PMAA 14 Lugano July 4, 2014

BLAS Level-3 Implementation of Common Solvers for Generalized Quasi-Triangular Lyapunov Equations

Peter Benner Martin Köhler Jens Saak

Computational Methods in Systems and Control Theory Max Planck Institute for Dynamics of Complex Technical Systems

Numerical Resul

Introduction

We consider the Generalized Lyapunov Equation

$$A^T X E + E^T X A = Y, (1)$$

where A,E,X and Y are real $n\times n$ matrices. Furthermore the right hand side Y and the solution X are symmetric.

Numerical Resu

Conclusions

Introduction

We consider the Generalized Lyapunov Equation

$$A^T X E + E^T X A = Y, (1)$$

where A,E,X and Y are real $n\times n$ matrices. Furthermore the right hand side Y and the solution X are symmetric.

Solvability Condition

Equation (1) is uniquely solvable if and only if

 $\lambda_i + \lambda_j \neq 0$

holds for any two eigenvalues λ_i , λ_j of (A, E).

Rewrite the Lyapunov Equation into a linear system

 $(E^T \otimes A^T + A^T \otimes E^T) \operatorname{vec}(X) = \operatorname{vec}(Y),$

of squared dimension. Here \otimes denotes the Kronecker product and $vec(\cdot)$ describes the column-wise concatenation of a matrix into a vector.

Rewrite the Lyapunov Equation into a linear system

 $(E^T \otimes A^T + A^T \otimes E^T) \operatorname{vec}(X) = \operatorname{vec}(Y),$

of squared dimension. Here \otimes denotes the Kronecker product and $vec(\cdot)$ describes the column-wise concatenation of a matrix into a vector.

 \rightarrow Complexity using LU-Decomposition: $\frac{2}{3}n^6 + 2n^4$ Flops. 4

Introduction Basic Solution Techniques	
Rewrite the Lyapunov Equation into a linear system	

 $(E^T \otimes A^T + A^T \otimes E^T) \operatorname{vec}(X) = \operatorname{vec}(Y),$ of squared dimension. Here \otimes denotes the Kronecker product and $\operatorname{vec}(\cdot)$ describes the column-wise concatenation of a matrix into a

vector.

 \rightarrow Complexity using LU-Decomposition: $\frac{2}{3}n^6 + 2n^4$ Flops. 4

Ise a Generalized Sylvester Equation solver.

[GARDINER, LAUB, MOLER '92, KÅGSTRÖM, WESTIN '89]

Introduction Basic Solution Techniques	Ø
Rewrite the Lyapunov Equation into a linear system	
$(E^T \otimes A^T + A^T \otimes E^T) \operatorname{vec}(X) = \operatorname{vec}(Y),$	

of squared dimension. Here \otimes denotes the Kronecker product and $vec(\cdot)$ describes the column-wise concatenation of a matrix into a vector.

 \rightarrow Complexity using LU-Decomposition: $\frac{2}{3}n^6 + 2n^4$ Flops. 4

 Use a Generalized Sylvester Equation solver. [GARDINER, LAUB, MOLER '92, KÅGSTRÖM, WESTIN '89]
 Does not guarantee the symmetry of X from a numerical point of view. 4

Introduction Basic Solution Techniques	C
Rewrite the Lyapunov Equation into a linear system	
$(E^T \otimes A^T + A^T \otimes E^T) \operatorname{vec}(X) = \operatorname{vec}(Y),$	

of squared dimension. Here \otimes denotes the Kronecker product and $vec(\cdot)$ describes the column-wise concatenation of a matrix into a vector.

 \rightarrow Complexity using LU-Decomposition: $\frac{2}{3}n^6 + 2n^4$ Flops. 4

Use a Generalized Sylvester Equation solver.
 [CARDINER_LAUR_MOLER_'02_K & GETER

[GARDINER, LAUB, MOLER '92, KÅGSTRÖM, WESTIN '89] Does not guarantee the symmetry of X from a numerical point of view. 4

- Superior Content Sign Function: [QUINTANA-ORTÍ, BENNER '99]
 - $\bullet~$ Iterative solver $\rightarrow~$ only approximate solution, 4
 - Only feasible for $\Lambda(A, E) \subset \mathbb{C}_{-}$. 4

[PENZL '97

Block Algorithm

Bartels-Stewart Method for the Generalized Lyapunov Equation

The overall procedure to solve a Generalized Lyapunov Equation:

() Compute the real Generalized Schur Decomposition of (A, E):

 $A = Q^T A_s Z \quad \text{and} \quad E = Q^T E_s Z.$

Bartels-Stewart Method for the Generalized Lyapunov Equation

[Penzl '97]

The overall procedure to solve a Generalized Lyapunov Equation:

() Compute the real Generalized Schur Decomposition of (A, E):

 $A = Q^T A_s Z$ and $E = Q^T E_s Z$.

 $Z^T A_s^T Q X Q^T E_s Z + Z^T E_s^T Q X Q^T A_s Z = Y.$

Bartels-Stewart Method for the Generalized Lyapunov Equation

[Penzl '97]

The overall procedure to solve a Generalized Lyapunov Equation:

() Compute the real Generalized Schur Decomposition of (A, E):

 $A = Q^T A_s Z \quad \text{and} \quad E = Q^T E_s Z.$

② Transform Equation (1) using Q and Z:

 $A_s^T Q X Q^T E_s + E_s^T Q X Q^T A_s = Z Y Z^T.$

Bartels-Stewart Method for the Generalized Lyapunov Equation

[Penzl '97]

The overall procedure to solve a Generalized Lyapunov Equation:

() Compute the real Generalized Schur Decomposition of (A, E):

 $A = Q^T A_s Z$ and $E = Q^T E_s Z$.

(2) Transform Equation (1) using Q and Z:

$$A_s^T \underbrace{QXQ^T}_{X_s} E_s + E_s^T \underbrace{QXQ^T}_{X_s} A_s = \underbrace{ZYZ^T}_{Y_s}$$

Bartels-Stewart Method for the Generalized Lyapunov Equation

The overall procedure to solve a Generalized Lyapunov Equation:

O Compute the real Generalized Schur Decomposition of (A, E):

 $A = Q^T A_s Z$ and $E = Q^T E_s Z$.

