteration decreases and consequently for each new sample point in the
train set the saturation assumption cannot be used.

Remark 4.1. Algorithm 3 is subject to randomness. However, we plot only one realization of
the adaptively enriching greedy algorithm. Due to the presence of a lot of repeated randomness
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Figure 4: Convergence behavior of the adaptively enriching greedy algorithm for F2 with
M = 1’000 (left), M = 5’000 (middle) and M = 25’000 (right).
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Figure 5: Evolution of the number of points where the accuracy is
checked of the adaptively enriching greedy algorithm for di↵erent
values of M (Safety check not included).
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In the second stage, we shall use the ANOVA expansion of the output functional to identify
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If we can guarantee the first term of the righthand side of this inequality to under control then
we only need to approximate the reduced parameter problem.

The goal of the second stage of the RB-ANOVA-RB algorithm is to identify these (few)
important parameters, and freeze the parameters of less importance. For this we apply the
approximate ANOVA expansion based on sparse grid quadrature of the coarse reduced model
computed as the first stage of the approach.

With the second step, we can now have a rough estimate the first term on the righthand
side of (4.24). The last stage of the approach is then to build a new and accurate reduced
model for the reduced parameter model.

As mentioned, there are several advantages associated with on the reduced model over
the smaller parameter space. First, since a smaller number of parameters makes the behavior
of the solutions of the problem simpler, we generally need less basis elements to reduce the
error to below a certain tolerance Secondly, a smaller number of parameters makes the a�ne
decomposition (see (2.3)) of a, f , and s shorter, thus reducing both the o✏ine and online
computational costs. This is especially true for the non-a�ne problems, where the numbers
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often are large if there is a large number of parameters.
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In the following we shall discuss the application of the RB-ANOVA-RB approach for two
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with C
sa

= 1 is also di↵erent from the standard algorithm. As discussed before, this is mainly
caused by the inaccuracy of the error estimator. If we choose C

sa

= 3, we obtain the same
sample points S

N

as the standard greedy algorithm. See Figure 15 for the comparisons of the
workloads using the standard algorithm and the saturation assumption based algorithm with
C

sa

= 1 and C
sa

= 3, respectively. The mean percentages of workload for C
sa

= 1 and C
sa

= 3
are 21.6% and 33.7%, respectively.
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Figure 15: Percentage of work at each step N
using saturation assumption based greedy al-
gorithm with C

sa

= 1 and C
sa

= 3, compared
to the work load using the standard greedy
algorithm for Test 5.3.
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Figure 16: Convergence behavior of the
adaptively enriching greedy algorithm for
Test 5.4 with M = 100, 500, and 1’000.

Remark 5.1. For the type of compliance problem discussed in Tests 5.1, 5.2 and 5.3, other
types of error estimator are suggested in [14]:

⌘e(µ,W
N

) :=
kr(·;µ)k(Xfe)0

�fe(µ)1/2|urb

N

(µ)|
and ⌘s(µ,W

N

) :=
kr(·;µ)k2

(Xfe)0

�fe(µ)|srb

N

(µ)|
. (5.30)

As discussed above, the most important term in the error estimator of the Saturation Assump-
tion is the dual norm of the residual kr(·;µ)k(Xfe)0. For the error estimator ⌘e(µ;W

N

), the
behavior is similar to that of ⌘(µ;W

N

). For the error estimator ⌘s(µ;W
N

), the dual norm of
the residual is squared. The dual norm is computed with respect to a parameter independent
reference norm. The square makes the di↵erence between the dual norm based on the intrinsic
energy norm and on the reference norm larger. Normally, if the error estimator ⌘s(µ;W

N

) is
used, we need a more conservative C

sa

. Numerical tests show that even if C
sa

= 20 is set for
Test 5.3, the workload of the saturation assumption based algorithm is still only about 45% (on
average) of the standard greedy algorithm.

5.2 Adaptively enriching greedy algorithm

Test 5.4 We test the adaptively enriching greedy algorithm for the reduced basis method for
a problem with 15 parameters.

For (5.25), we decompose the domain ⌦ into 16 subdomains: R
k

= ( i�1
4 , i

4)⇥ ( j�1
4 , j

4), for
i = 1, 2, 3, 4, j = 1, 2, 3, 4, and k = 4(i� 1) + j. The di↵usion constant ↵ is set to be

↵ =
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↵
k

= 52µk�1, x 2 R
k

, k = 1, 2, · · · , 15,
↵16 = 1, x 2 R16.

