

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

GPU Accelerated Gauss-Jordan Elimination on the OpenPOWER platform – A case study

March 8, 2017 GAMM Annual Meeting Scientific Computing Section

Martin Köhler

We consider the Newton iteration to compute Matrix-Sign-Function $X_{\infty} := \operatorname{sign}(A)$ of a matrix $A \in \mathbb{R}^{n \times n}$:

$$X_{k+1} = \frac{1}{2} \left(\mu_k X_k + \mu_k^{-1} X_k^{-1} \right), \quad X_0 = A,$$

where μ_k is a scaling factor, typically $\mu_k := |\det X_k|^{-\frac{1}{n}}$.

We consider the Newton iteration to compute Matrix-Sign-Function $X_{\infty} := \operatorname{sign}(A)$ of a matrix $A \in \mathbb{R}^{n \times n}$:

$$X_{k+1} = \frac{1}{2} \left(\mu_k X_k + \mu_k^{-1} X_k^{-1} \right), \quad X_0 = A,$$

where μ_k is a scaling factor, typically $\mu_k := |\det X_k|^{-\frac{1}{n}}$.

Applications:

- Computation of invariant subspaces of A
- Solution of the standard Lyapunov equation
- Solution of the standard Riccati equation

We consider the Newton iteration to compute Matrix-Sign-Function $X_{\infty} := \operatorname{sign}(A, B)$ of a matrix pencil $(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n}$:

$$X_{k+1} = rac{1}{2} \left(\mu_k X_k + \mu_k^{-1} B X_k^{-1} B \right), \quad X_0 = A,$$

where μ_k is a scaling factor, typically $\mu_k := \left(\frac{|\det X_k|}{|\det B|}\right)^{-\frac{1}{n}}$.

Applications:

- Computation of deflating subspaces of (A, B)
- Solution of the generalized Lyapunov equation
- Solution of the generalized Riccati equation

We consider the Newton iteration to compute Matrix-Sign-Function $X_{\infty} := \operatorname{sign}(A, B)$ of a matrix pencil $(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n}$:

$$X_{k+1} = \frac{1}{2} \left(\mu_k X_k + \mu_k^{-1} B X_k^{-1} B \right), \quad X_0 = A,$$

where μ_k is a scaling factor, typically $\mu_k := \left(\frac{|\det X_k|}{|\det B|}\right)^{-\frac{1}{n}}$.

Applications:

- Computation of deflating subspaces of (A, B)
- Solution of the generalized Lyapunov equation
- Solution of the generalized Riccati equation

Need to compute A^{-1} or to solve AY = B with many right hand sides.

(as in LAPACK/MAGMA)
cost: $\frac{2}{3}n^3$
cost: $\frac{1}{3}n^3$
cost: n ³

Computation of A^{-1} :	(as in LAPACK/MAGMA)
 Compute LU decomposition of A Inversion of U Solution of LA⁻¹ = U⁻¹ 	cost: $\frac{2}{3}n^{3}$ cost: $\frac{1}{3}n^{3}$ cost: n^{3}
Solution of $AY = B$:	
 Compute LU decomposition of A Solution of LZ = B Solution of UY = Z 	$cost: \frac{2}{3}n^3$ $cost: n^3$ $cost: n^3$

Computation of A^{-1} :	(as in LAPACK/MAGMA)
 Compute LU decomposition of A Inversion of U Solution of LA⁻¹ = U⁻¹ 	cost: $\frac{2}{3}n^3$ cost: $\frac{1}{3}n^3$ cost: n^3
Solution of $AY = B$:	
 Compute LU decomposition of A Solution of LZ = B Solution of UY = Z 	$\begin{array}{rcl} \mathbf{cost:} & \frac{2}{3}n^3\\ \mathbf{cost:} & n^3\\ \mathbf{cost:} & n^3 \end{array}$

All three steps are of cubic complexity.

 Solving with triangular matrices is not well suited for (massively) parallel architectures.

