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Motivation

Differential Riccati Equations

Consider the linear quadratic optimal control problem

te
. 1
mum j(yvu)zz /yTy+uTUdt +YtZ-Qth )
0
subject to  EX(t) = Ax(t) + Bu(t),
y(t) = Cx(t)
where A, E, B, and C may depend on t as well.

with the states x(t) € R”, inputs u(t) € R™, and output y(t) € RY.
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Feedback law €.g. [LocATELLI 01]
u(t) = =BT X(t)Ex(t),
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Motivation

Differential Riccati Equations

Consider the linear quadratic optimal control problem

te

. 1
min J(y, u) = 5 /yTy+ uludt +y] Qy, |,

0
subject to  Ex(t) = Ax(t) + Bu(t),
y(t) = Cx(t)

where A, E, B, and C may depend on t as well.

Feedback law €.g. [LocATELLI '01]
u(t) = =BT X(t)Ex(t),

where X(t) is the solution of the Differential Riccati Equation (DRE)
E"X(t)E=CTC+ ATX(t)E + ETX(t)A— E"X(t)BB" X(t)E := R(X(t)),
X(t=tr) = Q.
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Motivation

Differential Lyapunov Equation

Simplification of the DRE

By setting B = 0 in the DRE we get the Differential Lyapunov Equation
(DLE):

ETX(t)E = CTC+ ATX(t)E + ETX(t)A,
X(t = tf) = Xr.
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Motivation 7

Differential Lyapunov Equation

Simplification of the DRE

By setting B = 0 in the DRE we get the Differential Lyapunov Equation
(DLE):

ETX(t)E = CTC+ ATX(t)E + ETX(t)A,
X(t = tf) = Xr.

Application in Model Order Reduction:

— used for Linear Time-Variant (LTV) Balanced Truncation.
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Motivation :

Time integration methods

@ The DLE is a matrix-valued ordinary differential equation.
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@ The DLE is a matrix-valued ordinary differential equation.
@ The DRE is a non-linear, matrix-valued, and highly stiff ordinary
differential equation.

Implicit time integrators [MENA °07, BENNER/MENA '12]

o Backward differentiation formula (BDF)
o Linear implicit Runge-Kutta (Rosenbrock) methods

@ Midpoint and Trapezoidal rule
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Time integration methods

@ The DLE is a matrix-valued ordinary differential equation.
@ The DRE is a non-linear, matrix-valued, and highly stiff ordinary
differential equation.

Implicit time integrators [MENA °07, BENNER/MENA '12]
o Backward differentiation formula (BDF)
o Linear implicit Runge-Kutta (Rosenbrock) methods

@ Midpoint and Trapezoidal rule

4

Numerical issues

@ Methods are fairly time and storage consuming for large-scale
problems.

@ High accuracy requires small time steps or high order methods.

@ At every time step a number of algebraic matrix equations needs to
be solved.

Max Planck Institute Magdeburg Martin Kahler, Solving Differential Matrix Equations using Parareal 5/22



Motivation

Time integration methods

@ The DLE is a matrix-valued ordinary differential equation.
@ The DRE is a non-linear, matrix-valued, and highly stiff ordinary
differential equation.

~ f T - - P f V2N AN

Good reasons to try Parareal!

J

Numerical issues

@ Methods are fairly time and storage consuming for large-scale
problems.

@ High accuracy requires small time steps or high order methods.

@ At every time step a number of algebraic matrix equations needs to
be solved.
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Rosenbrock Methods

Rosenbrock Methods

Restriction by Parareal:

Only single-step integrators are well suited.
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Rosenbrock Methods

Restriction by Parareal:

Only single-step integrators are well suited.

General Rosenbrock Scheme

The s-stage Rosenbrock method applied to a matrix differential equation
of the form X = F(X) is given as

X1 = Xk + 7« Z szék),

=1
i-1 i
Ki(k) = F(Xk + Tk Z Oé,'7gK[(k)) + T Tk Z’y,”gKZ(k), Vi=1,...,s.
¢=1 £=1
@ s : order of the method o J : Fréchet derivative of F at Xj
@ Ty : time step ® jyg,7ie, e - determining coefficients
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Rosenbrock Methods [MENA ’07, BENNER/MENA '12]

We only consider the DRE, where ETXE = R(X):

