ModRed 2013, December 11, 2013

Uncertainty Quantification for order reduced Maxwell's equations

Peter Benner and Judith Schneider

Max Planck Institute for Dynamics of Complex Technical Systems Sandtorstr. 1, 39106 Magdeburg, Germany

Motivation

- Expensive production of semiconductor prototypes
- ⇒ Simulation necessary for design process
 - High number of circuit elements
- \hookrightarrow High system dimension ($\mathcal{O}(10^6)$)
- ⇒ Model Order Reduction (MOR)

Wafer from 2 to 8 inches. (Source: wikipedia.org)

Motivation

- Ongoing miniaturization
- Increase of working frequencies
- \Rightarrow Parasitic effects like crosstalk
 - Uncertain materials and geometries
- \hookrightarrow Uncertainties in state and output
- \Rightarrow Uncertainty Quantification (UQ)

Maxwell's Equations

Ø

On $G \subset \mathbb{R}^3$ we consider

$$\begin{array}{rcl} \partial_t(\epsilon \mathbf{E}) &=& \nabla \times \mathbf{H} - \sigma \mathbf{E} - \mathbf{J}, \\ \partial_t(\mu \mathbf{H}) &=& -\nabla \times \mathbf{E}, \\ \nabla \cdot (\epsilon \mathbf{E}) &=& \rho, \\ \nabla \cdot (\mu \mathbf{H}) &=& 0, \end{array}$$

with

- electric field intensity E,
- magnetic field intensity H,
- charge density ρ ,
- impressed current source J,
- permittivity $\epsilon = \epsilon_r \cdot \epsilon_0$,
- permeability $\mu = \mu_r \cdot \mu_0$,
- electrical conductivity σ.

Maxwell's Equations

On $G \subset \mathbb{R}^3$ we consider

$$\begin{array}{rcl} \partial_t(\epsilon \mathbf{E}) &=& \nabla \times \mathbf{H} - \sigma \mathbf{E} - \mathbf{J}, \\ \partial_t(\mu \mathbf{H}) &=& -\nabla \times \mathbf{E}, \\ \nabla \cdot (\epsilon \mathbf{E}) &=& \rho, \\ \nabla \cdot (\mu \mathbf{H}) &=& 0, \end{array}$$

with

- electric field intensity E,
- magnetic field intensity H,
- charge density ρ ,
- impressed current source J,
- permittivity $\epsilon = \epsilon_r \cdot \epsilon_0$,
- permeability $\mu = \mu_r \cdot \mu_0$,
- electrical conductivity σ.

material dependent

• Consider time-harmonic Maxwell's equations

$$\nabla \times ((\mu_0 \mu_r)^{-1} \nabla \times \mathbf{E}) + i \, \omega \, \sigma \, \mathbf{E} - \omega^2 \, \epsilon_0 \epsilon_r \, \mathbf{E} = i \, \omega \, \mathbf{J}$$

with uncertain material parameters μ_r , σ , and ϵ_r .

• Parameters need to be positive \Rightarrow Use log-normal distribution.

• Consider time-harmonic Maxwell's equations

$$abla imes ((\mu_0 \mu_r)^{-1} \,
abla imes \mathbf{E}) + i \, \omega \, \sigma \, \mathbf{E} - \omega^2 \, \epsilon_0 \epsilon_r \, \mathbf{E} = i \, \omega \, \mathbf{J}$$

with uncertain material parameters μ_r , σ , and ϵ_r .

- Parameters need to be positive \Rightarrow Use log-normal distribution.
- Task: Approximate expectation value and standard deviation of the quantities of interest.
- \Rightarrow Monte Carlo, stochastic collocation

• Consider time-harmonic Maxwell's equations

$$\nabla \times ((\mu_0 \mu_r)^{-1} \nabla \times \mathbf{E}) + i \, \omega \, \sigma \, \mathbf{E} - \omega^2 \, \epsilon_0 \epsilon_r \, \mathbf{E} = i \, \omega \, \mathbf{J}$$

with uncertain material parameters μ_r , σ , and ϵ_r .