2 Transform Equation (1) using Q and Z:

$$A_s^T \underbrace{QXQ^T}_{X_s} E_s + E_s^T \underbrace{QXQ^T}_{X_s} A_s = \underbrace{ZYZ^T}_{Y_s}$$

③ Restore the solution X by:

 $X = Q^T X_* Q_*$

Bartels-Stewart Method for the Generalized Lyapunov Equation

The overall procedure to solve a Generalized Lyapunov Equation:

O Compute the real Generalized Schur Decomposition of (A, E):

 $A = Q^T A_s Z$ and $E = Q^T E_s Z$.

(2) Transform Equation (1) using Q and Z:

$$A_s^T \underbrace{QXQ^T}_{X_s} E_s + E_s^T \underbrace{QXQ^T}_{X_s} A_s = \underbrace{ZYZ^T}_{Y_s}$$

Restore the solution X by: 3

$$X = Q^T X_s Q.$$

We focus only on solving the second step.

Bartels-Stewart Method for the Generalized Lyapunov Equation

The real Generalized Schur Decomposition of (A, E) yields:

$$A_s = \begin{pmatrix} A_{11} & \cdots & A_{1p} \\ & \ddots & \vdots \\ 0 & & A_{pp} \end{pmatrix}, \quad E_s = \begin{pmatrix} E_{11} & \cdots & E_{1p} \\ & \ddots & \vdots \\ 0 & & E_{pp} \end{pmatrix},$$
$$X_s = \begin{pmatrix} X_{11} & \cdots & X_{1p} \\ \vdots & \ddots & \vdots \\ X_{p1} & \cdots & X_{pp} \end{pmatrix}, \quad Y_s = \begin{pmatrix} Y_{11} & \cdots & Y_{1p} \\ \vdots & \ddots & \vdots \\ Y_{p1} & \cdots & Y_{pp} \end{pmatrix},$$

where A_{ij} , E_{ij} , X_{ij} and Y_{ij} are $p \times p$ blocks of size 1×1 or 2×2 according to the eigenvalues of (A, E).

Bartels-Stewart Method for the Generalized Lyapunov Equation

The real Generalized Schur Decomposition of (A, E) yields:

$$A_s = \begin{pmatrix} A_{11} & \cdots & A_{1p} \\ & \ddots & \vdots \\ 0 & & A_{pp} \end{pmatrix}, \quad E_s = \begin{pmatrix} E_{11} & \cdots & E_{1p} \\ & \ddots & \vdots \\ 0 & & E_{pp} \end{pmatrix},$$
$$X_s = \begin{pmatrix} X_{11} & \cdots & X_{1p} \\ \vdots & \ddots & \vdots \\ X_{p1} & \cdots & X_{pp} \end{pmatrix}, \quad Y_s = \begin{pmatrix} Y_{11} & \cdots & Y_{1p} \\ \vdots & \ddots & \vdots \\ Y_{p1} & \cdots & Y_{pp} \end{pmatrix},$$

where A_{ij} , E_{ij} , X_{ij} and Y_{ij} are $p \times p$ blocks of size 1×1 or 2×2 according to the eigenvalues of (A, E).

We have to solve Sylvester Equations:

$$A_{kk}^T X_{kl} E_{ll} + E_{kk}^T X_{kl} A_{ll} = \hat{Y}_{kl}$$

with updated right hand sides:

$$\hat{Y}_{kl} = Y_{kl} - \sum_{\substack{i=1,j=1\\(i,j)\neq(k,l)}}^{k,l} \left(A_{ik}^T X_{ij} E_{jl} + E_{ik}^T X_{ij} A_{jl} \right).$$

• The update of $\hat{Y_{kl}}$ is performed using a more efficient scheme:

$$\begin{split} Y_{kl}^{(0)} &= Y_{kl} \\ Y_{kl}^{(2i-1)} &= Y_{kl}^{(2i-2)} - A_{ik}^T X_{i,1:l-1} E_{1:l-1,l} - E_{ik}^T X_{i,1:l-1} A_{1:l-1,l}, \qquad i = 1, \dots, k \\ Y_{kl}^{(2i)} &= Y_{kl}^{(2i-1)} - A_{ik}^T X_{il} E_{ll} - E_{ik}^T X_{il} A_{ll}, \qquad i = 1, \dots, k-1 \\ \hat{Y}_{kl} &= Y_{kl}^{(2k-1)}. \end{split}$$

- The update of $\hat{Y_{kl}}$ is performed using a more efficient scheme.
- The remaining inner Sylvester Equations are solved using their Kronecker representation:

$$\left(E_{ll}^T \otimes A_{kk}^T + A_{ll}^T \otimes E_{kk}^T\right) \operatorname{vec}\left(X_{kl}\right) = \operatorname{vec}\left(\hat{Y}_{kl}\right),$$

which is at most an 8×8 linear system if A_{kk} and A_{ll} are 2×2 blocks.

- The update of \hat{Y}_{kl} is performed using a more efficient scheme.
- The remaining inner Sylvester Equations are solved using their Kronecker representation.
- The lower half of X is known by symmetry and not computed. \rightarrow Only solve $\frac{1}{2}p(p+1)$ Sylvester Equations.

- The update of $\hat{Y_{kl}}$ is performed using a more efficient scheme.
- The remaining inner Sylvester Equations are solved using their Kronecker representation.
- The lower half of X is known by symmetry and not computed.
- But: A block size of 1 or 2 results in level-2 BLAS operations. Utilization of modern computer architectures and accelerator devices is not optimal. ©

- The update of \hat{Y}_{kl} is performed using a more efficient scheme.
- The remaining inner Sylvester Equations are solved using their Kronecker representation.
- The lower half of X is known by symmetry and not computed.
- But: A block size of 1 or 2 results in level-2 BLAS operations.

Our Question:

Are the matrices A_{kk} , A_{ll} , ... restricted to be 1×1 or 2×2 matrices?

- The update of $\hat{Y_{kl}}$ is performed using a more efficient scheme.
- The remaining inner Sylvester Equations are solved using their Kronecker representation.
- The lower half of X is known by symmetry and not computed.
- But: A block size of 1 or 2 results in level-2 BLAS operations.