20where µ = (µ1, µ2, · · · , µ15) 2 [0, 1]15. The domain of ↵
k

, k = 1, 2, . . . , 15, is given by [1/5, 5].
The bilinear form then consists of

a(u, v;µ) =
15X

k=1

52µk�1
Z

Rk

ru ·rvdx +
Z

R16

ru ·rvdx. (5.31)

All other forms and spaces are identical to the ones of Test 5.1. Due to the many jumps of the
coe�cients along the interfaces of the subdomains, the solution space of this problem is very
rich. We set C

sa

= 1, tol = 0.05, N
sc

= 10’000. Since there is a “safety check” step to ensure
the quality of the reduced bases, we should not worry that the choice of constant C

sa

is too
aggressive. We test three cases: M = 100, M = 500, and M = 1’000. The convergence for
one realization is plotted in Fig. 16. The number of reduced basis for M = 100 is 52, and for
the other two cases is 50. This suggests us that a bigger M will lead to a smaller number of
the bases. The percentage of work (e↵ected at each step N) with respect to the total number
of points M and of the number of points remained in the train set (at each step N) of the
adaptively enriching greedy algorithm for di↵erent values of M = 100, 500, and 1000 are shown
in 17. At the beginning stage, the estimated errors are larger than tolerance for almost all
points in the train set, when the RB space is rich enough, more and more points are removed,
and eventually, almost all points in the trained set are removed in later stages. For the number
of the points where the error estimators are computed, that is, the saturation assumption part,
it behaves like the Algorithm 2 with a fixed train set since the train set barely changed in the
beginning. In the later stage, since almost all points are new points, the percentage of the
number of the points where the error estimators are computed is close to 100%.
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Figure 17: Percentage of work (e↵ected at each step N) w.r.t. the total number of points
M and of the number of points remained in the train set (at each step N) of the adaptively
enriching greedy algorithm for Test 5.4 and di↵erent values of M = 100, 500, and 1’000.

Remark 5.2. For a fixed M and provided the algorithm is performed several times, we observe
that even though the train set is generated randomly each time, the numbers of the reduced bases
needed to reduce the estimated error to the prescribed tolerance are very similar. This means
that even if we start with a di↵erent and very corse random train set, the algorithm is quite
stable in the sense of capturing the dimensionality of the reduced basis space.
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Fundamental problem remains

While these tricks remain valuable, both offline and online cost 
typically scales with

For d>>1 this quickly becomes very expensive

Goal 
Reduce the dimensionality of the problem 
without impacting the predictive accuracy

M � (QN)�d, 0 < � � 1

✓ Compression by ANOVA expansions	


✓ Problem segmentation



ANOVA Expansions

In many cases we need to evaluate

f(X(x))
�

f(X(x)) dx X = (X1, . . . , Xd), d� 1

which quickly becomes an expensive exercise.

DEF: The ANOVA expansion (exact)

f(X) = f0 +
�

t�D
ft(Xt)

ft(Xt) =
�

Ad�|t|
f(X)dXD/t �

�

w�t

fw(Xw)� f0

f0 =
�

Ad

f(X) dX,

�

A0
f(X) dX0 = f(X)

D = {1, . . . , d}

� = [0, 1]d

Xt

A|t|

|t| dimensional hypercube

t indexed sub-vector



ANOVA Expansions

A few characteristics - 

‣ The ANOVA expansion is unique and exact	


‣ It is a finite expansion with      terms 	


‣ All terms are mutually orthogonal

2d

Example:

f(�1,�2,�3) = f0 +
3�

i=1

f̂i(�i) +
�

1=i<j<d

f̂ij(�i,�j)

f(X, s) = f0 +
�

t�D;|t|⇥s

ft(Xt)

We have not achieved much yet.

S = truncation dimension

Now consider the truncated expansion



ANOVA Expansions

Let us first introduce

Vt(f) =
�

Ad

(ft(Xt))2 dX, V (f) =
�

|t|>0

Vt(f)

�

0<|t|�ps

Vt(f) � qV (f)

Err(X, ps) =
1

V (f)

�

Ad

[fX� f(X, ps)]2 dX

Err(X, ps) � 1� q

q � 1

... dimension-specific variances

Define the effective dimension through

Then one can prove

NOTE: If p<<d there is hope!

