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Motivation

Motivation

Given a large-scale state-nonlinear control system of the form

o [ K0 = Fx(0) + bu(e),
=), x(0) =%,

with f : R” — R” nonlinear and b,cT€ R", x € R", u,y € R.
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Motivation

Given a large-scale state-nonlinear control system of the form

o [ K0 = Fx(0) + bu(e),
=), x(0) =%,

with f : R” — R” nonlinear and b,cT€ R", x € R", u,y € R.
@ Optimization, control and simulation cannot be done efficiently!

with f : R? 5 R and b, éTe R? x e R*, ue Rand j ~ y € R, A < n.
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Motivation

Outline

@ Quadratic-Bilinear Differential-Algebraic Equations

© Model Reduction via Moment-Matching

© Numerical Examples
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Quadratic-Bilinear Differential-Algebraic Equations

Quadratic-Bilinear DAEs

State-Space Representation

We will consider quadratic-bilinear SISO systems of the form

y = WNE x

where E, A1, N € R"™" A, € Rxn (Hessian tensor), b, cT€ R".
o A large class of nonlinear control-affine systems can be transformed
into the above type of control system.
@ The transformation is exact, but a slight increase of the state
dimension has to be accepted.

@ Input-output behavior can be characterized by generalized transfer
functions.
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Quadratic-Bilinear Differential-Algebraic Equations

Quadratic-Bilinear DAEs

McCormick Relaxation

Let us consider the following nonlinear control system:

xp=exp(—x) - /X2 +1, so=sin(x)+u X=-—x5.
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McCormick Relaxation

Let us consider the following nonlinear control system:
xp=exp(—x) - /X2 +1, so=sin(x)+u X=-—x5.

Introduce additional state variables:

71 :=exp(—x), 2z :=1/x2+1,
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Quadratic-Bilinear DAEs

McCormick Relaxation

Let us consider the following nonlinear control system:
xp=exp(—x) - /X2 +1, so=sin(x)+u X=-—x5.

Introduce additional state variables:

z1:=exp(—x), 2z :=1/x}+1, z3:=sin(x),
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Quadratic-Bilinear DAEs

McCormick Relaxation

Let us consider the following nonlinear control system:
xq=exp(—x) /X2 +1, so=sin(x)+u i=-x3.

Introduce additional state variables:

z1:=exp(—x), 2z :=1/x}+1, z3:=sin(x),

74 = cos(xp), 2zs = X3.

Determine dynamics of the transformed system:
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McCormick Relaxation

Let us consider the following nonlinear control system:
xq=exp(—x) /X2 +1, so=sin(x)+u i=-x3.

Introduce additional state variables:

z1:=exp(—x), 2z :=1/x}+1, z3:=sin(x),

74 = cos(xp), 2zs = X3.

Determine dynamics of the transformed system:

X1 = z1 - 2o,
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Quadratic-Bilinear DAEs

McCormick Relaxation

Let us consider the following nonlinear control system:
xq=exp(—x) /X2 +1, so=sin(x)+u i=-x3.

Introduce additional state variables:

z1:=exp(—x), 2z :=1/x}+1, z3:=sin(x),

74 = cos(xp), 2zs = X3.

Determine dynamics of the transformed system:

X1=271"2, X2=2z3+U,
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Quadratic-Bilinear DAEs

McCormick Relaxation

Let us consider the following nonlinear control system:
xq=exp(—x) /X2 +1, so=sin(x)+u i=-x3.

Introduce additional state variables:

z1:=exp(—x), 2z :=1/x}+1, z3:=sin(x),

74 = cos(xp), 2zs = X3.

Determine dynamics of the transformed system:

. . . 2
X1 =212, Xp=2z3+U, X3=—2Z
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Quadratic-Bilinear DAEs

McCormick Relaxation

Let us consider the following nonlinear control system:
xq=exp(—x) /X2 +1, so=sin(x)+u i=-x3.

