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Motivation
Non-Symmetric Generalized Eigenvalue Problem

We consider the non-symmetric generalized eigenvalue problem:

Ax = λBx ,

where A ∈ Rn×n and B ∈ Rn×n are non-singular matrices and
λ ∈ C is an eigenvalue with its eigenvector x ∈ Rn.

Key idea behind the solution:

Compute the generalized Schur decomposition:

QHAZ︸ ︷︷ ︸
S

y = λQHBZ︸ ︷︷ ︸
T

y ,

where S ∈ Cn×n and T ∈ Cn×n are upper triangular and
Q ∈ Cn×n and Z ∈ Cn×n are unitary matrices. [Stewart ’72]

Max Planck Institute Magdeburg Martin Köhler, A Spectral Divide-and-Conquer Approach for the NGEP 2/15



Motivation Spectral Division and the Sign Function Divide, Shift and Conquer Algorithm Numerical Results Conclusions

Motivation
Non-Symmetric Generalized Eigenvalue Problem

We consider the non-symmetric generalized eigenvalue problem:

Ax = λBx ,

where A ∈ Rn×n and B ∈ Rn×n are non-singular matrices and
λ ∈ C is an eigenvalue with its eigenvector x ∈ Rn.

Key idea behind the solution:

Compute the generalized Schur decomposition:

QHAZ︸ ︷︷ ︸
S

y = λQHBZ︸ ︷︷ ︸
T

y ,

where S ∈ Cn×n and T ∈ Cn×n are upper triangular and
Q ∈ Cn×n and Z ∈ Cn×n are unitary matrices. [Stewart ’72]
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Motivation
QZ Algorithm [Moler, Stewart ’73]

Common way to compute the generalized Schur decomposition:

QZ Algorithm

1 Compute B̃ = QB using the QR decomposition and transform
A into Ã = QHA.

2 Reduce the pair (Ã, B̃) to Hessenberg-Triangular form using
Givens-Rotations.

3 Apply QZ steps to (Ã, B̃) until the matrix Ã has reduced
Hessenberg form. → generalized Schur form.

→ Implemented in LAPACK as DGGES.
→ [Adlerborn, Kågström,Kressner ’14]: distributed parallel

implementation.

Givens-Rotations perform badly on
modern computer architectures.
→ Multicore features not usable. /
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Spectral Division and the Sign Function
Spectral Division

From the block generalized Schur form:(
QT

1

QT
2

)
︸ ︷︷ ︸

QT

A
(
Z1 Z2

)︸ ︷︷ ︸
Z

=

(
A11 A12

0 A22

)

and (
QT

1

QT
2

)
︸ ︷︷ ︸

QT

B
(
Z1 Z2

)︸ ︷︷ ︸
Z

=

(
B11 B12

0 B22

)
,

we get two independent eigenvalue problems (A11,B11) and
(A22,B22).

Our Aim: Split (A,B) such that Λ(A11,B11) ⊂ C− and
Λ(A22,B22) ⊂ C+.

Find a way to compute two orthog-
onal matrices Q = [Q1,Q2] and
Z = [Z1,Z2] by using parallely scaling
level-3 BLAS operations.

Problem:
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Spectral Division and the Sign Function
Generalized Sign Function

Generalized Matrix Sign Function [Gardiner, Laub ’86]

Let (A,B) be a matrix pencil with no purely imaginary eigenvalue,
than we define

sign (A,B) := B sign
(
B−1A

)
as the sign of the pencil where sign

(
B−1A

)
is the sign of the

matrix B−1A.

Useful properties:
Range (B + sign (A,B)) is the right deflating subspace
corresponding to all eigenvalues with positive real part.

Range (B − sign (A,B)) is the right deflating subspace
corresponding to all eigenvalues with negative real part.

(B−1sign (A,B))2 = I .
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Spectral Division and the Sign Function
Generalized Sign Function [Gardiner, Laub ’86]

From (B−1sign (A,B))2 = I follows the Newton iteration:

A0 ← A, Ak+1 ←
1

2

ck

(
Ak +

c2k

BA−1k B
)
, k = 0, 1, 2, . . .

to compute sign (A,B).

Observations

The generalized sign function iteration employs only level-3
routines: DGETRF, DGETRS, and DGEMM.

