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Motivation
Differential Riccati Equations

Consider the linear quadratic optimal control problem

min
u
J (y , u) =

1

2

 tf∫
0

yTy + uTu dt + yT
tf
Qytf

 ,

subject to Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t)

where A, E , B, and C may depend on t as well.

with the states x(t) ∈ Rn, inputs u(t) ∈ Rm, and output y(t) ∈ Rq.
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subject to Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t)

where A, E , B, and C may depend on t as well.

Feedback law e.g. [Locatelli ’01]

u(t) = −BTX (t)Ex(t),

where X (t) is the solution of the Differential Riccati Equation (DRE)

ET Ẋ (t)E = CTC + ATX (t)E + ETX (t)A− ETX (t)BBTX (t)E := R(X (t)),

X (t = tf ) := Q.
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Motivation
Differential Lyapunov Equation

Simplification of the DRE

By setting B = 0 in the DRE we get the Differential Lyapunov Equation
(DLE):

ET Ẋ (t)E = CTC + ATX (t)E + ETX (t)A,

X (t = tf ) := Xf .

Application in Model Order Reduction:

→ used for Linear Time-Variant (LTV) Balanced Truncation.
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Motivation
Time integration methods

The DLE is a matrix-valued ordinary differential equation.

The DRE is a non-linear, matrix-valued, and highly stiff ordinary
differential equation.

Implicit time integrators [Mena ’07, Benner/Mena ’12]

Backward differentiation formula (BDF)

Linear implicit Runge-Kutta (Rosenbrock) methods

Midpoint and Trapezoidal rule

Numerical issues
Methods are fairly time and storage consuming for large-scale
problems.

High accuracy requires small time steps or high order methods.

At every time step a number of algebraic matrix equations needs to
be solved.

Good reasons to try Parareal!
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Rosenbrock Methods

Restriction by Parareal:

Only single-step integrators are well suited.

General Rosenbrock Scheme
The s-stage Rosenbrock method applied to a matrix differential equation
of the form Ẋ = F (X ) is given as

Xk+1 = Xk + τk

s∑
`=1

b`K
(k)
` ,

K
(k)
i = F (Xk + τk

i−1∑
`=1

αi,`K
(k)
` ) + τkJk

i∑
`=1

γi,`K
(k)
` , ∀i = 1, . . . , s.

s : order of the method

τk : time step

Jk : Fréchet derivative of F at Xk

αi,`, γi,`, µ` : determining coefficients
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Rosenbrock Methods [Mena ’07, Benner/Mena ’12]

We only consider the DRE, where ET ẊE = R(X ):

1st order Rosenbrock scheme (Ros1)

Xk+1 = Xk + τkK
(k)
1

2nd order Rosenbrock scheme (Ros2) [Dekker, Verwer ’84]

Xk+1 = Xk +
3

2
τkK

(k)
1 +

1

2
τkK

(k)
2

ÃTK
(k)
1 E + ETK

(k)
1 Ã = −R(Xk )

ÃTK
(k)
2 E + ETK

(k)
2 Ã = −R(Xk + τkK

(k)
1 ) + 2ETK

(k)
1 E
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ÃTK
(k)
2 E + ETK

(k)
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(k)
1

ÃTK
(k)
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(k)
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Ã := τk (A− BBTXkE )− 1

2
E

Solve one Algebraic Lyapunov Equation (ALE) inside the 1-stage
Rosenbrock method.

2nd order Rosenbrock scheme (Ros2) [Dekker, Verwer ’84]
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1 Ã = −R(Xk )
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Solve two ALEs inside the 2-stage Rosenbrock method.
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Rosenbrock Methods
Higher Order Schemes

3rd order scheme (Ros3) [Ros3P: Lang, Verwer ’01]

Xk+1 = Xk + τk

s∑
j=1

µjKj ,

ÃkK1E
T + EK1Ã

T
k =−R

(
Xk

)
,

ÃkK2E
T + EK2Ã

T
k =−R

(
Xk + τka21K1

)
−c21EK1E

T ,

ÃkK3E
T + EK3Ã

T
k =−R

(
Xk + τka31K1

)
−c31EK1E

T−c32EK2E
T .

with Ãk := τk (A− BBTXkE )− 1
2γE .
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Rosenbrock Methods
Higher Order Schemes

3rd order scheme (Ros3) [Ros3P: Lang, Verwer ’01]

Xk+1 = Xk + τk

s∑
j=1

µjKj ,

ÃkK1E
T + EK1Ã

T
k =−R

(
Xk

)
,

ÃkK2E
T + EK2Ã

T
k =−R

(
Xk + τka21K1

)
−c21EK1E

T ,

ÃkK3E
T + EK3Ã

T
k =−R

(
Xk + τka31K1

)
−c31EK1E

T−c32EK2E
T .

with Ãk := τk (A− BBTXkE )− 1
2γE .