1° order Rosenbrock scheme (Rosl)
Xir1 = Xi + 7K
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1° order Rosenbrock scheme (Rosl)
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Rosenbrock Methods [MENA ’07, BENNER/MENA '12] ;

We only consider the DRE, where ETXE = R(X):

1° order Rosenbrock scheme (Rosl)
Xir1 = Xi + 7K

(re(A— BBTX(E) — %E)TKI(")E + ETK®(r(A - BBTX(E) — %E) = —R(X
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Rosenbrock Methods [MENA ’07, BENNER/MENA '12]

We only consider the DRE, where ETXE = R(X):

1° order Rosenbrock scheme (Rosl)
Xir1 = Xi + 7K

ATKWE + ETKWA = —R(X)

, 1
A= 1 (A— BBTXE) — 5E

Solve one Algebraic Lyapunov Equation (ALE) inside the 1-stage
Rosenbrock method.
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Rosenbrock Methods [MENA ’07, BENNER/MENA '12]

We only consider the DRE, where ETXE = R(X):

1° order Rosenbrock scheme (Rosl)

Xir1 = Xi + 7K
ATKWE + ETKWA = —R(X)

2" order Rosenbrock scheme (Ros2) [DEKKER, VERWER '84]

Xig1 = Xi +

3
2

1

k
2TkK2( )

Tkak) +

ATKWE + ETKWA = —R(X))
ATKWE + ETKOA = —R(X + k) + 26TKWE

. 1
A := 7 (A — BBTX(E) — 5E
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Rosenbrock Methods [MENA ’07, BENNER/MENA '12]

We only consider the DRE, where ETXE = R(X):

1° order Rosenbrock scheme (Rosl)
Xir1 = Xi + 7K

ATKWE + ETKWA = —R(X)

2" order Rosenbrock scheme (Ros2) [DEKKER, VERWER '84]
3 1
X1 = Xk + ETkKl(k) +* ETsz(k)

ATKWE + ETKWA = —R(Xy)
ATKWE + ETKOA = —R(X + k) + 26TKE

Solve two ALEs inside the 2-stage Rosenbrock method. J
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Rosenbrock Methods

Higher Order Schemes

3 order scheme (Ros3) [ROS3P: LANG, VERWER '01]

Xis1 = Xk + 7k ZNJ‘,{jv

=
AkKlET-l— EKUZ\[:—R(X;(),

AKGET + EKoA] =—R(Xe+ Than Ki) —cn EKLET

AkK3ET+ EK3/2\[=—R(X;<+ Tka31K1) —C31EK1ET—C32EK2ET.

with A == (A — BBTXkE) — 5-E.
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Rosenbrock Methods

Higher Order Schemes

3rd order scheme (ROS3) [Ros3P: LANG, VERWER ’01]

Xir1 = Xk +TkZNjKj’

j=1
AcKiET + EKiA] =—R (Xk),
AkKQET—l— EKQ/Z\Z—Z—'R,(X/(-F Tkalel) —C21EK1ET,
AkK3ET+ EK3/Z\Z—=—R(X;(+ Tka31K1) —C31EK1ET—C32EK2ET.

Determining Coefficients

v = 7.886751345948129-1

ax = 1.267949192431123 a; =0
az1 = 1.267949192431123 =1

asp — 0 o3 — 1
o1 = —1.607695154586736 p1 =2

c31 = —3.464101615137755 | pp = 5.773502691896258e — 1
c32 = —1.732050807568877 | p3 = 4.226497308103742e — 1

J

.
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Rosenbrock Methods )

Higher Order Schemes

h order scheme (Ros4) [SHAMPINE "82]

4
Xiewr =X + Tk Z b;K;,

ATKIE4+ET KA, = —

R Xk),
AlKE+E Ko Ak = —R
R

(
(Xk + Tka21K1)+’Y21E KiE

2
( k+7—kza3j > +ET (Z'yngJ) E
j=1
5 5 3
AIKE+ET KA, = R(Xk +rza4, ) +ET (iji@) E
j=1

with A := 3 ((A — BBTX«E) —

ATKE+ET KA, = —
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Rosenbrock Methods (o7

Higher Order Schemes

4 orde eme (Ros/
Dete g Coefficie
Q21 1
— 24 - 3
a3l = 55 32 = 5
24 3
a4 = 5 ap =5 | as3=0
Y1 =4
_ 185 _ 6
Y31 = — 135 f328=20 0
_ 56 27 _ 1
V41 = 155 V42 = 155 V43 = §
— 19 = 1
by = 5 by =3
— 25 — 125
b3_216 b4_216
\
WITh Ak "= 5 (Tk(A — BB AKEJ = E]
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Code Optimization and Implementation

Optimize before Parallelize

High Computational Cost

o Need the solution of s algebraic Lyapunov equations per time step.
— Bartels-Stewart algorithm requires a QZ decomposition.

