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”I would rather have today’s
algorithms on yesterday’s

computers than vice versa.” –
Phillipe Toint (Namur)



Optimization with constraints

Consider the Quadratic Programming (QP) problem

min
x

xTAx + xTb

s.t. Bx = c

with A ∈ Rn,n and B ∈ Rm,n.

KKT conditions give[
A BT

B 0

]
︸ ︷︷ ︸

[
x
y

]
=

[
−b
c

]
K

This is a so-called saddle point problem.
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Properties of the saddle point system

K =

[
A BT

B 0

]

K is non-singular if B has full rank and A is positive on ker(B)

K is symmetric and indefinite

K is typically poorly conditioned

K has n positive and m negative eigenvalues

For more details see [bgl’05]1.

Fact

In almost all (large, 3D) applications it is not feasible to factorize
K! What? No backslash?! Get out!

1M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle
point problems, Acta Numer, 14 (2005), pp. 1–137.
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Iterative solvers for saddle point systems

Don’t worry, we can save the day.

Krylov-subspace solvers

Iterative solvers can be applied.

Only need (one) matrix vector multiplication with K.

Usually satisfy an optimality criterion for residual or error at
the k-th step.

Use space span
{
r0,Kr0, . . . ,Kk−1r0

}
with r0 = b −Kx0.

More bad news?

These methods might be incredibly slow! Depending on the
eigenvalues of K (rule of thumb).

No, we need to use preconditioning. Solve

P−1Kx = P−1b.
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Some general preconditioning results

In [mgw ’00]2 it is shown that an “ideal” block-diagonal
preconditioner

PBD =

[
A 0
0 S

]
where −S = −BA−1BT is the Schur-complement of K leads to
the preconditioned system P−1

BDK having three distinct eigenvalues

at 1 and 1±
√

5
2 .

For block-triangular preconditioner

PBT =

[
A 0
B −S

]
the eigenvalues of P−1

BTK are given by 1. (Convergence in at most
two iterations)

2M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on
preconditioning for indefinite linear systems, SIAM J. Sci. Comput, 21 (2000),
pp. 1969–1972.
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Krylov solvers
Overview

Can use non-standard version3 of Conjugate Gradients cg4

with block-triangular preconditioner.

Straightforward use of the preconditioned Minimal Residual
Method minres5 with block-diagonal preconditioner.

3J. H. Bramble and J. E. Pasciak, A preconditioning technique for
indefinite systems resulting from mixed approximations of elliptic problems,
Math. Comp, 50 (1988), pp. 1–17.

4M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for
solving linear systems, J. Res. Nat. Bur. Stand, 49 (1952), pp. 409–436
(1953).

5C. C. Paige and M. A. Saunders, Solutions of sparse indefinite
systems of linear equations, SIAM J. Numer. Anal, 12 (1975), pp. 617–629.
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A control model problem
with Andy Wathen (Oxford) and Tyrone Rees (University of British Columbia)

The functional to be minimized over a domain Ω ∈ Rd with
d = 2, 3 is given by

J(y , u) :=
1

2
‖y − ȳ‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω) ,

subject to the state equation

−4y = u in Ω

with y being the state, u the control and ȳ the desired state.

Additionally, we allow for the control to be bounded by so-called
box constraints

ua(x) ≤ u(x) ≤ ub(x) a.e in Ω

or the state
ya(x) ≤ y(x) ≤ yb(x) a.e in Ω.
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A control model problem
Discretize-then-Optimize

The inverse problem is discretized following a
discretize-then-optimize strategy by using finite elements to get

min 1
2 (y − ȳ)T M (y − ȳ) + β

2 uTMu s.t.

Ky = Mu− f

ua ≤ u ≤ ub

ya ≤ y ≤ yb

with K the stiffness matrix, M the mass matrix and y,u, ȳ vectors
representing the state, control and desired state.
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Numerical solution of the Inverse problem
Without bound constraints

The first order or KKT conditions now result in the following linear
system  M 0 −KT

0 βM M
−K M 0

 y(k)

u(k)

λ(k)

 =

 M ȳ
0
f

 .
The system matrix is in saddle point form.
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Numerical solution of the Inverse problem
Without bound constraints

Symmetric system can be solved with

minres with block-diagonal preconditioning

PBD =

[
A0 0
0 S0

]
.

Bramble-Pasciak cg with a block-triangular preconditioner

PBT =

[
A0 0
B −S0

]
.

where A0 might be the Chebyshev semi-iteration for mass matrices
and S0 will involve two approximations to the PDE via an algebraic
or geometric multigrid cycle.

Max Planck Institute Magdeburg Martin Stoll, Saddle Point Systems in Optimal Control 11/21



Box constraints
Motivation

Projection of the search direction onto the admissible set.
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The Newton method

Looks complicated? But only the blue bit is!

Algorithm 1 Primal dual active set method (PDAS)

1: Given A(0)
+ and A(0)

−
2: for k = 0, 1, . . . do

3: Set u(k) on A(k)
± and µ(k) = 0 on I(k)

4: Solve saddle point system

5: Compute µ(k) on A(k)
±

6: Compute A(k+1)
±

7: if A(k)
+ = A(k−1)

+ , A(k)
− = A(k−1)

− , and I(k) = I(k−1) then
8: STOP (Algorithm converged)
9: end if

10: end for
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Numerical Results
Bound constraints

Figure: Computed Control Figure: Computed State
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Bound constraints on the state

The constraint ya ≤ y ≤ yb is significantly harder. Now use a
Moreau-Yosida penalty function

J(y , u) :=
1

2
‖y − yd‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω) +
1

2ε
‖max {0, y − yb}‖2

L2(Ω)

+
1

2ε
‖min {0, y − ya}‖2

L2(Ω) ,

which gives the following Newton systems M + ε−1GAMGA 0 −KT

0 βM M
−K M 0

 y(k+1)

u(k+1)

λ(k+1)

 = rhs
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State constraints, some pictures

Figure: Computed State Figure: Computed Control
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Time-dependent problems

Minimize

J1(y , u) :=
1

2

∫
Ω1

(y(x,T)− ȳ(x))2 +
β

2

∫ T

0

∫
Ω2

(u(x, t))2

or

J2(y , u) :=
1

2

∫ T

0

∫
Ω1

(y(x, t)− ȳ(x, t))2 +
β

2

∫ T

0

∫
Ω2

(u(x, t))2

subject to
yt −4y = u

in Ω× [0,T ], with boundary conditions y = 0 on the spatial
boundary ∂Ω and initial condition y(x , 0) = y0(x).
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and again a saddle point problem

We now get a GIGANTIC saddle point system M̃ 0 −KT

0 βτM τM
−K τM 0

 y
u
λ

 =

 M̃ȳ
0
d


with


M + τK
−M M + τK

−M M + τK
. . .

. . .

−M M + τK


︸ ︷︷ ︸


y1

y2

y3

...
yN

− τMu = −d

K

coming from the backward Euler scheme

Myk + τKyk = Myk−1 + τMuk .
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Some results for time-dependent control

State and control at t = 1.

Figure: Computed State Figure: Computed Control
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Conclusions

Saddle point systems are everywhere!

Each problem needs special attention.

We need to take the structure into account.

More information on
http://www.mpi-magdeburg.mpg.de/people/stollm

or come to S3.10.
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Thank you!