Computation of A^{-1} :	(as in LAPACK/MAGMA)
 Compute LU decomposition of A Inversion of U 	cost: $\frac{2}{3}n$ cost: $\frac{1}{3}n$	3
3 Solution of $LA^{-1} = U^{-1}$	cost: n	3
SolutionIn both cases, we want combine al into a single, easily parallelizable,1 Com2 Solu2 Solu→ Gauss-Jordan Eliminat	l three steps algorithm. ion	3
3 Solution of $UY = Z$	cost: n	3

All three steps are of cubic complexity.

 Solving with triangular matrices is not well suited for (massively) parallel architectures.

OpenPOWER

Industry alliance (Google, IBM, Canonical, RedHat, Mellanox, Nvidia,...) to develop a customizable server platform for data centers, high performance computing, ... on top of Open Source philosophy.

OpenPOWER

Industry alliance (Google, IBM, Canonical, RedHat, Mellanox, Nvidia,...) to develop a customizable server platform for data centers, high performance computing, ... on top of Open Source philosophy.

IBM Power System 822LC for HPC

- 2x IBM POWER8 CPUs (each: 10 Cores, 8-way SMT, 10x 512Kb L2 Cache, 10x 8MB L3 Cache, 4.00GHz)
- 256GB DDR4 memory, bandwidth: 230 GB/s
- 2x Nvidia Tesla P100 SXM2 accelerators with 16GB HBM2 memory
- NVLink CPU-GPU interconnect, bidirectional bandwidth: 80 GB/s
- Theoretical peak performance [TFlops/s]: 10.6 (DP), 21.2 (SP), 42.4 (HP)
- Staging system for the upcoming POWER 9 + Nvidia Volta architecture

OpenPOWER

IBM Powe

2x IB

(each

4.00G

Industry alliance (Google, IBM, Canonical, RedHat, Mellanox, Nvidia,...) to develop a customizable server platform for data centers, high performance computing, ... on top of Open Source philosophy.

- CPU performance comparable with a 2x 8 Core Intel Haswell v3
- GPU performance ≈ 5 times higher as of Kepler generation GPUs (K20 or a single GPU on K80)

256GB DDR4 memory, bandwidth: 230 GB/s

2x Nv dia Tesla P100 SXM2 accelerators with 16GB HBM2 memory

NVLink CPU-GPU interconnect, bidirectional bandwidth: 80 GB/s

- Theoretical peak performance [TFlops/s]: 10.6 (DP), 21.2 (SP), 42.4 (HP)
- Staging system for the upcoming POWER 9 + Nvidia Volta architecture

ache,

OpenPOWER

IBM Powe

2x IB

(each

4.00G

Industry alliance (Google, IBM, Canonical, RedHat, Mellanox, Nvidia,...) to develop a customizable server platform for data centers, high performance computing, ... on top of Open Source philosophy.

- CPU performance comparable with a 2x 8 Core Intel Haswell v3
- GPU performance ≈ 5 times higher as of Kepler generation GPUs (K20 or a single GPU on K80)

ache,

- 256G Increase the GPU load on the OpenPOWER platform
 2x Ny
 to obtain high performance.
- NVLink CPU-GPU interconnect, bidirectional bandwidth: 80 GB/s
- Theoretical peak performance [TFlops/s]: 10.6 (DP), 21.2 (SP), 42.4 (HP)
- Staging system for the upcoming POWER 9 + Nvidia Volta architecture

The Gauss-Jordan Elimination algorithm is mostly known to invert matrices with $2n^3$ flops.

Solving a linear system with *n* right hand sides costs:

The Gauss-Jordan Elimination algorithm is mostly known to invert matrices with $2n^3$ flops.

Solving a linear system with n right hand sides costs:

 $\rightarrow 2n^3 + 2n^3$ flops using classical Gauss-Jordan Elimination.

The Gauss-Jordan Elimination algorithm is mostly known to invert matrices with $2n^3$ flops.

Solving a linear system with n right hand sides costs:

- $\rightarrow 2n^3 + 2n^3$ flops using classical Gauss-Jordan Elimination.
- $\rightarrow \frac{2}{3}n^3 + 2n^3$ flops using LU decomposition.

The Gauss-Jordan Elimination algorithm is mostly known to invert matrices with $2n^3$ flops.

