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Eddy current

brakeHigh voltage

insulator

50-60 Hz

High voltage bushing

50-60 Hz

Slowly Varying Electromagnetic Fields

Transformator

50-60 Hz
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Input Modeling Simulation Output
Uncertain
Input

Stochastic
Modeling

Multiple 
Simulations

Uncertain
Output

Motivation: Simulation Chain

cf. Ulrich Römer et al.: A First Order k-th Moment Method for the Nonlinear Eddy Current Problem with Material Uncertainties
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Slowly Varying Field Approximations
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Neglecting inductive effects:

Magneto-Quasistatic

MQS
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
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Neglecting capacitive effects:

Electro-Quasistatic

EQS

 Initial-boundary problems in time domain

Applied to Maxwell equations
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Magnetic vector potential formulation

Quasistatic Field Approximation
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Applying spatial discretizations (FEM, FIT,…)

Magneto-QuasistaticElectro-Quasistatic

State-of-the-Art
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Two Solution Strategies:

• „Brute Force Approach“      Faster Solvers: 

ManyCore-/GPU-computing, 

improved algebraic system solvers,

novel formulations,…

• „Condensate the Problem“  Equivalent circuit models,

Model Order Reduction
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Applying spatial discretization (FEM, FIT,…)

Magneto-QuasistaticsElectro-Quasistatics

State-of-the-Art
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State-of-the-Art in Model Order Reduction for Quasistatics:

• Albunni et al., 2010: Trajectory piecewise linearization approach applied

for non-linear MQS problem coupled to mechnically moving components.

• Sato, Igarashi, CEFC 2012: Eddy current problem reduced by a snapshot

approach.

• Henneron, Clénet, EMF 2013 / COMPUMAG 2013: Non-linear

MQS-circuit coupled problem by modified POD technique

(DEIM, Discrete Empirical Interpolation Method)
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• Application of Newton‘s method

• Linear systems are solved

repeatedly

Time Discretization

• Time discretization yields a nonlinear system
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Typically:

Large constant block

After spatial discretization (FEM, FIT,…) 
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Applying spatial discretization (FEM, FIT,…)

Magneto-QuasistaticsElectro-Quasistatics
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Split systems into conductive (1) and non-conductive (2) parts.

Only nonlinear conductive part

has relevant conductivity.

Only conductive part has non-

linear reluctance. 

System Sub-Structuring
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Stiff nonlinear ODE DAE

 CEFC 2012, Oita  IGTE 2010, Graz
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Proper Orthogonal Decomposition POD 

Assemble system dynamics (solutions „snapshots“)                     in 

Model Order Reduction

( )t

x x

1[ ,..., ]pX x x „Snapshot matrix“ of time step solutions
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Singular value decomposition (SVD) 
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Selecting the reduced basis („How many SVs should be selected?“)
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Subspace Reduction 1

Representation of essential directions where problem dynamic occurs:

Model Order Reduction

1 = , , r

r
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System projection
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Subspace reduction ( nodes in non-conductive / linear domain (2))
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Subdomain reduction for the MQS formulation
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Subspace Reduction 2

Subdomain reduction for the EQS formulation

Model Order Reduction
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Matrix assembly / projection only once before time loop!
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Use POD…

…, but only for the constant matrix subproblem
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MQS Example

Transformer Model:

7713 nodes:

3363 in linear 

subdomain

Factor 100

Subspace reduction leads to

acceptable results in 

magnetic flux

Transient sinus

excitation 50 Hz

Speed-Up:

MQS/MOR ~1.6

 Here: Solution process is

dominated by the nonlinear effects
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Challenges

• A single simulation is

computationally heavy

• Uncertainty

Quantification requires

thousands of simulations

• but: only a few nonlinear

degrees of freedom

 MOR
R. Abd-Rahman, A. Haddad, N. Harid, and H. Griffiths. 

“Stress control on polymeric outdoor insu- lators using Zinc

oxide microvaristor composites”. 

In: IEEE Transactions on Dielectrics and Electrical Insulation

19.2 (2012), pp. 705–713. issn: 1070-9878. 

doi: 10.1109/TDEI.2012.6180266.

708  R. Abd-Rahman et al.: Stress Control on Polymeric Outdoor Insulators Using Zinc Oxide Microvaristor Composites 

for the polymeric insulators and other HV applications that 

operate at power frequency of 50-60 Hz. A further 

approximation is made by neglecting the induced current from 

magnetic and electric field coupling. 

