PACO 2015 July 6-7

Effects of dynamic frequency scaling of Nvidia GPUs during the computation of the generalized matrix sign function

Martin Köhler

Max-Planck-Institute Magdeburg

Outline

1 Introduction

- 2 Basic Implementation
- 3 Memory-Efficient Implementation
 - Results

Conclusions and Outlook

Generalized Matrix Sign Function

Matrix Sign Function

Let $A \in \mathbb{R}^{n \times n}$ be a matrix with no eigenvalues on the imaginary axis with the Jordan canonical form

$$Y\begin{pmatrix}J_1 & 0\\ 0 & J_2\end{pmatrix}Y^{-1} = A,$$

where $\Lambda(J_1) \subset \mathbb{C}_-$ and $\Lambda(J_2) \subset \mathbb{C}_+$. Then sign (A) is given by

$$\operatorname{sign}(A) := Y \begin{pmatrix} -I_1 & 0 \\ 0 & I_2 \end{pmatrix} Y^{-1},$$

where dim (I_i) = dim (J_i) , i = 1, 2.

Generalized Matrix Sign Function

Matrix Sign Function

Let $A \in \mathbb{R}^{n \times n}$ be a matrix with no eigenvalues on the imaginary axis with the Jordan canonical form

$$Y\begin{pmatrix}J_1 & 0\\ 0 & J_2\end{pmatrix}Y^{-1} = A,$$

where $\Lambda(J_1) \subset \mathbb{C}_-$ and $\Lambda(J_2) \subset \mathbb{C}_+$. Then sign (A) is given by

$$\operatorname{sign}(A) := Y \begin{pmatrix} -l_1 & 0 \\ 0 & l_2 \end{pmatrix} Y^{-1},$$

where dim $(I_i) = dim(J_i)$, i = 1, 2.

Generalized Matrix Sign Function

[Gardiner, Laub '86]

Let (A, B) be a matrix pencil with no eigenvalues on the imaginary axis then sign (A, B) is given by

$$\operatorname{sign}(A,B) = B\operatorname{sign}(B^{-1}A) = \operatorname{sign}(AB^{-1})B.$$

Max Planck Institute Magdeburg

Generalized Matrix Sign Function

Applications

• Solution of Riccati equations:

[GARDINER, LAUB '86]

$$A^{\mathsf{T}}XE + E^{\mathsf{T}}XA - E^{\mathsf{T}}XGXE + Q = 0,$$

Generalized Matrix Sign Function

Applications

• Solution of Riccati equations:

[Gardiner, Laub '86]

$$A^{\mathsf{T}}XE + E^{\mathsf{T}}XA - E^{\mathsf{T}}XGXE + Q = 0,$$

• Solution of stable Lyapunov equations: [BENNER, QUINTANA-ORTÍ '98]

$$A^T X E + E^T X A + Q = 0,$$

Generalized Matrix Sign Function

Applications

• Solution of Riccati equations:

[Gardiner, Laub '86]

$$A^{\mathsf{T}}XE + E^{\mathsf{T}}XA - E^{\mathsf{T}}XGXE + Q = 0,$$

• Solution of stable Lyapunov equations: [BENNER, QUINTANA-ORTÍ '98]

$$A^T X E + E^T X A + Q = 0,$$

Spectral Division,

[SUN, QUINTANA-ORTÍ '04]

Generalized Matrix Sign Function

Applications

• Solution of Riccati equations:

 $A^{\mathsf{T}}XE + E^{\mathsf{T}}XA - E^{\mathsf{T}}XGXE + Q = 0,$

• Solution of stable Lyapunov equations: [BENNER, QUINTANA-ORTÍ '98]

$$A^T X E + E^T X A + Q = 0,$$

Spectral Division,

[Sun, Quintana-Ortí '04]

• Fast approximation of the generalized Schur decomposition:

[Benner, K., Saak '13]

[GARDINER, LAUB '86]

$$(A,B) = (Q^T SZ, Q^T TZ).$$

Newton-Method for sign (A, B)

From sign $(A)^2 = I$ follows the Newton scheme:

$$A_0 \leftarrow A, \quad A_{k+1} \leftarrow rac{1}{2} \left(A_k + A_k^{-1}\right), \quad k = 0, 1, 2, \dots$$

to compute the sign of a matrix.

Newton-Method for sign (A, B)

From sign $(A)^2 = I$ follows the Newton scheme:

$$A_0 \leftarrow A, \quad A_{k+1} \leftarrow rac{1}{2} \left(A_k + A_k^{-1}\right), \quad k = 0, 1, 2, \dots$$

to compute the sign of a matrix.