γ = 7.886751345948129e-1

a21 = 1.267949192431123 α1 = 0
a31 = 1.267949192431123 α2 = 1

a32 = 0 α3 = 1

c21 = −1.607695154586736 µ1 = 2
c31 = −3.464101615137755 µ2 = 5.773502691896258e − 1
c32 = −1.732050807568877 µ3 = 4.226497308103742e − 1

Determining Coefficients
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Rosenbrock Methods
Higher Order Schemes

4th order scheme (Ros4) [Shampine ’82]

Xk+1 =Xk + τk

4∑
j=1

bjKj ,

ÃT
kK1E+ETK1Ãk =−R(Xk ) ,

ÃT
kK2E+ETK2Ãk =−R(Xk + τkα21K1)+γ21E

TK1E

ÃT
kK3E+ETK3Ãk =−R

(
Xk + τk

2∑
j=1

α3jKj

)
+ ET

(
2∑

j=1

γ3jKj

)
E

ÃT
kK4E+ETK4Ãk =−R

(
Xk + τ

3∑
j=1

α4jKj

)
+ ET

(
3∑

j=1

γ4jKj

)
E

with Ãk := 1
2

(
τk (A− BBTXkE)− E

)
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kK1E+ETK1Ãk =−R(Xk ) ,

ÃT
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)

α21 = 1

α31 = 24
25

α32 = 3
25

α41 = 24
25

α42 = 3
25

α43 = 0

γ21 = 4

γ31 = − 185
125

γ32 = − 6
5

γ41 = 56
125

γ42 = 27
125

γ43 = 1
5

b1 = 19
18

b2 = 1
4

b3 = 25
216

b4 = 125
216

Determining Coefficients
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Code Optimization and Implementation
Optimize before Parallelize

High Computational Cost

Need the solution of s algebraic Lyapunov equations per time step.
→ Bartels-Stewart algorithm requires a QZ decomposition.

Mostly matrix-matrix products.

Redundant Information

Each right hand side of the Lyapunov equation includes R(Xk ).

Redundant information in the linear part of R(Xk + τkKj + . . .).

Solutions of the Lyapunov equations Kj are symmetric.

Strategies

Computational Cost: Use BLAS level-3 enabled algorithms.

Redundant Information: Reformulation of the right hand sides.
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Code Optimization and Implementation
BLAS level-3 enabled Algorithms

Matrix-Matrix Products

Use Intel® MKL, IBM ESSL, OpenBLAS or ATLAS.

Lyapunov Equations
Generalized Bartels-Stewart algorithm available in SLICOT: [Penzl ’97]

All stages have the same coefficient matrices.

Only one QZ decomposition per time step and reuse it.

But QZ is mostly a BLAS level-2 algorithm.

Forward/Backward substitution is BLAS level-2 as well.

Need for an efficient Lyapunov solver

Matrix Sign Function Iteration [Quintana-Ort́ı, Benner’99]

→ Without QZ decomposition, but no advantage out of coefficients.

Reuse of the QZ decomposition and BLAS level-3 block generalized
Bartels-Stewart algorithm. [GLYAP3: K., Saak ’14]
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Code Optimization and Implementation
Right-Hand-Side Rearrangement

Consider the stages of the 2nd order Rosenbrock scheme:

ÃT
k K1E + ETK1Ãk = −R(Xk )

and

ÃT
k K2E + ETK2Ãk = −R(Xk + τkK1) + 2ETK1E

with Ã := γτk (A− BBTXkE)− 1
2
E .
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Max Planck Institute Magdeburg Martin Köhler, Solving Differential Matrix Equations using Parareal 12/22



Motivation Rosenbrock Methods Code Optimization and Implementation Experimental Results Conclusions and Open Problems

Code Optimization and Implementation
Right-Hand-Side Rearrangement

Consider the stages of the 2nd order Rosenbrock scheme:

ÃT
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Code Optimization and Implementation
Right-Hand-Side Rearrangement

Using the linearity of the Lyapunov-Equation we reformulate the 2nd order
Rosenbrock scheme as:

Xk+1 = Xk +
3

2
τkK1 +

1

2
τkK2,

ÃT
k K1E + ETK1Ãk = −R(Xk ),

ÃT
k K̃2E + ET K̃2Ãk = τ 2k E

TK1BB
TK1E + (2− 1

γ
)ETK1E ,

K2 = K̃2 + (1− 1

γ
)K1.