Our Question:

Are the matrices A_{kk} , A_{ll} , ... restricted to be 1×1 or 2×2 matrices?

Answer:

• No: The update of \hat{Y}_{kl} is not restricted by block size.

- The update of $\hat{Y_{kl}}$ is performed using a more efficient scheme.
- The remaining inner Sylvester Equations are solved using their Kronecker representation.
- The lower half of X is known by symmetry and not computed.
- But: A block size of 1 or 2 results in level-2 BLAS operations.

Our Question:

Are the matrices A_{kk} , A_{ll} , ... restricted to be 1×1 or 2×2 matrices?

Answer:

- No: The update of \hat{Y}_{kl} is not restricted by block size.
- Maybe: The inner Sylvester Equation is solved via its Kronecker representation.

Current Implementation

• Maybe: The inner Sylvester Equation is solved via its Kronecker representation.

Current Implementation

representation.

Algorithm and Flop Count

Algorithm 1: Solution of the Generalized (Quasi-)Triangular Lyapunov Equation **Input:** (A_s, E_s) and Y_s partitioned in P_B blocks of size N_B **Output:** X_s solving the Generalized (Quasi-)Triangular Lyapunov Equation 1: $X_s := Y_s$ 2: for $k = 1, ..., P_B$ do 3: if k > 1 then $X_{k,1:k-1} := X_{1,k-1,k}^T$ {Copy the symmetric part.} 4: 5: end if 6: for $l = k, \ldots, P_B$ do 7: if l > 1 then $X_{k:l,l} := X_{k:l,l} - A_{k}^T X_{k,1:l-1} E_{1:l-1,l}$ 8: $X_{k;l,l} := X_{k;l,l} - E_{k,k;l}^T X_{k,1;l-1} A_{1;l-1,l}$ 9: 10: end if Solve $A_{k,k}^T X_* E_{l,l} + E_{k,k}^T X_* A_{l,l} = X_{k,l}$ 11: 12: $X_{k,l} := X_*$ 13: if k < l then $X_{k+1:l,l} := X_{k+1:l,l} - A_{k,k+1:l}^T X_{k,l} E_{l,l}$ 14: $X_{k+1:l,l} := X_{k+1:l,l} - E_{k,k+1:l}^T X_{k,l} A_{l,l}$ 15: 16: end if 17: end for 18: end for

Algorithm 1: Solution of the Generalized (Quasi-)Triangular Lyapunov Equation **Input:** (A_{\circ}, E_{\circ}) and Y_{\circ} partitioned in P_{B} blocks of size N_{B} **Output:** X_s solving the Generalized (Quasi-)Triangular Lyapunov Equation 1: $X_s := Y_s$ 2: for $k = 1, ..., P_B$ do 3: if k > 1 then $X_{k,1:k-1} := X_{1:k-1}^T$ {Copy the symmetric part.} 4: $\sum_{k=1}^{P_B} \sum_{l=k}^{P_B} \left(8lN_B^3 - 4lN_B^3 \right) - 4N_B^3$ 5. end if for $l = k, \ldots, P_B$ do 6: $\begin{array}{l} \begin{array}{c} X_{k:l,l} := X_{k:l,l} - A_{k,k:l}^T X_{k,1:l-1} E_{1:l-1,l} \\ X_{k:l,l} := X_{k:l,l} - E_{k,k:l}^T X_{k,1:l-1} A_{1:l-1,l} \end{array}$ 7: if l > 1 then 8: 9: 10: end if Solve $A_{k,k}^T X_* E_{l,l} + E_{k,k}^T X_* A_{l,l} = X_{k,l}$ 11: 12: $X_{k,l} := X_*$ 13: if k < l then $X_{k+1:l,l} := X_{k+1:l,l} - A_{k,k+1:l}^T X_{k,l} E_{l,l}$ 14: $X_{k+1:l,l} := X_{k+1:l,l} - E_{k,k+1:l}^T X_{k,l} A_{l,l}$ 15: 16: end if 17. end for 18: end for

Algorithm 1: Solution of the Generalized (Quasi-)Triangular Lyapunov Equation **Input:** (A_{\circ}, E_{\circ}) and Y_{\circ} partitioned in P_{B} blocks of size N_{B} **Output:** X_s solving the Generalized (Quasi-)Triangular Lyapunov Equation 1: $X_s := Y_s$ 2: for $k = 1, ..., P_B$ do 3: if k > 1 then $X_{k,1:k-1} := X_{1:k-1}^T$ {Copy the symmetric part.} 4: $\sum_{k=1}^{P_B} \sum_{l=k}^{P_B} \left(8lN_B^3 - 4lN_B^3 \right) - 4N_B^3$ 5: end if 6: for $l = k, \ldots, P_B$ do 7: if l > 1 then $\begin{aligned} \hat{X}_{k:l,l} &:= X_{k:l,l} - A_{k,k:l}^T X_{k,1:l-1} E_{1:l-1,l} \\ X_{k:l,l} &:= X_{k:l,l} - E_{k,k:l}^T X_{k,1:l-1} A_{1:l-1,l} \end{aligned}$ 8: 9: $\frac{1}{2}(P_B^2 + P_B)F(N_B)$ 10. end if Solve $A_{k,k}^T X_* E_{l,l} + E_{k,k}^T X_* A_{l,l} = X_{k,l}$ 11: 12: $X_{k,l} := X_*$ 13: if k < l then 14: $X_{k+1:l,l} := X_{k+1:l,l} - A_{k,k+1:l}^T X_{k,l} E_{l,l}$ $X_{k+1:l,l} := X_{k+1:l,l} - E_{k,k+1:l}^T X_{k,l} A_{l,l}$ 15: 16: end if 17. end for 18: end for

