GAMM annual meeting Section 17 Erlangen March 12, 2014

A Spectral Divide-and-Conquer Approach for the Non-Symmetric Generalized Eigenvalue Problem

Peter Benner Martin Köhler Jens Saak

Computational Methods in Systems and Control Theory Max Planck Institute for Dynamics of Complex Technical Systems

Max Planck Institute Magdeburg

 Motivation
 Spectral Division and the Sign Function
 Divide, Shift and Conquer Algorithm
 Numerical Results
 Conclusions

 ●○
 ○○○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 <td

Motivation

Non-Symmetric Generalized Eigenvalue Problem

We consider the non-symmetric generalized eigenvalue problem:

 $Ax = \lambda Bx$,

where $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$ are non-singular matrices and $\lambda \in \mathbb{C}$ is an eigenvalue with its eigenvector $x \in \mathbb{R}^n$.

lotivation Spectral Division and the Sign Function Divide, Shift and Conquer Algorithm Numerical Results Conclusions 0000 0000 00

Motivation

Non-Symmetric Generalized Eigenvalue Problem

We consider the non-symmetric generalized eigenvalue problem:

 $Ax = \lambda Bx$,

where $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$ are non-singular matrices and $\lambda \in \mathbb{C}$ is an eigenvalue with its eigenvector $x \in \mathbb{R}^n$.

Key idea behind the solution:

Compute the generalized Schur decomposition:

$$\underbrace{Q^H AZ}_{S} y = \lambda \underbrace{Q^H BZ}_{T} y,$$

where $S \in \mathbb{C}^{n \times n}$ and $T \in \mathbb{C}^{n \times n}$ are upper triangular and $Q \in \mathbb{C}^{n \times n}$ and $Z \in \mathbb{C}^{n \times n}$ are unitary matrices. [STEWART '72]

 Iotivation
 Spectral Division and the Sign Function
 Divide, Shift and Conquer Algorithm
 Numerical Results
 Conclusions

 0
 0000
 00
 00

Motivation

Non-Symmetric Generalized Eigenvalue Problem

We consider the non-symmetric generalized eigenvalue problem:

 $Ax = \lambda Bx$,

where $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$ are non-singular matrices and $\lambda \in \mathbb{C}$ is an eigenvalue with its eigenvector $x \in \mathbb{R}^n$.

Key idea behind the solution:

Compute the generalized Schur decomposition:

$$\underbrace{Q^T AZ}_{S} y = \lambda \underbrace{Q^T BZ}_{T} y,$$

where $S \in \mathbb{R}^{n \times n}$ and $T \in \mathbb{R}^{n \times n}$ are quasi upper triangular and $Q \in \mathbb{R}^{n \times n}$ and $Z \in \mathbb{R}^{n \times n}$ are orthogonal matrices. [STEWART '72]

Motivation QZ Algorithm

[Moler, Stewart '73]

Common way to compute the generalized Schur decomposition:

QZ Algorithm

- Compute $\tilde{B} = QB$ using the QR decomposition and transform A into $\tilde{A} = Q^{H}A$.
- Reduce the pair (Ã, B̃) to Hessenberg-Triangular form using Givens-Rotations.
- Solution Apply QZ steps to (\tilde{A}, \tilde{B}) until the matrix \tilde{A} has reduced Hessenberg form. \rightarrow generalized Schur form.

Motivation QZ Algorithm

[Moler, Stewart '73]

Common way to compute the generalized Schur decomposition:

QZ Algorithm

- Compute $\tilde{B} = QB$ using the QR decomposition and transform A into $\tilde{A} = Q^H A$.
- Solution Apply QZ steps to (\tilde{A}, \tilde{B}) until the matrix \tilde{A} has reduced Hessenberg form. \rightarrow generalized Schur form.

Givens-Rotations perform badly on modern computer architectures.

