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Introduction )

Generalized Matrix Sign Function

Matrix Sign Function

Let A € R™*" be a matrix with no eigenvalues on the imaginary axis with the

Jordan canonical form
J1 0 =il _
4 <0 J2> Yo =4

where A(J1) € C_ and A(J) C C;. Then sign (A) is given by

sign (A) := Y <‘0’1 Z) vyl

where dim(/;) = dim(J;), i =1,2.
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Matrix Sign Function

Let A € R™*" be a matrix with no eigenvalues on the imaginary axis with the

Jordan canonical form
J1 0 =il _
4 <0 J2> Yo =4

where A(J1) € C_ and A(J) C C;. Then sign (A) is given by

sign (A) := Y <‘0’1 Z) vyl

where dim(/;) = dim(J;), i =1,2.

Generalized Matrix Sign Function [GARDINER, LAUB '86]

Let (A, B) be a matrix pencil with no eigenvalues on the imaginary axis then
sign (A, B) is given by

sign (A, B) = Bsign (B_lA) = sign (AB‘l) B.
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Generalized Matrix Sign Function

Applications

@ Solution of Riccati equations: [GARDINER, LAUB '86]

ATXE+ E"XA— ETXGXE + Q =0,
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Introduction )

Generalized Matrix Sign Function

Applications

@ Solution of Riccati equations: [GARDINER, LAUB ’86]

ATXE + ETXA - ETXGXE +Q =0,
@ Solution of stable Lyapunov equations: [BENNER, QUINTANA-ORTT '98]
ATXE+E"XA+Q =0,

@ Spectral Division, [SUN, QUINTANA-ORTI ’04]

o Fast approximation of the generalized Schur decomposition:
[BENNER, K., SAAK 13|

(A,B)=(Q"SZ,Q" 72).
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Introduction
Newton-Method for sign (A, B)

From sign (A)> = / follows the Newton scheme:

1
Ag — A, Ak+l<—§(Ak+Ak—1), k=0,1,2,...

to compute the sign of a matrix.
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1
Ag — A, Ak+l<—§(Ak+Ak—1), k=0,1,2,...

to compute the sign of a matrix.

The Generalized Sign function iteration:
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Introduction
Newton-Method for sign (A, B)

From sign (A)” = / follows the Newton scheme:

1
Ag — A, Ak+l<—§(Ak+Ak—1), k=0,1,2,...

to compute the sign of a matrix.

The Generalized Sign function iteration:

1
Ao A, Acir ¢ 5— (Ac+ ciBATB), k=0,1,2,...
k

where ¢, is an additional scaling factor. Typical: ¢, = (lldd?t((Af;))l‘y'
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Introduction
Frequency Scaling on K20 GPUs

NviDIa® K20 accelerators can adjust their GPU and Memory frequency:

o GPU clock rate (operation mode): 758MHz, 705MHz, 666MHz,
640MHz, and 614MHz with a memory clock rate of 2600MHz.

o GPU clock rate (idle mode): 324MHz with a memory clock rate
of 324MHz.

o GPU clock rate (emergency): 378MHz or 127MHz.
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Introduction
Frequency Scaling on K20 GPUs

NviDIa® K20 accelerators can adjust their GPU and Memory frequency:

o GPU clock rate (operation mode): 758MHz, 705MHz, 666MHz,
640MHz, and 614MHz with a memory clock rate of 2600MHz.

o GPU clock rate (idle mode): 324MHz with a memory clock rate
of 324MHz.

o GPU clock rate (emergency): 378MHz or 127MHz.

Frequency is scaled if:
@ Power consumption is too high for a longer time span ( > 1 minute),
@ Device temperature reaches 90 °C.
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Introduction
Frequency Scaling on K20 GPUs

Nvipia® K20 accelerators can adJu:“J and Memory frequency: |
Reasons: ~

o GPU clock rate (operation
640MHz, and 614MHz with a

o GPU clock rate (idle mode
of 324MHz.

o GPU clock rate (emergenc

Frequency is scaled if:

.

@ High density server farms,
@ Bad cooling system,

@ Bad airflow design of the chassis,

combined with a continuous high load.