Algorithm 1: Solution of the Generalized (Quasi-)Triangular Lyapunov Equation **Input:** (A_{\circ}, E_{\circ}) and Y_{\circ} partitioned in P_{B} blocks of size N_{B} Output: X_s solving the Generalized (Quasi-)Triangular Lyapunov Equation 1: $X_s := Y_s$ 2: for $k = 1, ..., P_B$ do 3: if k > 1 then $X_{k,1:k-1} := X_{1:k-1}^T$ {Copy the symmetric part.} 4: $\sum_{b=1}^{P_B} \sum_{l=b}^{P_B} \left(8lN_B^3 - 4lN_B^3 \right) - 4N_B^3$ 5. end if 6: for $l = k, \ldots, P_B$ do 7: if l > 1 then $X_{k:l,l} := X_{k:l,l} - A_{k,k:l}^T X_{k,1:l-1} E_{1:l-1,l}$ 8: $X_{k:l,l} := X_{k:l,l} - E_{k,k:l}^T X_{k,1:l-1} A_{1:l-1} I \bullet$ 9: $\frac{1}{2}(P_B^2 + P_B)F(N_B)$ 10. end if Solve $A_{k,k}^T X_* E_{l,l} + E_{k,k}^T X_* A_{l,l} = X_{k,l}$ 11: 12: $X_{k,l} := X_*$ $\sum_{k=1}^{P_B} \sum_{l=k}^{P_B} \left(4lN_B^3 - 4kN_B^3 + 4N_B^3 \right) \\ - 4N_B^3 P_B$ 13: if k < l then $X_{k+1:l,l} := X_{k+1:l,l} - A_{k,k+1:l}^T X_{k,l} E_{l,l}$ 14: $X_{k+1:l,l} := X_{k+1:l,l} - E_{k,k+1,l}^T X_{k,l} A_{l,l} \bullet$ 15: 16: end if 17. end for 18: end for

Algorithm 1: Solution of the Generalized (Quasi-)Triangular Lyapunov Equation **Input:** (A_{\circ}, E_{\circ}) and Y_{\circ} partitioned in P_{B} blocks of size N_{B} **Output:** X_s solving the Generalized (Quasi-)Triangular Lyapunov Equation 1: $X_s := Y_s$ 2: for $k = 1, ..., P_B$ do 3: if k > 1 then $X_{k,1:k-1} := X_{1:k-1}^T$ {Copy the symmetric part.} 4: $\sum_{h=1}^{P_B} \sum_{l=h}^{P_B} \left(8lN_B^3 - 4lN_B^3 \right) - 4N_B^3$ 5: end if for $l = k, \ldots, P_B$ do 6: 7: if l > 1 then $X_{k:l,l} := X_{k:l,l} - A_{k-k-l}^T X_{k,1:l-1} E_{1:l-1,l}$ 8: $X_{k:l,l} := X_{k:l,l} - E_{k:k:l}^T X_{k,1:l-1} A_{1:l-1} d$ 9: $\frac{1}{2}(P_B^2 + P_B)F(N_B)$ 10: end if Solve $A_{k,k}^T X_* E_{l,l} + E_{k,k}^T X_* A_{l,l} = X_{k,l}$ 11: 12: $X_{k,l} := X_*$ 13: if k < l then $\sum_{k=1}^{P_B} \sum_{l=k}^{P_B} \left(4lN_B^3 - 4kN_B^3 + 4N_B^3 \right)$ $X_{k+1:l,l} := X_{k+1:l,l} - A_{k,k+1:l}^T X_{k,l} E_{l,l} \leftarrow$ 14: $X_{k+1:l,l} := X_{k+1:l,l} - E_{k-k+1:l}^T X_{k,l} A_{l,l}$ 15: $-4N_{P}^{3}P_{P}$ 16: end if 17: end for 18: end for Overall Flop Count $F_{\text{overall}}(n, N_B) := \frac{1}{2} (P_B^2 + P_B) F(N_B) + N_B^3 \left(\frac{8}{2} P_B^3 + 4P_B^2 - \frac{8}{2} P_B - 4\right)$

Algorithm 1: Solution of the Generalized (Quasi-)Triangular Lyapunov Equation **Input:** (A_s, E_s) and Y_s partitioned in P_B blocks of size N_B **Output:** X_s solving the Generalized (Quasi-)Triangular Lyapunov Equation 1: $X_s := Y_s$ 2: for $k = 1, ..., P_B$ do 3: if k > 1 then $X_{k,1:k-1} := X_{1:k-1}^T$ {Copy the symmetric part.} 4: $\sum_{b=1}^{P_B} \sum_{l=b}^{P_B} \left(8lN_B^3 - 4lN_B^3 \right) - 4N_B^3$ 5: end if for $l = k, \ldots, P_B$ do 6: 7: if l > 1 then $X_{k:l,l} := X_{k:l,l} - A_{k,k:l}^T X_{k,1:l-1} E_{1:l-1,l}$ 8: $X_{k:l,l} := X_{k:l,l} - E_{k:k:l}^T X_{k,1:l-1} A_{1:l-1}$ 9: $\frac{1}{2}(P_B^2 + P_B)F(N_B)$ 10: end if Solve $A_{k,k}^T X_* E_{l,l} + E_{k,k}^T X_* A_{l,l} = X_{k,l}$ 11: 12: $X_{k,l} := X_*$ 13: if k < l then $\sum_{k=1}^{P_B} \sum_{l=k}^{P_B} \left(4lN_B^3 - 4kN_B^3 + 4N_B^3 \right)$ $X_{k+1:l,l} := X_{k+1:l,l} - A_{k,k+1:l}^T X_{k,l} E_{l,l} \leftarrow$ 14: $X_{k+1:l,l} := X_{k+1:l,l} - E_{k,k+1:l}^T X_{k,l} A_{l,l}$ 15: $-4N_{B}^{3}P_{B}$ 16: end if 17: end for 18: end for **Overall Flop Count** $F_{\text{overall}}(n, N_B) := \frac{1}{2} \left(\frac{n^2}{N_{\pi}^2} + \frac{n}{N_B} \right) F(N_B) + \left(\frac{8}{3}n^3 + 4N_Bn^2 - \frac{8}{3}N_B^2n - 4N_B^3 \right)$

Numerical Resul

Conclusions

Inner Sylvester Equations

We have to solve Generalized Sylvester Equations $A_{kk}^T X_{kl} E_{ll} + E_{kk}^T X_{kl} A_{ll} = \hat{Y}_{kl}$

Numerical Resul

Conclusions

Inner Sylvester Equations

We have to solve Generalized Sylvester Equations $\hat{A}^T\hat{X}\hat{B}+\hat{C}^T\hat{X}\hat{D}=\hat{Y},$

where \hat{A} , $\hat{C} \in \mathbb{R}^{\hat{n} \times \hat{n}}$, \hat{B} , $\hat{D} \in \mathbb{R}^{\hat{m} \times \hat{m}}$ and \hat{X} , $\hat{Y} \in \mathbb{R}^{\hat{n} \times \hat{m}}$ with the structure

 $\left(\left| \left(\right) \right) \left(\left| \right\rangle \right) + \left(\left| \left(\right) \right\rangle \left(\left| \right\rangle \right) = \left(\left| \right\rangle \right)$

efficiently.