The matrix Z = [Z1,Z2] can be constructed using the range
properties.
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Spectral Division and the Sign Function
Spectral Division using the Sign Function [Sun, Quintana-Ort́ı ’04]

Questions:

1 How to contruct Z using level-3 operations in a robust way?

2 How to compute the corresponding Q?

We can compute Q and Z from sign (A,B) using
two RRQR procedures.
→ use level-3 subroutine DGEQP3 from LAPACK.
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Max Planck Institute Magdeburg Martin Köhler, A Spectral Divide-and-Conquer Approach for the NGEP 7/15



Motivation Spectral Division and the Sign Function Divide, Shift and Conquer Algorithm Numerical Results Conclusions

Spectral Division and the Sign Function
Spectral Division using the Sign Function [Sun, Quintana-Ort́ı ’04]

Questions:

1 How to contruct Z using level-3 operations in a robust way?

2 How to compute the corresponding Q?

Computation of Z : From the range properties follows:

(B + sign (A,B))T = [Z2,Z1]

(
K
0

)
.

Computation of Q:

[AZ1,BZ1] = [Q1,Q2]

(
M
0

)
.

We can compute Q and Z from sign (A,B) using
two RRQR procedures.
→ use level-3 subroutine DGEQP3 from LAPACK.
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The Divide, Shift and Conquer Algorithm
Recursive Spectral Division

We get two independent eigenvalue problems for (A11,B11) and
(A22,B22) from the spectral division.

Problem: Reapplying the spectral division will not give smaller
subproblems again.

Λ(A11,B11) lies completely in C−.

Λ(A22,B22) lies completely in C+.

→ No recursive scheme possible.

Idea

Shift Λ(A11,B11) by θ− to the right and Λ(A22,B22) by θ+ to the
left to get two new spectra which enclose the imaginary axis.
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The Divide, Shift and Conquer Algorithm
Optimal Shift Parameter Approximation

Optimal Choice of θ∗: Choose θ− or θ+ respectively such that
the problems emerging out of (Ã11,B11) and (Ã22,B22) after the
spectral division are equally sized. → Problem nearly solved.

If the real parts of the eigenvalues are equally distributed, the
optimal θ− is obviously given by

θ− :=
1

2
<(λleft),

where λleft is the left-most eigenvalue of (A11,B11).

Cheap approximation of <(λleft):

−<(λleft) ≤ ρ(A11,B11) ≤ ‖B−111 A11‖2 ≤ ‖B−111 A11‖F ,

where ρ(A11,B11) is the spectral radius of of (A11,B11).
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Max Planck Institute Magdeburg Martin Köhler, A Spectral Divide-and-Conquer Approach for the NGEP 9/15



Motivation Spectral Division and the Sign Function Divide, Shift and Conquer Algorithm Numerical Results Conclusions

The Divide, Shift and Conquer Algorithm
The Algorithm

Combining the spectral division and the shift parameter
computation gives the following recursive scheme:

Algorithm 1 [Q,Z] = dscqz(A,B)

Input: A ∈ Rn×n and B ∈ Rn×n non-singular, Λ(A,B) ∩ ıR = {}
Output: (QTAZ ,QTBZ ) in real Schur form.

1: if (A,B) is trivial to solve then
2: Compute Q,Z directly and return them.
3: end if
4: Compute Q and Z using Algorithm 1 and transform (A,B).
5: Set θ− = − 1

2‖B
−1
11 A11‖F and θ+ = 1

2‖B
−1
22 A22‖F .

6: [Q̃1, Z̃1]=dscqz(A11 − θ−B11,B11).

7: [Q̃2, Z̃2]=dscqz(A22 − θ+B22,B22).

8: Update Q := Q

(
Q̃1 0

0 Q̃2

)
and Z := Z

(
Z̃1 0

0 Z̃2

)
.

9: return [Q,Z]

Trivial: The Schur form can be
computed directly, i.e. the prob-
lem is of size 1× 1 or 2× 2.
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The Divide, Shift and Conquer Algorithm
Implementation Details

The evaluation of θ− = −1
2‖B

−1
11 A11‖F and

θ+ = 1
2‖B

−1
22 A22‖F is only necessary after the first step.

The spectral radius can not increase during the recursion.
→ We pass |θ−| and |θ+| as spectral radius θ to the next
step and use

θ− := −1

2
θ and θ+ :=

1

2
θ

as new parameters in the next step.
→ We can guarantee θ∗ → 0 during the recursion.

Reformulate the recursion as an iterative scheme.

Stop the recursion if the remaining eigenvalue problem is
trivial to solve, i.e. it can be solved inside the cache of a
single CPU-core by DGGES.

Use a multi-threaded BLAS for the divide and conquer phase
and a single threaded BLAS to solve the trivial problems in
parallel.
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Implementation Details

The evaluation of θ− = −1
2‖B

−1
11 A11‖F and

θ+ = 1
2‖B

−1
22 A22‖F is only necessary after the first step.