The Generalized Sign function iteration:

$$A_0 \leftarrow A, \quad A_{k+1} \leftarrow \frac{1}{2} \left(A_k + B A_k^{-1} B \right), \quad k = 0, 1, 2, \dots$$

Newton-Method for sign (A, B)

From sign $(A)^2 = I$ follows the Newton scheme:

$$A_0 \leftarrow A, \quad A_{k+1} \leftarrow rac{1}{2} \left(A_k + A_k^{-1}\right), \quad k = 0, 1, 2, \dots$$

to compute the sign of a matrix.

The Generalized Sign function iteration:

$$A_0 \leftarrow A, \quad A_{k+1} \leftarrow \frac{1}{2c_k} \left(A_k + c_k^2 B A_k^{-1} B \right), \quad k = 0, 1, 2, \dots$$

where c_k is an additional scaling factor. Typical: $c_k = \left(\frac{|\det(A_k)|}{|\det(B)|}\right)^{\frac{1}{n}}$.

Frequency Scaling on K20 GPUs

NVIDIA[®] K20 accelerators can adjust their GPU and Memory frequency:

- **GPU clock rate (operation mode):** 758MHz, 705MHz, 666MHz, 640MHz, and 614MHz with a memory clock rate of 2600MHz.
- **GPU clock rate (idle mode):** 324MHz with a memory clock rate of 324MHz.
- GPU clock rate (emergency): 378MHz or 127MHz.

Frequency Scaling on K20 GPUs

 $\mathsf{NVIDIA}^{\textcircled{R}}$ K20 accelerators can adjust their GPU and Memory frequency:

- **GPU clock rate (operation mode):** 758MHz, 705MHz, 666MHz, 640MHz, and 614MHz with a memory clock rate of 2600MHz.
- **GPU clock rate (idle mode):** 324MHz with a memory clock rate of 324MHz.
- GPU clock rate (emergency): 378MHz or 127MHz.

Frequency is scaled if:

- Power consumption is too high for a longer time span (> 1 minute),
- Device temperature reaches 90 °C.

Ø

Introduction

Aim:

Develop a GPU implementation which can handle (power- or) temperature-caused frequency scaling.

Aemory-Efficient Implementation

Basic Implementation

Straight-Forward Approach using LAPACK

$$A_0 \leftarrow A, \quad A_{k+1} \leftarrow \frac{1}{2c_k} \left(A_k + c_k^2 B A_k^{-1} B \right), \quad k = 0, 1, 2, \dots$$

Memory-Efficient Implementation

Result

Basic Implementation

Straight-Forward Approach using LAPACK

$$A_0 \leftarrow A, \quad A_{k+1} \leftarrow \frac{1}{2c_k} \left(A_k + c_k^2 B A_k^{-1} B \right), \quad k = 0, 1, 2, \dots$$

Solution of a linear system:

- LU decomposition: GETRF,
- Forward/backward substitution: GETRS.

Aemory-Efficient Implementation

Result

Basic Implementation

Straight-Forward Approach using LAPACK

$$A_0 \leftarrow A, \quad A_{k+1} \leftarrow \frac{1}{2c_k} \left(A_k + c_k^2 B X \right), \quad k = 0, 1, 2, \dots$$

Solution of a linear system:

- LU decomposition: GETRF,
- Forward/backward substitution: GETRS.

Matrix-Matrix product:

- $C := \alpha AB + \beta C$ in BLAS: GEMM
- Requires three non-overlapping memory locations of size n^2 .

 \rightsquigarrow lower bound for the memory requirements on the device.

Straight-Forward GPU Approach using MAGMA

The matrix-matrix product requires $3 \cdot n^2$ memory on the device.

Straight-Forward GPU Approach using MAGMA

The matrix-matrix product requires $3 \cdot n^2$ memory on the device.

- LU decomposition works on n^2 memory,
- Forward/Backward substitution works on $2n^2$ memory.
- ightarrow Matrix-Matrix product is the limiting factor!

Straight-Forward GPU Approach using MAGMA

The matrix-matrix product requires $3 \cdot n^2$ memory on the device.

- LU decomposition works on n^2 memory,
- Forward/Backward substitution works on $2n^2$ memory.
- ightarrow Matrix-Matrix product is the limiting factor!

Maximum problem size on NvIDIA[®] Tesla K20m:

double precision	14 481
single precision	20 480

Straight-Forward GPU Approach using MAGMA

The matrix-matrix product requires $3 \cdot n^2$ memory on the device.