 \rightarrow Multicore features not usable. $\ensuremath{\textcircled{\sc s}}$

Motivation QZ Algorithm

[Moler, Stewart '73]

Common way to compute the generalized Schur decomposition:

QZ Algorithm

- Compute $\tilde{B} = QB$ using the QR decomposition and transform A into $\tilde{A} = Q^{H}A$.
- Reduce the pair (Ã, B̃) to Hessenberg-Triangular form using Givens-Rotations.
- Solution Apply QZ steps to (\tilde{A}, \tilde{B}) until the matrix \tilde{A} has reduced Hessenberg form. \rightarrow generalized Schur form.
- $\rightarrow\,$ Implemented in LAPACK as DGGES.
- → [Adlerborn, Kågström,Kressner '14]: distributed parallel implementation.

 Spectral Division and the Sign Function
 Divide, Shift and Conquer Algorithm
 Numerical Results
 Conclusions

 •••••
 ••••
 ••••
 ••••
 •••
 •••
 •••

Spectral Division and the Sign Function Spectral Division

From the block generalized Schur form:

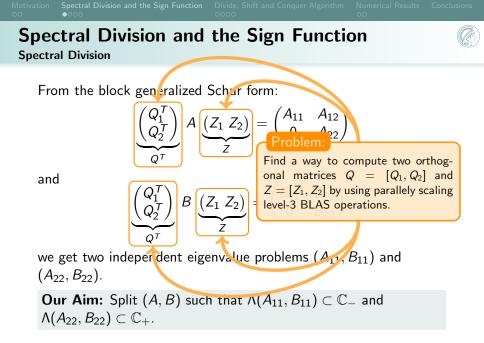
$$\underbrace{\begin{pmatrix} Q_1^T \\ Q_2^T \end{pmatrix}}_{Q^T} A \underbrace{\begin{pmatrix} Z_1 & Z_2 \end{pmatrix}}_{Z} = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}$$

and

$$\underbrace{\begin{pmatrix} Q_1^T \\ Q_2^T \end{pmatrix}}_{Q^T} B \underbrace{\begin{pmatrix} Z_1 & Z_2 \end{pmatrix}}_{Z} = \begin{pmatrix} B_{11} & B_{12} \\ 0 & B_{22} \end{pmatrix},$$

we get two independent eigenvalue problems (A_{11}, B_{11}) and (A_{22}, B_{22}) .

Our Aim: Split (A, B) such that $\Lambda(A_{11}, B_{11}) \subset \mathbb{C}_{-}$ and $\Lambda(A_{22}, B_{22}) \subset \mathbb{C}_{+}$.



vide, Shift and Conquer Algorithm Nu

Numerical Results Conclusion

Spectral Division and the Sign Function Generalized Sign Function

Generalized Matrix Sign Function

[GARDINER, LAUB '86]

Let (A, B) be a matrix pencil with no purely imaginary eigenvalue, than we define

$$\operatorname{sign}(A,B) := B \operatorname{sign}(B^{-1}A)$$

as the sign of the pencil where sign $(B^{-1}A)$ is the sign of the matrix $B^{-1}A$.

Useful properties:

- Range (B + sign (A, B)) is the right deflating subspace corresponding to all eigenvalues with positive real part.
- Range (B sign (A, B)) is the right deflating subspace corresponding to all eigenvalues with negative real part.

•
$$(B^{-1} \text{sign} (A, B))^2 = I$$

Spectral Division and the Sign Function

Generalized Sign Function

[GARDINER, LAUB '86]

From $(B^{-1}\text{sign}(A, B))^2 = I$ follows the Newton iteration:

$$A_0 \leftarrow A, \quad A_{k+1} \leftarrow \frac{1}{2} \begin{pmatrix} A_k + BA_k^{-1}B \end{pmatrix}, \quad k = 0, 1, 2, \dots$$

to compute sign (A, B).

