
MAX PLANCK INSTITUTE

FOR DYNAMICS OF COMPLEX

TECHNICAL SYSTEMS

MAGDEBURG

PACO 2015
July 6-7

Effects of dynamic frequency scaling of
Nvidia GPUs during the computation of the

generalized matrix sign function

Martin Köhler

Max-Planck-Institute Magdeburg

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 1/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Outline

1 Introduction

2 Basic Implementation

3 Memory-Efficient Implementation

4 Results

5 Conclusions and Outlook

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 2/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Introduction
Generalized Matrix Sign Function

Matrix Sign Function

Let A ∈ Rn×n be a matrix with no eigenvalues on the imaginary axis with the
Jordan canonical form

Y

(
J1 0
0 J2

)
Y−1 = A,

where Λ(J1) ⊂ C− and Λ(J2) ⊂ C+. Then sign (A) is given by

sign (A) := Y

(
−I1 0

0 I2

)
Y−1,

where dim(Ii ) = dim(Ji ), i = 1, 2.

Generalized Matrix Sign Function [Gardiner, Laub ’86]

Let (A,B) be a matrix pencil with no eigenvalues on the imaginary axis then
sign (A,B) is given by

sign (A,B) = B sign
(
B−1A

)
= sign

(
AB−1

)
B.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 3/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Introduction
Generalized Matrix Sign Function

Matrix Sign Function

Let A ∈ Rn×n be a matrix with no eigenvalues on the imaginary axis with the
Jordan canonical form

Y

(
J1 0
0 J2

)
Y−1 = A,

where Λ(J1) ⊂ C− and Λ(J2) ⊂ C+. Then sign (A) is given by

sign (A) := Y

(
−I1 0

0 I2

)
Y−1,

where dim(Ii ) = dim(Ji ), i = 1, 2.

Generalized Matrix Sign Function [Gardiner, Laub ’86]

Let (A,B) be a matrix pencil with no eigenvalues on the imaginary axis then
sign (A,B) is given by

sign (A,B) = B sign
(
B−1A

)
= sign

(
AB−1

)
B.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 3/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Introduction
Generalized Matrix Sign Function

Applications

Solution of Riccati equations: [Gardiner, Laub ’86]

ATXE + ETXA− ETXGXE + Q = 0,

Solution of stable Lyapunov equations: [Benner, Quintana-Ort́ı ’98]

ATXE + ETXA + Q = 0,

Spectral Division, [Sun, Quintana-Ort́ı ’04]

Fast approximation of the generalized Schur decomposition:
[Benner, K., Saak ’13]

(A,B) = (QTSZ ,QTTZ).

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 4/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Introduction
Generalized Matrix Sign Function

Applications

Solution of Riccati equations: [Gardiner, Laub ’86]

ATXE + ETXA− ETXGXE + Q = 0,

Solution of stable Lyapunov equations: [Benner, Quintana-Ort́ı ’98]

ATXE + ETXA + Q = 0,

Spectral Division, [Sun, Quintana-Ort́ı ’04]

Fast approximation of the generalized Schur decomposition:
[Benner, K., Saak ’13]

(A,B) = (QTSZ ,QTTZ).

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 4/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Introduction
Generalized Matrix Sign Function

Applications

Solution of Riccati equations: [Gardiner, Laub ’86]

ATXE + ETXA− ETXGXE + Q = 0,

Solution of stable Lyapunov equations: [Benner, Quintana-Ort́ı ’98]

ATXE + ETXA + Q = 0,

Spectral Division, [Sun, Quintana-Ort́ı ’04]

Fast approximation of the generalized Schur decomposition:
[Benner, K., Saak ’13]

(A,B) = (QTSZ ,QTTZ).

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 4/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Introduction
Generalized Matrix Sign Function

Applications

Solution of Riccati equations: [Gardiner, Laub ’86]

ATXE + ETXA− ETXGXE + Q = 0,

Solution of stable Lyapunov equations: [Benner, Quintana-Ort́ı ’98]

ATXE + ETXA + Q = 0,

Spectral Division, [Sun, Quintana-Ort́ı ’04]

Fast approximation of the generalized Schur decomposition:
[Benner, K., Saak ’13]

(A,B) = (QTSZ ,QTTZ).

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 4/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Introduction
Newton-Method for sign (A,B)

From sign (A)2 = I follows the Newton scheme:

A0 ← A, Ak+1 ←
1

2

(
Ak + A−1

k

)
, k = 0, 1, 2, . . .

to compute the sign of a matrix.

The Generalized Sign function iteration:

A0 ← A, Ak+1 ←
1

2

(
Ak + BA−1

k B
)
, k = 0, 1, 2, . . .

where ck is an additional scaling factor. Typical: ck =
(
| det(Ak )|
| det(B)|

) 1
n

.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 5/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Introduction
Newton-Method for sign (A,B)

From sign (A)2 = I follows the Newton scheme:

A0 ← A, Ak+1 ←
1

2

(
Ak + A−1

k

)
, k = 0, 1, 2, . . .

to compute the sign of a matrix.

The Generalized Sign function iteration:

A0 ← A, Ak+1 ←
1

2

(
Ak + BA−1

k B
)
, k = 0, 1, 2, . . .

where ck is an additional scaling factor. Typical: ck =
(
| det(Ak )|
| det(B)|

) 1
n

.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 5/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Introduction
Newton-Method for sign (A,B)

From sign (A)2 = I follows the Newton scheme:

A0 ← A, Ak+1 ←
1

2

(
Ak + A−1

k

)
, k = 0, 1, 2, . . .

to compute the sign of a matrix.

The Generalized Sign function iteration:

A0 ← A, Ak+1 ←
1

2ck

(
Ak + c2

kBA
−1
k B

)
, k = 0, 1, 2, . . .

where ck is an additional scaling factor. Typical: ck =
(
| det(Ak )|
| det(B)|

) 1
n

.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 5/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Introduction
Frequency Scaling on K20 GPUs

Nvidia® K20 accelerators can adjust their GPU and Memory frequency:

GPU clock rate (operation mode): 758MHz, 705MHz, 666MHz,
640MHz, and 614MHz with a memory clock rate of 2600MHz.

GPU clock rate (idle mode): 324MHz with a memory clock rate
of 324MHz.

GPU clock rate (emergency): 378MHz or 127MHz.