Inner Sylvester Equations

We have to solve Generalized Sylvester Equations $\hat{A}^T\hat{X}\hat{B}+\hat{C}^T\hat{X}\hat{D}=\hat{Y},$

where \hat{A} , $\hat{C} \in \mathbb{R}^{\hat{n} \times \hat{n}}$, \hat{B} , $\hat{D} \in \mathbb{R}^{\hat{m} \times \hat{m}}$ and \hat{X} , $\hat{Y} \in \mathbb{R}^{\hat{n} \times \hat{m}}$ with the structure

 $(\bigcirc)(\bigcirc)(\bigcirc) + (\bigcirc)(\bigcirc)(\bigcirc) = (\bigcirc)$

efficiently.

Existing implementations:

- LAPACK: DTGSY2 (Level-2) / DTGSYL (Level-3),
- SLICOT: SB040D (advanced wrapper around DTGSYL)

Numerical Result

Conclusions

Inner Sylvester Equations

• SLICOT: SB040D (advanced wrapper around DTGSYL)

Inner Sylvester Equations

SLICOT: SB040D (advanced wrapper around DTGSYL)

Inner Sylvester Equations

$\hat{A}^T \hat{X} \hat{B} + \hat{C}^T \hat{X} \hat{D} = \hat{Y}$

Demands on the algorithm to solve the inner Generalized Sylvester Equation:

• The transposition of the matrices \hat{A} and \hat{C} must be done implicitly.

$\hat{A}^T \hat{X} \hat{B} + \hat{C}^T \hat{X} \hat{D} = \hat{Y}$

Demands on the algorithm to solve the inner Generalized Sylvester Equation:

- The transposition of the matrices \hat{A} and \hat{C} must be done implicitly.
- The right hand side \hat{Y} must be overwritten by the solution \hat{X} .

$\hat{A}^T \hat{X} \hat{B} + \hat{C}^T \hat{X} \hat{D} = \hat{Y}$

Demands on the algorithm to solve the inner Generalized Sylvester Equation:

- The transposition of the matrices \hat{A} and \hat{C} must be done implicitly.
- The right hand side \hat{Y} must be overwritten by the solution \hat{X} .
- The matrices \hat{A} , \hat{B} , \hat{C} and \hat{D} are used read only.

$\hat{A}^T \hat{X} \hat{B} + \hat{C}^T \hat{X} \hat{D} = \hat{Y}$

Demands on the algorithm to solve the inner Generalized Sylvester Equation:

- The transposition of the matrices \hat{A} and \hat{C} must be done implicitly.
- The right hand side \hat{Y} must be overwritten by the solution \hat{X} .
- The matrices \hat{A} , \hat{B} , \hat{C} and \hat{D} are used read only.
- At most a cubic (in \hat{n}) flop count which does not dominate the flop count of the overall procedure.

$\hat{A}^T \hat{X} \hat{B} + \hat{C}^T \hat{X} \hat{D} = \hat{Y}$

Demands on the algorithm to solve the inner Generalized Sylvester Equation:

- The transposition of the matrices \hat{A} and \hat{C} must be done implicitly.
- The right hand side \hat{Y} must be overwritten by the solution \hat{X} .
- The matrices \hat{A} , \hat{B} , \hat{C} and \hat{D} are used read only.
- At most a cubic (in \hat{n}) flop count which does not dominate the flop count of the overall procedure.

Two Approaches to solve Generalized Sylvester Equations:

• Extended Bartels-Stewart Method

[Gardiner, Laub, Amato and Moler, '92]

• Generalized Schur Method

[KÅGSTRÖM, WESTIN '89]

Gardiner-Laub Approach

Employing the triangular structure of

$$\hat{A}^T \hat{X} \hat{B} + \hat{C}^T \hat{X} \hat{D} = \hat{Y}$$
⁽²⁾

we rewrite (2) in terms of the k^{th} column of \hat{Y} :

$$\hat{A}^T \sum_{l=1}^k \hat{B}_{lk} \hat{X}_{\cdot l} + \hat{C}^T \sum_{l=1}^{k+1} \hat{D}_{lk} \hat{X}_{\cdot l} = \hat{Y}_{\cdot k} \quad \text{for} \quad k = 1, \dots, m.$$

Gardiner-Laub Approach

Employing the triangular structure of

$$\hat{A}^T \hat{X} \hat{B} + \hat{C}^T \hat{X} \hat{D} = \hat{Y}$$
⁽²⁾

we rewrite (2) in terms of the k^{th} column of \hat{Y} :

$$\hat{A}^T \sum_{l=1}^k \hat{B}_{lk} \hat{X}_{\cdot l} + \hat{C}^T \sum_{l=1}^{k+1} \hat{D}_{lk} \hat{X}_{\cdot l} = \hat{Y}_{\cdot k} \quad \text{for} \quad k = 1, \dots, m.$$

 $\hat{D}_{k+1,k} = 0$ $\left(\hat{B}_{kk}\hat{A} + \hat{D}_{kk}\hat{C}\right)^T\hat{X}_{\cdot k} = \hat{Y}_{\cdot k} - \hat{A}^T\sum_{l=1}^{k-1}\hat{B}_{lk}\hat{X}_{\cdot l} - \hat{C}^T\sum_{l=1}^{k-1}\hat{D}_{lk}\hat{X}_{\cdot l} = \bar{Y}_{\cdot k}$