Spectral Division and the Sign Function

$$A_0 \leftarrow A, \quad A_{k+1} \leftarrow \frac{1}{2c_k} \left(A_k + c_k^2 B A_k^{-1} B \right), \quad k = 0, 1, 2, \dots$$

to compute sign (A, B). c_k is a additional scaling factor. Example: determinantal scaling: $c_k = \left(\frac{|\det(A_k)|}{|\det(B)|}\right)^{\frac{1}{n}}$. Spectral Division and the Sign Function

Generalized Sign Function

[GARDINER, LAUB '86]

From $(B^{-1}\text{sign}(A, B))^2 = I$ follows the Newton iteration:

$$A_0 \leftarrow A, \quad A_{k+1} \leftarrow \frac{1}{2c_k} \left(A_k + c_k^2 B A_k^{-1} B \right), \quad k = 0, 1, 2, \dots$$

to compute sign (A, B). c_k is a additional scaling factor. Example: determinantal scaling: $c_k = \left(\frac{|\det(A_k)|}{|\det(B)|}\right)^{\frac{1}{n}}$.

Observations

- The generalized sign function iteration employs only level-3 routines: DGETRF. DGETRS. and DGEMM.
- The matrix $Z = [Z_1, Z_2]$ can be constructed using the range properties.

 Motivation
 Spectral Division and the Sign Function
 Divide, Shift and Conquer Al

 00
 0000
 0000

Spectral Division and the Sign Function

Spectral Division using the Sign Function

[SUN, QUINTANA-ORTÍ '04]

Questions:

- I How to contruct Z using level-3 operations in a robust way?
- O How to compute the corresponding Q?

Notivation Spectral Division and the Sign Function Divide, Shift a 0 000● 0000

ide, Shift and Conquer Algorithm

Spectral Division and the Sign Function

Spectral Division using the Sign Function

[Sun, Quintana-Ortí '04]

Questions:

- I How to contruct Z using level-3 operations in a robust way?
- O How to compute the corresponding Q?

Computation of Z: From the range properties follows:

$$(B + \operatorname{sign} (A, B))Z_1 = 0$$
 and $(B + \operatorname{sign} (A, B))Z_2 = K$.

Computation of *Q*:

- Q_1 lies in the range of $AZ_1 + BZ_1$,
- Q_2 is complementary orthogonal to $AZ_1 + BZ_1$.

lotivation Spectral Division and the Sign Function Divide, Shift and ○ 000● 0000

vide, Shift and Conquer Algorithm

Spectral Division and the Sign Function

Spectral Division using the Sign Function

[Sun, Quintana-Ortí '04]

Questions:

- I How to contruct Z using level-3 operations in a robust way?
- O How to compute the corresponding Q?

Computation of *Z***:** From the range properties follows:

$$(B + \operatorname{sign} (A, B))^{T} = [Z_2, Z_1] \binom{K}{0}.$$

Computation of *Q*:

$$[AZ_1, BZ_1] = [Q_1, Q_2] \begin{pmatrix} M \\ 0 \end{pmatrix}.$$

Motivation Spectral Division and the Sign Function Divide, Shift and Conquer Algorithm Numerical Results Conclusions ○○ ○○● ○○○ ○○

Spectral Division and the Sign Function

Spectral Division using the Sign Function

[SUN, QUINTANA-ORTÍ '04]

Questi We can compute Q and Z from sign (A, B) using **1** Ho two RRQR procedures weld operations in a robust way?

 \bigcirc Ho \rightarrow use level-3 subroutine DGEQP3 from LAPACK.

Computation of Z: From the range properties follows:

$$(B + \operatorname{sign}(A, B))^{T} = [Z_2, Z_1] \binom{K}{0}.$$

Computation of *Q*:

$$[AZ_1, BZ_1] = [Q_1, Q_2] \begin{pmatrix} M \\ 0 \end{pmatrix}$$

The Divide, Shift and Conquer Algorithm Recursive Spectral Division

We get **two independent** eigenvalue problems for (A_{11}, B_{11}) and (A_{22}, B_{22}) from the spectral division.

Problem: Reapplying the spectral division will not give smaller subproblems again.

- $\Lambda(A_{11}, B_{11})$ lies completely in \mathbb{C}_{-} .
- $\Lambda(A_{22}, B_{22})$ lies completely in \mathbb{C}_+ .