Sobol’90



Parametric compression

Subset specific variances

ANOVA Expansions

Let us first introduce

Vt(f) =
�

Ad

(ft(Xt))2 dX, V (f) =
�

|t|>0

Vt(f)

�

0<|t|�ps

Vt(f) � qV (f)

Err(X, ps) =
1

V (f)

�

Ad

[fX� f(X, ps)]2 dX

Err(X, ps) � 1� q

q � 1

... subset specific variances

Define the effective dimension through

Then one can prove

NOTE: If p<<d there is hope!
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and introduce sensitivities

ANOVA Expansions

Lets take it one step further and define
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tude Sensitivity Test (FAST) and Sobol’ methods, [14, 22, 23]. The TSI of parameter i is defined

to measure the combined sensitivity of all terms depending on this particular parameter. To realize

how to most efficiently compute this, we define the sensitivity measure

S(t) =
Vt

V
, (5.1)

where Vt and V are defined in (4.8). It should be noted that this can be defined based on any output

function of interest or on a particular entry in a vector valued function.

Summing up all the terms S(t), |t|> 0 we recover

�
|t|>0

S(t) = �
|t|>0

Vt

V
= 1. (5.2)

We now express this as

�
i�t

S(t)+ �
i/�t

S(t) = 1, (5.3)

where i = 1, · · · , p is the index of variable � i. The first term in this expression is TSI(i) of variable

� i while the second term reflect all interactions not involving � i.

The individual elements in the TSI are computable directly from the truncated ANOVA ex-

pansion. However, this may in it self be quite expensive to compute for a high-dimensional case.

To overcome this bottleneck, we observe that the use of the TSI is just as an indicator and low

accuracy of this will likely be adequate.

We therefore propose an approach in which the ANOVA expansion is first computed for the

output of interest using a low order Stroud based integration scheme. This enables the computation

of the TSI for the full parameter space at low cost and the identification of the parameters of

importance. With this information, we compress the dimensionality of the problem, retaining only

the important parameters and freezing less important ones at their mean value. This results in a

compressed system which contain the parameters of dynamic importance. We now proceed and

recompute the ANOVA expansion of this problem at a higher accuracy to enable the accurate

modeling of the sensitivity of the output of interests. In the following we shall discuss in more

detail the validity of this approach on a non-trivial problem with intuitive behavior.
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i = {1, . . . , d},Xi

Then sensitivity of variable “i” is measured through

We can now measure impact of variable on output of interest

✓ Compute ANOVA expansion using Stroud-2/3 rule
✓ Evaluate which parameters are of importance
✓ Compress parameter set to these and maintain the 
        remaining at expectation value.
✓Compute ANOVA expansion of compressed set
✓Evaluate statistics of compressed problem 

Wednesday, August 25, 2010

We can now estimate sensitivity of output on specific 
parameter through

‣ Compute approximate ANOVA expansion - learn	


‣ Identity important parameters and compress	


‣ Compute lower dimensional model

�

i�t

S(i)



ANOVA Expansions

Example: 25 planets of uncertain mass pull in a unit mass space-ship
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5.1 Numerical example

We consider a situation with p particles, each held fixed at a random position in a two-dimensional

space [�a,a]2. Let us furthermore assume that a single particle of unit mass is initially positioned

at (0,0) and feels an acceleration through Newtonian gravitational forces from all the other parti-

cles. This leads to a simple dynamical equation

ẍ(t) =
p

�
i=1

mir̂i/r2
i , x(t0) = x0. (5.4)

Here r̂i is the distance vector between the fixed particle i and the moving particle and ri is the

Eulerian distance between the fixed particle i and the moving particle.

To endow this problem with a high-dimensional characteristic, we assume that all the masses,

mi, are uniformly distributed random variables with a mean of 1/(p+1) and a 10% variance. The

goal is to predict the mean trajectory of the moving particle as well as its sensitivity due to the

variation in mass.