- Parameters need to be positive \Rightarrow Use log-normal distribution.
- Task: Approximate expectation value and standard deviation of the quantities of interest.
- \Rightarrow Monte Carlo, stochastic collocation
 - Expensive for many evaluations of high dimensional systems.
- \Rightarrow MOR

Coplanar Waveguide

- Perfect electric conductor (PEC) boundary conditions.
- Two different materials with a different physical behavior.
- Five uncertain parameters ϵ_r^s , ϵ_r^a , μ_r , σ^s , σ^a .

Max Planck Institute Magdeburg

Discretized Time-Harmonic Maxwell's Equations

To obtain an affine form of the PDE, the system is rewritten

$$\nabla \times ((\mu_r \mu_0)^{-1} \nabla \times \mathbf{E}) + i\omega (\sigma^{\mathfrak{s}} \mathbb{1}_{substrate} + \sigma^{\mathfrak{a}} \mathbb{1}_{air}) \mathbf{E} - \omega^2 \epsilon_0 (\epsilon_r^{\mathfrak{s}} \mathbb{1}_{substrate} + \epsilon_r^{\mathfrak{a}} \mathbb{1}_{air}) \mathbf{E} = i\omega \mathbf{J}.$$

Discretized Time-Harmonic Maxwell's Equations

To obtain an affine form of the PDE, the system is rewritten

$$\nabla \times ((\mu_r \mu_0)^{-1} \nabla \times \mathbf{E}) + i\omega (\sigma^{\mathfrak{s}} \mathbb{1}_{substrate} + \sigma^{\mathfrak{a}} \mathbb{1}_{air}) \mathbf{E} -\omega^2 \epsilon_0 (\epsilon_r^{\mathfrak{s}} \mathbb{1}_{substrate} + \epsilon_r^{\mathfrak{a}} \mathbb{1}_{air}) \mathbf{E} = i\omega \mathbf{J}.$$

Affine discretized system on G_h (18755 dofs)

$$\mu_r A_{\mu_0} \mathbf{e} + i\omega (\sigma^s A^s + \sigma^a A^a) \mathbf{e} - \omega^2 (\epsilon_r^s A_{\epsilon_0}^s + \epsilon_r^a A_{\epsilon_0}^a) \mathbf{e} = Bu,$$

$$y = C \mathbf{e},$$

with

- current *u*, induced at the discrete port,
- output y, the integral over the voltage along the port,
- associated matrices B, C.

Stochastic Collocation

Given

- a probability space $(\Omega, \mathcal{F}, \mathcal{P})$,
- a square integrable random variable Y : Ω → Γ, with probability density function f
- an arbitrary function $g: \Gamma \to \mathbb{C}^d$ for a natural number d.

Idea: Approximate expectation value $\mathbb{E}(g(Y))$, by quadrature rule

$$\mathbb{E}(g(Y)) = \int_{\Gamma} g(x)f(x)dx \approx \sum_{i=1}^{n} g(\xi_i)w_i,$$

with

- realization (ξ_1, \ldots, ξ_n) , later called sample points $\{\xi_i\}_{i=1}^n$,
- weights $\{w_i\}_{i=1}^n$,

both determined by the probability density function f.

Application to the Coplanar Waveguide

• Use stochastic collocation for $g = \mathbf{e}$ and g = y

$$\mathbb{E}(\mathbf{e}) \approx \sum_{i=1}^{n} \mathbf{e}(\boldsymbol{\xi}^{i}) w_{i}, \quad std(\mathbf{e}) \approx \sqrt{\sum_{i=1}^{n} |\mathbf{e}(\boldsymbol{\xi}^{i})|^{2} w_{i} - |\mathbb{E}(\mathbf{e})|^{2}},$$
$$\mathbb{E}(y) \approx \sum_{i=1}^{n} y(\boldsymbol{\xi}^{i}) w_{i}, \quad std(y) \approx \sqrt{\sum_{i=1}^{n} |y(\boldsymbol{\xi}^{i})|^{2} w_{i} - |\mathbb{E}(y)|^{2}}.$$