Gardiner-Laub Approach

Employing the triangular structure of

$$\hat{A}^T \hat{X} \hat{B} + \hat{C}^T \hat{X} \hat{D} = \hat{Y}$$
⁽²⁾

we rewrite (2) in terms of the k^{th} column of \hat{Y} :

$$\hat{A}^T \sum_{l=1}^k \hat{B}_{lk} \hat{X}_{\cdot l} + \hat{C}^T \sum_{l=1}^{k+1} \hat{D}_{lk} \hat{X}_{\cdot l} = \hat{Y}_{\cdot k} \quad \text{for} \quad k = 1, \dots, m.$$

 $\overline{D_{k+1}}_{,k} \neq 0$

$$\begin{pmatrix} \hat{B}_{kk}\hat{A} + \hat{D}_{kk}\hat{C} & \hat{B}_{k,k+1}\hat{A} + \hat{D}_{k,k+1}\hat{C} \\ \hat{B}_{k+1,k+1}\hat{A} + \hat{D}_{k+1,k+1}\hat{C} & \hat{B}_{k+1,k+1}\hat{A} + \hat{D}_{k+1,k+1}\hat{C} \end{pmatrix}^T \begin{pmatrix} \hat{X}_{\cdot k} \\ \hat{X}_{\cdot k+1} \end{pmatrix} = \begin{pmatrix} \bar{Y}_{\cdot k} \\ \bar{Y}_{\cdot k+1} \end{pmatrix}$$

Gardiner-Laub Approach

Employing the triangular structure of

$$\hat{A}^T \hat{X} \hat{B} + \hat{C}^T \hat{X} \hat{D} = \hat{Y}$$
⁽²⁾

we rewrite (2) in terms of the k^{th} column of \hat{Y} :

$$\hat{A}^T \sum_{l=1}^k \hat{B}_{lk} \hat{X}_{\cdot l} + \hat{C}^T \sum_{l=1}^{k+1} \hat{D}_{lk} \hat{X}_{\cdot l} = \hat{Y}_{\cdot k} \quad \text{for} \quad k = 1, \dots, m.$$

 $\hat{D}_{k+1,k} \neq 0$

$$\begin{pmatrix} \hat{B}_{kk}\hat{A} + \hat{D}_{kk}\hat{C} & \hat{B}_{k,k+1}\hat{A} + \hat{D}_{k,k+1}\hat{C} \\ \hat{B}_{k+1,k+1}\hat{A} + \hat{D}_{k+1,k+1}\hat{C} & \hat{B}_{k+1,k+1}\hat{A} + \hat{D}_{k+1,k+1}\hat{C} \end{pmatrix}^T \begin{pmatrix} \hat{X}_{\cdot k} \\ \hat{X}_{\cdot k+1} \end{pmatrix} = \begin{pmatrix} \bar{Y}_{\cdot k} \\ \bar{Y}_{\cdot k+1} \end{pmatrix}$$

• Requires $4\hat{n}^2$ extra memory to setup the linear system,

• Additional $2\hat{n}$ extra memory if the leading dimensions of \hat{X} and \hat{Y} are not equal to \hat{n} .

Numerical Result

Inner Sylvester Equations

Gardiner-Laub Approach – Flop Count

Best Case – $\hat{n} = \hat{m}$ and $D_{k+1,k} = 0 \quad \forall k = 1 \dots \hat{n} - 1$

One solve:

$$F^{(best)}(\hat{n}) = \sum_{k=1}^{\hat{n}} \left(4\hat{n}^2 + 4\hat{n}^2 + \sum_{l=k+1}^{\hat{n}} 4\hat{n} \right) = 10\hat{n}^3 - 2\hat{n}^2$$

Inside Algorithm 1:

$$F_{overall}^{(best)}(n, N_B) = \frac{8}{3}n^3 + 9N_Bn^2 + \frac{7}{3}N_B^2n - 4N_B^3 - n^2 - nN_B$$

Numerical Result

Inner Sylvester Equations

Gardiner-Laub Approach – Flop Count

Best Case – $\hat{n} = \hat{m}$ and $D_{k+1,k} = 0 \quad \forall k = 1 \dots \hat{n} - 1$

One solve:

$$F^{(best)}(\hat{n}) = \sum_{k=1}^{\hat{n}} \left(4\hat{n}^2 + 4\hat{n}^2 + \sum_{l=k+1}^{\hat{n}} 4\hat{n} \right) = 10\hat{n}^3 - 2\hat{n}^2$$

Inside Algorithm 1:

$$F_{overall}^{(best)}(n, N_B) = \frac{8}{3}n^3 + 9N_Bn^2 + \frac{7}{3}N_B^2n - 4N_B^3 - n^2 - nN_B$$

Worst Case – $\hat{n} = \hat{m}$ and $D_{2k-1,2k} \neq 0$ $\forall k = 1 \dots \frac{\hat{n}}{2}$

One solve:

$$F^{(worst)}(\hat{n}) = \sum_{k=1}^{\hat{n}} \left(10\hat{n}^2 + 4\hat{n}^2 + \frac{47}{2}\hat{n} + 8\hat{n}^2 + \sum_{l=2k+1}^{\hat{n}} 8\hat{n} \right) = 13\hat{n}^3 + \frac{31}{4}\hat{n}^2$$

Inside Algorithm 1:

$$F_{overall}^{(worst)}(n, N_B) = \frac{8}{3}n^3 + \frac{21}{2}N_Bn^2 + \frac{23}{6}N_B^2n + -4N_B^2 + \frac{31}{2}\left(n^2 + N_Bn\right)$$

Numerical Resul

Inner Sylvester Equations

Kågström-Westin Approach

We consider the coupled Sylvester Equation:

$$\begin{split} \check{A}R - L\check{B} &= \check{C} \\ \check{D}R - L\check{E} &= \check{F}, \end{split}$$

Numerical Resul

(★)

Inner Sylvester Equations

Kågström-Westin Approach

We consider the coupled Sylvester Equation:

$$\hat{A}^T R + L \hat{D} = \hat{Y} \hat{C}^T R - L \hat{B} = 0 = \hat{W},$$

where we have to restore the solution \hat{X} trough:

$$\hat{X} = \hat{C}^{-1}L$$
 or $\hat{X} = R\hat{B}^{-T}$.