The 2D computer model, shown in Figure 5a, is assigned 

with the material properties and boundary conditions 

described above. The mesh elements in the region of interest 

along the leakage path are manually refined to enhance 

computation accuracy. The representation of the insulator and 

surrounding air medium is shown in Figure 5b. In the model, 

the air region surrounding the insulator is made large enough 

to minimise the effect on the distribution of potential near the 

electrodes and along the insulator profile. The software allows 

natural boundary conditions to be applied to the outer edges of 

the air region, and hence are assigned with “electrical 

insulated” boundary conditions which provide isolation from 

external current source.   

The simulated model adopted in this work is an idealised 

configuration for the outdoor insulator but is easily 

reproducible in the laboratory. It is expected that this 

configuration would produce the most non-uniform 

distribution around the terminal electrodes and, hence, would 

represent the worst case. The intention is to demonstrate the 

benefits of the proposed grading for a simple geometry rather 

than study a specific insulator installation. Application to the 

numerous practical outdoor insulator configurations with the 

presence of adjacent equipment and structures would 

introduce distortions to both potential and electric field 

distributions when no grading is used. In this case, it is 

expected that adding the grading would help redistribute the 

field accordingly.  

 

3.4 SELECTION OF MICROVARISTOR 

SWITCHING THRESHOLD FIELD  

The conductivity of a microvaristor-based material that 

exhibits a highly nonlinear behaviour can be represented by an 

exponential function, as given in equation (1). The constant  

determines the rate of change in conductivity during the 

transition state from an insulator to conductor. 

(E) = 0 exp ( |E|)                 (1) 

Electrical stress control on polymeric insulators can only be 

successfully realised by using microvaristors with suitable 

switching properties within the limits of the electric field 

appearing along the insulator under the applied voltage 

conditions. The electric field along the core-silicone interface, 

shown in Figure 6 is utilised to identify a suitable switching 

threshold for the insulator.  

According to Figure 6, the switching threshold of the 

microvaristors should be lower than 4 kV/cm to allow the 

initiation of microvaristor conduction and, hence, trigger its 

grading action. On the other hand, a high-enough threshold 

value needs to be chosen so that the switching level is not too 

low, as this may result in constant current conduction and 

overstress the middle part of the insulator, where no grading 

material is used.  

Figure 7 shows three examples of the microvaristor material 

conductivity-electric field characteristic, constructed in this 

work in order to optimise the grading effect on the electric field 

distribution along the insulator surface. Each curve is designated 

by its switching threshold field, E0, above which a significant 

conduction increase occurs for a small change in electric field 

magnitude. The objective of this investigation has been to 

specify the characteristic of the microvaristor material needed 

for particular applications. In this way, tailor-made compounds 

will be ordered/fabricated for specific requirements. 

 

 

4 EFFECT OF MICROVARISTOR 

CHARACTERISTIC ON FIELD CONTROL 

Computer simulation of dry clean insulators with and 

without grading was carried using the boundary conditions 

above. Figure 8 illustrates the computed equipotentials 

around polymeric insulators, enhanced with microvaristor 

grading exhibiting the characteristics shown in Figure 7. The 

corresponding tangential field profiles along the leakage 

Figure 7.  Proposed microvaristor characteristics with different switching 

threshold at E0.  (1) 0.5 kV/cm, (2) 1.0 kV/cm and (3) 5.0 kV/cm. 
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Figure 6.  Electric field distribution at the interface between core 

and polymeric housing. 
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Figure 5. (a) A 2D insulator model for simulation and (b) FE Mesh 

distribution of insulator and air regions.   
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Uncertainty Quantification

1.5 kV/cm

swp

Material uncertainties: 

• Microvaristors are polymeric

compounds with nonlinear

Zinc Oxide (ZnO) fillers. 

• Switching point determined

by filler concentration.

Microvaristors (ABB)

Switching point (swp) 

variation due to production

process.

Question: 

How is the field effected by

the swp variation?

Uncertainty

Quantification
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 Probability Space:

 Random Parameter (Switching Point):

 Random Process

 Expected Value:

 Variance:

Mathematical Foundations

 
(W,S,m)

  
IE F(t,w)( ) » å

k
w

k
f(t,E

swp

(k) )

  
var F(t,w)( ) »å

k
w

k
f(t,E

swp

(k) )2- IE F(t,w)( )
2

  
F(t,w) := f t,E

swp
(w)( )

  
E

swp
(w)
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 Stochastic Approach: Monte Carlo

–large number n of samples, i.e., full simulations

–Convergence independent of number of variables

–each simulation has equal weight w =1/n

–samples are stochastic, i.e., obtained by random generator

 Deterministic Approch: Quadrature

–efficient for a small number of random variables

–curse of dimensionality

–problematic for many variables

–weights and samples are determined by quadrature rules

e.g. Gauss-Hermite for normally distributed variables

Quadrature vs. Monte Carlo
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Input

Assume that the switching point field strength is a random variable, i.e.,

 m  mean, s  standard deviation

Switching Points of Field are Random Variables

1.5 kV/cm

switching

m =

assumed normal

imperfections up to

3σ = ±0.4 kV/cm
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EQS Example

HV 

terminal

Ground

terminal

Core

Polymeric

housing

Grading

material

Evaluation 

line along

surface.