@ Mostly matrix-matrix products.
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Code Optimization and Implementation

Optimize before Parallelize

High Computational Cost

o Need the solution of s algebraic Lyapunov equations per time step.
— Bartels-Stewart algorithm requires a QZ decomposition.

@ Mostly matrix-matrix products.

y

Redundant Information

o Each right hand side of the Lyapunov equation includes R(Xx).
o Redundant information in the linear part of R(Xi + 7 Kj + ...).
@ Solutions of the Lyapunov equations Kj are symmetric.
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Code Optimization and Implementation

Optimize before Parallelize

High Computational Cost

o Need the solution of s algebraic Lyapunov equations per time step.
— Bartels-Stewart algorithm requires a QZ decomposition.

@ Mostly matrix-matrix products.

y

Redundant Information

o Each right hand side of the Lyapunov equation includes R(Xx).
o Redundant information in the linear part of R(Xi + 7 Kj + ...).

@ Solutions of the Lyapunov equations Kj are symmetric.

Strategies

o Computational Cost: Use BLAS level-3 enabled algorithms.

@ Redundant Information: Reformulation of the right hand sides.

Max Planck Institute Magdeburg Martin Kahler, Solving Differential Matrix Equations using Parareal 10/22



Code Optimization and Implementation

Code Optimization and Implementation
BLAS level-3 enabled Algorithms

Matrix-Matrix Products

Use Intel® MKL, IBM ESSL, OpenBLAS or ATLAS.
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Code Optimization and Implementation
BLAS level-3 enabled Algorithms

Matrix-Matrix Products

Use Intel® MKL, IBM ESSL, OpenBLAS or ATLAS.

Lyapunov Equations

Generalized Bartels-Stewart algorithm available in SLICOT: [PENZL '97]

@ All stages have the same coefficient matrices.

@ Only one QZ decomposition per time step and reuse it.
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Matrix-Matrix Products

Use Intel® MKL, IBM ESSL, OpenBLAS or ATLAS.
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Generalized Bartels-Stewart algorithm available in SLICOT: [PENZL '97]

@ All stages have the same coefficient matrices.
@ Only one QZ decomposition per time step and reuse it.
o But QZ is mostly a BLAS level-2 algorithm.
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v

Need for an efficient Lyapunov solver

V.
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Code Optimization and Implementation

Code Optimization and Implementation
BLAS level-3 enabled Algorithms

Matrix-Matrix Products

Use Intel® MKL, IBM ESSL, OpenBLAS or ATLAS.

w

Lyapunov Equations

Generalized Bartels-Stewart algorithm available in SLICOT: [PENZL "97]

@ All stages have the same coefficient matrices.
@ Only one QZ decomposition per time step and reuse it.
o But QZ is mostly a BLAS level-2 algorithm.

@ Forward/Backward substitution is BLAS level-2 as well.

v

Need for an efficient Lyapunov solver

@ Matrix Sign Function Iteration [QUINTANA-ORT{, BENNER'99]
— Without QZ decomposition, but no advantage out of coefficients.

V.

Max Planck Institute Magdeburg Martin Kahler, Solving Differential Matrix Equations using Parareal 11/22




Code Optimization and Implementation
(¢

Code Optimization and Implementation

BLAS level-3 enabled Algorithms
Matrix-Matrix Products

Use Intel® MKL, IBM ESSL, OpenBLAS or ATLAS.

Lyapunov Equations

Generalized Bartels-Stewart algorithm available in SLICOT:
@ All stages have the same coefficient matrices.
@ Only one QZ decomposition per time step and reuse it.
o But QZ is mostly a BLAS level-2 algorithm.

@ Forward/Backward substitution is BLAS level-2 as well.

[PENZL ’97]

Need for an efficient Lyapunov solver

@ Matrix Sign Function Iteration

— Without QZ decomposition, but no advantage out of coefficients.