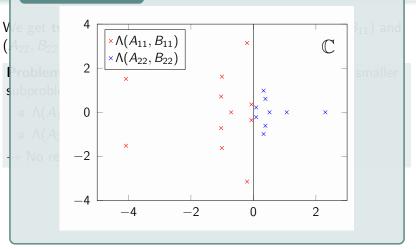
 \rightarrow No recursive scheme possible.

vivide, Shift and Conquer Algorithm

Numerical Results Conclusion

The Divide, Shift and Conquer Algorithm





The Divide, Shift and Conquer Algorithm Recursive Spectral Division

 (A_{22}, B_{22}) from the spectral division.

Problem: Reapplying the spectral division will not give smaller subproblems again.

- $\Lambda(A_{11}, B_{11})$ lies completely in \mathbb{C}_{-} .
- $\Lambda(A_{22}, B_{22})$ lies completely in \mathbb{C}_+ .

 \rightarrow No recursive scheme possible.

Idea

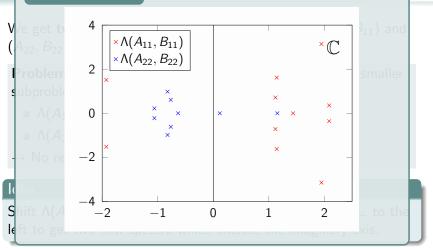
Shift $\Lambda(A_{11}, B_{11})$ by θ_- to the right and $\Lambda(A_{22}, B_{22})$ by θ_+ to the left to get two new spectra which enclose the imaginary axis.

Divide, Shift and Conquer Algorithm

Numerical Results Conclusion

The Divide, Shift and Conquer Algorithm





The Divide, Shift and Conquer Algorithm

Optimal Shift Parameter Approximation

Optimal Choice of θ_* : Choose θ_- or θ_+ respectively such that the problems emerging out of (\tilde{A}_{11}, B_{11}) and (\tilde{A}_{22}, B_{22}) after the spectral division are equally sized. \rightarrow Problem nearly solved.

The Divide, Shift and Conquer Algorithm Optimal Shift Parameter Approximation

Optimal Choice of θ_* : Choose θ_- or θ_+ respectively such that the problems emerging out of (\tilde{A}_{11}, B_{11}) and (\tilde{A}_{22}, B_{22}) after the spectral division are equally sized. \rightarrow Problem nearly solved.

If the real parts of the eigenvalues are equally distributed, the optimal θ_- is obviously given by

$$heta_-:=rac{1}{2}\Re(\lambda_{ ext{left}}),$$

where λ_{left} is the left-most eigenvalue of (A_{11}, B_{11}) .

The Divide, Shift and Conquer Algorithm Optimal Shift Parameter Approximation

Optimal Choice of θ_* : Choose θ_- or θ_+ respectively such that the problems emerging out of (\tilde{A}_{11}, B_{11}) and (\tilde{A}_{22}, B_{22}) after the spectral division are equally sized. \rightarrow Problem nearly solved.

If the real parts of the eigenvalues are equally distributed, the optimal θ_- is obviously given by

$$heta_-:=rac{1}{2}\Re(\lambda_{ ext{left}}),$$

where λ_{left} is the left-most eigenvalue of (A_{11}, B_{11}) .

Cheap approximation of $\Re(\lambda_{\text{left}})$: $-\Re(\lambda_{\text{left}}) \leq \rho(A_{11}, B_{11}) \leq \|B_{11}^{-1}A_{11}\|_2 \leq \|B_{11}^{-1}A_{11}\|_F,$ where $\rho(A_{11}, B_{11})$ is the spectral radius of of $(A_{11}, B_{11}).$ Motivation Spectral Division and the Sign Function

vivide, Shift and Conquer Algorithm

Numerical Results Conclusio

The Divide, Shift and Conquer Algorithm The Algorithm

Combining the spectral division and the shift parameter computation gives the following recursive scheme:

Motivation Spectral Division and the Sign Function

The Divide, Shift and Conquer Algorithm The Algorithm

Combining the spectral division and the shift parameter computation gives the following recursive scheme:

Algorithm 1 [Q,Z] = dscqz(A,B)

Input: $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$ non-singular, $\Lambda(A, B) \cap i\mathbb{R} = \{\}$ **Output:** $(Q^T AZ, Q^T BZ)$ in real Schur form.