Introduce additional state variables:

z1:=exp(—x), 2z :=1/x}+1, z3:=sin(x),

74 = cos(xp), 2zs = X3.

Determine dynamics of the transformed system:

. . . 2
X1 =212, Xp=2z3+U, X3=—2Z

n=-7-(z+u),
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Quadratic-Bilinear DAEs

McCormick Relaxation

Let us consider the following nonlinear control system:
xq=exp(—x) /X2 +1, so=sin(x)+u i=-x3.

Introduce additional state variables:

z1:=exp(—x), 2z :=1/x}+1, z3:=sin(x),

74 = cos(xp), 2zs = X3.

Determine dynamics of the transformed system:

. . . 2
X1=21"2, Xx=2z3tU, X3=—Z
. . 2-X1-21 2
n=-z1-(zzt+u), n=——"="=x "2,

2-22
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Quadratic-Bilinear DAEs

McCormick Relaxation

Let us consider the following nonlinear control system:
xq=exp(—x) /X2 +1, so=sin(x)+u i=-x3.

Introduce additional state variables:

z1:=exp(—x), 2z :=1/x}+1, z3:=sin(x),

74 = cos(xp), 2zs = X3.

Determine dynamics of the transformed system:

. . . 2
X1=21"2, Xx=2z3tU, X3=—Z
. . 2:x1-21°2
n=-z1-(zzt+u), n=——"="=x "2,
2-22
. . 2
=z (zz+u), z2=-2z3-(zz3+u), 0=2z5—x5.
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Quadratic-Bilinear Differential-Algebraic Equations

Quadratic-Bilinear DAEs

System Analysis and Generalized Transfer Functions

Instead of the nonlinear system, we can alternatively solve a sequence of
linear subsystems:

Max Planck Institute Magdeburg T. Breiten, i Model Reduction Based on ized M Matchir 6/13




Quadratic-Bilinear Differential-Algebraic Equations

Quadratic-Bilinear DAEs

System Analysis and Generalized Transfer Functions

Instead of the nonlinear system, we can alternatively solve a sequence of
linear subsystems:

Ex; = Aixy + bu,

Max Planck Institute Magdeburg T. Breiten, i Model Reduction Based on ized M Matchir 6/13




Quadratic-Bilinear Differential-Algebraic Equations

Quadratic-Bilinear DAEs

System Analysis and Generalized Transfer Functions

Instead of the nonlinear system, we can alternatively solve a sequence of
linear subsystems:

Ex; = Aixy + bu,
Exa = A1xa + Axxa @ x1 + Nxqu,

Max Planck Institute Magdeburg T. Breiten, i Model Reduction Based on ized M Matchir 6/13




Quadratic-Bilinear Differential-Algebraic Equations

Quadratic-Bilinear DAEs

System Analysis and Generalized Transfer Functions

Instead of the nonlinear system, we can alternatively solve a sequence of
linear subsystems:

Ex; = Aixy + bu,

Exo = A1xo + Aoxy ® x1 + Nxyu,

Exs = Aixzs + Ax (x1 @ x2 + x2 ® x1) + Nxou
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Quadratic-Bilinear DAEs

System Analysis and Generalized Transfer Functions

Instead of the nonlinear system, we can alternatively solve a sequence of
linear subsystems:

Ex; = Aixy + bu,
Exa = A1xa + Axxa @ x1 + Nxqu,
Ex3 = Aix3 + Ay (X1 Q Xo + X2 ® X1) + Nxou

This approach also allows a characterization in the frequency domain via
generalized transfer functions, e.g.: [Gu ’05]
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Quadratic-Bilinear DAEs

System Analysis and Generalized Transfer Functions

Instead of the nonlinear system, we can alternatively solve a sequence of
linear subsystems:

Ex; = Aixy + bu,
Exa = A1xa + Axxa @ x1 + Nxqu,
Ex3 = Aix3 + Ay (X1 Q Xo + X2 ® X1) + Nxou