Frequency is scaled if:

Power consumption is too high for a longer time span ( > 1 minute),

Device temperature reaches 90 �.

High density server farms,

Bad cooling system,

Bad airflow design of the chassis,

combined with a continuous high load.

→ Extremely hardware dependent.

Reasons:

Aim:

Develop a GPU implementation which can handle (power- or)
temperature-caused frequency scaling.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 6/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Introduction
Frequency Scaling on K20 GPUs

Nvidia® K20 accelerators can adjust their GPU and Memory frequency:

GPU clock rate (operation mode): 758MHz, 705MHz, 666MHz,
640MHz, and 614MHz with a memory clock rate of 2600MHz.

GPU clock rate (idle mode): 324MHz with a memory clock rate
of 324MHz.

GPU clock rate (emergency): 378MHz or 127MHz.

Frequency is scaled if:

Power consumption is too high for a longer time span ( > 1 minute),

Device temperature reaches 90 �.

High density server farms,

Bad cooling system,

Bad airflow design of the chassis,

combined with a continuous high load.

→ Extremely hardware dependent.

Reasons:

Aim:

Develop a GPU implementation which can handle (power- or)
temperature-caused frequency scaling.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 6/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Introduction
Frequency Scaling on K20 GPUs

Nvidia® K20 accelerators can adjust their GPU and Memory frequency:

GPU clock rate (operation mode): 758MHz, 705MHz, 666MHz,
640MHz, and 614MHz with a memory clock rate of 2600MHz.

GPU clock rate (idle mode): 324MHz with a memory clock rate
of 324MHz.

GPU clock rate (emergency): 378MHz or 127MHz.

Frequency is scaled if:

Power consumption is too high for a longer time span ( > 1 minute),

Device temperature reaches 90 �.

High density server farms,

Bad cooling system,

Bad airflow design of the chassis,

combined with a continuous high load.

→ Extremely hardware dependent.

Reasons:

Aim:

Develop a GPU implementation which can handle (power- or)
temperature-caused frequency scaling.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 6/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Introduction
Frequency Scaling on K20 GPUs

Nvidia® K20 accelerators can adjust their GPU and Memory frequency:

GPU clock rate (operation mode): 758MHz, 705MHz, 666MHz,
640MHz, and 614MHz with a memory clock rate of 2600MHz.

GPU clock rate (idle mode): 324MHz with a memory clock rate
of 324MHz.

GPU clock rate (emergency): 378MHz or 127MHz.

Frequency is scaled if:

Power consumption is too high for a longer time span ( > 1 minute),

Device temperature reaches 90 �.

High density server farms,

Bad cooling system,

Bad airflow design of the chassis,

combined with a continuous high load.

→ Extremely hardware dependent.

Reasons:

Aim:

Develop a GPU implementation which can handle (power- or)
temperature-caused frequency scaling.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 6/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Basic Implementation
Straight-Forward Approach using LAPACK

A0 ← A, Ak+1 ←
1

2ck

(
Ak + c2

kBA
−1
k B

)
, k = 0, 1, 2, . . .

Solution of a linear system:

LU - decomposition: GETRF,

Forward/backward substitution: GETRS.

Matrix-Matrix product:

C := αAB + βC in BLAS: GEMM

Requires three non-overlapping memory locations of size n2.

; lower bound for the memory requirements on the device.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 7/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Basic Implementation
Straight-Forward Approach using LAPACK

A0 ← A, Ak+1 ←
1

2ck

(
Ak + c2

kBA
−1
k B

)
, k = 0, 1, 2, . . .

Solution of a linear system:

LU - decomposition: GETRF,

Forward/backward substitution: GETRS.

Matrix-Matrix product:

C := αAB + βC in BLAS: GEMM

Requires three non-overlapping memory locations of size n2.

; lower bound for the memory requirements on the device.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 7/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Basic Implementation
Straight-Forward Approach using LAPACK

A0 ← A, Ak+1 ←
1

2ck

(
Ak + c2

kBX
)
, k = 0, 1, 2, . . .

Solution of a linear system:

LU - decomposition: GETRF,

Forward/backward substitution: GETRS.

Matrix-Matrix product:

C := αAB + βC in BLAS: GEMM

Requires three non-overlapping memory locations of size n2.

; lower bound for the memory requirements on the device.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 7/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Basic Implementation
Straight-Forward GPU Approach using MAGMA

The matrix-matrix product requires 3 · n2 memory on the device.

Generalized Sign Function on 3n2 device memory

1: Upload A0 and B to the device.
2: for k = 1, . . . do
3: Copy B to B̃ on the device.
4: Use getrf gpu from MAGMA to compute LU = PAk ,
5: Use getrs gpu from MAGMA to solve LUX = PB̃,
6: Upload Ak again onto the location of LU,
7: Compute Ak+1 := 1

2ck
(Ak + c2

kBX ) using cublas?gemm,
8: Download Ak+1 to the host and check convergence.
9: end for

Only n2 additional memory necessary to
remove this transfer.

Maximum problem size shrinks down to:

double precision 12 541

single precision 17 736

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 8/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Basic Implementation
Straight-Forward GPU Approach using MAGMA

The matrix-matrix product requires 3 · n2 memory on the device.

LU decomposition works on n2 memory,

Forward/Backward substitution works on 2n2 memory.

→ Matrix-Matrix product is the limiting factor!

Maximum problem size on Nvidia® Tesla K20m:

double precision 14 481
single precision 20 480

Generalized Sign Function on 3n2 device memory

1: Upload A0 and B to the device.
2: for k = 1, . . . do
3: Copy B to B̃ on the device.
4: Use getrf gpu from MAGMA to compute LU = PAk ,
5: Use getrs gpu from MAGMA to solve LUX = PB̃,
6: Upload Ak again onto the location of LU,
7: Compute Ak+1 := 1

2ck
(Ak + c2

kBX ) using cublas?gemm,
8: Download Ak+1 to the host and check convergence.
9: end for

Only n2 additional memory necessary to
remove this transfer.

Maximum problem size shrinks down to:

double precision 12 541

single precision 17 736

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 8/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Basic Implementation
Straight-Forward GPU Approach using MAGMA

The matrix-matrix product requires 3 · n2 memory on the device.

LU decomposition works on n2 memory,

Forward/Backward substitution works on 2n2 memory.

→ Matrix-Matrix product is the limiting factor!