Application to the Coplanar Waveguide

• Use stochastic collocation for $g = \mathbf{e}$ and g = y

$$\mathbb{E}(\mathbf{e}) \approx \sum_{i=1}^{n} \mathbf{e}(\boldsymbol{\xi}^{i}) w_{i}, \quad std(\mathbf{e}) \approx \sqrt{\sum_{i=1}^{n} |\mathbf{e}(\boldsymbol{\xi}^{i})|^{2} w_{i} - |\mathbb{E}(\mathbf{e})|^{2}},$$
$$\mathbb{E}(y) \approx \sum_{i=1}^{n} y(\boldsymbol{\xi}^{i}) w_{i}, \quad std(y) \approx \sqrt{\sum_{i=1}^{n} |y(\boldsymbol{\xi}^{i})|^{2} w_{i} - |\mathbb{E}(y)|^{2}}.$$

Solve the discretized time-harmonic Maxwell's equations

$$\begin{aligned} \xi_3^i A_{\mu_0} \mathbf{e} + i\omega (\xi_4^i A^s + \xi_5^i A^a) \mathbf{e} - \omega^2 (\xi_1^i A^s_{\epsilon_0} + \xi_2^i A^a_{\epsilon_0}) \mathbf{e} &= Bu, \\ y &= C \mathbf{e}, \end{aligned}$$

for sampling vectors $\boldsymbol{\xi}^i = (\xi_1^i, \dots, \xi_5^i)^T$, $i = 1, \dots, n$.

Stroud Points

- 2N normally distributed interpolation points for system with N parameters.
- *k*-th component $x_k^i = \boldsymbol{\sigma}_k \cdot z_k^i + \boldsymbol{\mu}_k$, where

$$z_k^{2r-1} = \sqrt{2} \cos\left(\frac{(2r-1)k\pi}{N}\right),$$
$$z_k^{2r} = \sqrt{2} \sin\left(\frac{(2r-1)k\pi}{N}\right),$$

- for $r = 1, 2, \dots, \lfloor N/2 \rfloor$. If *N* odd, then $z_k^N = (-1)^k$.
- No refinement possible.

Hermite-Genz-Keister Sparse Grids

- Points are
 - normally distributed,
 - computed on infinite regions,
 - refinable,
 - and nested.

 SGMGA MATLAB[®] library.

Monte Carlo (MC) Simulation

- Independent from the number of parameters.
- Slow convergence: Need 1 million sample points for good approximation.
- Computation time for our system (18755 dofs): 10 days (on a 64-bit server with CPU type Intel[®]Xeon[®]X5650 @2.67GHz, with 2 CPUs, 12 Cores (6 Cores per CPU) and 48 GB main memory available).
- \Rightarrow Combination with MOR.

Monte Carlo (MC) Simulation

- Independent from the number of parameters.
- Slow convergence: Need 1 million sample points for good approximation.
- Computation time for our system (18755 dofs): 10 days (on a 64-bit server with CPU type Intel[®]Xeon[®]X5650 @2.67GHz, with 2 CPUs, 12 Cores (6 Cores per CPU) and 48 GB main memory available).
- \Rightarrow Combination with MOR.

Idea: Use a reduced order model for the (various) expensive system evaluations $\mathbf{e}(\boldsymbol{\xi}^i)$ to save computation time. We use Proper Orthogonal Decomposition (POD).

Coplanar Waveguide

- Discretized in FEniCS by Nédélec finite elements \rightarrow 18755 dofs.
- Induced current u = 1 Ampère, working frequency $\omega = 0.6 \cdot 10^9$ Hertz.