Generalized Sign Function on $3n^2$ device memory

- 1: Upload A_0 and B to the device.
- 2: for k = 1, ... do
- 3: Copy B to \tilde{B} on the device.
- 4: Use getrf_gpu from MAGMA to compute $LU = PA_k$,
- 5: Use getrs_gpu from MAGMA to solve $LUX = P\tilde{B}$,
- 6: Upload A_k again onto the location of LU,
- 7: Compute $A_{k+1} := \frac{1}{2c_k} (A_k + c_k^2 BX)$ using cublas?gemm,
- 8: Download A_{k+1} to the host and check convergence.
- 9: end for

Straight-Forward GPU Approach using MAGMA

The matrix-matrix product requires $3 \cdot n^2$ memory on the device.

Generalized Sign Function on $3n^2$ device memory

1: Upload A_0 and B to the device.

2: for
$$k = 1, ... do$$

- 3: Copy B to \tilde{B} on the device.
- 4: Use getrf_gpu from MAGMA to compute $LU = PA_k$,
- 5: Use getrs_gpu from MAGMA to solve $LUX = P\tilde{B}$,
- 6: Upload A_k again onto the location of LU, \leftarrow
- 7: Compute $A_{k+1} := \frac{1}{2c_k} (A_k + c_k^2 BX)$ using cublas?gemm
- 8: Download A_{k+1} to the host
- 9: end for

Only n^2 additional memory necessary to remove this transfer.

Straight-Forward GPU Approach using MAGMA

The matrix-matrix product requires $3 \cdot n^2$ memory on the device.

Generalized Sign Function on $3n^2$ device memory

1: Upload A_0 and B to the device.

2: for
$$k = 1, ... do$$

- 3: Copy B to \tilde{B} on the device.
- 4: Use getrf_gpu from MAGMA to compute $LU = PA_k$,
- 5: Use getrs_gpu from MAGMA to solve $LUX = P\tilde{B}$,
- 6: Upload A_k again onto the location of LU, \leftarrow
- 7: Compute $A_{k+1} := \frac{1}{2c_k} (A_k + c_k^2 BX)$ using cublas?gemm
- 8: Download A_{k+1} to the host
- 9: end for

Only n^2 additional memory necessary to remove this transfer.

Maximum problem size shrinks down to:

double precision	12 541
single precision	17 736

Observations and Pitfalls

• High memory requirements on the device,

Observations and Pitfalls

- High memory requirements on the device,
- Three sweeps over A_k to solve $A_k X = B$,

Observations and Pitfalls

- High memory requirements on the device,
- Three sweeps over A_k to solve $A_k X = B$,
- Stopping criterion $||A_{k+1} A_k|| < \tau$ costs additional n^2 memory,

Observations and Pitfalls

- High memory requirements on the device,
- Three sweeps over A_k to solve $A_k X = B$,
- Stopping criterion $||A_{k+1} A_k|| < \tau$ costs additional n^2 memory,
- Due to the involved large matrix-matrix products the device temperature might increase to a critical value.

Ć

Basic Implementation

Observations and Pitfalls

- High memory requirements on the device,
- Three sweeps over A_k to solve $A_k X = B$,
- Stopping criterion $||A_{k+1} A_k|| < \tau$ costs additional n^2 memory,
- Due to the involved large matrix-matrix products the device temperature might increase to a critical value.

Goal:

Reduce the memory requirements to $2n^2 + O(n)$ and increase the maximum problem dimension:

double precision	17 736
single precision	25 082

Observations and Pitfalls

- High memory requirements on the device,
- Three sweeps over A_k to solve $A_k X = B$,
- Stopping criterion $||A_{k+1} A_k|| < \tau$ costs additional n^2 memory,
- Due to the involved large matrix-matrix products the device temperature might increase to a critical value.

Idea:

Replace LU-decomposition with forward/backward substitution by Gauss-Jordan-Elimination.

Œ

Observations and Pitfalls

- High memory requirements on the device,
- Three sweeps over A_k to solve $A_k X = B$,
- Stopping criterion $||A_{k+1} A_k|| < \tau$ costs additional n^2 memory,
- Due to the involved large matrix-matrix products the device temperature might increase to a critical value.

Cheap convergence check:

Generalize sign $(A)^2 = I$ to derive a memory efficient stopping criterion.

Observations and Pitfalls

- High memory requirements on the device,
- Three sweeps over A_k to solve $A_k X = B$,
- Stopping criterion $||A_{k+1} A_k|| < \tau$ costs additional n^2 memory,
- Due to the involved large matrix-matrix products the device temperature might increase to a critical value.

Idea:

Continuous monitoring of the device temperature and movement of workload to the host.