Maximum problem size on Nvidia® Tesla K20m:

double precision 14 481
single precision 20 480

Generalized Sign Function on 3n2 device memory

1: Upload A0 and B to the device.
2: for k = 1, . . . do
3: Copy B to B̃ on the device.
4: Use getrf gpu from MAGMA to compute LU = PAk ,
5: Use getrs gpu from MAGMA to solve LUX = PB̃,
6: Upload Ak again onto the location of LU,
7: Compute Ak+1 := 1

2ck
(Ak + c2

kBX ) using cublas?gemm,
8: Download Ak+1 to the host and check convergence.
9: end for

Only n2 additional memory necessary to
remove this transfer.

Maximum problem size shrinks down to:

double precision 12 541

single precision 17 736

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 8/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Basic Implementation
Straight-Forward GPU Approach using MAGMA

The matrix-matrix product requires 3 · n2 memory on the device.

Generalized Sign Function on 3n2 device memory

1: Upload A0 and B to the device.
2: for k = 1, . . . do
3: Copy B to B̃ on the device.
4: Use getrf gpu from MAGMA to compute LU = PAk ,
5: Use getrs gpu from MAGMA to solve LUX = PB̃,
6: Upload Ak again onto the location of LU,
7: Compute Ak+1 := 1

2ck
(Ak + c2

kBX ) using cublas?gemm,
8: Download Ak+1 to the host and check convergence.
9: end for

Only n2 additional memory necessary to
remove this transfer.

Maximum problem size shrinks down to:

double precision 12 541

single precision 17 736

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 8/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Basic Implementation
Straight-Forward GPU Approach using MAGMA

The matrix-matrix product requires 3 · n2 memory on the device.

Generalized Sign Function on 3n2 device memory

1: Upload A0 and B to the device.
2: for k = 1, . . . do
3: Copy B to B̃ on the device.
4: Use getrf gpu from MAGMA to compute LU = PAk ,
5: Use getrs gpu from MAGMA to solve LUX = PB̃,
6: Upload Ak again onto the location of LU,
7: Compute Ak+1 := 1

2ck
(Ak + c2

kBX ) using cublas?gemm,
8: Download Ak+1 to the host and check convergence.
9: end for

Only n2 additional memory necessary to
remove this transfer.

Maximum problem size shrinks down to:

double precision 12 541

single precision 17 736

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 8/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Basic Implementation
Straight-Forward GPU Approach using MAGMA

The matrix-matrix product requires 3 · n2 memory on the device.

Generalized Sign Function on 3n2 device memory

1: Upload A0 and B to the device.
2: for k = 1, . . . do
3: Copy B to B̃ on the device.
4: Use getrf gpu from MAGMA to compute LU = PAk ,
5: Use getrs gpu from MAGMA to solve LUX = PB̃,
6: Upload Ak again onto the location of LU,
7: Compute Ak+1 := 1

2ck
(Ak + c2

kBX ) using cublas?gemm,
8: Download Ak+1 to the host and check convergence.
9: end for

Only n2 additional memory necessary to
remove this transfer.
Maximum problem size shrinks down to:

double precision 12 541

single precision 17 736

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 8/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Basic Implementation
Observations and Pitfalls

High memory requirements on the device,

Three sweeps over Ak to solve AkX = B,

Stopping criterion ||Ak+1 − Ak || < τ costs additional n2 memory,

Due to the involved large matrix-matrix products the device
temperature might increase to a critical value.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 9/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Basic Implementation
Observations and Pitfalls

High memory requirements on the device,

Three sweeps over Ak to solve AkX = B,

Stopping criterion ||Ak+1 − Ak || < τ costs additional n2 memory,

Due to the involved large matrix-matrix products the device
temperature might increase to a critical value.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 9/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Basic Implementation
Observations and Pitfalls

High memory requirements on the device,

Three sweeps over Ak to solve AkX = B,

Stopping criterion ||Ak+1 − Ak || < τ costs additional n2 memory,

Due to the involved large matrix-matrix products the device
temperature might increase to a critical value.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 9/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Basic Implementation
Observations and Pitfalls

High memory requirements on the device,

Three sweeps over Ak to solve AkX = B,

Stopping criterion ||Ak+1 − Ak || < τ costs additional n2 memory,

Due to the involved large matrix-matrix products the device
temperature might increase to a critical value.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 9/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Basic Implementation
Observations and Pitfalls

High memory requirements on the device,

Three sweeps over Ak to solve AkX = B,

Stopping criterion ||Ak+1 − Ak || < τ costs additional n2 memory,

Due to the involved large matrix-matrix products the device
temperature might increase to a critical value.

Goal:

Reduce the memory requirements to 2n2 +O(n) and increase the
maximum problem dimension:

double precision 17 736
single precision 25 082

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 9/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Basic Implementation
Observations and Pitfalls

High memory requirements on the device,

Three sweeps over Ak to solve AkX = B,

Stopping criterion ||Ak+1 − Ak || < τ costs additional n2 memory,

Due to the involved large matrix-matrix products the device
temperature might increase to a critical value.

Idea:

Replace LU-decomposition with forward/backward substitution by
Gauss-Jordan-Elimination.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 9/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Basic Implementation
Observations and Pitfalls

High memory requirements on the device,

Three sweeps over Ak to solve AkX = B,

Stopping criterion ||Ak+1 − Ak || < τ costs additional n2 memory,

Due to the involved large matrix-matrix products the device
temperature might increase to a critical value.

Cheap convergence check:

Generalize sign (A)2 = I to derive a memory efficient stopping
criterion.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 9/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Basic Implementation
Observations and Pitfalls

High memory requirements on the device,

Three sweeps over Ak to solve AkX = B,

Stopping criterion ||Ak+1 − Ak || < τ costs additional n2 memory,

Due to the involved large matrix-matrix products the device
temperature might increase to a critical value.

Idea:
Continuous monitoring of the device temperature and movement

of workload to the host.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 9/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Gauss-Jordan-Elimination

Gauss-Jordan Elimination
The Gauss-Jordan is a rearrangement of the LU decomposition to
compute A−1 without setting up L and U and only sweeping once over
the matrix A.
→ Cost: 2n3 flops.

Augmented Gauss-Jordan Elimination

The Augmented Gauss-Jordan Elimination scheme computes

X = A−1B

without setting up A−1, L or U.
→ Cost: 3n3 flops.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 10/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Gauss-Jordan-Elimination

Gauss-Jordan Elimination
The Gauss-Jordan is a rearrangement of the LU decomposition to
compute A−1 without setting up L and U and only sweeping once over
the matrix A.
→ Cost: 2n3 flops.

