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Computational Methods in Systems and Control Theory
Max Planck Institute for Dynamics of Complex Technical Systems
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Introduction

We consider the Generalized Lyapunov Equation

ATXE + ETXA = Y, (1)

where A,E,X and Y are real n× n matrices. Furthermore the right
hand side Y and the solution X are symmetric.

Solvability Condition

Equation (1) is uniquely solvable if and only if

λi + λj 6= 0

holds for any two eigenvalues λi, λj of (A,E).

Computing stabilizing feedbacks of LTI systems,

Model Order Reduction,

Newton’s Method to solve Algebraic Riccati Equations,

Time - integration of Differential Riccati Equations,

. . .

Applications:
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Introduction
Basic Solution Techniques

1 Rewrite the Lyapunov Equation into a linear system(
ET ⊗AT +AT ⊗ ET

)
vec(X) = vec(Y ),

of squared dimension. Here ⊗ denotes the Kronecker product and
vec(·) describes the column-wise concatenation of a matrix into a
vector.

→ Complexity using LU-Decomposition: 2
3n

6 + 2n4 Flops. �
2 Use a Generalized Sylvester Equation solver.

[Gardiner, Laub, Moler ’92, Kågström, Westin ’89]

Does not guarantee the symmetry of X from a numerical point of
view. �

3 Use the Matrix Sign Function: [Quintana-Ort́ı, Benner ’99]

Iterative solver → only approximate solution, �
Only feasible for Λ(A,E) ⊂ C−. �
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Block Algorithm
Bartels-Stewart Method for the Generalized Lyapunov Equation [Penzl ’97]

The overall procedure to solve a Generalized Lyapunov Equation:

1 Compute the real Generalized Schur Decomposition of (A,E):

A = QTAsZ and E = QTEsZ.

2 Transform Equation (1) using Q and Z:

3 Restore the solution X by:

X = QTXsQ.

We focus only on solving the second step.
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Block Algorithm
Bartels-Stewart Method for the Generalized Lyapunov Equation [Penzl ’97]

The real Generalized Schur Decomposition of (A,E) yields:

As =

A11 · · · A1p

. . .
...

0 App

 , Es =

E11 · · · E1p

. . .
...

0 Epp

 ,

Xs =

X11 · · · X1p

...
. . .

...
Xp1 · · · Xpp

 , Ys =

Y11 · · · Y1p

...
. . .

...
Yp1 · · · Ypp

 ,

where Aij , Eij , Xij and Yij are p× p blocks of size 1× 1 or 2× 2 according to the
eigenvalues of (A,E).

We have to solve Sylvester Equations:

AT
kkXklEll + ET

kkXklAll = Ŷkl

with updated right hand sides:

Ŷkl = Ykl −
k,l∑

i=1,j=1
(i,j)6=(k,l)

(
AT

ikXijEjl + ET
ikXijAjl

)
.
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Ŷkl = Ykl −
k,l∑

i=1,j=1
(i,j)6=(k,l)

(
AT

ikXijEjl + ET
ikXijAjl

)
.
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Block Algorithm
Current Implementation [Penzl ’97, SLICOT]

The update of Ŷkl is performed using a more efficient scheme:

Y
(0)
kl = Ykl

Y
(2i−1)
kl = Y

(2i−2)
kl −AT

ikXi,1:l−1E1:l−1,l − ET
ikXi,1:l−1A1:l−1,l, i = 1, . . . , k

Y
(2i)
kl = Y

(2i−1)
kl −AT

ikXilEll − ET
ikXilAll, i = 1, . . . , k − 1

Ŷkl = Y
(2k−1)
kl .

The remaining inner Sylvester Equations are solved using their Kronecker
representation.

The lower half of X is known by symmetry and not computed.

But: A block size of 1 or 2 results in level-2 BLAS operations.

Our Question:
Are the matrices Akk, All, . . . restricted to be 1× 1 or 2× 2 matrices?