@ Reuse of the QZ decomposition and BLAS level-3 block generalized
[GLYAP3: K., SAAK '14]

Bartels-Stewart algorithm.

[QUINTANA-ORT], BENNER'99]
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Motivation Rosenbrock Methods Code Optimization and Implementation Experimental Result

Code Optimization and Implementation
Right-Hand-Side Rearrangement

Consider the stages of the 2" order Rosenbrock scheme:
ALKIE + ETKi Ay = —R(Xk)
and

ALKE + ETKo A = — R(Xk + K1) + 2ET KL E

with A := y7 (A — BB"X(E) — 1E.
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Code Optimization and Implementation
Right-Hand-Side Rearrangement

Consider the stages of the 2" order Rosenbrock scheme:
ALKIE + ETKi Ay = —R(Xk)
and

ALKE + ETKo A = — R(Xk + K1) + 2ET KL E
= —R(Xe) — T ((AT — BB"XE) KiE + ETKy(AT — BBTXkE))
+ 77E"KiBBT KiE 4+ 2ET K\ E
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Code Optimization and Implementation
Right-Hand-Side Rearrangement

Consider the stages of the 2" order Rosenbrock scheme:
ALKIE + ETKi Ay = —R(Xk)
and

ALKE + ETKo A = — R(Xk + K1) + 2ET KL E
= —R(Xe) — ((AT — BB"XE) KiE + ETKy(AT — BBTXkE))
+77E"KiBBT KiE 4+ 2ET K\ E
— _R(X) -t (Z\[KIE + ETKIZ\k) ek
v v

+2ETKiBBTKLE + 2ET KL E
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Code Optimization and Implementation
Right-Hand-Side Rearrangement

Consider the stages of the 2" order Rosenbrock scheme:
ALKIE + ETKi Ay = —R(Xk)
and
ALKE + ETKo A = — R(Xk + K1) + 2ET KL E
= —R(Xe) — T ((AT — BB"XE) KiE + ETKy(AT — BBTXkE))
+ 2ETKiBBT KiE + 2ET KiE
— _R(X) -t (Z\[KIE + ETKIZ\k) ek
v gl
+ 2E"KiBBT KiE + 2ET K,E

= — (il = %)R(Xk) + ETKiBBT KiE + (2 — %)ETKlE.
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Code Optlmlzatlon and Implementatlon
Right-Hand-Side Rearrangement

Using the linearity of the Lyapunov-Equation we reformulate the 2" order

Rosenbrock scheme as:

Xit1

Al KiE + ETKi A,

/Z\Z-sz aF ETszk

Kz

3 1
= Xk + ETkKl I ETsz’

- R(Xk)v

TPE"KiBBT KiE + (2 — %)ETKlE,

~ 1
Ko+ (1 - —)Ki.
2+ ( 7)1
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Code Optlmlzatlon and Implementatlon
Right-Hand-Side Rearrangement

Using the linearity of the Lyapunov-Equation we reformulate the 2" order
Rosenbrock scheme as:

3 1
X1 = Xic + ETkKl + ETsz’
ALKE + ETKiA = — R(Xk),

Al KE + ET KA = TPETKiBBT KiE + (2 — %)ETKlE,

Kz

~ 1
Ko+ (1 - —)Ki.
2+ ( 7)1

@ The 3™ and 4™ order scheme can be rearranged in the same way.
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Code Optimization and Implementation
Right-Hand-Side Rearrangement

Using the linearity of the Lyapunov-Equation we reformulate the
Rosenbrock scheme as:

Xkt1

Al KLE + ET K1 Ak

/Z\Z-R2E aF ETszk

Kz

2" order

3 1
= Xk + ETkKl I ETkKZ’

- R(Xk)7

TPE"KiBBT KiE + (2 — %)ETKlE,

~ 1
Ko+ (1 - —)Ki.
2+ ( 7)1

@ The 3™ and 4™ order scheme can be rearranged in the same way.