Ø

Memory-Efficient Implementation

Gauss-Jordan-Elimination

Gauss-Jordan Elimination

The Gauss-Jordan is a rearrangement of the LU decomposition to compute A^{-1} without setting up *L* and *U* and only sweeping once over the matrix *A*. \rightarrow Cost: $2n^3$ flops.

Ø

Memory-Efficient Implementation

Gauss-Jordan-Elimination

Gauss-Jordan Elimination

The Gauss-Jordan is a rearrangement of the LU decomposition to compute A^{-1} without setting up *L* and *U* and only sweeping once over the matrix *A*. \rightarrow Cost: $2n^3$ flops.

Augmented Gauss-Jordan Elimination

The Augmented Gauss-Jordan Elimination scheme computes

$$X = A^{-1}B$$

without setting up A^{-1} , L or U. \rightarrow Cost: $3n^3$ flops.

Algorithm 1 Augmented Gauss-Jordan Elimination

Input: $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, blocking parameter N_B . **Output:** B overwritten by $A^{-1}B$.

- 1: Set $D := \begin{bmatrix} A & B \end{bmatrix} \in \mathbb{R}^{n \times n+m}$.
- 2: for $i = 1, 1 + N_B, 1 + 2N_B, \dots, n$ do
- 3: Partition D into

$$D := \begin{bmatrix} A_{11} & A_{12} & A_{13} & B_1 \\ \hline A_{21} & A_{22} & A_{23} & B_2 \\ \hline A_{31} & A_{32} & A_{33} & B_3 \end{bmatrix},$$

where $A_{11} \in \mathbb{R}^{i-1 \times i-1}$ and $A_{22} \in \mathbb{R}^{N_B \times N_B}$. Update D by

$$D := \begin{bmatrix} A_{11} & A_{12} & A_{13} & B_1 \\ \hline A_{21} & A_{22} & 0 & 0 \\ \hline A_{31} & A_{32} & A_{33} & B_3 \end{bmatrix} + \begin{bmatrix} -A_{12}A_{22}^{-1} \\ A_{22}^{-1} \\ -A_{32}A_{22}^{-1} \end{bmatrix} \begin{bmatrix} 0 & 0 & A_{23} & B_2 \end{bmatrix}.$$

5: end for

4:

5: end for
Gauss-Jordan-Elimination – Remarks

- $\bullet\,$ Gauss-Jordan Elimination needs 12.5% more flops compared to LU+forward/backward substitution, $\odot\,$
- $\bullet~$ Better GPU utilization $\rightarrow~$ gains a higher performance. $\hfill \odot$
- Easily distributable across multiple GPUs, ©
- Additional accumulation of A^{-1} costs only n^3 flops more.
- Larger memory requirements. 🔅

Gauss-Jordan-Elimination – Remarks

- $\bullet\,$ Gauss-Jordan Elimination needs 12.5% more flops compared to LU+forward/backward substitution, $\odot\,$
- $\bullet~$ Better GPU utilization $\rightarrow~$ gains a higher performance. $\hfill \odot$
- Easily distributable across multiple GPUs, \odot
- Additional accumulation of A^{-1} costs only n^3 flops more.
- Larger memory requirements. 🔅

Preliminary results on one GPU

- For small problems n < 8000, Gauss-Jordan is faster than the LU decomposition.
- Similar performance for larger problems ($n \ge 8000$).

Gauss-Jordan-Elimination – Remarks

- $\bullet\,$ Gauss-Jordan Elimination needs 12.5% more flops compared to LU+forward/backward substitution, $\odot\,$
- $\bullet~$ Better GPU utilization $\rightarrow~$ gains a higher performance. $\hfill \odot$
- Easily distributable across multiple GPUs, \odot
- Additional accumulation of A^{-1} costs only n^3 flops more.
- Larger memory requirements. 🔅

Preliminary results on one GPU

- For small problems *n* < 8 000, Gauss-Jordan is faster than the LU decomposition.
- Similar performance for larger problems ($n \ge 8000$).

Except of the scalability no advantage compared with LU, yet.

Gauss-Jordan-Elimination – Remarks

- $\bullet\,$ Gauss-Jordan Elimination needs 12.5% more flops compared to LU+forward/backward substitution, $\odot\,$
- $\bullet~$ Better GPU utilization $\rightarrow~$ gains a higher performance. @
- Easily distributable across multiple GPUs, \odot
- Additional accumulation of A^{-1} costs only n^3 flops more.
- Larger memory requirements. 😳

Preliminary results on one GPU

- For small problems n < 8000, Gauss-Jordan is faster than the LU decomposition.
- Similar performance for larger problems ($n \ge 8000$).

Except of the scalability no advantage compared with LU, yet.