Solving a linear system with n right hand sides costs:

- $\rightarrow 2n^3 + 2n^3$ flops using classical Gauss-Jordan Elimination.
- $\rightarrow \frac{2}{3}n^3 + 2n^3$ flops using LU decomposition.

Modify the Gauss-Jordan Elimination scheme such that:

- the multiplication with the inverse is done implicitly,
- and the inverse is not accumulated.

The Gauss-Jordan Elimination algorithm is mostly known to invert matrices with $2n^3$ flops.

Solving a linear system with n right hand sides costs:

- $\rightarrow 2n^3 + 2n^3$ flops using classical Gauss-Jordan Elimination.
- $\rightarrow \frac{2}{3}n^3 + 2n^3$ flops using LU decomposition.

Modify the Gauss-Jordan Elimination scheme such that:

- the multiplication with the inverse is done implicitly,
- and the inverse is not accumulated.

Goals:

- Reduce the number of necessary flops
- Increase memory access locality

We consider the *augmented matrix D*

$$D := \begin{bmatrix} A & | & B \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1m} & b_{11} & \cdots & b_{1n} \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & \cdots & a_{mm} & b_{m1} & \cdots & b_{mn} \end{bmatrix}$$

and apply a set of transformations \tilde{G}_i from the left such that we obtain:

$$\underbrace{\tilde{G}_n\cdots\tilde{G}_2\tilde{G}_1}_{A^{-1}}D = \begin{bmatrix} 1 & & & y_{11} & \cdots & y_{1n} \\ & \ddots & & \vdots & \vdots & \vdots \\ & & 1 & y_{m1} & \cdots & y_{mn} \end{bmatrix}$$

Solution Service Gauss-Jordan Elimination

We define $\tilde{G}_i = G_i P_i$ as product of a row permutation P_i and a Gauss transformation G_i :

We define $\tilde{G}_i = G_i P_i$ as product of a row permutation P_i and a Gauss trap **Example – Applying** \tilde{G}_i : $D = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & b_{11} & \dots & b_{1n} \\ a_{21} & a_{22} & a_{23} & a_{24} & b_{21} & \dots & b_{2n} \\ a_{31} & a_{32} & a_{33} & a_{34} & b_{31} & \dots & b_{3n} \\ a_{41} & a_{42} & a_{43} & a_{44} & b_{41} & \dots & b_{4n} \end{bmatrix}$

We define
$$\tilde{G}_{i} = G.P.$$
 as product of a row permutation P_{i} and a Gauss
trap **Example – Applying** \tilde{G}_{i} :
$$\tilde{G}_{1} D = \begin{bmatrix} 1 & a_{12}^{(1)} & a_{13}^{(1)} & a_{14}^{(1)} & b_{11}^{(1)} & \dots & b_{1n}^{(1)} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} & a_{24}^{(1)} & b_{21}^{(1)} & \dots & b_{2n}^{(1)} \\ 0 & a_{32}^{(1)} & a_{33}^{(1)} & a_{34}^{(1)} & b_{31}^{(1)} & \dots & b_{3n}^{(1)} \\ 0 & a_{42}^{(1)} & a_{43}^{(1)} & a_{44}^{(1)} & b_{41}^{(1)} & \dots & b_{4n}^{(1)} \end{bmatrix}$$

We define
$$\tilde{G}_{i} = G.P.$$
 as product of a row permutation P_{i} and a Gauss
trace **Example – Applying** \tilde{G}_{i} :
$$\tilde{G}_{2}\tilde{G}_{1}D = \begin{bmatrix} 1 & 0 & a_{13}^{(2)} & a_{14}^{(2)} & b_{11}^{(2)} & \dots & b_{1n}^{(2)} \\ 0 & 1 & a_{23}^{(2)} & a_{24}^{(2)} & b_{21}^{(2)} & \dots & b_{2n}^{(2)} \\ 0 & 0 & a_{33}^{(2)} & a_{34}^{(2)} & b_{31}^{(2)} & \dots & b_{3n}^{(2)} \\ 0 & 0 & a_{43}^{(2)} & a_{44}^{(2)} & b_{41}^{(2)} & \dots & b_{4n}^{(2)} \end{bmatrix}$$