Coplanar Waveguide

- Discretized in FEniCS by Nédélec finite elements \rightarrow 18755 dofs.
- Induced current u=1 Ampère, working frequency $\omega=0.6\cdot 10^9$ Hertz.
- Parameter vector $\boldsymbol{\xi}$ is log-normally distributed $\sim \mathcal{LN}(\boldsymbol{\mu}, \boldsymbol{\sigma}^2)$

j	ξj	$\mathbb{E}(\xi_j)$	std(<mark>ξ</mark> j)	μ_j	σ_j
1	ϵ_r^1	4.40	10 ⁻²	1.4816	0.0023
2	ϵ_r^2	1.07	10 ⁻²	0.0676	0.0093
3	μ_r	1.00	10 ⁻²	0.0000	0.0100
4	σ^1	0.02	10 ⁻⁴	-3.9120	0.0005
5	σ^2	0.01	10 ⁻⁴	-4.6052	0.0100

Singular Value Decay for POD with 3⁵ **snapshots**

Overview

Affine discretized time-harmonic Maxwell's equations

$$\mu_r A_{\mu_0} \mathbf{e} + i\omega (\sigma^s A^s + \sigma^a A^a) \mathbf{e} - \omega^2 (\epsilon_r^s A_{\epsilon_0}^s + \epsilon_r^a A_{\epsilon_0}^a) \mathbf{e} = Bu,$$

$$y = C \mathbf{e}.$$

Find: Statistic quantities of **e** and *y*. **Methods:**

- MC for full model with 10^6 sample points \rightarrow reference solution.
- Stochastic collocation for full model with *n* sample points computed via
 - Stroud rule (n = 10),
 - HGK sparse grids (n = 11, 81).
- MC and stochastic collocation for POD-reduced model of dimension 10.

Error computation

Compute the following errors for all methods $(\mathbf{x} \in G_h)$

$$err_{\mathbb{E}(\mathbf{e})}^{rel} := \left| \frac{\mathbb{E}(\mathbf{e}(\mathbf{x})) - \mathbb{E}_{MC}(\mathbf{e}(\mathbf{x}))}{\mathbb{E}_{MC}(\mathbf{e}(\mathbf{x}))} \right|,$$

$$err_{std(\mathbf{e})}^{rel} := \left| \frac{std(\mathbf{e}(\mathbf{x})) - std_{MC}(\mathbf{e}(\mathbf{x}))}{std_{MC}(\mathbf{e}(\mathbf{x}))} \right|,$$

$$err_{\mathbb{E}(y)}^{rel} := \left| \frac{\mathbb{E}(y) - \mathbb{E}_{MC}(y)}{\mathbb{E}_{MC}(y)} \right|,$$

$$err_{std(y)}^{rel} := \left| \frac{std(y) - std_{MC}(y)}{std_{MC}(y)} \right|.$$

Errors for e

Method	$\ \textit{err}^{\textit{rel}}_{\mathbb{E}(\mathbf{e})}\ _2$	$\ \mathit{err}^{\mathit{rel}}_{\mathbb{E}(\mathbf{e})} \ _\infty$	$\ err_{std(\mathbf{e})}^{rel}\ _2$	$\ \textit{err}^{\textit{rel}}_{\textit{std}(\mathbf{e})}\ _{\infty}$
Stroud	$1.13 \cdot 10^{-3}$	$6.69 \cdot 10^{-5}$	$7.12 \cdot 10^{-2}$	$1.06 \cdot 10^{-3}$
HGK 1	$1.13 \cdot 10^{-3}$	$6.69\cdot 10^{-5}$	$7.64 \cdot 10^{-2}$	$1.11 \cdot 10^{-3}$
HGK 2	$1.13 \cdot 10^{-3}$	$6.69 \cdot 10^{-5}$	$7.55 \cdot 10^{-2}$	$1.10 \cdot 10^{-3}$
MC-POD	$8.79 \cdot 10^{-8}$	$7.35 \cdot 10^{-8}$	$1.83 \cdot 10^{-7}$	$3.04 \cdot 10^{-8}$
Stroud-POD	$1.13 \cdot 10^{-3}$	$6.69\cdot 10^{-5}$	$7.12 \cdot 10^{-2}$	$1.06 \cdot 10^{-3}$
HGK 1-POD	$1.13 \cdot 10^{-3}$	$6.69\cdot 10^{-5}$	$7.64 \cdot 10^{-2}$	$1.11 \cdot 10^{-3}$
HGK 2-POD	$1.13 \cdot 10^{-3}$	$6.69 \cdot 10^{-5}$	$7.55 \cdot 10^{-2}$	$1.10 \cdot 10^{-3}$