— Extremely hardware dependent.

@ Power consumption is too high for a longer time sfan ( > 1 minute),

@ Device temperature reaches 90 °C.
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Introduction
Frequency Scaling on K20 GPUs

Nvipia® K20 accelerators can adJu:“J and Memory frequency: |
Reasons: ~

o GPU clock rate (operation
640MHz, and 614MHz with a

o GPU clock rate (idle mode
of 324MHz.

o GPU clock rate (emergenc

Frequency is scaled if:

.

@ High density server farms,
@ Bad cooling system,

@ Bad airflow design of the chassis,

combined with a continuous high load.

— Extremely hardware dependent.

@ Power consumption is too high for a longer time sfan ( > 1 minute),

@ Device temperature reaches 90 °C.

Aim:

Develop a GPU implementation which can handle (power- or)
temperature-caused frequency scaling.

4
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Basic Implementation
Straight-Forward Approach using LAPACK

Ao “— A, Ak+1 “—

1 _
2—Ck(Ak+c£BAk13), k=0,1,2,... J
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Basic Implementation
Straight-Forward Approach using LAPACK

1
Ao = A, Acpr = 5 (Ac+ tBA'B), k=0,1,2,...
k

Solution of a linear system:
@ LU - decomposition: GETRF,
o Forward/backward substitution: GETRS.
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Basic Implementation
Straight-Forward Approach using LAPACK

1
Ag — A, Ak+1<—g(Ak+c,§BX), k=0,1,2,...
k

Solution of a linear system:
@ LU - decomposition: GETRF,
o Forward/backward substitution: GETRS.

Matrix-Matrix product:
o C:=aAB+ BC in BLAS: GEMM
o Requires three non-overlapping memory locations of size n.

~ lower bound for the memory requirements on the device.
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Basic Implementation
Straight-Forward GPU Approach using MAGMA

The matrix-matrix product requires 3 - n> memory on the device. J
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Basic Implementation
Straight-Forward GPU Approach using MAGMA

The matrix-matrix product requires 3 - n> memory on the device. J

o LU decomposition works on n?

memory,
o Forward/Backward substitution works on 2n? memory.

— Matrix-Matrix product is the limiting factor!
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Basic Implementation
Straight-Forward GPU Approach using MAGMA

The matrix-matrix product requires 3 - n> memory on the device. J

o LU decomposition works on n?

memory,
o Forward/Backward substitution works on 2n? memory.

— Matrix-Matrix product is the limiting factor!

Maximum problem size on NvibiA® Tesla K20m:
double precision | 14 481
single precision | 20 480
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Basic Implementation

Basic Implementation
Straight-Forward GPU Approach using MAGMA

The matrix-matrix product requires 3 - n> memory on the device. J

Generalized Sign Function on 3n? device memory

1: Upload Ag and B to the device.

2. for k=1,...do

3: Copy B to B on the device.

4:  Use getrf_gpu from MAGMA to compute LU = PA,
5. Use getrs_gpu from MAGMA to solve LUX = PB,

6 Upload Ay again onto the location of LU,

7. Compute Agyq1 = ﬁ(Ak + ¢2BX) using cublas?gemm,
8

9

. Download Aky; to the host and check convergence.
: end for
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Basic Implementation
Straight-Forward GPU Approach using MAGMA

The matrix-matrix product requires 3 - n> memory on the device. J

Generalized Sign Function on 3n? device memory

1: Upload Ag and B to the device.
2. for k=1,...do
3: Copy B to B on the device.
. Use getrf_gpu from MAGMA to compute LU = PA,
Use getrs_gpu from MAGMA to solve LUX = PB,

i Download Ay to the host| gnly n? additional memory necessary to
. end for remove this transfer.

4

5:

6: Upload Ay again onto the location of LU

7. Compute Agt1 = T (Ak_|_ 2 =
8.

9

J
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Basic Implementation
Straight-Forward GPU Approach using MAG

The matrix-matrix product requires

MA

3 - n?> memory on the device. )

Generalized Sign Function on 3n? device memory

1: Upload Ag and B to the device.