The 3rd and 4th order scheme can be rearranged in the same way.

Symmetric terms are computed like

ETKjBB
TKjE = K

(j)
E

T
K

(j)
E with K

(j)
E := BTKjE .
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ÃT
k K̃2E + ET K̃2Ãk = τ 2k E
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Code Optimization and Implementation
Parareal Implementation

Following [Maday, Lions, Turinici ’01] we use

X
(k+1)
0 := X (t = tf ),

X (k+1)
p := F (tp−1, tp,X

(k)
p−1) + G(tp−1, tp,X

(k+1)
p−1 )− G(tp−1, tp,X

(k)
p−1)

as parareal-scheme, where F (t1, t2,Xs ) and G(t1, t2,Xs ) integrate the DRE
from t1 to t2 with the initial value Xs .

Coarse and Fine Solvers
Use the four presented Rosenbrock methods as coarse and the fine solvers:

The coarse solver G performs one time step from t1 to t2.

The fine solver F performs f time steps from t1 to t2.
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Code Optimization and Implementation
Parareal Implementation

Classical Pipeline Implementation: Stage-Code
1: for it:=1 to maxit do
2: Receive X

(it)
s from ProcessID-1

3: X
(it)
G = G(X

(it)
s )

4: if it = 1 then
5: Send X

(it)
G to ProcessID+1

6: else
7: X (it) := X

(it)
G + X

(it−1)
F − X

(it−1)
G

8: end if
9: X

(it)
F = F (X

(it−1)
s )

10: if ||X (it) − X (it−1)|| < δ||X (it)|| then
11: Stop.
12: end if
13: end for

Can be easily implemented on

distributed systems using MPI,

shared memory systems using OpenMP or PThreads.

Send is performed as a thread in
background to be non-blocking.

MPI with threading-support
required.

Background Operation
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Experimental Results
Model Problem

Mathematical model: boundary control for
linearized 2D heat equation.

c · ρ ∂
∂t

x = λ∆x , ξ ∈ Ω

λ
∂

∂n
x = κ(uk − x), ξ ∈ Γk , 1 ≤ k ≤ 7,

∂

∂n
x = 0, ξ ∈ Γ7.

FEM discretization with n = 371 states,
m = 7 inputs, and q = 6 outputs

computations with τ = 0.1ms on [0, 45]s

evaluations for one component of the
feedback K(t) = −BTX (t)E

2

3
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9 10

1516

22

34

43

47

51

55

60 63

83
92

http://simulation.uni-freiburg.de/downloads/benchmark/Steel%20Profiles%

20(38881)/
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Experimental Results
Hardware Environment

HPC-Cluster otto

Use 38 nodes ≡ 456 Intel® Xeon® Westmere-EP cores @ 2.66GHz
→ only 450 cores used.

4 GB RAM per core

QDR-Infiniband interconnect

Software

Intel® Parallel Studio 2015 XE

OpenMPI 1.8.1 with threading support.

Intel® MKL 11.2.1

Reference Result

450 000 with τ = 0.1ms with Ros4 in 3.46 days.

Storage for the trajectory: X (t) – 1.4 TB, K(t) – 9 GB
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Experimental Results
Sequential Runtimes

Rosenbrock Order SLICOT GLYAP 3 ratio

1 4.40d 2.87d 1.53
2 6.15d 3.06d 2.01
3 7.84d 3.27d 2.40
4 9.55d 3.46d 2.75

Table: Sequential Runtime of the Rosenbrock methods with different Lyapunov
solvers on a Westmere-EP CPU.

Rosenbrock Order SLICOT GLYAP 3 ratio

1 2.82d 1.79d 1.58
2 3.97d 1.91d 2.07
3 5.02d 1.97d 2.55
4 6.09d 2.07d 2.94

Table: Sequential Runtime of the Rosenbrock methods with different Lyapunov
solvers on a Haswell-EP CPU (Intel®Xeon® E5-2640 v3 @ 2.60GHz ).