This approach also allows a characterization in the frequency domain via
generalized transfer functions, e.g.: [Gu ’05]

H]_(Sl) = C(SlE — A]_)_lb,
—_——

G1 (51)
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Quadratic-Bilinear DAEs

System Analysis and Generalized Transfer Functions

Instead of the nonlinear system, we can alternatively solve a sequence of
linear subsystems:

Ex; = Aixy + bu,
Exa = A1xa + Axxa @ x1 + Nxqu,
Ex3 = Aix3 + Ay (X1 Q Xo + X2 ® X1) + Nxou

This approach also allows a characterization in the frequency domain via
generalized transfer functions, e.g.: [Gu ’05]

Hi(s1) = c(s1E — A1) 71,
T
Hy(s1,52) = %c((sl + 5)E — A1)71 [N (Gi(s1) + Gi(s2))
+A2 (Gi(s1) ® Gi(2) + Gi(52) ® Gi(s1))] -
. Breiten, Nonlinear Model Reduction Based on Generalized Moment Matching  6/13




Quadratic-Bilinear Differential-Algebraic Equations

Quadratic-Bilinear DAEs

The Galerkin Projection

Let us again consider the quadratic-bilinear system from the beginning

y = M. x

where E, A, N e R™" A, € R"X"Z, b,cTe R".
@ How do we reduce the above system?
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The Galerkin Projection

Let us again consider the quadratic-bilinear system from the beginning

where E, A, N € R7A A, € RﬁXﬁz, b,eTe R™.
@ How do we reduce the above system?
~+ Galerkin projection P = WT, Ve R™" VTV =1

E=VTEV, A;=VTAV, N=VTNV,
Ay =VTA VeV, b=VTh é=cV.
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Quadratic-Bilinear DAEs

The Galerkin Projection

Let us again consider the quadratic-bilinear system from the beginning

where E, A, N € R7A A, € RﬁXﬁz, b,eTe R™.
@ How do we reduce the above system?
~+ Galerkin projection P = WT, Ve R™" VTV =1

E=VTEV, A;=VTAV, N=VTNV,
Ay =VTA VeV, b=VTh é=cV.

@ What is a good choice for the projection matrix V7?7
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Model Reduction via Moment-Matching

The Moments of a Function

Definition

Let H: C — C, s — H(s) be a meromorphic function. Then the k-th
moment of H at sy € C is defined as

mi(s0) = (= 1)k H(S)

5=5p
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Model Reduction via Moment-Matching @

The Moments of a Function

Definition

Let H: C — C, s — H(s) be a meromorphic function. Then the k-th
moment of H at sy € C is defined as

k

me() = (~1) )

Moments locally specify H in the neighborhood of sy, i.e.

H(s) = H(so) + H(l)(so)@ et H(k)(SQ)(S _kISO)k i
(s — s0)
1!

= mo(so) — m1(so) +...imk(50)(5 _k!SO) __
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Model Reduction via Moment-Matching (%

The Moments of a Function

Definition

Let H: C — C, s — H(s) be a meromorphic function. Then the k-th
moment of H at sy € C is defined as

me() = (~1) )

5=5p

For example, consider the (simplified) linear subsystem
X1(t) = Arxa(t) + bu(t)
yl(t) = CX1(T.')

and its transfer function

Hl(S]_) = C(S]_I — Al)_lb.
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Model Reduction via Moment-Matching (

The Moments of a Function

Definition

Let H: C — C, s — H(s) be a meromorphic function. Then the k-th
moment of H at sp € C is defined as

S5=50

For Here, the moments can be computed as:

mo(so) = c(sol — Al)*lb, mk(so) = c(sol — Al)f(k+1)b'

aANa TS trarisTer IUIILLIUIIKJ

Hl(S]_) = C(S]_I — Al)_lb.
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Model Reduction via Moment-Matching @

The Moments of a Function

Definition

Let H: C — C, s — H(s) be a meromorphic function. Then the k-th
moment of H at sy € C is defined as

For Similarly, H; can be expanded at co, with Markov parameters:

mo(o0) =0, mg(o0) = cAf_lb.