Asynchronous Matrix-Matrix Product

After computing $X = A^{-1}B$ we have on the device:

- n^2 memory in use to store X,
- $n^2 + 2nNB$ memory of intermediate data from the Gauss-Jordan-Elimination,
- no unmodified copy of A or B on the device.

Asynchronous Matrix-Matrix Product

After computing $X = A^{-1}B$ we have on the device:

- n^2 memory in use to store X,
- $n^2 + 2nNB$ memory of intermediate data from the Gauss-Jordan-Elimination,
- no unmodified copy of A or B on the device.

$$ightarrow$$
 Compute $A_{k+1} := rac{1}{2c_k}(A_k + c_k^2 BX)$ with only $2n^2 + 2nN_B$ memory.

Memory-Efficient Implementation

Asynchronous Matrix-Matrix Product

After computing $X = A^{-1}B$ we have on the device:

- n^2 memory in use to store X,
- $n^2 + 2nNB$ memory of intermediate data from the Gauss-Jordan-Elimination,
- no unmodified copy of A or B on the device.

$$ightarrow$$
 Compute $A_{k+1} := rac{1}{2c_k}(A_k + c_k^2 BX)$ with only $2n^2 + 2nN_B$ memory.

Split
$$A_{k+1} := \frac{1}{2c_k} (A_k + c_k^2 BX)$$
 into
$$\begin{bmatrix} A^{(1)} \\ A^{(2)} \\ \vdots \\ A^{(N)} \end{bmatrix} := \frac{1}{2c_k} \left(\begin{bmatrix} A^{(1)} \\ A^{(2)} \\ \vdots \\ A^{(N)} \end{bmatrix} + c_k^2 \begin{bmatrix} B^{(1)} \\ B^{(2)} \\ \vdots \\ B^{(N)} \end{bmatrix} X \right),$$
where $A^{(\ell)}$, $B^{(\ell)} \in \mathbb{R}^{N_B \times n}$.

Memory-Efficient Implementation

Asynchronous Matrix-Matrix Product

Basic Workflow

- Upload $A^{(\ell)}$ block-by-block to the free n^2 memory location $\rightarrow A_{k+1}$ available for the next Gauss-Jordan Elimination,
- Upload $B^{(\ell)}$ to the two nN_B locations in an alternating way,
- Compute $A^{(\ell)} := \frac{1}{2c_k} (A^{(\ell)} + c_k^2 B^{(\ell)} X)$ from the alternating locations of $B^{(\ell)}$.

Memory-Efficient Implementation

Asynchronous Matrix-Matrix Product

Basic Workflow

- Upload $A^{(\ell)}$ block-by-block to the free n^2 memory location $\rightarrow A_{k+1}$ available for the next Gauss-Jordan Elimination,
- Upload $B^{(\ell)}$ to the two nN_B locations in an alternating way,
- Compute $A^{(\ell)} := \frac{1}{2c_k} (A^{(\ell)} + c_k^2 B^{(\ell)} X)$ from the alternating locations of $B^{(\ell)}$.

Algorithm 2 Asynchronous matrix-matrix product on the GPU

- 1: Asynchronous upload of $A^{(1)}$ and $B^{(1)}$.
- 2: for $i = 1, 1 + N_B, \dots, n$ do
- 3: Asynchronous upload of $A^{(i+1)}$ and $B^{(i+1)}$.
- 4: Wait until the upload of $A^{(i)}$ and $B^{(i)}$ is done and compute $A^{(i)} := \frac{1}{2c_k} (A^{(i)} + c_k^2 B^{(i)} X).$
- 5: Asynchronous download of $A^{(i)}$ to the host.
- 6: **end for**

Overheating and Throttling Detection

Due to worse thermal design of the chassis and/or previous computations the device might overheat, i.e. temperature on the die reaches 90 °C.

Overheating and Throttling Detection

Due to worse thermal design of the chassis and/or previous computations the device might overheat, i.e. temperature on the die reaches 90 °C.

NVIDIA[®] Management Library (NVML)

- Part of the CUDA deployment kit,
- Read various performance metrics from the device, including temperature, clock speed, and power consumption,
- Fetch the frequency throttling state and its reasons.

Overheating and Throttling Detection

Due to worse thermal design of the chassis and/or previous computations the device might overheat, i.e. temperature on the die reaches 90 °C.

NVIDIA[®] Management Library (NVML)

- Part of the CUDA deployment kit,
- Read various performance metrics from the device, including temperature, clock speed, and power consumption,
- Fetch the frequency throttling state and its reasons.

Monitoring Thread

- Checks the throttling state with a given frequency,
- Sets an indicator flag if power or temperature caused frequency throttling gets active,
- Throttling indicator must be reset manually.