2. for k=1,... do
3:  Copy B to B on the device.

Use getrf_gpu from MAGMA to compute LU = PAy,
Use getrs_gpu from MAGMA to solve LUX = PB,
Upload Ak again onto the location of LU,

4
5:
6:
7. Compute Ay1 = 5c- L (A +;:2_B.X_Lusm.Luhlp_amm—_\
g:
9

. Download Ak to the host
: end for

Only n? additional memory necessary to

remove this transfer.
Maximum problem size shrinks down to:

double precision | 12 541
single precision 17 736

J
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@ High memory requirements on the device,
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Basic Implementation @)

Observations and Pitfalls

@ High memory requirements on the device,
@ Three sweeps over A, to solve Ay X = B,
o Stopping criterion ||Axy1 — Ak|| < T costs additional n> memory,

@ Due to the involved large matrix-matrix products the device
temperature might increase to a critical value.
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Basic Implementation

Observations and Pitfalls

@ High memory requirements on the device,
@ Three sweeps over A, to solve Ay X = B,
o Stopping criterion ||Axy1 — Ak|| < T costs additional n> memory,

@ Due to the involved large matrix-matrix products the device
temperature might increase to a critical value.

Reduce the memory requirements to 2n° + O(n) and increase the
maximum problem dimension:

double precision | 17 736
single precision | 25 082
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Basic Implementation

Observations and Pitfalls

@ High memory requirements on the device,
@ Three sweeps over A, to solve Ay X = B,
o Stopping criterion ||Ax1 — Ag|| < T costs additional n?> memory,

@ Due to the involved large matrix-matrix products the device
temperature might increase to a critical value.

Replace LU-decomposition with forward/backward substitution by
Gauss-Jordan-Elimination.
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Basic Implementation

Observations and Pitfalls

@ High memory requirements on the device,
@ Three sweeps over A, to solve Ay X = B,
@ Stopping criterion ||Axy1 — Ax|| < T costs additional n> memory,

@ Due to the involved large matrix-matrix products the device
temperature might increase to a critical value.

Cheap convergence check:

Generalize sign (A)2 = | to derive a memory efficient stopping
criterion.
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Basic Implementation

Observations and Pitfalls

@ High memory requirements on the device,
@ Three sweeps over A, to solve Ay X = B,
o Stopping criterion ||Ax1 — Ag|| < T costs additional n?> memory,

@ Due to the involved large matrix-matrix products the device
temperature might increase to a critical value.

Continuous monitoring of the device temperature and movement
of workload to the host.
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Memory-Efficient Implementation

Gauss-Jordan-Elimination

Gauss-Jordan Elimination

The Gauss-Jordan is a rearrangement of the LU decomposition to
compute A~! without setting up L and U and only sweeping once over
the matrix A.

— Cost: 2n3 flops.
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Memory-Efficient Implementation

Gauss-Jordan-Elimination

Gauss-Jordan Elimination

The Gauss-Jordan is a rearrangement of the LU decomposition to
compute A~! without setting up L and U and only sweeping once over
the matrix A.

— Cost: 2n3 flops.

Augmented Gauss-Jordan Elimination

The Augmented Gauss-Jordan Elimination scheme computes
X=A"'B

without setting up A=1, L or U.
— Cost: 3n> flops.
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Memory-Efficient Implementation
oeo

Algorithm 1 Augmented Gauss-Jordan Elimination
Input: A€ R™", B € R"™™, blocking parameter Ng.
Output: B overwritten by A7'B.

1: Set D:=[A B] e R™"™

2: fori=1,1+ Ng,1+2Ng,...,ndo

3: Partition D into

Al | Az | Az | By
D := A21 A22 A23 B2
A3 | Az | Az | Bs

where A;; € R™71 and Ay € RVsXNs,
4: Update D by

Au | Az | Az | B —ApA,
D= Ax | Ax 0 0 + A2_21 [0 0 Ax Bz].
Azr | A | Asz | Bs —A32A;21

5: end for
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0000000

Algorithm 1 Augmented Gauss-Jordan Elimination

Input: Ac R™", B € R"™", blocking parameter Ng.
Output: B overwritten by A7'B.