Answer:

No: The update of Ŷkl is not restricted by block size.

Maybe: The inner Sylvester Equation is solved via its Kronecker
representation.

We consider a Generalized Lyapunov Equation of dimension n = 960 and
a block size of 64× 64.

→ 15× 15 blocks, 120 inner Sylvester Equations.
→ Solution of one of them costs 45 GFlops → 5.4 TFlops overall.
→ Using a block size 1× 1 results in 7 GFlops including right hand side

updates.
→ Ratio of 770 between different block sizes. �

We have to handle a larger inner Sylvester Equation without
increasing the runtime complexity significantly.

Example:
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Block Algorithm
Algorithm and Flop Count

Algorithm 1: Solution of the Generalized (Quasi-)Triangular Lyapunov Equation

Input: (As, Es) and Ys partitioned in PB blocks of size NB

Output: Xs solving the Generalized (Quasi-)Triangular Lyapunov Equation
1: Xs := Ys

2: for k = 1, . . . , PB do
3: if k > 1 then
4: Xk,1:k−1 := XT

1:k−1,k {Copy the symmetric part.}
5: end if
6: for l = k, . . . , PB do
7: if l > 1 then
8: Xk:l,l := Xk:l,l − AT

k,k:lXk,1:l−1E1:l−1,l

9: Xk:l,l := Xk:l,l − ET
k,k:lXk,1:l−1A1:l−1,l

10: end if
11: Solve AT

k,kX∗El,l + ET
k,kX∗Al,l = Xk,l

12: Xk,l := X∗
13: if k < l then
14: Xk+1:l,l := Xk+1:l,l − AT

k,k+1:lXk,lEl,l

15: Xk+1:l,l := Xk+1:l,l − ET
k,k+1:lXk,lAl,l

16: end if
17: end for
18: end for

Outer Algorithm

PB∑
k=1

PB∑
l=k

(
8lN3

B − 4lN3
B

)
− 4N3

B

Inner Algorithm

1
2 (PB

2 + PB)F (NB)

PB∑
k=1

PB∑
l=k

(
4lN3

B − 4kN3
B + 4N3

B

)
− 4N3

BPB

Foverall(n,NB) := 1
2

(
n2

N2
B

+ n
NB

)
F (NB) +

(
8
3
n3 + 4NBn2 − 8

3
N2

Bn− 4N3
B

)Overall Flop Count

Max Planck Institute Magdeburg Martin Köhler, Level-3 BLAS Generalized-Lyapunov Solver 7/19
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Inner Sylvester Equations

We have to solve Generalized Sylvester Equations

AT
kkXklEll + ET

kkXklAll = Ŷkl

where Â, Ĉ ∈ Rn̂×n̂, B̂, D̂ ∈ Rm̂×m̂ and X̂, Ŷ ∈ Rn̂×m̂ with the
structure(

@
@

)( )(
@
@

)
+

(
@
@

)( )(
@
@

)
=

( )

efficiently.

Existing implementations:

LAPACK: DTGSY2 (Level-2) / DTGSYL (Level-3),

SLICOT: SB04OD (advanced wrapper around DTGSYL)

1 Solve the coupled Generalized Sylvester Equation:

ǍR− LB̌ = Č
ĎR− LĚ = F̌ .

2 Require a different triangular structure.
→ Additional work necessary.

Why one should NOT use them:
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Max Planck Institute Magdeburg Martin Köhler, Level-3 BLAS Generalized-Lyapunov Solver 8/19



Introduction Block Algorithm Inner Sylvester Equations Numerical Results Conclusions

Inner Sylvester Equations

We have to solve Generalized Sylvester Equations
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Inner Sylvester Equations

ÂT X̂B̂ + ĈT X̂D̂ = Ŷ

Demands on the algorithm to solve the inner Generalized Sylvester
Equation:

The transposition of the matrices Â and Ĉ must be done implicitly.

The right hand side Ŷ must be overwritten by the solution X̂.