We define
$$\tilde{G}_{i} = G.P.$$
 as product of a row permutation P_{i} and a Gauss
trace **Example – Applying** \tilde{G}_{i} :
$$\tilde{G}_{3}\tilde{G}_{2}\tilde{G}_{1}D = \begin{bmatrix} 1 & 0 & 0 & a_{14}^{(3)} & b_{11}^{(3)} & \dots & b_{1n}^{(3)} \\ 0 & 1 & 0 & a_{24}^{(3)} & b_{21}^{(3)} & \dots & b_{2n}^{(3)} \\ 0 & 0 & 1 & a_{34}^{(3)} & b_{31}^{(3)} & \dots & b_{3n}^{(3)} \\ 0 & 0 & 0 & a_{44}^{(3)} & b_{41}^{(3)} & \dots & b_{4n}^{(3)} \end{bmatrix}$$

We define
$$\tilde{G}_{i} = G.P.$$
 as product of a row permutation P_{i} and a Gauss
trap **Example – Applying** \tilde{G}_{i} :
$$\underbrace{\tilde{G}_{4}\tilde{G}_{3}\tilde{G}_{2}\tilde{G}_{1}}_{A^{-1}}D = \begin{bmatrix} 1 & 0 & 0 & 0 & | & y_{11} & \dots & y_{1n} \\ 0 & 1 & 0 & 0 & | & y_{21} & \dots & y_{2n} \\ 0 & 0 & 1 & 0 & | & y_{31} & \dots & y_{3n} \\ 0 & 0 & 0 & 1 & | & y_{41} & \dots & y_{4n} \end{bmatrix}$$

The application of G_i can be replaced by a rank-1 update and a row scaling in order to work in-place:

$$D := D - \frac{1}{d_{ii}} (d_{1i}, \cdots, d_{(i-1)i}, 0, d_{(i+1)i}, \dots, d_{mi})^T D_{i, \cdots}$$
$$D_{i, \cdots} := \frac{1}{d_{ii}} D_{i, \cdots}$$

The application of G_i can be replaced by a rank-1 update and a row scaling in order to work in-place:

$$D := D - \frac{1}{d_{ii}} (d_{1i}, \cdots, d_{(i-1)i}, 0, d_{(i+1)i}, \dots, d_{mi})^T D_{i, \cdot}$$
$$D_{i, \cdot} := \frac{1}{d_{ii}} D_{i, \cdot}$$

By repartitioning D into blocks:

$$D := \begin{bmatrix} A_{11} & A_{12} & A_{13} & b_1 \\ \hline A_{21} & A_{22} & A_{23} & b_2 \\ \hline A_{31} & A_{32} & A_{33} & b_3 \end{bmatrix},$$

where $A_{22} \in \mathbb{R}^{N_B \times N_B}$, we transform the rank-1 update into a rank- N_B update.

By repartitioning D into blocks:

$$D := \begin{bmatrix} A_{11} & A_{12} & A_{13} & b_1 \\ \hline A_{21} & A_{22} & A_{23} & b_2 \\ \hline A_{31} & A_{32} & A_{33} & b_3 \end{bmatrix},$$

where $A_{22} \in \mathbb{R}^{N_B \times N_B}$, we transform the rank-1 update into a rank- N_B update:

$$D := \begin{bmatrix} A_{11} & 0 & A_{13} & b_1 \\ \hline 0 & 0 & 0 & 0 \\ \hline A_{31} & 0 & A_{33} & b_3 \end{bmatrix} + \underbrace{\begin{bmatrix} -A_{12}A_{22}^{-1} \\ \hline A_{22}^{-1} \\ \hline -A_{32}A_{22}^{-1} \end{bmatrix}}_{H} \begin{bmatrix} A_{21} & I_{N_B} & A_{23} & b_2 \end{bmatrix}.$$