@ Symmetric terms are computed like

E"K;BB" K;E

= k9 K9 with K9 .= BTKE.
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Code Optimization and Implementation

Parareal Implementation

Following [MADAY, LioNns, TURINICI ’01] we use
X = X(t = tr),
Xrgkﬂ) = F(tp-1, tP7X;(:‘i)1) + G(tp-1, tp,Xé‘f;l)) = G(tp-1, tP7Xp(v[i)1)

as parareal-scheme, where F(t1, t2, Xs) and G(ti, t2, X) integrate the DRE
from t; to t, with the initial value X.
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Code Optimization and Implementation ‘

Parareal Implementation

Following [MADAY, LioNns, TURINICI ’01] we use
X$ = X(t = t7),
Xrgkﬂ) = F(tp-1, tpvxp(a‘i)l) + G(tp-1, tp,Xéﬁl)) = G(tp-1, tP7Xp(v,i)l)

as parareal-scheme, where F(t1, t2, Xs) and G(ti, t2, X) integrate the DRE
from t; to t, with the initial value X.

y

Coarse and Fine Solvers

Use the four presented Rosenbrock methods as coarse and the fine solvers:

@ The coarse solver G performs one time step from t; to t.

@ The fine solver F performs f time steps from t; to t,.
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Code Optimization and Implementation

Parareal Implementation

Classical Pipeline Implementation: Stage-Code

1: for it:=1 to maxit do

2 Receive X(') from ProcessID-1

3 X = g(x{M)

4: if it = 1 then

5: Send X((;'t) to ProcessID+1

6 else

7 X(it) - th) + X,E—it_l) _ th_l)
8 end if

9. x = F(x{"Y)
0. if ||x (1) _ x(=1|| < §||X®)|| then
11: Stop.
12:  end if
13: end for )
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Motivation

Classical Pipeline Implementation: Stage-Code

Rosenbrock Methods Code Optimization and Implementation

Code Optimization and Implementatlon

Parareal Implementation

1: for it:=1 to maxit do

2 Receive X(') from ProcessID-1

3 X = g(x{M)

4: if it = 1 then

5: Send X((;'t) to ProcessID+1

6: else

7 X(it) - th) + X,E—it_l) _ th_l)
8 end if

9. x = F(x{"Y)

10: if ||x () _ x| < §||X(®|| then
11: Stop.

12:  end if

13: end for

Can be easily implemented on

@ distributed systems using MPI,

@ shared memory systems using OpenMP or PThreads.

.
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Code Optimization and Implementation

Parareal Implementation

Classical Pipeline Implementation: Stage-Code

1: for it:=1 to maxit do
2 Receive X(') from ProcessID-1
3 X = g(x{M)

4: if it = 1 then

5: Send X((;'t) to ProcessID+1
6

7

8

9

else (it) (it—1) (
it) . it it—1 it—1
AR R
end if
] X(:t) F(X(it—l))
10: if ||x () _ x| < §||X(®|| then
11: Stop.
12:  end if
13: end for

Background Operation

Send is performed as a thread in
background to be non-blocking.

MPI with threading-support
required.

Can be easily implemented on
@ distributed systems using MPI,

@ shared memory systems using OpenMP or PThreads.
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Experimental Results
Model Problem

@ Mathematical model: boundary control for
linearized 2D heat equation.

c- p%x = Mx, £eQ
1o}
)\ax = kluk—x), €T, 1<k<T,
1o}
%X = 07 EE r7.

@ FEM discretization with n = 371 states,
m = 7 inputs, and g = 6 outputs

@ computations with 7 = 0.1ms on [0, 45]s

@ evaluations for one component of the
feedback K(t) = —BT X(t)E

http://simulation.uni-freiburg.de/downloads/benchmark/Steel’%20Profiles,
20(38881)/
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Experimental Results

Hardware Environment

HPC-Cluster otto

@ Use 38 nodes = 456 Intel® Xeon® Westmere-EP cores @ 2.66GHz
— only 450 cores used.

@ 4 GB RAM per core

@ QDR-Infiniband interconnect

o Intel® Parallel Studio 2015 XE
@ OpenMPI 1.8.1 with threading support.
o Intel® MKL 11.2.1
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Hardware Environment

HPC-Cluster otto

@ Use 38 nodes = 456 Intel® Xeon® Westmere-EP cores @ 2.66GHz
— only 450 cores used.