Intuitive understanding of the problem suggests that just a small number of fixed masses will

contribute significantly to the dynamics of the moving particle. Hence, we expect that the paramet-

ric compression computed using the TSI approach will work well in this case and identify particles

situated close to the moving particle. As the function of sensitivity we consider the kinetic energy

but this is not a unique choice.

5.1.1 25 dimensional problem

We first consider a small problem with p = 25. In Fig. 2 we show the the first part of the approach

in which the ANOVA expansion of the kinetic energy for the full problem is computed using the

Stroud-3 integration and TSI computed based on that.

We notice in Fig. 2 that including only 2nd order terms suffice in the ANOVA expansion to

accurately represent the output function. Furthermore, and as expected, the TSI clearly indicates

that only a fraction of the fixed particles are of significant importance for computing the sensitivity.

The next step is to reduce the number of parameters by freezing those of minimal influence at

their expectation and the specification of the threshold is a question of judgement. Experimentation

has shown that parameters with a TSI of 2% or less can typically be frozen without any substantial

mi =
1

p + 1
[1 + 0.1 � U(�1, 1)]
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Figure 2: Gravitational problem with p = 25, Left: L2 error and L� error for the ANOVA expansion. Right: TSI
for the kinetic energy of the moving particle based on the parametrized masses of the fixed particles.

effect and we shall use this in what remains. In Fig. 3 we illustrate which particles have been

identified by the TSI approach based on the kinetic energy, confirming that it identifies those

particles which are closest to the particle track as one would intuitively expect.
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Figure 3: Gravitational problem with p = 25. Illustration of the 7 most important particles as identified by the
TSI approach.

In Fig. 4 we show the convergence of the ANOVA expansion based on the reduced set of

Full ANOVA based on Stroud-3
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Sensitivity index

Active and passive “planets”

Active # of parameters is 7
>3%



Parameter compression for RBM

When extending this to PDEs and RBMs, key issue is	



How to evaluate sensitivity at small cost ?	



With the ability to build RB models, the following 
approach appears interesting	



!

‣ Build a very coarse RBM over all parameters.	



‣ Use RBM to build crude response surface	



‣ Explore this very coarse model to estimate sensitivities	



‣ Compress and develop RBM for important parameters	





Heat equation test
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In the second stage, we shall use the ANOVA expansion of the output functional to identify
important parameters through the sensitivity analysis. To motivate this, let µ⇤ = (µ

1

, · · · , µ
p

)
be a parameter vector in Ap with some parameters µ

i

, i 2 Q ⇢ {1, · · · , p} frozen. Let srb(µ⇤)
be a numerical approximation of s with a partially fixed parameter µ⇤. A simple triangle
inequality shows that

|s(µ)� srb(µ⇤)|  |s(µ)� s(µ⇤)| + |s(µ⇤)� srb(µ⇤)|. (4.24)

If we can guarantee the first term of the righthand side of this inequality to under control then
we only need to approximate the reduced parameter problem.

The goal of the second stage of the RB-ANOVA-RB algorithm is to identify these (few)
important parameters, and freeze the parameters of less importance. For this we apply the
approximate ANOVA expansion based on sparse grid quadrature of the coarse reduced model
computed as the first stage of the approach.

With the second step, we can now have a rough estimate the first term on the righthand
side of (4.24). The last stage of the approach is then to build a new and accurate reduced
model for the reduced parameter model.

As mentioned, there are several advantages associated with on the reduced model over
the smaller parameter space. First, since a smaller number of parameters makes the behavior
of the solutions of the problem simpler, we generally need less basis elements to reduce the
error to below a certain tolerance Secondly, a smaller number of parameters makes the a�ne
decomposition (see (2.3)) of a, f , and s shorter, thus reducing both the o✏ine and online
computational costs. This is especially true for the non-a�ne problems, where the numbers
Q

a

, Q
f

, and Q
`

often are large if there is a large number of parameters.

5 Numerical Experiments for RB-ANOVA-RB method

In the following we shall discuss the application of the RB-ANOVA-RB approach for two
di↵erent problem types.