1: Set D := [A B] ER"X" o : .
2 fori=1,1+ NB,1+2_ Implementation:

3 Partition D into @ Asynchronous precomputation on the host,

@ Remaining matrix-matrix-products on the
device,

@ Requires 2n/Ng additional memory on the
device for intermediate results.

. .
where A1 € R~ 3nd Ay e k55
4: Update D by

Al | Az | Az | Br
D:=| Ax | Axn| O 0
As1 | A | Asz | Bs

[0 0 As B.

5: end for

Max Planck Institute Magdeburg Martin Kohler, Generalized Matrix Sign 11/23
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Memory-Efficient Implementation

Gauss-Jordan-Elimination — Remarks

Gauss-Jordan Elimination needs 12.5% more flops compared to
LU+forward /backward substitution,®

Better GPU utilization — gains a higher performance. ®
Easily distributable across multiple GPUs, ®

Additional accumulation of A~! costs only n3 flops more.

e 6 6 o

Larger memory requirements. ®
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Preliminary results on one GPU

@ For small problems n < 8 000, Gauss-Jordan is faster than the LU
decomposition.

o Similar performance for larger problems (n > 8 000).
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Memory-Efficient Implementation

Asynchronous Matrix-Matrix Product

After computing X = A~1B we have on the device:

o n? memory in use to store X,

o n? + 2nNB memory of intermediate data from the
Gauss-Jordan-Elimination,

@ no unmodified copy of A or B on the device.
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Asynchronous Matrix-Matrix Product

After computing X = A~1B we have on the device:

o n? memory in use to store X,

o n? + 2nNB memory of intermediate data from the
Gauss-Jordan-Elimination,

@ no unmodified copy of A or B on the device.
— Compute A, = 2—;(Ak + ¢2BX) with only 2n? + 2nNg memory.

4
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Memory-Efficient Implementation

Asynchronous Matrix-Matrix Product

After computing X = A~1B we have on the device:
o n? memory in use to store X,

o n? + 2nNB memory of intermediate data from the
Gauss-Jordan-Elimination,

@ no unmodified copy of A or B on the device.
— Compute A, = 2—;(Ak + ¢2BX) with only 2n? + 2nNg memory.

4

Split Axy1 = 2Lck(Ak + ¢2BX) into

Al A1) B(1)
AR 1 AR) , B(2)

= Z : aF Ci : X 9
AN AN B(N)

where A0, B() ¢ RNexn

v
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Asynchronous Matrix-Matrix Product

Basic Workflow

@ Upload A®) block-by-block to the free n*> memory location — Agy1
available for the next Gauss-Jordan Elimination,

@ Upload B to the two nNp locations in an alternating way,
o Compute A® .= ﬁ(A(Z) + 2B X) from the alternating locations of
B®.
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Memory-Efficient Implementation

Asynchronous Matrix-Matrix Product

Basic Workflow

o Upload A¥) block-by-block to the free n*> memory location — Agy1
available for the next Gauss-Jordan Elimination,

@ Upload B to the two nNp locations in an alternating way,
o Compute A® .= i(A(Z) + 2B X) from the alternating locations of
B,

Algorithm 2 Asynchronous matrix-matrix product on the GPU

1: Asynchronous upload of A and BW.

2: fori=1,14+ Ng,...,ndo

3. Asynchronous upload of AU*1) and BU+1),

4:  Wait until the upload of A®) and B() is done and compute
A = S (AW 4 2BU)X).

5. Asynchronous download of A() to the host.

6: end for

Max Planck Institute Magdeburg Martin Kohler, Generalized Matrix Sign
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Memory-Efficient Implementation
Overheating and Throttling Detection

Due to worse thermal design of the chassis and/or previous computations
the device might overheat, i.e. temperature on the die reaches 90 °C.
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Memory-Efficient Implementation
Overheating and Throttling Detection

Due to worse thermal design of the chassis and/or previous computations
the device might overheat, i.e. temperature on the die reaches 90 °C.

V.