Overheating and Throttling Detection

Due to worse thermal design of the chassis and/or previous computations the device might overheat, i.e. temperature on the die reaches 90 °C.

- Checks the throttling state with a given frequency,
- Sets an indicator flag if power or temperature caused frequency throttling gets active,
- Throttling indicator must be reset manually.

Convergence Criteria

The convergence check

$$|A_{k+1} - A_k|| < \tau$$

costs additional n^2 and requires at least $2n^2$ memory transfers.

Convergence Criteria

The convergence check

$$|A_{k+1} - A_k|| < \tau$$

costs additional n^2 and requires at least $2n^2$ memory transfers.

Necessary Convergence Criteria

Suppose $A_k \stackrel{k \to \infty}{\longrightarrow} \operatorname{sign}(A)$ and $\operatorname{sign}(A)^2 = I$ then we have

 $\mathsf{det}(\mathsf{sign}\,(A)) = \pm\,1$

Convergence Criteria

The convergence check

$$|A_{k+1} - A_k|| < \tau$$

costs additional n^2 and requires at least $2n^2$ memory transfers.

Necessary Convergence Criteria

Suppose $A_k \stackrel{k \to \infty}{\longrightarrow} \operatorname{sign}(A)$ and $\operatorname{sign}(A)^2 = I$ then we have

 $\det(\mathsf{sign}\,(A))=\pm\,1$

and

 $\det(A_k) \stackrel{k \to \infty}{\longrightarrow} \pm 1$

Convergence Criteria

The convergence check

$$|A_{k+1} - A_k|| < \tau$$

costs additional n^2 and requires at least $2n^2$ memory transfers.

Necessary Convergence Criteria

Suppose $A_k \stackrel{k \to \infty}{\longrightarrow} \operatorname{sign}(A)$ and $\operatorname{sign}(A)^2 = I$ then we have

 $\det(\text{sign}\,(A)) = \pm\,1$

and

$$\det(A_k) \stackrel{k \to \infty}{\longrightarrow} \pm 1$$

which yields

$$c_k = |\det(A_k)|^{\frac{1}{n}} \stackrel{k \to \infty}{\longrightarrow} 1.$$

Convergence Criteria

$$|A_{k+1} - A_k|| < \tau$$

costs additional n^2 and requires at least $2n^2$ memory transfers.

Necessary Convergence Criteria

Suppose $A_k \stackrel{k \to \infty}{\longrightarrow} \operatorname{sign}(A)$ and $\operatorname{sign}(A)^2 = I$ then we have

Convergence Criteria

The convergence check

$$|A_{k+1} - A_k|| < \tau$$

costs additional n^2 and requires at least $2n^2$ memory transfers.

Generalized Necessary Criteria

From $A_k \stackrel{k \to \infty}{\longrightarrow} \operatorname{sign}(A, B)$ and $\operatorname{sign}(A, B)^2 = B^2 \operatorname{sign}(B^{-1}A) = B^2$ we get:

$$A_k^2 \stackrel{k \to \infty}{\longrightarrow} B^2,$$

Memory-Efficient Implementation

Convergence Criteria

The convergence check

$$|A_{k+1} - A_k|| < \tau$$

costs additional n^2 and requires at least $2n^2$ memory transfers.

Generalized Necessary Criteria

From $A_k \stackrel{k \to \infty}{\longrightarrow} \operatorname{sign}(A, B)$ and $\operatorname{sign}(A, B)^2 = B^2 \operatorname{sign}(B^{-1}A) = B^2$ we get:

$$A_k^2 \stackrel{k \to \infty}{\longrightarrow} B^2,$$

 $\det(A_k) \stackrel{k \to \infty}{\longrightarrow} \det(B),$
 $\det(A_k) \stackrel{k \to \infty}{\longrightarrow} 1,$

Memory-Efficient Implementation

Convergence Criteria

The convergence check

$$|A_{k+1} - A_k|| < \tau$$

costs additional n^2 and requires at least $2n^2$ memory transfers.

Generalized Necessary Criteria

From $A_k \stackrel{k \to \infty}{\longrightarrow} \operatorname{sign}(A, B)$ and $\operatorname{sign}(A, B)^2 = B^2 \operatorname{sign}(B^{-1}A) = B^2$ we get:

$$A_k^2 \stackrel{k \to \infty}{\longrightarrow} B^2,$$

 $\det(A_k) \stackrel{k \to \infty}{\longrightarrow} \det(B)$
 $\frac{\det(A_k)}{\det(B)} \stackrel{k \to \infty}{\longrightarrow} 1,$

and especially

$$c_k = \left(rac{|\det(A_k)|}{|\det(B)|}
ight)^{rac{1}{n}} \stackrel{k o \infty}{\longrightarrow} 1.$$

Convergence Criteria

The convergence check

$$|A_{k+1} - A_k|| < \tau$$

costs additional n^2 and requires at least $2n^2$ memory transfers.