- 1: if (A, B) is trivial to solve then
- 2: Compute Q, Z directly and return them.
- 3: end if
- 4: Compute Q and Z using Algorithm 1 and transform (A, B).

5: Set
$$\theta_{-} = -\frac{1}{2} \|B_{11}^{-1}A_{11}\|_{F}$$
 and $\theta_{+} = \frac{1}{2} \|B_{22}^{-1}A_{22}\|_{F}$.

6:
$$[Q_1, Z_1] = dscqz(A_{11} - \theta_- B_{11}, B_{11}).$$

7: $[\tilde{Q}_2, \tilde{Z}_2] = dscqz(A_{22} - \theta_+ B_{22}, B_{22}).$

- 8: Update $Q := Q \begin{pmatrix} \tilde{Q}_1 & 0 \\ 0 & \tilde{Q}_2 \end{pmatrix}$ and $Z := Z \begin{pmatrix} \tilde{Z}_1 & 0 \\ 0 & \tilde{Z}_2 \end{pmatrix}$.
- 9: **return** [*Q*,*Z*]

Notivation Spectral Division and the Sign Function

ivide, Shift and Conquer Algorithm ○●○

The Divide, Shift and Conquer Algorithm The Algorithm

Combining the spectral division and the shift parameter computation gives the following recursive scheme:

Algorithm 1 [Q,Z] = dscqz(A,B)

Input: $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$ non-singular A(A, B) (1.6 = () **Output:** $(Q^T AZ, Q^T BZ)$ in real Schur 1: **if** (A, B) is trivial to solve **then Computed directly, i.e.** the prob-

- 2: Compute Q, Z directly and returning lem is of size 1×1 or 2×2 .
- 3: end if
- 4: Compute Q and Z using Algorithm 1 and transform (A, B).
- 5: Set $\theta_{-} = -\frac{1}{2} \|B_{11}^{-1}A_{11}\|_{F}$ and $\theta_{+} = \frac{1}{2} \|B_{22}^{-1}A_{22}\|_{F}$.

6:
$$[\tilde{Q}_1, \tilde{Z}_1] = \operatorname{dscqz}(A_{11} - \theta_- B_{11}, B_{11})$$
.
7: $[\tilde{Q}_2, \tilde{Z}_2] = \operatorname{dscqz}(A_{22} - \theta_+ B_{22}, B_{22})$.
 $(\tilde{Q}_1, \tilde{Q}_2) = \operatorname{dscqz}(\tilde{Q}_2, \tilde{Q}_2)$.

- 8: Update $Q := Q \begin{pmatrix} Q_1 & 0 \\ 0 & \tilde{Q}_2 \end{pmatrix}$ and $Z := Z \begin{pmatrix} Z_1 & 0 \\ 0 & \tilde{Z}_2 \end{pmatrix}$.
- 9: **return** [*Q*,*Z*]

Motivation Spectral Division and the Sign Function

vide, Shift and Conquer Algorithm 『 ⊃○●

The Divide, Shift and Conquer Algorithm Implementation Details

- The evaluation of $\theta_{-} = -\frac{1}{2} \|B_{11}^{-1}A_{11}\|_{F}$ and
 - $\theta_+ = \frac{1}{2} \|B_{22}^{-1}A_{22}\|_F$ is only necessary after the first step.

The spectral radius can not increase during the recursion. \rightarrow We pass $|\theta_-|$ and $|\theta_+|$ as spectral radius θ to the next step and use

$$heta_-:=-rac{1}{2} heta$$
 and $heta_+:=rac{1}{2} heta$

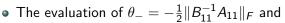
as new parameters in the next step.

ightarrow We can guarantee $heta_*
ightarrow$ 0 during the recursion.

 Motivation
 Spectral Division and the Sign Function
 Divide, Shift and Conquer

 00
 0000
 000●

The Divide, Shift and Conquer Algorithm Implementation Details



- $\theta_+ = \frac{1}{2} \|B_{22}^{-1} A_{22}\|_F$ is only necessary after the first step.
- Reformulate the recursion as an iterative scheme.