Numerical Resul

★)

Inner Sylvester Equations

Kågström-Westin Approach

We consider the coupled Sylvester Equation:

$$\hat{A}^T R + L \hat{D} = \hat{Y} \hat{C}^T R - L \hat{B} = 0 = \hat{W},$$

$$($$

where we have to restore the solution \hat{X} trough:

$$\hat{X} = \hat{C}^{-1}L \quad \text{or} \quad \hat{X} = R\hat{B}^{-T}.$$

Forward Substitution Scheme

Partition (\bigstar) into $p \times q$ blocks of size 1×1 or 2×2 and solve

$$\hat{A}_{ii}^{T}R_{ij} + L_{ij}\hat{D}_{jj} = \hat{Y}_{ij} - \sum_{k=1}^{i-1} \hat{A}_{ik}^{T}R_{kj} - \sum_{k=1}^{j-1} L_{ik}\hat{D}_{kj} = \tilde{Y}_{ij}$$
$$\hat{C}_{ii}^{T}R_{ij} - L_{ij}\hat{B}_{jj} = \hat{W}_{ij} - \sum_{k=1}^{i-1} \hat{C}_{ik}^{T}R_{kj} + \sum_{k=1}^{j-1} L_{ik}\hat{B}_{kj} = \tilde{W}_{ij}$$

for i = 1, ..., p and j = 1, ..., q.

Kågström-Westin Approach

We consider the coupled Sylvester Equation:

Solution of a linear system **(★**) where we $\begin{pmatrix} I_{\hat{D}} \otimes \hat{A}_{ii}^T & \hat{D}_{jj}^T \otimes I_{\hat{A}} \\ I_{\hat{D}} \otimes \hat{C}_{ii}^T & -\hat{B}_{ji}^T \otimes I_{\hat{A}} \end{pmatrix} \begin{pmatrix} \operatorname{vec}(R_{ij}) \\ \operatorname{vec}(L_{ij}) \end{pmatrix} = \begin{pmatrix} \operatorname{vec}(\tilde{Y}_{ij}) \\ \operatorname{vec}(\tilde{W}_{ij}) \end{pmatrix},$ which is at most 8×8 . L or $X = RB^{-1}$ Forward Substitution Scheme Partition (\bigstar) into $p\times q$ blocks of size 1×1 or 2×2 and solve $\begin{array}{c} & & \\ \hat{A}_{ii}^{T}R_{ij} + L_{ij}\hat{D}_{jj} \\ \hat{C}_{ii}^{T}R_{ij} - L_{ij}\hat{B}_{jj} \end{array} = \hat{Y}_{ij} - \sum_{k=1}^{i-1} \hat{A}_{ik}^{T}R_{kj} - \sum_{k=1}^{j-1} L_{ik}\hat{D}_{kj} = \tilde{Y}_{ij} \\ & = \hat{W}_{ij} - \sum_{k=1}^{i-1} \hat{C}_{ik}^{T}R_{kj} + \sum_{k=1}^{j-1} L_{ik}\hat{B}_{kj} = \tilde{W}_{ij}
\end{array}$ for i = 1, ..., p and i = 1, ..., q.

Numerical Result

Inner Sylvester Equations

Kågström-Westin Approach – Flop Count

Best Case $-\hat{n} = \hat{m}$ and $D_{k+1,k} = 0 \quad \forall k = 1 \dots \hat{n} - 1$

One solve:

$$F^{(best)}(\hat{n}) = \hat{n}^3 + \sum_{i=1}^{\hat{n}} \sum_{j=1}^{\hat{n}} \left(11 + 4(\hat{n} - i) + 4(\hat{n} - j)\right) = 5\hat{n}^3 + 7\hat{n}^2$$

Inside Algorithm 1:

$$F_{overall}^{(best)}(n, N_B) = \frac{8}{3}n^3 + \frac{7}{2}n^2 + \frac{13}{2}N_Bn^2 - \frac{1}{6}N_B{}^2n + \frac{7}{2}N_Bn - 4N^3$$

Numerical Result

Conclusions

Inner Sylvester Equations

Kågström-Westin Approach – Flop Count

Best Case
$$-\hat{n} = \hat{m}$$
 and $D_{k+1,k} = 0 \quad \forall k = 1 \dots \hat{n} - 1$

One solve:

$$F^{(best)}(\hat{n}) = \hat{n}^3 + \sum_{i=1}^{\hat{n}} \sum_{j=1}^{\hat{n}} (11 + 4(\hat{n} - i) + 4(\hat{n} - j)) = 5\hat{n}^3 + 7\hat{n}^2$$

Inside Algorithm 1:

$$F_{overall}^{(best)}(n, N_B) = \frac{8}{3}n^3 + \frac{7}{2}n^2 + \frac{13}{2}N_Bn^2 - \frac{1}{6}N_B{}^2n + \frac{7}{2}N_Bn - 4N^3$$

Worst Case – $\hat{n} = \hat{m}$ and $D_{2k-1,2k} \neq 0$ $\forall k = 1 \dots \frac{n}{2}$

One solve:

$$F^{(worst)}(\hat{n}) = \hat{n}^3 + \sum_{i=1}^{\frac{\hat{n}}{2}} \sum_{j=1}^{\frac{\hat{n}}{2}} \left(415 + 32(\frac{\hat{n}}{2} - i) + 32(\frac{\hat{n}}{2} - j) \right) = 5\hat{n}^3 + \frac{383}{4}\hat{n}^2$$

Inside Algorithm 1:

$$F_{overall}^{(worst)}(n,N_B) = \frac{8}{3}n^3 + \frac{383}{8}n^2 + \frac{13}{2}N_Bn^2 + \frac{383}{8}N_Bn - \frac{1}{6}N_B{}^2n - 4N_B{}^3$$

Numerical Resul

Inner Sylvester Equations

Diagonal Blocks in the Outer Algorithm

All diagonal blocks result in

 $A_{\mu}^{T}X_{\mu}E_{\mu} + E_{\mu}^{T}X_{\mu}A_{\mu} = \hat{Y}_{\mu},$

which is a Generalized Lyapunov Equation again.