Augmented Gauss-Jordan Elimination

The Augmented Gauss-Jordan Elimination scheme computes

X = A−1B

without setting up A−1, L or U.
→ Cost: 3n3 flops.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 10/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Algorithm 1 Augmented Gauss-Jordan Elimination

Input: A ∈ Rn×n, B ∈ Rn×m, blocking parameter NB .
Output: B overwritten by A−1B.

1: Set D :=
[
A B

]
∈ Rn×n+m.

2: for i = 1, 1 + NB , 1 + 2NB , . . . , n do

3: Partition D into

D :=

 A11 A12 A13 B1

A21 A22 A23 B2

A31 A32 A33 B3

 ,
where A11 ∈ Ri−1×i−1 and A22 ∈ RNB×NB .

4: Update D by

D :=

 A11 A12 A13 B1

A21 A22 0 0

A31 A32 A33 B3

+

−A12A
−1
22

A−1
22

−A32A
−1
22

 [0 0 A23 B2

]
.

5: end for

Asynchronous precomputation on the host,

Remaining matrix-matrix-products on the
device,

Requires 2nNB additional memory on the
device for intermediate results.

GPU Implementation:

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 11/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Algorithm 1 Augmented Gauss-Jordan Elimination

Input: A ∈ Rn×n, B ∈ Rn×m, blocking parameter NB .
Output: B overwritten by A−1B.

1: Set D :=
[
A B

]
∈ Rn×n+m.

2: for i = 1, 1 + NB , 1 + 2NB , . . . , n do

3: Partition D into

D :=

 A11 A12 A13 B1

A21 A22 A23 B2

A31 A32 A33 B3

 ,
where A11 ∈ Ri−1×i−1 and A22 ∈ RNB×NB .

4: Update D by

D :=

 A11 A12 A13 B1

A21 A22 0 0

A31 A32 A33 B3

+

−A12A
−1
22

A−1
22

−A32A
−1
22

 [0 0 A23 B2

]
.

5: end for

Asynchronous precomputation on the host,

Remaining matrix-matrix-products on the
device,

Requires 2nNB additional memory on the
device for intermediate results.

GPU Implementation:

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 11/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Gauss-Jordan-Elimination – Remarks

Gauss-Jordan Elimination needs 12.5% more flops compared to
LU+forward/backward substitution,/

Better GPU utilization → gains a higher performance. ,

Easily distributable across multiple GPUs, ,

Additional accumulation of A−1 costs only n3 flops more.

Larger memory requirements. /

Preliminary results on one GPU

For small problems n < 8 000, Gauss-Jordan is faster than the LU
decomposition.

Similar performance for larger problems (n ≥ 8 000).

Except of the scalability no advantage compared with LU, yet.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 12/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Gauss-Jordan-Elimination – Remarks

Gauss-Jordan Elimination needs 12.5% more flops compared to
LU+forward/backward substitution,/

Better GPU utilization → gains a higher performance. ,

Easily distributable across multiple GPUs, ,

Additional accumulation of A−1 costs only n3 flops more.

Larger memory requirements. /

Preliminary results on one GPU

For small problems n < 8 000, Gauss-Jordan is faster than the LU
decomposition.

Similar performance for larger problems (n ≥ 8 000).

Except of the scalability no advantage compared with LU, yet.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 12/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Gauss-Jordan-Elimination – Remarks

Gauss-Jordan Elimination needs 12.5% more flops compared to
LU+forward/backward substitution,/

Better GPU utilization → gains a higher performance. ,

Easily distributable across multiple GPUs, ,

Additional accumulation of A−1 costs only n3 flops more.

Larger memory requirements. /

Preliminary results on one GPU

For small problems n < 8 000, Gauss-Jordan is faster than the LU
decomposition.

Similar performance for larger problems (n ≥ 8 000).

Except of the scalability no advantage compared with LU, yet.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 12/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Gauss-Jordan-Elimination – Remarks

Gauss-Jordan Elimination needs 12.5% more flops compared to
LU+forward/backward substitution,/

Better GPU utilization → gains a higher performance. ,

Easily distributable across multiple GPUs, ,

Additional accumulation of A−1 costs only n3 flops more.

Larger memory requirements. ,

Preliminary results on one GPU

For small problems n < 8 000, Gauss-Jordan is faster than the LU
decomposition.

Similar performance for larger problems (n ≥ 8 000).

Except of the scalability no advantage compared with LU, yet.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 12/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Asynchronous Matrix-Matrix Product

After computing X = A−1B we have on the device:

n2 memory in use to store X ,

n2 + 2nNB memory of intermediate data from the
Gauss-Jordan-Elimination,

no unmodified copy of A or B on the device.

→ Compute Ak+1 := 1
2ck

(Ak + c2
kBX ) with only 2n2 + 2nNB memory.

Split Ak+1 := 1
2ck

(Ak + c2
kBX ) into

A(1)

A(2)

...
A(N)

 :=
1

2ck



A(1)

A(2)

...
A(N)

+ c2
k


B(1)

B(2)

...
B(N)

X

 ,

where A(`), B(`) ∈ RNB×n.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 13/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Asynchronous Matrix-Matrix Product

After computing X = A−1B we have on the device:

n2 memory in use to store X ,

n2 + 2nNB memory of intermediate data from the
Gauss-Jordan-Elimination,

no unmodified copy of A or B on the device.

→ Compute Ak+1 := 1
2ck

(Ak + c2
kBX ) with only 2n2 + 2nNB memory.

Split Ak+1 := 1
2ck

(Ak + c2
kBX ) into

A(1)

A(2)

...
A(N)

 :=
1

2ck



A(1)

A(2)

...
A(N)

+ c2
k


B(1)

B(2)

...
B(N)

X

 ,

where A(`), B(`) ∈ RNB×n.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 13/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Asynchronous Matrix-Matrix Product

After computing X = A−1B we have on the device:

n2 memory in use to store X ,

n2 + 2nNB memory of intermediate data from the
Gauss-Jordan-Elimination,

no unmodified copy of A or B on the device.

→ Compute Ak+1 := 1
2ck

(Ak + c2
kBX ) with only 2n2 + 2nNB memory.