The matrices Â, B̂, Ĉ and D̂ are used read only.

At most a cubic (in n̂) flop count which does not dominate the flop
count of the overall procedure.

Two Approaches to solve Generalized Sylvester Equations:

Extended Bartels-Stewart Method
[Gardiner, Laub, Amato and Moler, ’92]

Generalized Schur Method
[Kågström, Westin ’89]
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Inner Sylvester Equations
Gardiner-Laub Approach

Employing the triangular structure of

ÂT X̂B̂ + ĈT X̂D̂ = Ŷ (2)

we rewrite (2) in terms of the kth column of Ŷ :

ÂT
k∑

l=1

B̂lkX̂·l + ĈT
k+1∑
l=1

D̂lkX̂·l = Ŷ·k for k = 1, . . . ,m.

Requires 4n̂2 extra memory to setup the linear system,

Additional 2n̂ extra memory if the leading dimensions of X̂ and Ŷ are not
equal to n̂.
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Inner Sylvester Equations
Gardiner-Laub Approach – Flop Count

Best Case – n̂ = m̂ and Dk+1,k = 0 ∀k = 1 . . . n̂− 1

One solve:

F (best)(n̂) =
n̂∑

k=1

4n̂2 + 4n̂2 +
n̂∑

l=k+1

4n̂

 = 10n̂3 − 2n̂2

Inside Algorithm 1:

F
(best)
overall(n,NB) =

8

3
n3 + 9NBn2 +

7

3
N2

Bn− 4N3
B − n2 − nNB

Worst Case – n̂ = m̂ and D2k−1,2k 6= 0 ∀k = 1 . . . n̂
2

One solve:

F (worst)(n̂) =

n̂
2∑

k=1

10n̂2 + 4n̂2 +
47

2
n̂ + 8n̂2 +

n̂∑
l=2k+1

8n̂

 = 13n̂3 +
31

4
n̂2

Inside Algorithm 1:

F
(worst)
overall (n,NB) =

8

3
n3 +

21

2
NBn2 +

23

6
N2

Bn +−4N2
B +

31

2

(
n2 + NBn

)
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Inner Sylvester Equations
Kågström-Westin Approach

We consider the coupled Sylvester Equation:

ǍR− LB̌ = Č
ĎR− LĚ = F̌ ,

where we have to restore the solution X̂ trough:

X̂ = Ĉ−1L or X̂ = RB̂−T .

Forward Substitution Scheme

Partition (F) into p× q blocks of size 1× 1 or 2× 2 and solve

ÂT
iiRij + LijD̂jj = Ŷij −

i−1∑
k=1

ÂT
ikRkj −

j−1∑
k=1

LikD̂kj = Ỹij

ĈT
iiRij − LijB̂jj = Ŵij −

i−1∑
k=1

ĈT
ikRkj +

j−1∑
k=1

LikB̂kj = W̃ij

for i = 1, . . . , p and j = 1, . . . , q.

Solution of a linear system(
ID̂ ⊗ ÂT

ii D̂T
jj ⊗ IÂ

ID̂ ⊗ ĈT
ii −B̂T

jj ⊗ IÂ

)(
vec(Rij)
vec(Lij)

)
=

(
vec(Ỹij)

vec(W̃ij)

)
,

which is at most 8× 8.
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vec(Ỹij)

vec(W̃ij)

)
,

which is at most 8× 8.
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X̂ = Ĉ−1L or X̂ = RB̂−T .