Diagonal Blocks in the Outer Algorithm

All diagonal blocks result in

$$A_{ll}^T X_{ll} E_{ll} + E_{ll}^T X_{ll} A_{ll} = \hat{Y}_{ll},$$

which is a Generalized Lyapunov Equation again.

We have to preserve the symmetry of X_{ll} .

Diagonal Blocks in the Outer Algorithm

All diagonal blocks result in

$$A_{ll}^T X_{ll} E_{ll} + E_{ll}^T X_{ll} A_{ll} = \hat{Y}_{ll},$$

which is a Generalized Lyapunov Equation again.

We have to preserve the symmetry of X_{ll} .

() Copy the lower(upper) triangle of X_{ll} to the upper(lower) triangle.

Diagonal Blocks in the Outer Algorithm

All diagonal blocks result in

$$A_{ll}^T X_{ll} E_{ll} + E_{ll}^T X_{ll} A_{ll} = \hat{Y}_{ll},$$

which is a Generalized Lyapunov Equation again.

We have to preserve the symmetry of X_{ll} .

() Copy the lower(upper) triangle of X_{ll} to the upper(lower) triangle.

Symmetrize the block by

$$\frac{1}{2}\left(X_{ll} + X_{ll}^T\right) \to X_{ll}.$$

Diagonal Blocks in the Outer Algorithm

All diagonal blocks result in

$$A_{ll}^T X_{ll} E_{ll} + E_{ll}^T X_{ll} A_{ll} = \hat{Y}_{ll},$$

which is a Generalized Lyapunov Equation again.

We have to preserve the symmetry of X_{ll} .

- **(**) Copy the lower(upper) triangle of X_{ll} to the upper(lower) triangle.
- Symmetrize the block by

$$\frac{1}{2}\left(X_{ll}+X_{ll}^{T}\right)\to X_{ll}.$$

Solve using Algorithm 1 again with a smaller block size.

- Reduces the flop count for those blocks to $\mathcal{O}(\frac{8}{3}N_B^3)$.
- But we get a recursive scheme.

Numerical Results

Hardware:

 ${\bullet}~{\rm Intel}^{\textcircled{R}}$ Xeon ${\textcircled{R}}$ X5650, 2×6 Cores, 2×24 GB DDR3 RAM

Software:

- Intel[®] Fortran Compiler 13
- Intel[®] MKL 11
- SLICOT 5.0

Numerical Results

Hardware:

 ${\bullet}~{\rm Intel}^{\textcircled{R}}$ Xeon ${\textcircled{R}}~{\rm X5650},~2\times 6$ Cores, 2×24 GB DDR3 RAM

Software:

- Intel[®] Fortran Compiler 13
- Intel[®] MKL 11
- SLICOT 5.0
- Performance tests: random matrices via subsequent calls of DLARNV,
- Accuracy/Reliability:

$$A = (2^{-t} - 1)I_n + \text{diag}(1, 2, \dots, n) + U_n$$
$$E = I_n + 2^{-t}U_n,$$

where I_n is the identity and U_n is an $n\times n$ matrix with only unit entries above the diagonal and varying t.

Conclusions

Numerical Results

Runtime

Figure: Runtime and speed up, n = 1000, single thread. (GL = Gardiner and Laub, KW = Kågström and Westin)

Numerical Resul

Conclusions

Numerical Results

Runtime

(GL = Gardiner and Laub, KW = Kågström and Westin)

Numerical Results

Accuracy

	Relative Residual			Relat	Relative Forward Error		
N_B	t = 0	t = 30	t = 40	t = 0	t = 30	t = 40	
SLICOT							
1	0.00	0.00	1.07e-15	3.54e-17	4.18e-17	5.97e-14	
Gardiner-Laub							
8	0.00	0.00	5.24e-16	0.00	0.00	3.00e-14	
24	0.00	0.00	4.15e-16	0.00	0.00	2.23e-14	
48	0.00	0.00	4.17e-16	0.00	0.00	2.07e-14	
Kågström-Westin							
8	1.62e-16	1.56e-16	5.14e-16	2.15e-14	2.14e-14	3.03e-14	
24	1.78e-16	1.73e-16	4.10e-16	2.71e-14	2.72e-14	3.15e-14	
48	2.02e-16	2.03e-16	3.83e-16	8.17e-14	8.07e-14	8.82e-14	

Table: Relative residual and relative forward error for the generalized Lyapunov equation, artificial example n = 1000.

Numerical Resul

Numerical Results

Symmetrization of the Diagonal Blocks

Figure: Forward error of the Gardiner-Laub approach with and without symmetrization the diagonal blocks.

Conclusions

Conclusions

- We rearranged the existing idea to level-3 BLAS algorithm.
- We improved two variants of existing solution techniques for the Generalized Sylvester Equations to fit the requirements of the Lyapunov solver.
- A speed-up of at least 6.5 (sequential) or 10.5 (parallel) is possible without loosing accuracy.

Conclusions

Conclusions

- We rearranged the existing idea to level-3 BLAS algorithm.
- We improved two variants of existing solution techniques for the Generalized Sylvester Equations to fit the requirements of the Lyapunov solver.
- A speed-up of at least 6.5 (sequential) or 10.5 (parallel) is possible without loosing accuracy.

Outlook

- Develop accelerator based variants (NVIDIA[®] CUDA, Intel[®] Xeon[®] Phi),
- Apply similar ideas to Hammarling's-Method.
- Accelerate the necessary QZ decomposition in the overall algorithm.

Conclusions

Conclusions

- We rearranged the existing idea to level-3 BLAS algorithm.
- We improved two variants of existing solution techniques for the Generalized Sylvester Equations to fit the requirements of the Lyapuno sol Thank you for your

Questions?

• A speed-up of at least 0.0 (lequential) or 50.5 (par. without posing accurattention! is possible

Outlook

- Develop ccelerator based variants (Nvidia[®] CUDA, Intel[®] Xeon[®] Phi),
- Apply similar ideas to Hammarling's-Method.
- Accelerate the necessary QZ decomposition in the overall algorithm.