1.5 kV/cm

swp

3σ ±0.4 kV/cm

Field

variance?

9880 Nodes

8790 in linear subspace

Worst case

scenario
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EQS Example

HV 

terminal

Ground

terminal

Core

Polymeric

housing

Grading

material

Evaluation 

line along

surface.

How to build the snapshot matrix?

reduced subspace dim =30

• Max. & min. values random generator

issued, e.g. 1 kV/cm and 2 kV/cm

• Further full simulation at 1.5 kV/cm

1e-2 accuracy

•  We add further full simulation at 

1.12 kV/cm to further improve accuracy
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EQS Example

HV 

terminal

Ground

terminal

Core

Polymeric

housing

Grading

material

Evaluation 

line along

surface.

How many runs for Monte Carlo?

samples

• Expected value and variance for

evaluation point 8 (4 mm from below)

> 1000 TEQS simulations

required !!!
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EQS-Example

HV 

terminal

Ground

terminal

Core

Polymeric

housing

Grading

material

Evaluation 

line along

surface.

Results

• Snapshot build with full simulations to

four switching points

 dimension of reduced space: 30

• MOR-sim. time*: 167 hours (1-CPU-Core)

• Rel. Error of Expected Value < 1e-3

• Rel. Error of Variance < 5.4e-2

*Uncertainty quantification

full simulations ~250 h

Most likely

scenario (3)
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EQS Example

HV 

terminal

Ground

terminal

Core

Polymeric

housing

Grading

material

Evaluation 

line along

surface.

Results: Field Variance

*Uncertainty quantification

full simulations ~250 h

-- 1,5 kV/cm

-- 1,0 kV/cm

-- 2,0 kV/cm

-- EV +3

-- EV

-- EV -3

Worst case

scenario

Most likely

scenario (3)
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HV 

terminal

Ground

terminal

Core

Polymeric

housing

Grading

material

Evaluation 

line along

surface.

Accuracy of the Results in

the Uncertainty Quantification

0,00

0,01

0,02

0,03

0,04

0,05

Monte Carlo Monte Carlo MOR Collocation MOR

Relative Error

Compared with high accuracy quadrature

Only 30 

evaluations

(Gauß-Hermite)

1000 evaluations

Monte Carlo Monte Carlo 

MOR

Collocation

MOR
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HV 

terminal

Ground

terminal

Core

Polymeric

housing

Grading

material

Evaluation 

line along

surface.

Speed-Up of the Computation in

the Uncertainty Quantification

0

10

20

30

40

50

60

Monte Carlo Monte Carlo MOR Collocation MOR

Speed Up

Snapshot build with full simulations of four

switching points (number of SVD is 30)

Reduction of 

system 

dimension: 

100x

Monte Carlo Monte Carlo 

MOR

Collocation

MOR
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Efficient (non-)linear reduction technique

• Only a few non-linear degrees of freedom determine the

uncertainty

• Model order reduction of the large linear subdomain

Application of linear subspace reduction: Uncertainty Quantification

• Monte Carlo: >1000 parameter-dependent nonlinear TEQS 

simulations required

• Stochastic Collocation: only 30 evaluations necessary (for only

one variable, but: curse of dimensionality!)

Summary
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Thank you

for your attention!
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EQS-Example

HV 

terminal

Ground

terminal

Core

Polymeric

housing

Grading

material

Evaluation 

line along

surface.

Results

• Snapshot build with full simulations to four

switching points

 dimension of reduced space: 30

• MOR-sim. Time* 167 hours (1-CPU-Core)

• Rel. Error of Expected Value < 1e-3

• Rel. Error of Variance < 5.4e-2

*Uncertainty quantification

full simulations ~250 h
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Eddy current

brake

High 

voltage insulator

50-60 Hz

Transformer

50-60 Hz

Motivation: Slowly Varying

Electromagnetic Fields

Electrical

machines

50-60 Hz
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Slowly Varying Field Approximations

  

¶

¶t
B

Neglecting inductive effects:

Magneto-Quasistatic

MQS  

¶

¶t
D

Neglecting capacitive effects:

Electro-Quasistatic

EQS

   

¶

¶t
Ñ× (e Ñf(t))+Ñ× (k (f)Ñf(t)) = 0

    
k

¶

¶t
A(t)+Ñ´ (n ( A)Ñ´ A(t)) =Js(t)