NviDIA® Management Library (NVML)
@ Part of the CUDA deployment Kkit,

@ Read various performance metrics from the device, including temperature,
clock speed, and power consumption,

@ Fetch the frequency throttling state and its reasons.
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Memory-Efficient Implementation
Overheating and Throttling Detection

Due to worse thermal design of the chassis and/or previous computations
the device might overheat, i.e. temperature on the die reaches 90 °C.

NviDIA® Management Library (NVML)
@ Part of the CUDA deployment Kkit,

@ Read various performance metrics from the device, including temperature,
clock speed, and power consumption,

@ Fetch the frequency throttling state and its reasons.

y

Monitoring Thread

@ Checks the throttling state with a given frequency,

@ Sets an indicator flag if power or temperature caused frequency throttling
gets active,

@ Throttling indicator must be reset manually.

Max Planck Institute Magdeburg Martin Kéhler, Generalized Matrix Sign ~ 15/23
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Memory-Efficient Implementation
Overheating and Throttling Detection

the device might overheat, i.e. temperature on the die reaches 90 °C.

Due to worse thermal design of the chassis and/or previous computationsJ

o Compute X = A~1B on the device,
@ Check if the throttling indicator
o is set: copy X to the host and compute
Akt1 = ﬁ(Ak + ¢2BX) on the CPU.
o is not set: compute Ay 1 = ﬁ(Ak + cZBX) on
the device using Algorithm 2.

@ Checks the throttling state with a given frequency,

@ Sets an indicator flag if power or temperature caused frequency throttling
gets active,

@ Throttling indicator must be reset manually.

Max Planck Institute Magdeburg Martin Kohler, Generalized Matrix Sign
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Memory-Efficient Implementation :

Convergence Criteria

The convergence check
|Akts — Adl| < 7

costs additional n? and requires at least 2n> memory transfers.
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Convergence Criteria

The convergence check
|Akts — Adl| < 7

costs additional n? and requires at least 2n> memory transfers.

Necessary Convergence Criteria [BIERMAN '84]

Suppose Ax =5 sign (A) and sign (A)> = | then we have

det(sign (A)) =+ 1

Max Planck Institute Magdeburg Martin Kéhler, Generalized Matrix Sign ~ 16/23
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Convergence Criteria

The convergence check
|Akts — Adl| < 7

costs additional n? and requires at least 2n> memory transfers.

Necessary Convergence Criteria [BIERMAN '84]

Suppose Ax =5 sign (A) and sign (A)> = | then we have
det(sign (A)) =+ 1
and

det(As) =3 +1
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Memory-Efficient Implementation ;

Convergence Criteria

The convergence check
|Akts — Adl| < 7

costs additional n? and requires at least 2n> memory transfers.

Necessary Convergence Criteria [BIERMAN '84]

Suppose A, =5 sign (A) and sign (A)> = | then we have
det(sign (A)) =+ 1
and
det(As) =3 +1

which yields

o = |det(A)]r “=F1.
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Memory-Efficient Implementation

Convergence Criteria

The convergence check
[[Arsr — Al] <7

costs additional n*> and requires at least 2n> memory transfers.

Necessary Convergence Criteria [BIERMAN '84]

Suppose Ax =5 sign (A) and sign (A)> = | then we have

det(sion (A)) — + 1

[ Scaling factor of the standard sign function iteration. }
and

which yields
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Memory-Efficient Implementation

Convergence Criteria

The convergence check
|Akts — Adl| < 7

costs additional n? and requires at least 2n> memory transfers.

Generalized Necessary Criteria

| \

From A, "= sign (A, B) and sign (A, B)> = B®sign (B_lA) = B? we get:

k
A2
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Convergence Criteria

The convergence check
|Akts — Adl| < 7

costs additional n? and requires at least 2n> memory transfers.

| \

Generalized Necessary Criteria
From A, “=3 sign (A, B) and sign (A, B)* = B®sign (B™'A) = B* we get:
AL o2

2% det(B),

1

det(Ak)

det(Ak) k
det(B)

l

1

o0

1,

|
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Convergence Criteria

The convergence check
|Akts — Adl| < 7

costs additional n? and requires at least 2n> memory transfers.