Thermal block problem

In the first experiment, we consider a thermal block problem [12, 15]. Let ⌦ = (0, 1)2, and
assume it is decomposed into 16 subdomains: R

k
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where the di↵usion constant ↵ is assumed to be

↵ =
⇢

↵
k

= 1002µ
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�1, x 2 R
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�1, x 2 R
k

, k = 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16.

where µ = (µ
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, µ
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, · · · , µ
16

) 2 [0, 1]16. Define H1

D

= {v 2 H1 : v|
�

top

= 0}. The goal is to
evaluate the output functional

s(µ) =
Z

�

base

u(µ)ds, (5.26)
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Basic setup - 
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Piecewise constant material

Output of interest -

In the second stage, we shall use the ANOVA expansion of the output functional to identify
important parameters through the sensitivity analysis. To motivate this, let µ⇤ = (µ

1

, · · · , µ
p

)
be a parameter vector in Ap with some parameters µ

i

, i 2 Q ⇢ {1, · · · , p} frozen. Let srb(µ⇤)
be a numerical approximation of s with a partially fixed parameter µ⇤. A simple triangle
inequality shows that

|s(µ)� srb(µ⇤)|  |s(µ)� s(µ⇤)| + |s(µ⇤)� srb(µ⇤)|. (4.24)

If we can guarantee the first term of the righthand side of this inequality to under control then
we only need to approximate the reduced parameter problem.

The goal of the second stage of the RB-ANOVA-RB algorithm is to identify these (few)
important parameters, and freeze the parameters of less importance. For this we apply the
approximate ANOVA expansion based on sparse grid quadrature of the coarse reduced model
computed as the first stage of the approach.
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Heat equation test

We proceed with the following	



‣ Build a coarse RBM over 16 parameters - tol = one 
Need 33 elements	



‣ Perform sensitivity analysis on output using RBM 
Reveals the 1,5,9,13 controls 99% variation	



‣ Build new RBM over 4 parameters	



‣ Compress and develop RBM for important parameters	



where the function u(µ) 2 H1

D

(⌦) is the solution of the following variational problem for the
given µ 2 D,

a(u, v;µ) = f(v) 8v 2 H1

D

(⌦). (5.27)

Here, the bilinear and linear forms are

a(u, v;µ) =
16X

k=1

↵
k

Z

R

k

ru ·rvdx and f(v) =
Z

�

base

ds. (5.28)

Let T be a uniform mesh on ⌦ with 80’401 of nodes (degrees of freedom), and P
1

(K) be the
space of linear polynomials on an element K 2 T . Define our finite element approximation
space

Xfe = {v 2 X : v|
K

2 P
1

(K), 8K 2 T }.

For a given µ, the finite element problem seeks ufe(µ) 2 Xfe, such that

a(ufe(µ), v;µ) = f(v) v 2 Xfe. (5.29)

We use the following functional based relative error estimator,

⌘(µ;W
N

) =
kr(·;µ)k2

X

0

�
h

(µ)
, (5.30)

with the kvk
X

=
qR

⌦

|rv|2dx, then �
h

(µ) = min
k

↵
k

.
As the first stage of the RB-ANOVA-RB, a reduced basis algorithm is computed for the

full 16-parameter problem with the adaptively enriching greedy algorithm [9] with the size of
the train set to be 200, the tolerance to be 1 and a 200000-point safety check. We find that
only 33 basis elements are needed to reduced the error less than 1.

We continue and compute the AVOVA expansion based on sparse Smolyak grid quadratures
described in Section 3.1. The one-dimensional quadrature formula is based on 63 point Gauss-
Patterson rule in [0, 1]. An ANOVA expansion shows that D = 3.81, and S

t

⇡ 0.99, with
t = {1, 5, 9, 13}. Thus, µ

1

, µ
5

, µ
9

, and µ
13

are the 4 most important parameters and their
variation reflects 99% of the variation in the output of interest.

For the third stage of the RB-ANOVA-RB algorithm, the reduced problem only has 4
parameters with

a(u, v;µ) =
X

k2{1,5,9,13}

↵
k

Z

R

k

uvds + a
rest

(u, v), (5.31)

where
a

rest

(u, v) =
X

k2{2,3,4,6,7,8,11,12,14,15,16}

↵
k

(µ⇤
i

)
Z

R

k

rurvdx.