Initial-boundary value problems

Applied to Maxwell equations

Electric scalar potential formulation Magnetic vector potential formulation

Quasistatic Field Approximation
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Applying spatial discretizations (FEM, FIT,…)

Magneto-QuasistaticElectro-Quasistatic

   
M

e

d

dt
f+K

k
f( )f = rhs

Two Solution Strategies:

• „Brute Force Approach“       Faster Solvers: 

Many-core- /GPU-computing,

better alg. solvers/preconditioners,

novel formulations

• „Condensate the Problem“  Equivalent circuit models,

Model Order Reduction

State of the Art

State-of-the-Art: (linear) Model Order Reduction for Quasistatics:

   
Mk

d

dt
a+K n (a)a = j

s



Markus Clemens,  Chair of Electromagnetic Theory, BU Wuppertal  - MODRED 2013, December 11, 2013, MPI Magdeburg

41

Applying spatial discretizations (FEM, FIT,…)

Magneto-QuasistaticElectro-Quasistatic

State of the Art

   

M
11

0

0 0

é

ë

ê
ê

ù

û

ú
ú

d

dt

a
1

a
2

é

ë

ê
ê

ù

û

ú
ú
+

K
11

(a
1
) K

12

K
21

K
22

é

ë

ê
ê

ù

û

ú
ú

a
1

a
2

é

ë

ê
ê

ù

û

ú
ú
=

j
1

j
2

é

ë

ê
ê

ù

û

ú
ú

Split systems into conductive (1) and non-conductive (2) parts.

   

M
11

M
12

M
21

M
22

é

ë

ê
ê

ù

û

ú
ú

d

dt

f
1

f
2

é

ë

ê
ê

ù

û

ú
ú
+

K
11

(f
1
) K

12

K
21

0

é

ë

ê
ê

ù

û

ú
ú

f
1

f
2

é

ë

ê
ê

ù

û

ú
ú
=

b
1

b
2

é

ë

ê
ê

ù

û

ú
ú

Stiff non-linear ODE DAE

Only non-linear conductive part

has relevant conductivity.

Only conductive part has non-

linear reluctivity. 

   
M

e

d

dt
f+K

k
f( )f = rhs

   
Mk

d

dt
a+K n (a)a = j

s
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• Assemble system dynamics (solutions „snapshots“) in    x
a = x(t

a
)

   X = [x1,...,xN ] „Snapshot matrix“ of time step solutions

    
X = USVT =s

1
u

1
v

1

T + +s
p
u

p
v

p

T

• Singular value decomposition (SVD) 

• Selecting the reduced basis (How many SVs should be selected?)

  
s

i
³s

i+1
³ 0

    
I(r ) =

s
1
+ +s

r

s
1
+ +s

r
+s

r+1
+ +s

p

» 1 Þ r
„Relative Information 

Criterion“

   
X - X

r 2
= min

rank(A)£r
X - A

2
=s

r+1
(X) „2-Norm“

    X r
= U

r
SV

r

T =s
1
u

1
v

1

T + +s
r
u

r
v

r

Twith „Low-Rank

Approximation“

Model Order Reduction: POD

Proper Orthogonal Decomposition
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Material Uncertanties: 

• Microvaristors are polymeric

compounds with nonlinear Zinc

Oxide (ZnO) fillers. 

• Switching point determined by

filler concentration.

Microvaristors (ABB)

• Switching point (swp) 

variation due to production

process.

Question: 

• How is the field effected by

the variation of the switching

point?

Uncertainty Quantification

Uncertainty Quatification
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Field variance?

„6 Sigma“ 

HV 

terminal

Ground

terminal

Core

Polymeric

housing

Grading

material

Evaluation 

line along

surface.

Output

quantify the effect to the electric field  calculate

expected value (EV) & variance (VA)

Solution is a Random Field
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HV 

terminal

Ground

terminal

Core

Polymeric

housing

Grading

material

Evaluation 

line along

surface.

reduced subspace dim =30

• Max. & min. values random generator

issued, e.g. 1 kV/cm and 2 kV/cm

• Further full simulation at 1.5 kV/cm

1e-2 accuracy

How to Build the Snapshot Matrix?



Markus Clemens,  Chair of Electromagnetic Theory, BU Wuppertal  - MODRED 2013, December 11, 2013, MPI Magdeburg

48

HV 

terminal

Ground

terminal

Core

Polymeric

housing

Grading

material

Evaluation 

line along

surface.

samples

• Expected value and variance for

evaluation point 8 (4 mm from below)

> 1000 simulations required !

How Many Runs for Monte Carlo?
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Thank you

for your attention!

 please ask questions now

 or write an email: schoeps@gsc.tu-darmstadt.de

 supported by the DFG Excellence Initiative of the German Federal

and State Governments and CL143/10-1