MotivationSpectral Division and the Sign Function000000

vide, Shift and Conquer Algorithm ⊃○●

The Divide, Shift and Conquer Algorithm Implementation Details

- The evaluation of $heta_-=-rac{1}{2}\|B_{11}^{-1}A_{11}\|_F$ and
 - $\theta_+ = \frac{1}{2} \|B_{22}^{-1}A_{22}\|_F$ is only necessary after the first step.
- Reformulate the recursion as an iterative scheme.
- Stop the recursion if the remaining eigenvalue problem is trivial to solve, i.e. it can be solved inside the cache of a single CPU-core by DGGES.

The trivial size $n_{\rm triv}$ given by:

$$n_{ ext{triv}} \leq -rac{11}{8} + \sqrt{-rac{135}{64} + rac{C}{4}} pprox \sqrt{rac{C}{4}},$$

where C is the cache size counted in floating point numbers of the desired precision.

Max Planck Institute Magdeburg

MotivationSpectral Division and the Sign Function000000

vide, Shift and Conquer Algorithm ↑

The Divide, Shift and Conquer Algorithm Implementation Details

- The evaluation of $heta_-=-rac{1}{2}\|B_{11}^{-1}A_{11}\|_F$ and
 - $\theta_+ = \frac{1}{2} \|B_{22}^{-1} A_{22}\|_F$ is only necessary after the first step.
- Reformulate the recursion as an iterative scheme.
- Stop the recursion if the remaining eigenvalue problem is trivial to solve, i.e. it can be solved inside the cache of a single CPU-core by DGGES.
- Use a multi-threaded BLAS for the divide and conquer phase and a single threaded BLAS to solve the trivial problems in parallel.

Motivation Spectral Division and the Sign Function

Numerical Results

Test hardware:

	Workstation Xeon E3-1245	Compue-Server Xeon E5-2690
CPU:	Xeon E3-1245 @ 3.3GHz	Dual Xeon E5-2690 @ 2.9 GHz
Cores:	4	16 (2×8)
L2 Cache:	256KiB per core	256KiB per core
$n_{\rm triv}$	90	90
RAM:	8 GiB DDR3	32 GiB DDR3
OS:	Ubuntu 12.04	Ubuntu 12.04
Compiler:	GCC 4.6.3	GCC 4.6.3
BLAS:	Intel MKL 10.2	Intel MKL 10.2

Test matrices from MatrixMarket and the Oberwolfach Collection:

	Name	Dimension		Name	Dimension
(a)	rbs480	480	(b)	bsst09	1 083
(c)	spiral inductor	1434	(d)	bcsst11	1 473
(e)	filter2D	1 668	(f)	bcsst21	3 600
(g)	steel profile	5 177	(h)	steel profile	20 209

Runtime and Speedup

	Xeon E3-1245		Dual Xeon E5-2690 - MKL 10.2			
Matrix	QZ	4 Thr.	QZ	1 Thr.	16 Thr.	speedup
(a)	1.31s	0.59s	1.75s	1.16s	0.51s	3.57
(b)	17.27s	10.48s	18.99s	22.68s	6.29s	3.02
(c)	40.16s	15.05s	39.86s	32.47s	8.16s	4.88
(d)	46.77s	43.09s	64.38s	86.90s	25.69s	2.51
(e)	77.35s	28.38s	80.40s	67.40s	14.41s	4.68
(f)	616.05s	526.22s	740.78s	1189.69s	383.08s	1.93
(g)	3 046.40s	1 006.25s	3 286.61s	2 684.74s	598.35s	5.49
(h)	out of	memory	255 057.00s	207 198.00s	38 200.00s	6.68