Generalized Necessary Criteria

From $A_k \stackrel{k \to \infty}{\longrightarrow} \operatorname{sign}(A, B)$ and $\operatorname{sign}(A, B)^2 = B^2 \operatorname{sign}(B^{-1}A) = B^2$ we get:

Convergence Criteria

The convergence check

costs additional n^2 and requires at least $2n^2$ memory transfers.

Optimal Cooled System

- 19", 1 HU Supermicro chassis
- $2 \times \text{Intel}^{\textcircled{R}} \text{Xeon}^{\textcircled{R}} \text{E5-2640 v3}$
- 2× NVIDIA[®] Telsa K20m, passive cooling

Software

- CentOS 7 64bit
- Intel[®] Compiler 15
- Intel[®] MKL 11
- NVIDIA[®] CUDA 6.5
- MAGMA 1.6

Worse Cooled System

- 19", 2 HU Dell R720 chassis
- $2 \times \text{Intel}^{\mathbb{R}} \text{Xeon}^{\mathbb{R}} \text{E5-2690}$
- 2× NVIDIA[®] Telsa K20m, passive cooling

Software

- Ubuntu 14.04 64bit
- Intel[®] Compiler 14
- Intel[®] MKL 11
- NVIDIA[®] CUDA 6.5
- MAGMA 1.6

Test Setup

• A, $B \in \mathbb{R}^{n \times n}$ chosen as random matrices,

- A, $B \in \mathbb{R}^{n \times n}$ chosen as random matrices,
- Sign function iteration is fixed to 25 iterations,

- A, $B \in \mathbb{R}^{n \times n}$ chosen as random matrices,
- Sign function iteration is fixed to 25 iterations,
- Power computation measured with LMG450 @ 20Hz,

- A, $B \in \mathbb{R}^{n \times n}$ chosen as random matrices,
- Sign function iteration is fixed to 25 iterations,
- Power computation measured with LMG450 @ 20Hz,
- GPUs running at 758MHz,

- A, $B \in \mathbb{R}^{n \times n}$ chosen as random matrices,
- Sign function iteration is fixed to 25 iterations,
- Power computation measured with LMG450 @ 20Hz,
- GPUs running at 758MHz,
- Preheat device to 60 °C for the temperature tests on the worse system to simulate previous computational work on the device.

Computational Performance – On the optimal System

	4 <i>n</i> ² memory		3 <i>n</i> ² memory		$2n^2 + O(n)$ memory	
Problem size	Runtime	Floprate	Runtime	Floprate	Runtime	Floprate
2 000	2.87	341.7	3.10	311.8	2.26	446.6
4 000	12.33	620.0	14.63	519.8	11.34	711.8
6 000	33.26	769.6	38.32	666.1	33.27	818.6
8 000	70.94	853.1	80.05	754.3	73.49	878.4
10 000	133.51	883.8	147.57	798.1	136.74	921.9
12 000	224.32	908.1	244.86	830.6	228.31	954.0
14 000	-	-	370.11	873.5	353.50	978.4
16 000	-	-	-	-	521.39	990.2
17 000	-	-	-	-	627.96	985.8 ¹

Table: Runtime (in s) and Floprate (GFlops/s) on the optimal system.

¹Optimal blocksize restricted by the available memory of the device.

Computational Performance – On the optimal System

	4 <i>n</i> ² memory		3 <i>n</i> ² memory		$2n^2 + O(n)$ memory	
Problem size	Runtime	Floprate	Runtime	Floprate	Runtime	Floprate
2 000	2.87	341.7	3.10	311.8	2.26	446.6
4 000	12.33	620.0	14.63	519.8	11.34	711.8
6 000	33.26	769.6	38.32	666.1	33.27	818.6
8 000	70.94	853.1	80.05	754.3	73.49	878.4
10 000	133.51	883.8	147.57	798.1	136.74	921.9
12 000	224.32	908.1	244.86	830.6	228.31	954.0
14 000	-	-	370.11	873.5	353.50	978.4
16 000	-	-	-	-	521.39	990.2
17 000	-	-	-	-	627.96	985.8^{1}

Table: Runtime (in s) and Floprate (GFlops/s) on the optimal system.

Maximum GPU temperature: 55 °C.

¹Optimal blocksize restricted by the available memory of the device.