We build reduced bases for this 4-parameter problem with di↵erent tolerance. To measure the
error, we generate 100 random vectors in the full 16-parameter space. Output functionals for
these 100 vectors are computed by finite elements, denoted by s̄fe

i

, i = 1, · · · , 100. For di↵erent
tolerances, the reduced model are generated, and the output functionals are computed for these
100 vectors by the reduced form (5.39), denoted by s̄rb. i = 1, · · · , 100.

Let us denote the relative error

erel

i

=
|s̄fe

i

� s̄rb

i

|
|s̄fe

i

|
, i = 1, . . . , 100.
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We shall compute the relative error in two norms.

e
max

= max
i2{1,··· ,100}

erel

i

and e
ave

=
P

100

i=1

erel

i

100
. (5.32)

The comparison of di↵erent tolerances are presented in Table 1. It is clear from the table that
after having a su�ciently well resolved reduced model, the first term in the righthand side of
(4.24) is dominant. We need only around 20 elements to reduced the relative error to less than
4%, and the a�ne length of a is only 5.

In practice, since it is relative cheap to acquire a smaller tolerance for the reduced parameter
problem, we can over-compute a little to ensure the quality of the reduced bases.

Table 1: Results of RB for the thermal block problem with di↵erent tolerances

tol Number of RB e
max

e
ave

100 16 5.091⇥ 10�2 7.732⇥ 10�3

10 21 3.912⇥ 10�2 7.177⇥ 10�3

1 24 3.900⇥ 10�2 7.192⇥ 10�3

10�1 30 3.893⇥ 10�2 7.190⇥ 10�3

10�2 32 3.892⇥ 10�2 7.190⇥ 10�3

Acoustic horn problem

As a second text consider an acoustic horn problem with 8 parameters [20]. The acoustic

R

Figure 1: The domain of the horn problem. Figure 2: The finite element mesh T of the
horn problem.
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16-d test space



Acoustic horn test

We consider a similar approach for the acoustic horn

8 parameters, describing wall impedance in horn

R
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Figure 2: The finite element mesh T of the
horn problem.
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field is described by time-harmonic Helmholtz equation
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(5.35)

with parameters µ = (µ1, µ2, · · · , µ8) 2 [0, 1]8. The geometry of the problem is depicted in
Figure 1 with terminology identified in Figures 3 and 4. We set R = 12.5, a = 0.5, b = 3,
c = 0.1, d = 5, and l = 5.

The variational formulation of the problem is to find u 2 H1(⌦) such that

a(u, v;µ) = 4i

Z

�
in

vds, 8v 2 H1(⌦). (5.36)
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Combining RB and ANOVA

The model is 
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Total of 8 parameters - boundary impedance
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Functional output - 

The a�ne representation of a(u, v;µ) is

a(u, v;µ) =
8X

i=1

µ
i

a
i

(u, v) + a9(u, v). (5.37)

where

a
i

(u, v) =

Z

�
i

uvds, for i = 1, · · · , 8, (5.38)

and

a9(u, v) = (ru,rv)⌦ � 4(u, v)⌦ + (2i+
1

25
)(u, v)�

out

+ 2i(u, v)�
in

. (5.39)

We choose the output of interest as

s(µ) = `(u) = real(

Z

�
in

uds). (5.40)

Let the finite element space be Xfe = {v 2 H ‘(⌦) : v|
K

2 P1(K), 8K 2 T }. The mesh T is
illustrated in Figure 2 with the degrees of freedom of the finite element grid being 140438. Let
r
N

be the vector representation of the residual f(v) � a(urb
N

, v;µ), 8v 2 Xfe, and we use a
simple residual error estimator in the reduced basis, that is,

⌘
N

= kr
N

k
`

2

with k · k
`

2 be the standard Euclidean `2 norm.
A reduced model is computed for the full 8-parameter problem with the adaptively enriching

greedy algorithm [4] using the size of train set to be 500, the tolerance to be 0.001 and a 50000-
point safety check. The analysis finds that only 31 reduced basis elements are required.

This is utilized to compute an AVOVA expansion based on sparse Smolyak grid quadratures
described in Section 3.1. The one-dimensional quadrature formula is based on a 63-point
Gauss-Patterson in [0, 1]. The ANOVA expansion shows that S3 = 0.4321, S5 = 0.4314, and
S35 = 0.1256, and D = 3.08 ⇥ 10�4. Thus S3 + S5 + S35 = 0.9891. Though obviously, the
numbers are not very accurate, since in theory, S3 should equal S5 due to symmetry. However,
it clearly shows that the µ3 and µ5 are the most important parameters. We also find that µ⇤

i

according (4.26) for µ1, µ2, µ4, µ6, µ7, and µ8 and can thus be frozen without impacting the
accuracy of the output of interest.