Runtime and Speedup

	Xeon E3-1245		Dual Xeon E5-2690 - MKL 10.2			
Matrix	QZ	4 Thr.	QZ	1 Thr.	16 Thr.	speedup
(a)	1.31s	0.59s	1.75s	1.16s	0.51s	3.57
(b)	17.27s	10.48s	18.99s	22.68s	6.29s	3.02
(c)	40.16s	15.05s	39.86s	32.47s	8.16s	4.88
(d)	46.77s	43.09s	64.38s	86.90s	25.69s	2.51
(e)	77.35s	28.38s	80.40s	67.40s	14.41s	4.68
(f)	616.05s	526.22s	740.78s	1189.69s	383.08s	1.93
(g)	3 046.40s	1 006.25s	3 286.61s	2 684.74s	598.35s	5.49
(h)	out of	memory	255 057.00s	207 198.00s	38 200.00s	6.68



Assuming that QZ gives the correct result, we define a global (average) error:

$$err_{global}(A,B) := \frac{\|\Lambda^{QZ}(A,B) - \Lambda^{DSCQZ}(A,B)\|_2}{\|\Lambda^{QZ}(A,B)\|_2}$$

and a local (point wise) error:

$$err_{local}(A,B) := \max_{i=1,\dots,n} \frac{|\lambda_i^{QZ}(A,B) - \lambda_i^{DSCQZ}(A,B)|}{|\lambda_i^{QZ}(A,B)|}$$

for the eigenvalues of (A, B).



Accuracy

Assuming that QZ gives the correct result, we define a global (average) error:

$$err_{global}(A,B) := \frac{\|\Lambda^{QZ}(A,B) - \Lambda^{DSCQZ}(A,B)\|_2}{\|\Lambda^{QZ}(A,B)\|_2}$$

and a local (point wise) error:

$$err_{local}(A,B) := \max_{i=1,...,n} \frac{|\lambda_i^{QZ}(A,B) - \lambda_i^{DSCQZ}(A,B)|}{|\lambda_i^{QZ}(A,B)|}$$

for the eigenvalues of (A, B).

Matrix	$err_{global}(A, B)$	$err_{local}(A, B)$	Matrix	$err_{global}(A, B)$	$err_{local}(A, B)$
(a)	3.10 e-10	3.15 e-10	(e)	7.60 e-15	5.32 e-11
(b)	4.63 e-13	4.40 e-11	(f)	6.17 e-15	1.72 e-10
(c)	1.39 e-14	3.77 e-12	(g)	1.71 e-14	1.06 e-10
(d)	4.62 e-15	9.44 e-09	(h)	5.21 e-14	1.02 e-09

Max Planck Institute Magdeburg

Martin Köhler, A Spectral Divide-and-Conquer Approach for the NGEP 14/15

		Conclusions

Ø

Conclusions

We have seen that:

- We can formulate a level-3 BLAS based solver for the NGEP.
- The new solver scales on multicore architectures.
- The level-3 BLAS operations make extensive use of the vector registers. (\rightarrow see 1 thread results)
- We get an acceptable approximation of the NGEP solution in drastically reduced time.

		Numerical Results Conclusions

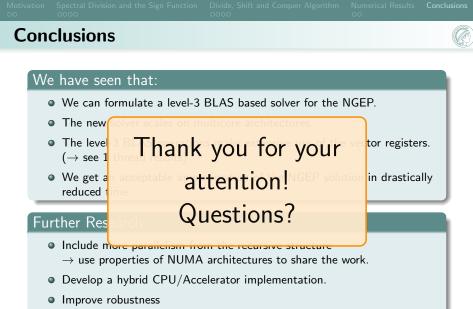
Conclusions

We have seen that:

- We can formulate a level-3 BLAS based solver for the NGEP.
- The new solver scales on multicore architectures.
- The level-3 BLAS operations make extensive use of the vector registers. (\rightarrow see 1 thread results)
- We get an acceptable approximation of the NGEP solution in drastically reduced time.

Further Research:

- Include more parallelism from the recursive structure
 → use properties of NUMA architectures to share the work.
- Develop a hybrid CPU/Accelerator implementation.
- Improve robustness
 - \rightarrow develop fall back situations if the DSCQZ algorithm fails.



 \rightarrow develop fall back situations if the DSCQZ algorithm fails.