Reformulate the recursion as an iterative scheme.

Stop the recursion if the remaining eigenvalue problem is
trivial to solve, i.e. it can be solved inside the cache of a
single CPU-core by DGGES.

The trivial size ntriv given by:

ntriv ≤ −
11

8
+

√
−135

64
+

C

4
≈
√

C

4
,

where C is the cache size counted in floating point
numbers of the desired precision.

Use a multi-threaded BLAS for the divide and conquer phase
and a single threaded BLAS to solve the trivial problems in
parallel.
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single CPU-core by DGGES.

Use a multi-threaded BLAS for the divide and conquer phase
and a single threaded BLAS to solve the trivial problems in
parallel.
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Numerical Results

Test hardware:

Workstation Xeon E3-1245 Compue-Server Xeon E5-2690

CPU: Xeon E3-1245 @ 3.3GHz Dual Xeon E5-2690 @ 2.9 GHz
Cores: 4 16 (2×8)
L2 Cache: 256KiB per core 256KiB per core
ntriv 90 90
RAM: 8 GiB DDR3 32 GiB DDR3
OS: Ubuntu 12.04 Ubuntu 12.04
Compiler: GCC 4.6.3 GCC 4.6.3
BLAS: Intel MKL 10.2 Intel MKL 10.2

Test matrices from MatrixMarket and the Oberwolfach Collection:

Name Dimension Name Dimension

(a) rbs480 480 (b) bsst09 1 083
(c) spiral inductor 1434 (d) bcsst11 1 473
(e) filter2D 1 668 (f) bcsst21 3 600
(g) steel profile 5 177 (h) steel profile 20 209
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Numerical Results
Runtime and Speedup

Xeon E3-1245 Dual Xeon E5-2690 - MKL 10.2
Matrix QZ 4 Thr. QZ 1 Thr. 16 Thr. speedup

(a) 1.31s 0.59s 1.75s 1.16s 0.51s 3.57
(b) 17.27s 10.48s 18.99s 22.68s 6.29s 3.02
(c) 40.16s 15.05s 39.86s 32.47s 8.16s 4.88
(d) 46.77s 43.09s 64.38s 86.90s 25.69s 2.51

(e) 77.35s 28.38s 80.40s 67.40s 14.41s 4.68
(f) 616.05s 526.22s 740.78s 1189.69s 383.08s 1.93
(g) 3 046.40s 1 006.25s 3 286.61s 2 684.74s 598.35s 5.49
(h) out of memory 255 057.00s 207 198.00s 38 200.00s 6.68

Reduce the runtime from ≈ 3 days to ≈ 10.6 hours.
Power Consumption:

QZ: 16.20KWh
DSCQZ: 4.24KWh → save 74% energy! ,
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Numerical Results
Accuracy

Assuming that QZ gives the correct result, we define a global (average)
error:

errglobal(A,B) :=
‖ΛQZ (A,B)− ΛDSCQZ (A,B)‖2

‖ΛQZ (A,B)‖2

and a local (point wise) error:

errlocal(A,B) := max
i=1,...,n

|λQZ
i (A,B)− λDSCQZ

i (A,B)|
|λQZ

i (A,B)|

for the eigenvalues of (A,B).

Matrix errglobal(A,B) errlocal(A,B) Matrix errglobal(A,B) errlocal(A,B)

(a) 3.10 e-10 3.15 e-10 (e) 7.60 e-15 5.32 e-11
(b) 4.63 e-13 4.40 e-11 (f) 6.17 e-15 1.72 e-10
(c) 1.39 e-14 3.77 e-12 (g) 1.71 e-14 1.06 e-10
(d) 4.62 e-15 9.44 e-09 (h) 5.21 e-14 1.02 e-09
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Max Planck Institute Magdeburg Martin Köhler, A Spectral Divide-and-Conquer Approach for the NGEP 14/15



Motivation Spectral Division and the Sign Function Divide, Shift and Conquer Algorithm Numerical Results Conclusions

Conclusions

We have seen that:

We can formulate a level-3 BLAS based solver for the NGEP.

The new solver scales on multicore architectures.

The level-3 BLAS operations make extensive use of the vector registers.
(→ see 1 thread results)

We get an acceptable approximation of the NGEP solution in drastically
reduced time.

Further Research:

Include more parallelism from the recursive structure
→ use properties of NUMA architectures to share the work.

Develop a hybrid CPU/Accelerator implementation.

Improve robustness
→ develop fall back situations if the DSCQZ algorithm fails.

Thank you for your
attention!
Questions?
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