@ 4 GB RAM per core

@ QDR-Infiniband interconnect

o Intel® Parallel Studio 2015 XE
@ OpenMPI 1.8.1 with threading support.
o Intel® MKL 11.2.1

Reference Result

@ 450 000 with 7 = 0.1ms with Ros4 in 3.46 days.
@ Storage for the trajectory: X(t) — 1.4 TB, K(t) -9 GB
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Experimental Results

Sequential Runtimes

Rosenbrock Order | SLICOT | GLYAP 3 | ratio
1 4.40d 2.87d | 1.53
2 6.15d 3.06d | 2.01
3 7.84d 3.27d | 2.40
4 9.55d 3.46d | 2.75

Table: Sequential Runtime of the Rosenbrock methods with different Lyapunov
solvers on a Westmere-EP CPU.
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Experimental Results

Rosenbrock Order | SLICOT | GLYAP 3 | ratio
1 4.40d 2.87d | 1.53
2 6.15d 3.06d | 2.01
3 7.84d 3.27d | 2.40
4 9.55d 3.46d | 2.75

Table: Sequential Runtime of the Rosenbrock methods with different Lyapunov

solvers on a Westmere-EP CPU.

Rosenbrock Order | SLICOT | GLYAP 3 | ratio
1 2.82d 1.79d | 1.58
2 3.97d 1.91d | 2.07
3 5.02d 1.97d | 2.55
4 6.09d 2.07d | 2.94

Table: Sequential Runtime of the Rosenbrock methods with different Lyapunov
solvers on a Haswell-EP CPU (Intel®Xeon® E5-2640 v3 @ 2.60GHz ).
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Experimental Results

Sequential Runtimes

Code Optimization and Implementation

Rosenbrock Order | SLICOT | GLYAP 3 | ratio
1 4.40d 2.87d | 1.53
2 6.15d 3.06d | 2.01
3 7.84d 3.27d | 2.40
4 9.55d 3.46d | 2.75

Optimize before parallelize already gains a speed up of 2.76
(or 2.94 on newer architectures).

B wOwnN =

2.82d
3.97d
5.02d
6.09d

1.79d
1.91d
1.97d
2.07d

1.58
2.07
2.55
2.94

Table: Sequential Runtime of the Rosenbrock methods with different Lyapunov
solvers on a Haswell-EP CPU (Intel®Xeon® E5-2640 v3 @ 2.60GHz ).
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Experimental Results

Experimental Results

Distributed Parallel Execution

Parareal Setup

@ 450 coarse steps, Tcoarse = 100ms

@ 1000 fine steps per coarse step, 7 = 0.1ms
@ Maximum number of iterations: 10

o Cancellation criteria: § = 107
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Distributed Parallel Execution

Parareal Setup

@ 450 coarse steps, Tcoarse = 100ms

@ 1000 fine steps per coarse step, 7 = 0.1ms
@ Maximum number of iterations: 10
o Cancellation criteria: § = 10~°

Coarse Rosl Ros2 Ros3 Ros4
Fine Time [ It | Time | It | Time | It | Time | It
Rosl | 3.30h | 9 | 297h | 8 | 3.20h | 9 | 1.74h | 4
Ros2 | 359h | 9 | 3.27h | 8 | 3.61h | 9 | 1.8%h | 4
Ros3 | 3.87h | 9 | 3.51h | 8 | 3.88h | 9 | 2.02h | 4
Ros4 | 417h | 9 | 3.78h | 8 | 4.18h | 9 | 2.19h | 4

Table: Runtime and maximum iteration number.
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Experimental Results

Distributed Parallel Execution

Parareal Setup

@ 450 coarse steps, Tcoarse = 100ms

@ 1000 fine steps per coarse step, 7 = 0.1ms
@ Maximum number of iterations: 10

o Cancellation criteria: § = 107

Coarse Rosl Ros2 Ros3 Ros4
Rosl | 2.01e-05 | 2.01e-05 | 2.01e-05 | 2.01e-05
Ros2 | 2.07e-05 | 2.07e-05 | 2.07e-05 | 2.07e-05
Ros3 | 2.07e-05 | 2.07e-05 | 2.07e-05 | 2.07e-05
Ros4 | 1.27e-09 | 3.00e-10 | 9.71e-08 | 6.10e-14

Fine

Table: Relative 1-norm error between the Parareal solution and the reference.
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Experimental Results

Distributed Parallel Execution

Parareal Setup

@ 450 coarse steps, Tcoarse = 100ms

@ 1000 fine steps per coarse step, 7 = 0.1ms
@ Maximum number of iterations: 10

o Cancellation criteria: § = 107

. Coarse Rosl Ros2 Ros3 Ros4
Fine

Rosl * | 7.69e-05 | 7.68e-05 | 7.68e-05

Ros2 * | 7.81e-05 | 7.80e-05 | 7.80e-05

Ros3 * | 7.81e-05 | 7.80e-05 | 7.80e-05

Ros4 * | 3.14e-11 | 5.76e-09 | 1.14e-14

Table: Relative 1-norm error between the Parareal solution and the reference
for K(t)1’77.