Split Ak+1 := 1
2ck

(Ak + c2
kBX ) into

A(1)

A(2)

...
A(N)

 :=
1

2ck



A(1)

A(2)

...
A(N)

+ c2
k


B(1)

B(2)

...
B(N)

X

 ,

where A(`), B(`) ∈ RNB×n.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 13/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Asynchronous Matrix-Matrix Product

Basic Workflow

Upload A(`) block-by-block to the free n2 memory location → Ak+1

available for the next Gauss-Jordan Elimination,

Upload B(`) to the two nNB locations in an alternating way,

Compute A(`) := 1
2ck

(A(`) + c2
kB

(`)X ) from the alternating locations of

B(`).

Algorithm 2 Asynchronous matrix-matrix product on the GPU

1: Asynchronous upload of A(1) and B(1).
2: for i = 1, 1 + NB , . . . , n do
3: Asynchronous upload of A(i+1) and B(i+1).
4: Wait until the upload of A(i) and B(i) is done and compute

A(i) := 1
2ck

(A(i) + c2
kB

(i)X ).

5: Asynchronous download of A(i) to the host.
6: end for

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 14/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Asynchronous Matrix-Matrix Product

Basic Workflow

Upload A(`) block-by-block to the free n2 memory location → Ak+1

available for the next Gauss-Jordan Elimination,

Upload B(`) to the two nNB locations in an alternating way,

Compute A(`) := 1
2ck

(A(`) + c2
kB

(`)X ) from the alternating locations of

B(`).

Algorithm 2 Asynchronous matrix-matrix product on the GPU

1: Asynchronous upload of A(1) and B(1).
2: for i = 1, 1 + NB , . . . , n do
3: Asynchronous upload of A(i+1) and B(i+1).
4: Wait until the upload of A(i) and B(i) is done and compute

A(i) := 1
2ck

(A(i) + c2
kB

(i)X ).

5: Asynchronous download of A(i) to the host.
6: end for

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 14/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Overheating and Throttling Detection

Due to worse thermal design of the chassis and/or previous computations
the device might overheat, i.e. temperature on the die reaches 90 �.

Nvidia® Management Library (NVML)

Part of the CUDA deployment kit,

Read various performance metrics from the device, including temperature,
clock speed, and power consumption,

Fetch the frequency throttling state and its reasons.

Monitoring Thread

Checks the throttling state with a given frequency,

Sets an indicator flag if power or temperature caused frequency throttling
gets active,

Throttling indicator must be reset manually.

Compute X = A−1B on the device,

Check if the throttling indicator

is set: copy X to the host and compute
Ak+1 := 1

2ck
(Ak + c2

kBX ) on the CPU.

is not set: compute Ak+1 := 1
2ck

(Ak + c2
kBX ) on

the device using Algorithm 2.

Idea:

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 15/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Overheating and Throttling Detection

Due to worse thermal design of the chassis and/or previous computations
the device might overheat, i.e. temperature on the die reaches 90 �.

Nvidia® Management Library (NVML)

Part of the CUDA deployment kit,

Read various performance metrics from the device, including temperature,
clock speed, and power consumption,

Fetch the frequency throttling state and its reasons.

Monitoring Thread

Checks the throttling state with a given frequency,

Sets an indicator flag if power or temperature caused frequency throttling
gets active,

Throttling indicator must be reset manually.

Compute X = A−1B on the device,

Check if the throttling indicator

is set: copy X to the host and compute
Ak+1 := 1

2ck
(Ak + c2

kBX ) on the CPU.

is not set: compute Ak+1 := 1
2ck

(Ak + c2
kBX ) on

the device using Algorithm 2.

Idea:

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 15/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Overheating and Throttling Detection

Due to worse thermal design of the chassis and/or previous computations
the device might overheat, i.e. temperature on the die reaches 90 �.

Nvidia® Management Library (NVML)

Part of the CUDA deployment kit,

Read various performance metrics from the device, including temperature,
clock speed, and power consumption,

Fetch the frequency throttling state and its reasons.

Monitoring Thread

Checks the throttling state with a given frequency,

Sets an indicator flag if power or temperature caused frequency throttling
gets active,

Throttling indicator must be reset manually.

Compute X = A−1B on the device,

Check if the throttling indicator

is set: copy X to the host and compute
Ak+1 := 1

2ck
(Ak + c2

kBX ) on the CPU.

is not set: compute Ak+1 := 1
2ck

(Ak + c2
kBX ) on

the device using Algorithm 2.

Idea:

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 15/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Overheating and Throttling Detection

Due to worse thermal design of the chassis and/or previous computations
the device might overheat, i.e. temperature on the die reaches 90 �.

Nvidia® Management Library (NVML)

Part of the CUDA deployment kit,

Read various performance metrics from the device, including temperature,
clock speed, and power consumption,

Fetch the frequency throttling state and its reasons.

Monitoring Thread

Checks the throttling state with a given frequency,

Sets an indicator flag if power or temperature caused frequency throttling
gets active,

Throttling indicator must be reset manually.

Compute X = A−1B on the device,

Check if the throttling indicator

is set: copy X to the host and compute
Ak+1 := 1

2ck
(Ak + c2

kBX ) on the CPU.

is not set: compute Ak+1 := 1
2ck

(Ak + c2
kBX ) on

the device using Algorithm 2.

Idea:

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 15/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Convergence Criteria

The convergence check
||Ak+1 − Ak || < τ

costs additional n2 and requires at least 2n2 memory transfers.

Generalized Necessary Criteria

From Ak
k→∞−→ sign (A,B) and sign (A,B)2 = B2sign

(
B−1A

)
= B2 we get:

A2
k

k→∞−→B2,

det(Ak)
k→∞−→ det(B),

det(Ak)

det(B)
k→∞−→ 1,

and especially

ck =
(
| det(Ak )|
| det(B)|

) 1
n k→∞−→ 1.

Scaling factor of the generalized sign function iteration.

Stop the iteration if

|ck − 1| < δ for k > k0.

→ No additional work or memory necessary.

New Convergence Criterion:

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 16/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Convergence Criteria

The convergence check
||Ak+1 − Ak || < τ

costs additional n2 and requires at least 2n2 memory transfers.

Necessary Convergence Criteria [Bierman ’84]

Suppose Ak
k→∞−→ sign (A) and sign (A)2 = I then we have

det(sign (A)) =± 1

and

det(Ak)
k→∞−→ ± 1

which yields

ck = | det(Ak)|
1
n

k→∞−→ 1

.