AN TS TrarisTer |un\,uullfj

Hl(S]_) = C(S]_I — Al)_lb.
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Model Reduction via Moment-Matching

The Concept of Moment-Matching

For the reduced (simplified) linear subsystem

%1(t) = A& (t) + bu(t)
yAl(t) = 621(1’)
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Model Reduction via Moment-Matching

The Concept of Moment-Matching

For the reduced (simplified) linear subsystem
%1(t) = A1 (t) + bu(t)
yi(t) = Exq(t)

some moments of the reduced transfer function
Fi(s1) = é(sil — Ay)~1h,

should coincide with the original ones, i.e.

my(so) = Mk(sp),for k =10,...,9— 1.
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yi(t) = Exq(t)
some moments of the reduced transfer function
Fi(s1) = é(sil — Ay)~1h,
should coincide with the original ones, i.e.
my(so) = Mk(sp),for k =10,...,9— 1.
~ H(s) = A(s) + O ((s — %))
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Model Reduction via Moment-Matching @

The Concept of Moment-Matching

For the reduced (simplified) linear subsystem
%1(t) = A1 (t) + bu(t)
yi(t) = Exq(t)
some moments of the reduced transfer function
Fi(s1) = é(sil — Ay)~1h,
should coincide with the original ones, i.e.
my(so) = Mk(sp),for k =10,...,9— 1.
~ H(s) = A(s) + O ((s — %))
This can be achieved by implicit moment-matching:

span{V} = Kq (A1 — sol) %, (A1 — so/) " 'b) .

Max Planck Institute Magdeburg T. Breiten, i Model Reduction Based on lized M Matching 9/13




Model Reduction via Moment-Matching (

The Concept of Moment-Matching

For the reduced (simplified) linear subsystem
%1(t) = A1 (t) + bu(t)
yAl(t) = 621(1’)

some moments of the reduced transfer function

Do\ i AN—11

The Krylov subspace Kq(A, b) is defined as:
should coincide

Kq(A, b) = span{b, Ab, ..., A7 1b}

~ H(s) = A(s) + O (s~ %))

cit moment-matching:

This can be achieved by i
span{V} = Kq ((A1 — sol) %, (A1 — so/) " 'b) .
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Model Reduction via Moment-Matching

Generalized Moments for Multivariable Functions

We can easily extend these concepts to the multivariable case.

Let H: C? - C, (s1,5) — H(s1,s2) be a sufficiently smooth complex
function. Then

ak1+k2

ki +ko
My 1, (519, 52,) = (1) ——FH
1, 2( 07 0) ( ) 95]}.(1 954(2

(s1,%2)

S1=515, 2=

is called multimoment of order k; + ko.

Max Planck Institute Magdeburg T. Breiten, i Model Reduction Based on ized M Matchir 10/13




Model Reduction via Moment-Matching

Generalized Moments for Multivariable Functions

We can easily extend these concepts to the multivariable case.

Let H: ¢/ — C, (s1,...,s)) = H(si,...,s;) be a sufficiently smooth
complex function. Then

ak

—.H(S]_,.. ')S')
as{(l...asf/ g

mkl,.‘.,kj( los+ > Spp) = (—1)k

is called multimoment of order k = k; + - - - + k;.
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Model Reduction via Moment-Matching

Generalized Moments for Multivariable Functions

We can easily extend these concepts to the multivariable case.

Let H: ¢/ — C, (s1,...,s)) = H(si,...,s;) be a sufficiently smooth
complex function. Then

H(Sl, .. .,Sj)

S,':S,‘0

k ak
mkhmakj( Ty oo o 75]0) = (_1) 35{(1 .. 85ka

is called multimoment of order k = k; + - - - + k;.