Finally, we perform the third step of the RAR algorithm. The new problem now has only
two parameters with

a(u, v;µ) = µ3

Z

�3

uvds+ µ5

Z

�5

uvds+ a
rest

(u, v), (5.41)

where
a
rest

(u, v) =
X

i2{1,2,4,,6,7,8}

µ⇤
i

a
i

(u, v) + a9(u, v)

with a
i

defined in (5.38) and (5.39).
We build a reduced model for the 2-parameter problem with di↵erent tolerance. To quantify

the error, we generate 100 random vectors in the full 8-parameter space. Output functionals
for these 100 vectors are computed by finite elements, denoted by s̄fe

i

, i = 1, · · · , 100. For
di↵erent tolerances, reduced bases are generated, and the output functionals are computed for
these 100 vectors by the reduced form (5.41), denoted by s̄rb. i = 1, · · · , 100. The error e

max

and e
ave

are defined same as those in (5.34).
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Combining RB and ANOVA

The approach is as follows

‣ Build coarse RB with high tolerance	



‣ Tolerance of 10E-3 leads to 31 RB for 8 parameter 
problem.	



‣ Use this coarse RB to compute ANOVA expansion of 
output and compute sensitivity.	



‣ Results are  
 
 
 

‣ Similar results with tolerance of 1E-2 - 22 RB
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Combining RB and ANOVA

Two boundaries are 
responsible for >99% of 
all variation parameters.

R

Figure 1: The domain of the horn problem.
Figure 2: The finite element mesh T of the
horn problem.

 d

2a 2b

l

c

Figure 3: Geometry description of the do-
main.
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Figure 4: Boundaries of the domain.

field is described by time-harmonic Helmholtz equation
8
>>>>>>>>>><

>>>>>>>>>>:

�u+ 4u = 0 in ⌦,

(2i+
1

25
)u+

@u

@n
= 0 on �

out

,

2iu+
@u

@n
= 4i on �

in

,

iµ
j

u+
@u

@n
= 0 on �

j

, j = 1, · · · , 8,
@u

@n
= 0 on other boundaries.

(5.35)

with parameters µ = (µ1, µ2, · · · , µ8) 2 [0, 1]8. The geometry of the problem is depicted in
Figure 1 with terminology identified in Figures 3 and 4. We set R = 12.5, a = 0.5, b = 3,
c = 0.1, d = 5, and l = 5.

The variational formulation of the problem is to find u 2 H1(⌦) such that

a(u, v;µ) = 4i

Z

�
in

vds, 8v 2 H1(⌦). (5.36)
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Let the finite element space be Xfe = {v 2 H ‘(⌦) : v|
K

2 P
1

(K),8K 2 T }. The mesh T is
illustrated in Figure 2 with the degrees of freedom of the finite element grid being 140438. Let
r

N

be the vector representation of the residual f(v) � a(urb

N

, v;µ), 8v 2 Xfe, and we use a
simple residual error estimator in the reduced basis, that is,

⌘
N

= kr
N

k
`

2

with k · k
`

2

be the standard Euclidean `2 norm.
A reduced model is computed for the full 8-parameter problem with the adaptively enriching

greedy algorithm [9] using the size of train set to be 500, the tolerance to be 0.001 and a 50000-
point safety check. The analysis finds that only 31 reduced basis elements are required.

This is utilized to compute an AVOVA expansion based on sparse Smolyak grid quadratures
described in Section 3.1. The one-dimensional quadrature formula is based on a 63-point
Gauss-Patterson in [0, 1]. The ANOVA expansion shows that S

3

= 0.4321, S
5

= 0.4314, and
S

35

= 0.1256, and D = 3.08 ⇥ 10�4. Thus S
3

+ S
5

+ S
35

= 0.9891. Though obviously, the
numbers are not very accurate, since in theory, S

3

should equal S
5

due to symmetry. However,
it clearly shows that the µ

3

and µ
5

are the most important parameters. We also find that µ⇤
i

according (??) for µ
1

, µ
2

, µ
4

, µ
6

, µ
7

, and µ
8

and can thus be frozen without impacting the
accuracy of the output of interest.