Scaling factor of the standard sign function iteration.

Generalized Necessary Criteria

From Ak
k→∞−→ sign (A,B) and sign (A,B)2 = B2sign

(
B−1A

)
= B2 we get:

A2
k

k→∞−→B2,

det(Ak)
k→∞−→ det(B),

det(Ak)

det(B)
k→∞−→ 1,

and especially

ck =
(
| det(Ak )|
| det(B)|

) 1
n k→∞−→ 1.

Scaling factor of the generalized sign function iteration.

Stop the iteration if

|ck − 1| < δ for k > k0.

→ No additional work or memory necessary.

New Convergence Criterion:

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 16/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Convergence Criteria

The convergence check
||Ak+1 − Ak || < τ

costs additional n2 and requires at least 2n2 memory transfers.

Necessary Convergence Criteria [Bierman ’84]

Suppose Ak
k→∞−→ sign (A) and sign (A)2 = I then we have

det(sign (A)) =± 1

and

det(Ak)
k→∞−→ ± 1

which yields

ck = | det(Ak)|
1
n

k→∞−→ 1

.

Scaling factor of the standard sign function iteration.

Generalized Necessary Criteria

From Ak
k→∞−→ sign (A,B) and sign (A,B)2 = B2sign

(
B−1A

)
= B2 we get:

A2
k

k→∞−→B2,

det(Ak)
k→∞−→ det(B),

det(Ak)

det(B)
k→∞−→ 1,

and especially

ck =
(
| det(Ak )|
| det(B)|

) 1
n k→∞−→ 1.

Scaling factor of the generalized sign function iteration.

Stop the iteration if

|ck − 1| < δ for k > k0.

→ No additional work or memory necessary.

New Convergence Criterion:

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 16/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Convergence Criteria

The convergence check
||Ak+1 − Ak || < τ

costs additional n2 and requires at least 2n2 memory transfers.

Necessary Convergence Criteria [Bierman ’84]

Suppose Ak
k→∞−→ sign (A) and sign (A)2 = I then we have

det(sign (A)) =± 1

and

det(Ak)
k→∞−→ ± 1

which yields

ck = | det(Ak)|
1
n

k→∞−→ 1.

Scaling factor of the standard sign function iteration.

Generalized Necessary Criteria

From Ak
k→∞−→ sign (A,B) and sign (A,B)2 = B2sign

(
B−1A

)
= B2 we get:

A2
k

k→∞−→B2,

det(Ak)
k→∞−→ det(B),

det(Ak)

det(B)
k→∞−→ 1,

and especially

ck =
(
| det(Ak )|
| det(B)|

) 1
n k→∞−→ 1.

Scaling factor of the generalized sign function iteration.

Stop the iteration if

|ck − 1| < δ for k > k0.

→ No additional work or memory necessary.

New Convergence Criterion:

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 16/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Convergence Criteria

The convergence check
||Ak+1 − Ak || < τ

costs additional n2 and requires at least 2n2 memory transfers.

Necessary Convergence Criteria [Bierman ’84]

Suppose Ak
k→∞−→ sign (A) and sign (A)2 = I then we have

det(sign (A)) =± 1

and

det(Ak)
k→∞−→ ± 1

which yields

ck = | det(Ak)|
1
n

k→∞−→ 1.

Scaling factor of the standard sign function iteration.

Generalized Necessary Criteria

From Ak
k→∞−→ sign (A,B) and sign (A,B)2 = B2sign

(
B−1A

)
= B2 we get:

A2
k

k→∞−→B2,

det(Ak)
k→∞−→ det(B),

det(Ak)

det(B)
k→∞−→ 1,

and especially

ck =
(
| det(Ak )|
| det(B)|

) 1
n k→∞−→ 1.

Scaling factor of the generalized sign function iteration.

Stop the iteration if

|ck − 1| < δ for k > k0.

→ No additional work or memory necessary.

New Convergence Criterion:

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 16/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Convergence Criteria

The convergence check
||Ak+1 − Ak || < τ

costs additional n2 and requires at least 2n2 memory transfers.

Generalized Necessary Criteria

From Ak
k→∞−→ sign (A,B) and sign (A,B)2 = B2sign

(
B−1A

)
= B2 we get:

A2
k

k→∞−→B2,

det(Ak)
k→∞−→ det(B),

det(Ak)

det(B)
k→∞−→ 1,

and especially

ck =
(
| det(Ak )|
| det(B)|

) 1
n k→∞−→ 1.

Scaling factor of the generalized sign function iteration.

Stop the iteration if

|ck − 1| < δ for k > k0.

→ No additional work or memory necessary.

New Convergence Criterion:

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 16/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Convergence Criteria

The convergence check
||Ak+1 − Ak || < τ

costs additional n2 and requires at least 2n2 memory transfers.

Generalized Necessary Criteria

From Ak
k→∞−→ sign (A,B) and sign (A,B)2 = B2sign

(
B−1A

)
= B2 we get:

A2
k

k→∞−→B2,

det(Ak)
k→∞−→ det(B),

det(Ak)

det(B)
k→∞−→ 1,

and especially

ck =
(
| det(Ak )|
| det(B)|

) 1
n k→∞−→ 1.

Scaling factor of the generalized sign function iteration.

Stop the iteration if

|ck − 1| < δ for k > k0.

→ No additional work or memory necessary.

New Convergence Criterion:

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 16/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Convergence Criteria

The convergence check
||Ak+1 − Ak || < τ

costs additional n2 and requires at least 2n2 memory transfers.

Generalized Necessary Criteria

From Ak
k→∞−→ sign (A,B) and sign (A,B)2 = B2sign

(
B−1A

)
= B2 we get:

A2
k

k→∞−→B2,

det(Ak)
k→∞−→ det(B),

det(Ak)

det(B)
k→∞−→ 1,

and especially

ck =
(
| det(Ak )|
| det(B)|

) 1
n k→∞−→ 1.

Scaling factor of the generalized sign function iteration.

Stop the iteration if

|ck − 1| < δ for k > k0.

→ No additional work or memory necessary.

New Convergence Criterion:

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 16/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Convergence Criteria

The convergence check
||Ak+1 − Ak || < τ

costs additional n2 and requires at least 2n2 memory transfers.