For the approximation of higher transfer functions, we aim at matching
some of these multimoments by the reduced system:

mkly---7kj(510’ s asjo) = ’ﬁkh---,kj(slov [ Sjo)'
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Numerical Examples

Numerical Examples
The FitzHugh-Nagumo System

o FitzHugh-Nagumo system modeling a neuron
[CHATURANTABUT, SORENSEN ’09]

evi(x, t) = Eviu(x, t) + F(v(x, 1)) — w(x, t) + g,
we(x, t) = hv(x, t) — yw(x, t) + g,

with f(v) = v(v — 0.1)(1 — v) and initial and boundary conditions

V(X,O) =0, W(X,O) =0, X € [Ov 1])
vi(0,t) = —ip(2), vi(1,t) =0, t >0,

where
€=0.015, h=05, y =2, g = 0.05, ig(t) = 5- 10*t3 exp(—15t)

@ original state dimension n = 2 - 400, QBDAE dimension N = 3 - 400,
reduced QBDAE dimension r = 26, chosen expansion point 0 = 1

@ 3D phase space
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Motivation Quadratic-Bilinear Differential-Algebraic Equations Model Reduction via Moment-Matching Numerical Examples

Numerical Examples
Jet Diffusion Flame Model

Next, let us focus on a nonlinear PDE arising in jet diffusion flame
models [GALBALLY, WILLCOX '09]

0

a—vtv L U-Vw— V(kVw) + f(w) =0, (x.t)e(0,1)x (0, T),
with Arrhenius type term f(w) = Aw(c — W)e*ﬁ and constant
parameters U, A, E, ¢, d, k. Again define initial
and boundary conditions:

w(x,0)=0, x€[0,1],
w(0,t) = u(t), t>0,
w(l,t)=0, t>0,

Weenter = [0 1 0] .

Figure: [KUROSE]
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Numerical Examples

Numerical Examples
Jet Diffusion Flame Model

Transient responses for k = 1500 and u(t) = 5 cos(%E + 1)

— Original nonlinear model
—o=+-1,A=38
—0o=1,n1=38

0.4

Weenter

0.2 |-

| |
0 2 4 6 8 10 12 14 16 18 20
Time t
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Numerical Examples

Numerical Examples
Jet Diffusion Flame Model

Relative errors for k = 1500 and u(t) = 3 cos(% + 1)

2

101

§ 10_2 E

o] 3

) |
2

& 1073 -

(0] r .

o B §

107 ¢

§ | | | | | | | | | |

0O 2 4 6 8 10 12 14 16 18 20

Time t
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Numerical Examples

Numerical Examples
A Heat Transfer Model

@ 2-dimensional heat distribution [
[BENNER, SAAK '05] X10 X20 X30

@ boundary control by spraying
intensities of a cooling fluid o1 |x1 |xer x| xa

Q=(0,1) x (0,1)

xr = Ax in Q I Xo2 X2 x| x:2 | xa r
n-Vx=u(x—1) on Iy
x = 0 on r27 |_3’ r4 X03 X13 X23 X33 X43
o spatial discretization r x r-grid x14 | xoa | X3
= X &~ Ayx + Nxu + bu -
= A =0 2

o state approximation x ~ VX
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Numerical Examples
A Heat Transfer Model

Original Model, t = 4.55s, n = 2601, u(t) = cos(rt) Reduced Model, ¢ = 4.55s, A = 20, u(t) = cos(mt)
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Numerical Examples
A Heat Transfer Model

Original Modal _t — 4 55 — 2601 ) Lot

Modal t — A 55c A — 20 ule) — Lot

Thank you for your attention...
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Numerical Examples
A Heat Transfer Model

Original Modal _t — — 2601 _ul ) Roducad Modal _t — A B5c A — 20 (i) —

Thank you for your attention...

A [ A |

... and enjoy the coffee break!
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