Generalized Necessary Criteria

| \

From A, “=3 sign (A, B) and sign (A, B)* = B®sign (B™'A) = B* we get:
AL o2
det(Ax) "= det(B),

det(Ak) k— 00
det(B)

and especially

1
n

_ | I det(A)] k=20
Ck = (|deet(Bk)|) — L
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Convergence Criteria

The convergence check

[Aks = Acl] < 7

costs additional n*> and requires at least 2n> memory transfers.

Generalized Necessary Criteria

| \

From A, "= sign (A, B) and sign (A, B)> = B®sign (B_lA) = B? we get:

a2 k=00 02

[ Scaling factor of the generalized sign function iteration. }

and especially

det(Ak)

det(B)
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Memory-Efficient Implementation

Convergence Criteria

The convergence check
|Akts — Adl| < 7

costs additional n? and requires at least 2n> memory transfers.

Generalized Necessary Criteria

| \

From A © New Convergence Criterion: 32 ENE-ELU A -2 QP s

Stop the iteration if
e — 1] <& for k> ko.

— No additional work or memory necessary.

UCL\U}
and especially

1
_ (Leer(ag \ 7 koo
Ck = (|deet(Bk)|) — L
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AN

Results
Test Setup
@ 19", 1 HU Supermicro chassis @ 19", 2 HU Dell R720 chassis
o 2x Intel® Xeon® E5-2640 v3 0 2x Intel® Xeon® E5-2690
0 2x NviDia® Telsa K20m, 0 2x Nvipia® Telsa K20m, passive
passive cooling cooling
@ CentOS 7 — 64bit @ Ubuntu 14.04 — 64bit
o Intel® Compiler 15 o Intel® Compiler 14
e Intel® MKL 11 o Intel® MKL 11
@ Nvioia® CUDA 6.5 @ Nvioia® CUDA 6.5
e MAGMA 1.6 e MAGMA 1.6

Max Planck Institute Magdeburg Martin Kéhler, Generalized Matrix Sign ~ 17/23
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Results
Test Setup

o A, B € R™" chosen as random matrices,

@ Sign function iteration is fixed to 25 iterations,

@ Power computation measured with LMG450 @ 20Hz,
@ GPUs running at 758MHz,

o

Preheat device to 60 °C for the temperature tests on the worse
system to simulate previous computational work on the device.
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Results

Computational Performance — On the optimal System

4n? memory 3n? memory 2n° + O(n) memory

Problem size | Runtime | Floprate | Runtime | Floprate | Runtime | Floprate
2 000 2.87 341.7 3.10 311.8 2.26 446.6
4000 12.33 620.0 14.63 519.8 11.34 711.8
6 000 33.26 769.6 38.32 666.1 33.27 818.6
8 000 70.94 853.1 80.05 754.3 73.49 878.4
10 000 133.51 883.8 147.57 798.1 136.74 921.9
12 000 224.32 908.1 244.86 830.6 228.31 954.0
14 000 - - 370.11 873.5 353.50 978.4
16 000 - - - - 521.39 990.2
17 000 - - - - | 627.96 985.8!

Table: Runtime (in s) and Floprate (GFlops/s) on the optimal system.

1Optimal blocksize restricted by the available memory of the device.
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Results

Computational Performance — On the optimal System

4n? memory 3n? memory 2n° + O(n) memory

Problem size | Runtime | Floprate | Runtime | Floprate | Runtime | Floprate
2 000 2.87 341.7 3.10 311.8 2.26 446.6
4000 12.33 620.0 14.63 519.8 11.34 711.8
6 000 33.26 769.6 38.32 666.1 33.27 818.6
8 000 70.94 853.1 80.05 754.3 73.49 878.4
10 000 133.51 883.8 147.57 798.1 136.74 921.9
12 000 224.32 908.1 244.86 830.6 228.31 954.0
14 000 - - 370.11 873.5 353.50 978.4
16 000 - - - - 521.39 990.2
17 000 - - - - | 627.96 985.8!

Table: Runtime (in s) and Floprate (GFlops/s) on the optimal system.