Generalized Necessary Criteria

From Ak
k→∞−→ sign (A,B) and sign (A,B)2 = B2sign

(
B−1A

)
= B2 we get:

A2
k

k→∞−→B2,

det(Ak)
k→∞−→ det(B),

det(Ak)

det(B)
k→∞−→ 1,

and especially

ck =
(
| det(Ak )|
| det(B)|

) 1
n k→∞−→ 1.

Scaling factor of the generalized sign function iteration.

Stop the iteration if

|ck − 1| < δ for k > k0.

→ No additional work or memory necessary.

New Convergence Criterion:

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 16/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Memory-Efficient Implementation
Convergence Criteria

The convergence check
||Ak+1 − Ak || < τ

costs additional n2 and requires at least 2n2 memory transfers.

Generalized Necessary Criteria

From Ak
k→∞−→ sign (A,B) and sign (A,B)2 = B2sign

(
B−1A

)
= B2 we get:

A2
k

k→∞−→B2,

det(Ak)
k→∞−→ det(B),

det(Ak)

det(B)
k→∞−→ 1,

and especially

ck =
(
| det(Ak )|
| det(B)|

) 1
n k→∞−→ 1.

Scaling factor of the generalized sign function iteration.

Stop the iteration if

|ck − 1| < δ for k > k0.

→ No additional work or memory necessary.

New Convergence Criterion:

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 16/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Results
Test Setup

Optimal Cooled System

19”, 1 HU Supermicro chassis

2× Intel® Xeon® E5-2640 v3

2× Nvidia® Telsa K20m,
passive cooling

Worse Cooled System

19”, 2 HU Dell R720 chassis

2× Intel® Xeon® E5-2690

2× Nvidia® Telsa K20m, passive
cooling

Software

CentOS 7 – 64bit

Intel® Compiler 15

Intel® MKL 11

Nvidia® CUDA 6.5

MAGMA 1.6

Software

Ubuntu 14.04 – 64bit

Intel® Compiler 14

Intel® MKL 11

Nvidia® CUDA 6.5

MAGMA 1.6

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 17/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Results
Test Setup

A, B ∈ Rn×n chosen as random matrices,

Sign function iteration is fixed to 25 iterations,

Power computation measured with LMG450 @ 20Hz,

GPUs running at 758MHz,

Preheat device to 60 � for the temperature tests on the worse
system to simulate previous computational work on the device.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 18/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Results
Test Setup

A, B ∈ Rn×n chosen as random matrices,

Sign function iteration is fixed to 25 iterations,

Power computation measured with LMG450 @ 20Hz,

GPUs running at 758MHz,

Preheat device to 60 � for the temperature tests on the worse
system to simulate previous computational work on the device.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 18/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Results
Test Setup

A, B ∈ Rn×n chosen as random matrices,

Sign function iteration is fixed to 25 iterations,

Power computation measured with LMG450 @ 20Hz,

GPUs running at 758MHz,

Preheat device to 60 � for the temperature tests on the worse
system to simulate previous computational work on the device.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 18/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Results
Test Setup

A, B ∈ Rn×n chosen as random matrices,

Sign function iteration is fixed to 25 iterations,

Power computation measured with LMG450 @ 20Hz,

GPUs running at 758MHz,

Preheat device to 60 � for the temperature tests on the worse
system to simulate previous computational work on the device.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 18/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Results
Test Setup

A, B ∈ Rn×n chosen as random matrices,

Sign function iteration is fixed to 25 iterations,

Power computation measured with LMG450 @ 20Hz,

GPUs running at 758MHz,

Preheat device to 60 � for the temperature tests on the worse
system to simulate previous computational work on the device.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 18/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Results
Computational Performance – On the optimal System

4n2 memory 3n2 memory 2n2 + O(n) memory
Problem size Runtime Floprate Runtime Floprate Runtime Floprate

2 000 2.87 341.7 3.10 311.8 2.26 446.6
4 000 12.33 620.0 14.63 519.8 11.34 711.8
6 000 33.26 769.6 38.32 666.1 33.27 818.6
8 000 70.94 853.1 80.05 754.3 73.49 878.4

10 000 133.51 883.8 147.57 798.1 136.74 921.9
12 000 224.32 908.1 244.86 830.6 228.31 954.0
14 000 - - 370.11 873.5 353.50 978.4
16 000 - - - - 521.39 990.2
17 000 - - - - 627.96 985.81

Table: Runtime (in s) and Floprate (GFlops/s) on the optimal system.

Maximum GPU temperature: 55 �.

1Optimal blocksize restricted by the available memory of the device.
Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 19/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Results
Computational Performance – On the optimal System

4n2 memory 3n2 memory 2n2 + O(n) memory
Problem size Runtime Floprate Runtime Floprate Runtime Floprate

2 000 2.87 341.7 3.10 311.8 2.26 446.6
4 000 12.33 620.0 14.63 519.8 11.34 711.8
6 000 33.26 769.6 38.32 666.1 33.27 818.6
8 000 70.94 853.1 80.05 754.3 73.49 878.4

10 000 133.51 883.8 147.57 798.1 136.74 921.9
12 000 224.32 908.1 244.86 830.6 228.31 954.0
14 000 - - 370.11 873.5 353.50 978.4
16 000 - - - - 521.39 990.2
17 000 - - - - 627.96 985.81

Table: Runtime (in s) and Floprate (GFlops/s) on the optimal system.

Maximum GPU temperature: 55 �.

1Optimal blocksize restricted by the available memory of the device.
Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 19/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Results
Energy Efficiency

4n2 memory 3n2 memory 2n2 + O(n) memory
Problem size avg. Pwr. Eff. avg. Pwr. Eff. avg. Pwr. Eff.

2 000 351.83 0.97 353.66 0.88 376.23 1.19
4 000 382.83 1.62 363.56 1.43 420.40 1.69
6 000 377.68 2.03 355.51 1.87 420.56 1.95
8 000 386.85 2.21 368.96 2.04 423.80 2.07

10 000 388.21 2.28 375.19 2.13 430.74 2.14
12 000 393.56 2.31 377.86 2.20 429.37 2.22
14 000 - - 384.32 2.27 421.91 2.31
16 000 - - - - 419.43 2.36
17 000 - - - - 419.32 2.35

Table: Average power consumption (in W) and computational efficiency (in
GFlops · (s ·W )−1).