Forward Substitution Scheme

Partition (F) into p× q blocks of size 1× 1 or 2× 2 and solve

ÂT
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Inner Sylvester Equations
Kågström-Westin Approach – Flop Count

Best Case – n̂ = m̂ and Dk+1,k = 0 ∀k = 1 . . . n̂− 1

One solve:

F (best)(n̂) = n̂3 +
n̂∑

i=1

n̂∑
j=1

(11 + 4(n̂− i) + 4(n̂− j)) = 5n̂3 + 7n̂2

Inside Algorithm 1:

F
(best)
overall(n,NB) =

8

3
n3 +

7

2
n2 +

13

2
NBn2 −

1

6
NB

2n +
7

2
NBn− 4N3

Worst Case – n̂ = m̂ and D2k−1,2k 6= 0 ∀k = 1 . . . n̂
2

One solve:

F (worst)(n̂) = n̂3 +

n̂
2∑

i=1

n̂
2∑

j=1

(
415 + 32(

n̂

2
− i) + 32(

n̂

2
− j)

)
= 5n̂3 +

383

4
n̂2

Inside Algorithm 1:

F
(worst)
overall (n,NB) =

8

3
n3 +

383

8
n2 +

13

2
NBn2 +

383

8
NBn−

1

6
NB

2n− 4NB
3
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Inner Sylvester Equations
Diagonal Blocks in the Outer Algorithm

All diagonal blocks result in

AT
llXllEll + ET

llXllAll = Ŷll,

which is a Generalized Lyapunov Equation again.

We have to preserve the symmetry of Xll.

1 Copy the lower(upper) triangle of Xll to the upper(lower) triangle.

2 Symmetrize the block by

1

2

(
Xll + XT

ll

)
→ Xll.

3 Solve using Algorithm 1 again with a smaller block size.

Reduces the flop count for those blocks to O( 8
3
N3

B).
But we get a recursive scheme.
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Numerical Results

Hardware:

Intel® Xeon® X5650, 2× 6 Cores, 2× 24 GB DDR3 RAM

Software:

Intel® Fortran Compiler 13

Intel® MKL 11

SLICOT 5.0

Performance tests: random matrices via subsequent calls of DLARNV,

Accuracy/Reliability:

A = (2−t − 1)In + diag(1, 2, . . . , n) + Un

E = In + 2−tUn,

where In is the identity and Un is an n× n matrix with only unit
entries above the diagonal and varying t.
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Numerical Results
Runtime
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Figure: Runtime and speed up, n = 1000, single thread.
(GL = Gardiner and Laub, KW = Kågström and Westin)
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Figure: Runtime and speed up, n = 1000, 12 threads.
(GL = Gardiner and Laub, KW = Kågström and Westin)
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Numerical Results
Accuracy

Relative Residual Relative Forward Error
NB t = 0 t = 30 t = 40 t = 0 t = 30 t = 40
SLICOT

1 0.00 0.00 1.07e-15 3.54e-17 4.18e-17 5.97e-14
Gardiner-Laub

8 0.00 0.00 5.24e-16 0.00 0.00 3.00e-14
24 0.00 0.00 4.15e-16 0.00 0.00 2.23e-14
48 0.00 0.00 4.17e-16 0.00 0.00 2.07e-14

Kågström-Westin
8 1.62e-16 1.56e-16 5.14e-16 2.15e-14 2.14e-14 3.03e-14

24 1.78e-16 1.73e-16 4.10e-16 2.71e-14 2.72e-14 3.15e-14
48 2.02e-16 2.03e-16 3.83e-16 8.17e-14 8.07e-14 8.82e-14

Table: Relative residual and relative forward error for the generalized Lyapunov
equation, artificial example n = 1000.
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Numerical Results
Symmetrization of the Diagonal Blocks
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Figure: Forward error of the Gardiner-Laub approach with and without
symmetrization the diagonal blocks.
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Conclusions

Conclusions
We rearranged the existing idea to level-3 BLAS algorithm.

We improved two variants of existing solution techniques for the
Generalized Sylvester Equations to fit the requirements of the
Lyapunov solver.

A speed-up of at least 6.5 (sequential) or 10.5 (parallel) is possible
without loosing accuracy.

Outlook
Develop accelerator based variants
(Nvidia® CUDA, Intel® Xeon® Phi),

Apply similar ideas to Hammarling’s-Method.

Accelerate the necessary QZ decomposition in the overall algorithm.

Thank you for your
attention!
Questions?
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