Finally, we perform the third step of the RB-ANOVA-RB algorithm. The new problem
now has only two parameters with

a(u, v;µ) = µ
3

Z

�

3

uvds + µ
5

Z

�

5

uvds + a
rest

(u, v), (5.39)

where
a

rest

(u, v) =
X

i2{1,2,4,,6,7,8}

µ⇤
i

a
i

(u, v) + a
9

(u, v)

with a
i

defined in (5.36) and (5.37).
We build a reduced model for the 2-parameter problem with di↵erent tolerance. To quantify

the error, we generate 100 random vectors in the full 8-parameter space. Output functionals
for these 100 vectors are computed by finite elements, denoted by s̄fe

i

, i = 1, · · · , 100. For
di↵erent tolerances, reduced bases are generated, and the output functionals are computed for
these 100 vectors by the reduced form (5.39), denoted by s̄rb. i = 1, · · · , 100. The error e

max

and e
ave

are defined same as those in (5.32).
The comparison for di↵erent tolerances are presented in Table 2. It is clear from the table

that after having ensured a su�ciently rich reduced model, the first term in the righthand side
of (4.24) is dominant. We need only around 10 basis elements to reduce the relative error to
near 1%, and the a�ne length of a is only 3.

Table 2: Results of reduced model for the horn problem with di↵erent tolerances

tol Number of RB e
max

e
ave

10�2 6 1.172⇥ 10�2 2.404⇥ 10�3

10�3 11 1.214⇥ 10�2 1.516⇥ 10�3

10�4 15 1.1213⇥ 10�2 1.516⇥ 10�3

10�5 17 1.1213⇥ 10�2 1.516⇥ 10�3
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Many object problems

Exploring related ideas for many body scattering

‣ Build an RB for each element  

‣ Build an RB for the interaction operation  

‣ Combine through iteration to enable rapid 
modeling of complex scatterer configurations 

This is not a reduced basis method is the classic sense	


!
.. but using RB ideas allows us to solve problems that are 
otherwise very hard to approach

.. and dramatically reduces number of parameters
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Multiple scattering problems

⇤ � [0, 2⇥]; k = 3, � = ⇥/2

ka = 1; kd = 4

Full RCS computed in less than 	


3 minutes for 36 spheres

RB for single scatterer has 5 parameters	


(frequency(1), angle (2), polarization (2))	


!
RB for interaction operator has 8 parameters	


(frequency(1), relative size(1), distance (2), 	


rotation (2), polarization (2))	


!
Full scattering result computed with iteration
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Parametrized Electromagnetic Scattering
(time-harmonic ansatz)

Ei(x;µ) = �p eikx·ŝ(�,⇥)

where µ = (k, �,⇥,p) ⇥ D � R7 is a vector of parameters:
1) k: wave number
2) ŝ(�, ⇥): wave direction in spherical coordinates
3) p: polarization (is complex and lies in the plane perpendicular to ŝ(�, ⇥))

� = R3\�i

� = �⇥i

n

(perfect conductor)

�

�
�i�R3

k=2k=4k=5



Multiple scattering problem

Parametrized Electromagnetic Scattering
(time-harmonic ansatz)

Ei(x;µ) = �p eikx·ŝ(�,⇥)

where µ = (k, �,⇥,p) ⇥ D � R7 is a vector of parameters:
1) k: wave number
2) ŝ(�, ⇥): wave direction in spherical coordinates
3) p: polarization (is complex and lies in the plane perpendicular to ŝ(�, ⇥))
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distributed within [-1,1]
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Figure 12: (Example 6 .) A stochastic scattering configuration with in which the vertical location of the center cavity is assumed to be specified by
a continuous uniformly distributed distribution in [�1, 1].
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Remarks

‣ Multi element EIM for improved online performance	



‣ Sampling techniques to reduce offline cost	



‣ Parametric compression through ANOVA expansions 	



‣ Problem splitting and iteration

Combining these techniques allows for the practical 
use of RBM for high-dimensional problems

A few ideas on how to deal with the high-d problem



Thank you