Optimize before parallelize already gains a speed up of 2.76
(or 2.94 on newer architectures).
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Experimental Results
Distributed Parallel Execution

Parareal Setup

450 coarse steps, τcoarse = 100ms

1000 fine steps per coarse step, τ = 0.1ms

Maximum number of iterations: 10

Cancellation criteria: δ = 10−6
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Experimental Results
Distributed Parallel Execution

Parareal Setup

450 coarse steps, τcoarse = 100ms

1000 fine steps per coarse step, τ = 0.1ms

Maximum number of iterations: 10

Cancellation criteria: δ = 10−6

PPPPPPPPFine
Coarse Ros1 Ros2 Ros3 Ros4

Time It Time It Time It Time It
Ros1 3.30h 9 2.97h 8 3.29h 9 1.74h 4
Ros2 3.59h 9 3.27h 8 3.61h 9 1.89h 4
Ros3 3.87h 9 3.51h 8 3.88h 9 2.02h 4
Ros4 4.17h 9 3.78h 8 4.18h 9 2.19h 4

Table: Runtime and maximum iteration number.
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Experimental Results
Distributed Parallel Execution

Parareal Setup

450 coarse steps, τcoarse = 100ms

1000 fine steps per coarse step, τ = 0.1ms

Maximum number of iterations: 10

Cancellation criteria: δ = 10−6

PPPPPPPPFine
Coarse

Ros1 Ros2 Ros3 Ros4

Ros1 2.01e-05 2.01e-05 2.01e-05 2.01e-05
Ros2 2.07e-05 2.07e-05 2.07e-05 2.07e-05
Ros3 2.07e-05 2.07e-05 2.07e-05 2.07e-05
Ros4 1.27e-09 3.00e-10 9.71e-08 6.10e-14

Table: Relative 1-norm error between the Parareal solution and the reference.
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Experimental Results
Distributed Parallel Execution

Parareal Setup

450 coarse steps, τcoarse = 100ms

1000 fine steps per coarse step, τ = 0.1ms

Maximum number of iterations: 10

Cancellation criteria: δ = 10−6

PPPPPPPPFine
Coarse

Ros1 Ros2 Ros3 Ros4

Ros1 * 7.69e-05 7.68e-05 7.68e-05
Ros2 * 7.81e-05 7.80e-05 7.80e-05
Ros3 * 7.81e-05 7.80e-05 7.80e-05
Ros4 * 3.14e-11 5.76e-09 1.14e-14

Table: Relative 1-norm error between the Parareal solution and the reference
for K(t)1,77.
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Experimental Results
Pipeline View

Figure: Pipeline view for 36 coarse, 100 fine steps.
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Conclusions and Open Problems
Conclusions

We have seen that:

“optimize before parallelize” already gains nearly a factor of up to 3,

Parareal shrinks the runtime down to 2.19h with accurate results.

We observed that:

(our) Parareal implementation requires the same computational
complexity for each evaluation of the coarse or the fine solver,

we have relatively long startup phase until all processors work in parallel,

we are restricted to one-step methods on the coarse level.

Preliminary experiments on Intel® Xeon® Phi showed:

pipeline startup takes too long due to the poor sequential performance
evaluating the coarse solver,

Even the 1st order Rosenbrock method is too expensive here,

Card memory can only hold the feedback matrix K(t) = BTX (t)E .

Max Planck Institute Magdeburg Martin Köhler, Solving Differential Matrix Equations using Parareal 21/22
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Conclusions and Open Problems
Open Problems

Step-size control accelerates the sequential code. How to build and
step-size control aware Parareal scheme?

How to distribute the time grid?

How to setup the pipeline processing?

How to get a good load balancing?

BDF schemes are a good alternative to the Rosenbrock schemes.

BDF as fine solver inside a pipeline stage: no problem!

How to use BDF as coarse solver across the coarse time grid?

For large scale DREs we have to approximate X (t) by low rank factors
X (t) ≈ Z(t)Z(t)T .

Computational complexity of each call to the coarse and the fine solver
differs. ↗ Load Balancing.

The size of the low-rank factor Z(t) differs in every step. ↗ Parareal
formulation with low-rank factors.

Thank you for your attention! Questions?
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