Max Planck Institute Magdeburg Martin Kahler, Solving Differential Matrix Equations using Parareal 19/22



Experimental Results

Pipeline View

Pipeline view for 36 coarse, 100 fine steps.

Martin Kahler, Solving Differential Matrix Equations using Parareal 20/22



Conclusions and Open Problems

Conclusions

We have seen that:
@ ‘“optimize before parallelize” already gains nearly a factor of up to 3,

@ Parareal shrinks the runtime down to 2.19h with accurate results.
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Conclusions

We have seen that:
@ ‘“optimize before parallelize” already gains nearly a factor of up to 3,

@ Parareal shrinks the runtime down to 2.19h with accurate results.

We observed that:

@ (our) Parareal implementation requires the same computational
complexity for each evaluation of the coarse or the fine solver,

@ we have relatively long startup phase until all processors work in parallel,

@ we are restricted to one-step methods on the coarse level.
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Conclusions

We have seen that:
@ ‘“optimize before parallelize” already gains nearly a factor of up to 3,

@ Parareal shrinks the runtime down to 2.19h with accurate results.

We observed that:

@ (our) Parareal implementation requires the same computational
complexity for each evaluation of the coarse or the fine solver,

@ we have relatively long startup phase until all processors work in parallel,

@ we are restricted to one-step methods on the coarse level.

Preliminary experiments on Intel® Xeon® Phi showed:

@ pipeline startup takes too long due to the poor sequential performance
evaluating the coarse solver,

@ Even the 1st order Rosenbrock method is too expensive here,

@ Card memory can only hold the feedback matrix K(t) = B X(t)E.

Max Planck Institute Magdeburg Martin Kahler, Solving Differential Matrix Equations using Parareal 21/22




Motivation Rosenbrock Methods Code Optimization and Implementation Experimental Results Conclusions and Open Problems

Conclusions and Open Problems
Open Problems

Step-size control accelerates the sequential code. How to build and
step-size control aware Parareal scheme?

@ How to distribute the time grid?
@ How to setup the pipeline processing?

@ How to get a good load balancing?

Max Planck Institute Magdeburg Martin Kahler, Solving Differential Matrix Equations using Parareal 22/22



Motivation Rosenbrock Methods Code Optimization and Implementation Experimental Results Conclusions and Open Problems

Conclusions and Open Problems
Open Problems

Step-size control accelerates the sequential code. How to build and
step-size control aware Parareal scheme?

@ How to distribute the time grid?
@ How to setup the pipeline processing?

@ How to get a good load balancing?

BDF schemes are a good alternative to the Rosenbrock schemes.

@ BDF as fine solver inside a pipeline stage: no problem!

@ How to use BDF as coarse solver across the coarse time grid?
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Conclusions and Open Problems
Open Problems

Step-size control accelerates the sequential code. How to build and
step-size control aware Parareal scheme?

@ How to distribute the time grid?
@ How to setup the pipeline processing?

@ How to get a good load balancing?

BDF schemes are a good alternative to the Rosenbrock schemes.
@ BDF as fine solver inside a pipeline stage: no problem!

@ How to use BDF as coarse solver across the coarse time grid?

For large scale DREs we have to approximate X(t) by low rank factors
X(t) = Z(t)Z(t)".

@ Computational complexity of each call to the coarse and the fine solver
differs.  Load Balancing.

@ The size of the low-rank factor Z(t) differs in every step.  Parareal
formulation with low-rank factors. )
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Conclusions and Open Problems
Open Problems

Step-size control accelerates the sequential code. How to build and
step-size control aware Parareal scheme?

@ How to distribute the time grid?
@ How to setup the pipeline processing?

@ How to get a good load balancing?
Thank you for your attention! Questions?

@ How to use BDF as coarse solver across the coarse time grid? J

For large scale DREs we have to approximate X(t) by low rank factors
X(t) = Z(t)Z(t)".

@ Computational complexity of each call to the coarse and the fine solver
differs.  Load Balancing.

@ The size of the low-rank factor Z(t) differs in every step.  Parareal
formulation with low-rank factors.
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