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 20/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Results
Overheating Problem - Worse Hardware

0 50 100 150 200 250 300 350 400 450

40

60

80

100

Runtime [s]

T
em

p
er

a
tu

re
[◦
C

]

1 3 5 7 9 11 13 15 17 19 21 23 25

200

400

600

800

Iteration

G
P

U
F

re
q

u
en

cy
[M

H
z]

Frequency

Temperature

Figure: Device temperature and GPU clock frequency for the 4n2 algorithm
with n = 12 000.

Temperature caused frequency scaling doubles
the runtime.

Without preheating it only works 4 to 6
iterations longer on high performance.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 21/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Results
Overheating Problem - Worse Hardware

0 50 100 150 200 250 300 350 400 450

40

60

80

100

Runtime [s]

T
em

p
er

a
tu

re
[◦
C

]

1 3 5 7 9 11 13 15 17 19 21 23 25

200

400

600

800

Iteration

G
P

U
F

re
q

u
en

cy
[M

H
z]

Frequency

Temperature

Figure: Device temperature and GPU clock frequency for the 4n2 algorithm
with n = 12 000.

Temperature caused frequency scaling doubles
the runtime.

Without preheating it only works 4 to 6
iterations longer on high performance.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 21/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Results
Overheating Problem - Worse Hardware

0 50 100 150 200 250 300 350 400 450

40

60

80

100

Runtime [s]

T
em

p
er

a
tu

re
[◦
C

]

1 3 5 7 9 11 13 15 17 19 21 23 25

200

400

600

800

Iteration

G
P

U
F

re
q

u
en

cy
[M

H
z]

Frequency

Temperature

Figure: Device temperature and GPU clock frequency for the 4n2 algorithm
with n = 12 000.

Temperature caused frequency scaling doubles
the runtime.

Without preheating it only works 4 to 6
iterations longer on high performance.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 21/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Results
Overheating Problem - Worse Hardware

4n2 memory 3n2 memory 2n2 + O(n) memory
Problem size Runtime Floprate Runtime Floprate Runtime Floprate
n = 10 000 149.02 792 164.28 717 168.27 759
n = 12 000 468.66 433 341.04 565 273.12 808
n = 14 000 - - 674.61 476 437.34 797
n = 16 000 - - - - 717.66 725
n = 17 000 - - - - 845.40 737

Table: Runtime (in s) and Floprate (GFlops/s) on the worse system.

Both straight forward implementations are affected dramatically by the
frequency scaling. → Lost nearly 50% of their performance.

Moving single matrix-matrix products to the host allows the GPU to cool
down and recover its full performance.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 22/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Results
Overheating Problem - Worse Hardware

4n2 memory 3n2 memory 2n2 + O(n) memory
Problem size Runtime Floprate Runtime Floprate Runtime Floprate
n = 10 000 149.02 792 164.28 717 168.27 759
n = 12 000 468.66 433 341.04 565 273.12 808
n = 14 000 - - 674.61 476 437.34 797
n = 16 000 - - - - 717.66 725
n = 17 000 - - - - 845.40 737

Table: Runtime (in s) and Floprate (GFlops/s) on the worse system.

Both straight forward implementations are affected dramatically by the
frequency scaling. → Lost nearly 50% of their performance.

Moving single matrix-matrix products to the host allows the GPU to cool
down and recover its full performance.

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 22/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Conclusions and Outlook

Conclusions

Bad thermal hardware designs require different algorithms.

The generalized sign function iteration can be implemented on the GPU
with the memory restrictions of the GEMM operation.
→ allows to increase the maximum problem size by

√
2.

For small problems (n ≤ 6 000) the Gauss-Jordan-Elimination approach is
faster than the MAGMA-LU based one.

Outlook

Combine the asynchronous matrix-matrix products with the MAGMA
solvers.

Improve the energy efficiency of the algorithms.

Develop a multi-GPU aware generalized sign function iteration on top of
the Gauss-Jordan Elimination and the asynchronous matrix-matrix
product.

Extend the GPU implementation to solve generalized Lyapunov and
Riccati equations.

Thank you for you attention!

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 23/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Conclusions and Outlook

Conclusions

Bad thermal hardware designs require different algorithms.

The generalized sign function iteration can be implemented on the GPU
with the memory restrictions of the GEMM operation.
→ allows to increase the maximum problem size by

√
2.

For small problems (n ≤ 6 000) the Gauss-Jordan-Elimination approach is
faster than the MAGMA-LU based one.

Outlook

Combine the asynchronous matrix-matrix products with the MAGMA
solvers.

Improve the energy efficiency of the algorithms.

Develop a multi-GPU aware generalized sign function iteration on top of
the Gauss-Jordan Elimination and the asynchronous matrix-matrix
product.

Extend the GPU implementation to solve generalized Lyapunov and
Riccati equations.

Thank you for you attention!

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 23/23



Introduction Basic Implementation Memory-Efficient Implementation Results Conclusions and Outlook

Conclusions and Outlook

Conclusions

Bad thermal hardware designs require different algorithms.

The generalized sign function iteration can be implemented on the GPU
with the memory restrictions of the GEMM operation.
→ allows to increase the maximum problem size by

√
2.

For small problems (n ≤ 6 000) the Gauss-Jordan-Elimination approach is
faster than the MAGMA-LU based one.

Outlook

Combine the asynchronous matrix-matrix products with the MAGMA
solvers.

Improve the energy efficiency of the algorithms.

Develop a multi-GPU aware generalized sign function iteration on top of
the Gauss-Jordan Elimination and the asynchronous matrix-matrix
product.

Extend the GPU implementation to solve generalized Lyapunov and
Riccati equations.

Thank you for you attention!

Max Planck Institute Magdeburg Martin Köhler, Generalized Matrix Sign 23/23


	Introduction
	Generalized Matrix Sign Function
	Newton-Method for sign(A,B)
	Frequency Scaling on K20 GPUs

	Basic Implementation
	Straight-Forward Approach using LAPACK
	Straight-Forward GPU Approach using MAGMA
	Observations and Pitfalls

	Memory-Efficient Implementation
	Gauss-Jordan-Elimination
	Asynchronous Matrix-Matrix Product
	Overheating and Throttling Detection
	Convergence Criteria

	Results
	Test Setup
	Computational Performance – On the optimal System
	Energy Efficiency
	Overheating Problem - Worse Hardware

	Conclusions and Outlook