Maximum GPU temperature: 55 °C. J

1Optimal blocksize restricted by the available memory of the device.
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Results
Energy Efficiency

4n? memory 3n? memory 2n% 4+ O(n) memory

Problem size | avg. Pwr. Eff. | avg. Pwr. Eff. | avg. Pwr. Eff.
2000 351.83 | 0.97 353.66 | 0.88 376.23 1.19
4 000 382.83 | 1.62 363.56 | 1.43 420.40 1.69
6 000 377.68 | 2.03 355.51 | 1.87 420.56 1.95
8 000 386.85 | 2.21 368.96 | 2.04 423.80 2.07
10 000 388.21 | 2.28 375.19 | 2.13 430.74 2.14
12 000 393.56 | 2.31 377.86 | 2.20 429.37 2.22
14 000 - - 384.32 | 2.27 421.91 2.31
16 000 - - - - 419.43 2.36
17 000 - - - - 419.32 2.35

Table: Average power consumption (in W) and computational efficiency (in
GFlops - (s - W)™).
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and Outlook

Introduction Basic Implementation Memory-Efficient Implementation Conclusion

Results

Overheating Problem - Worse Hardware

Iteration
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Figure: Device temperature and GPU clock frequency for the 4n? algorithm
with n = 12 000.
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Figure: Device temperature and GPU clock frequency for the 4n? algorithm
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Results :

Overheating Problem - Worse Hardware

4n? memory 3n? memory 2n° + O(n) memory

Problem size | Runtime | Floprate | Runtime | Floprate | Runtime | Floprate
n = 10 000 149.02 792 164.28 717 168.27 759
n =12 000 468.66 433 341.04 565 273.12 808
n = 14 000 - - 674.61 476 437.34 797
n =16 000 - - - - 717.66 725
n = 17 000 - - - - 845.40 737

Table: Runtime (in s) and Floprate (GFlops/s) on the worse system.
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Results

Overheating Problem - Worse Hardware

4n? memory 3n? memory 2n° + O(n) memory

Problem size | Runtime | Floprate | Runtime | Floprate | Runtime | Floprate
n = 10 000 149.02 792 164.28 717 168.27 759
n =12 000 468.66 433 341.04 565 273.12 808
n = 14 000 - - 674.61 476 437.34 797
n =16 000 - - - - 717.66 725
n = 17 000 - - - - 845.40 737

Table: Runtime (in s) and Floprate (GFlops/s) on the worse system.

@ Both straight forward implementations are affected dramatically by the
frequency scaling. — Lost nearly 50% of their performance.

@ Moving single matrix-matrix products to the host allows the GPU to cool
down and recover its full performance.
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Conclusions and Outlook

Conclusions

@ Bad thermal hardware designs require different algorithms.

@ The generalized sign function iteration can be implemented on the GPU
with the memory restrictions of the GEMM operation.
—» allows to increase the maximum problem size by v/2.

@ For small problems (n < 6 000) the Gauss-Jordan-Elimination approach is
faster than the MAGMA-LU based one.
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V.

@ Combine the asynchronous matrix-matrix products with the MAGMA
solvers.

@ Improve the energy efficiency of the algorithms.

@ Develop a multi-GPU aware generalized sign function iteration on top of
the Gauss-Jordan Elimination and the asynchronous matrix-matrix
product.

o Extend the GPU implementation to solve generalized Lyapunov and
Riccati equations.

V.
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@ Bad thermal hardware designs require different algorithms.

@ The generalized sign function iteration can be implemented on the GPU
with the memory restrictions of the GEMM operation.
— allows to increase the maximum problem size by /2.

@ For small problems (n < 6 000) the Gauss-Jordan-Elimination approach is
faster thar\ the MACNA_lL 1l haced ane

ﬁ Thank you for you attention! ;

@ Combine the asynchronous matrix-matrix products with the MAGMA
solvers.

@ Improve the energy efficiency of the algorithms.

@ Develop a multi-GPU aware generalized sign function iteration on top of
the Gauss-Jordan Elimination and the asynchronous matrix-matrix
product.

o Extend the GPU implementation to solve generalized Lyapunov and
Riccati equations.

V.
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