Motivation

Error plots for $\mathbb{E}(\mathbf{e})$

(a) $err_{\mathbb{E}(e)}^{rel}$ for Stroud collocation

(b) $err_{\mathbb{E}(e)}^{rel}$ for MC-POD

Errors for *y*

Method	$\textit{err}^{\textit{rel}}_{\mathbb{E}(y)}$	$err_{std(y)}^{rel}$
Stroud	$8.76\cdot 10^{-6}$	$4.03 \cdot 10^{-4}$
HGK 1	$8.76\cdot 10^{-6}$	$4.51\cdot 10^{-4}$
HGK 2	$8.76\cdot 10^{-6}$	$4.52 \cdot 10^{-4}$
MC-POD	$6.96\cdot10^{-12}$	$4.10\cdot 10^{-11}$
Stroud-POD	$8.76\cdot 10^{-6}$	$4.03 \cdot 10^{-4}$
HGK 1-POD	$8.76\cdot 10^{-6}$	$4.51\cdot 10^{-4}$
HGK 2-POD	$8.76\cdot 10^{-6}$	$4.52 \cdot 10^{-4}$

Time Comparison

Computation time for the POD 10: 4 minutes and 35 seconds.

$Method \setminus Model$	FOM (18755 dofs)	ROM (10 dofs)
Stroud ($n = 10$)	00 : 00 : 00 : 13	00 : 00 : 00 : 04
HGK 1 ($n = 11$)	00 : 00 : 00 : 14	00 : 00 : 00 : 04
HGK 2 (<i>n</i> = 81)	00 : 00 : 01 : 15	00 : 00 : 00 : 04
MC $(n = 10^{6})$	10 : 06 : 58 : 34	00 : 00 : 07 : 44

Table: Computation time in *days* : *hours* : *minutes* : *seconds*.

Computations are done on a 64-bit server with CPU type Intel[®]Xeon[®]X5650 (22.67GHz, with 2 CPUs, 12 Cores (6 Cores per CPU) and 48 GB main memory available.

Conclusion

- Stroud points and HGK 1 sparse grids lead to comparable good results.
- MC for the POD-reduced system yields even better results but is also more expensive.
- Combining collocation and POD, the collocation error is the dominant one.
- For small examples like the coplanar waveguide, a combination of POD and collocation does not save time.

Outlook

- Higher dimensional examples.
- Geometric parameters.

References

Bagci, H., Yücel, C., Hesthaven, J. S., Michielssen, E.: A Fast Stroud-Based Collocation Method for Statistically Characterizing EMI/EMC Phenomena on Complex Platforms.

IEEE Transactions on Electromagnetic Compatibility, **51**(2), 301–311, (2009)

Genz, A., Keister, B. D.: Fully symmetric interpolatory rules for multiple integrals over infinite regions with gaussian weight.

Journal of Computational and Applied Mathematics, 71, 299-309, (1996)

Stroud, A. H.: Remarks on the Disposition of Points in Numerical Integration Formulas.

Mathematical Tables and Other Aids to Computation, 11(60), 257–261, (1957)

 Benner, P., Schneider, J.: Uncertainty Quantification for Maxwell's Equations Using Stochastic Collocation and Model Order Reduction.
 MPI Magdeburg Preprint 13-19 available at www.mpi-magdeburg.mpg.de/preprints/2013/19/, (2013)