Results Energy Efficiency

	4 <i>n</i> ² memory		3n ² memory		$2n^2 + O(n)$ memory	
Problem size	avg. Pwr.	Eff.	avg. Pwr.	Eff.	avg. Pwr.	Eff.
2 000	351.83	0.97	353.66	0.88	376.23	1.19
4 000	382.83	1.62	363.56	1.43	420.40	1.69
6 000	377.68	2.03	355.51	1.87	420.56	1.95
8 000	386.85	2.21	368.96	2.04	423.80	2.07
10 000	388.21	2.28	375.19	2.13	430.74	2.14
12 000	393.56	2.31	377.86	2.20	429.37	2.22
14 000	-	-	384.32	2.27	421.91	2.31
16 000	-	-	-	-	419.43	2.36
17 000	-	-	-	-	419.32	2.35

Table: Average power consumption (in W) and computational efficiency (in GFlops \cdot ($s \cdot W$)⁻¹).

with $n = 12\,000$.

Figure: Device temperature and GPU clock frequency for the $4n^2$ algori with $n = 12\ 000$.

Figure: Device temperature and GPU clock frequency for the $4n^2$ algorith with $n = 12\ 000$.

Overheating Problem - Worse Hardware

	4 <i>n</i> ² memory		3n ² memory		$2n^2 + O(n)$ memory	
Problem size	Runtime	Floprate	Runtime	Floprate	Runtime	Floprate
$n = 10\ 000$	149.02	792	164.28	717	168.27	759
$n = 12\ 000$	468.66	433	341.04	565	273.12	808
$n = 14\ 000$	-	-	674.61	476	437.34	797
$n = 16\ 000$	-	-	-	-	717.66	725
n = 17 000	-	-	-	-	845.40	737

Table: Runtime (in s) and Floprate (GFlops/s) on the worse system.

Results

Overheating	Problem	- Worse	Hardware
-------------	---------	---------	----------

	4 <i>n</i> ² memory		3 <i>n</i> ² memory		$2n^2 + O(n)$ memory	
Problem size	Runtime	Floprate	Runtime	Floprate	Runtime	Floprate
$n = 10\ 000$	149.02	792	164.28	717	168.27	759
$n = 12\ 000$	468.66	433	341.04	565	273.12	808
$n = 14\ 000$	-	-	674.61	476	437.34	797
$n = 16\ 000$	-	-	-	-	717.66	725
n = 17 000	-	-	-	-	845.40	737

Table: Runtime (in s) and Floprate (GFlops/s) on the worse system.

- Both straight forward implementations are affected dramatically by the frequency scaling. \rightarrow Lost nearly 50% of their performance.
- Moving single matrix-matrix products to the host allows the GPU to cool down and recover its full performance.

Conclusions and Outlook

Conclusions

- Bad thermal hardware designs require different algorithms.
- The generalized sign function iteration can be implemented on the GPU with the memory restrictions of the GEMM operation. \rightarrow allows to increase the maximum problem size by $\sqrt{2}$.
- For small problems ($n \le 6\,000$) the Gauss-Jordan-Elimination approach is faster than the MAGMA-LU based one.

Conclusions and Outlook

Conclusions

- Bad thermal hardware designs require different algorithms.
- The generalized sign function iteration can be implemented on the GPU with the memory restrictions of the GEMM operation. \rightarrow allows to increase the maximum problem size by $\sqrt{2}$.
- For small problems ($n \le 6\,000$) the Gauss-Jordan-Elimination approach is faster than the MAGMA-LU based one.

Outlook

- Combine the asynchronous matrix-matrix products with the MAGMA solvers.
- Improve the energy efficiency of the algorithms.
- Develop a multi-GPU aware generalized sign function iteration on top of the Gauss-Jordan Elimination and the asynchronous matrix-matrix product.
- Extend the GPU implementation to solve generalized Lyapunov and Riccati equations.

Conclusions and Outlook

Conclusions

- Bad thermal hardware designs require different algorithms.
- The generalized sign function iteration can be implemented on the GPU with the memory restrictions of the GEMM operation. \rightarrow allows to increase the maximum problem size by $\sqrt{2}$.
- For small problems ($n \le 6\,000$) the Gauss-Jordan-Elimination approach is faster than the MAGMA-LLL based one

Thank you for you attention!

Outlook

- Combine the asynchronous matrix-matrix products with the MAGMA solvers.
- Improve the energy efficiency of the algorithms.
- Develop a multi-GPU aware generalized sign function iteration on top of the Gauss-Jordan Elimination and the asynchronous matrix-matrix product.
- Extend the GPU implementation to solve generalized Lyapunov and Riccati equations.