1

By repartitioning D into blocks:

$$\mathcal{D} := egin{bmatrix} A_{11} & A_{12} & A_{13} & b_1 \ \hline A_{21} & A_{22} & A_{23} & b_2 \ \hline A_{31} & A_{32} & A_{33} & b_3 \end{bmatrix},$$

where $A_{22} \in \mathbb{R}^{N_B \times N_B}$, we transform the rank-1 update into a rank- N_B update:

$$D := \begin{bmatrix} A_{11} & 0 & A_{13} & b_1 \\ \hline 0 & 0 & 0 & 0 \\ \hline A_{31} & 0 & A_{33} & b_3 \end{bmatrix} + \underbrace{\begin{bmatrix} -A_{12}A_{22}^{-1} \\ \hline A_{22}^{-1} \\ \hline -A_{32}A_{22}^{-1} \end{bmatrix}}_{H} \begin{bmatrix} A_{21} & I_{N_B} & A_{23} & b_2 \end{bmatrix}.$$

Algorithm mainly relies on rank- N_B updates.

1

By repartitioning D into blocks:

$$\mathcal{D} := egin{bmatrix} A_{11} & A_{12} & A_{13} & b_1 \ \hline A_{21} & A_{22} & A_{23} & b_2 \ \hline A_{31} & A_{32} & A_{33} & b_3 \end{bmatrix},$$

where $A_{22} \in \mathbb{R}^{N_B \times N_B}$, we transform the rank-1 update into a rank- N_B update:

$$D := \begin{bmatrix} A_{11} & 0 & A_{13} & b_1 \\ \hline 0 & 0 & 0 & 0 \\ \hline A_{31} & 0 & A_{33} & b_3 \end{bmatrix} + \underbrace{\begin{bmatrix} -A_{12}A_{22}^{-1} \\ \hline A_{22}^{-1} \\ \hline -A_{32}A_{22}^{-1} \end{bmatrix}}_{H} \begin{bmatrix} A_{21} & I_{N_B} & A_{23} & b_2 \end{bmatrix}.$$

Algorithm mainly relies on rank- N_B updates.

Pivoting is integrated by LU decomposition of $\begin{bmatrix} A_{22}^T & A_{32}^T \end{bmatrix}^T$.

By re

If only the solution AY = B required, the update reduces to:

$$\begin{bmatrix} \underline{A_{13} \ b_1} \\ 0 \ 0 \\ \overline{A_{33} \ b_3} \end{bmatrix} \leftarrow \begin{bmatrix} \underline{A_{13} \ b_1} \\ 0 \ 0 \\ \overline{A_{33} \ b_3} \end{bmatrix} + \underbrace{\begin{bmatrix} -A_{12}A_{22}^{-1} \\ A_{22}^{-1} \\ -A_{32}A_{22}^{-1} \end{bmatrix}}_{H} \begin{bmatrix} A_{23} \ b_2 \end{bmatrix}.$$

whe

 $\rightarrow \text{Reduces the flop count to } n^3 + 2n^3.$ $If only the inverse A^{-1} \text{ is necessary we obtain:}$ $\left[\frac{A_{11} \mid 0 \mid A_{13}}{0 \mid 0 \mid 0} \right] \leftarrow \left[\frac{A_{11} \mid 0 \mid A_{13}}{0 \mid 0 \mid 0} \right] + \left[\frac{-A_{12}A_{22}^{-1}}{A_{22}^{-1}} \right] \left[A_{21} \mid I_{N_B} \mid A_{23} \right].$

$$\rightarrow$$
 Same flop count $2n^3$ as with LU decomposition.

Н

The algorithm has the following properties:

- the computation of the panel matrix H works inside a block column,
- the rank- N_B update with the matrix H is a GEMM operation.

The algorithm has the following properties:

- the computation of the panel matrix H works inside a block column,
- the rank- N_B update with the matrix H is a GEMM operation.

 \rightarrow Data layout must cover the computation of the panel matrix H and the GEMM operation.

The algorithm has the following properties:

- the computation of the panel matrix H works inside a block column,
- the rank- N_B update with the matrix H is a GEMM operation.

 \rightarrow Data layout must cover the computation of the panel matrix H and the GEMM operation.

Data Layout

Only $\mathcal{O}(1)$ GPUs in one server available \rightarrow **Column Block Cyclic (CBC)** distribution of the matrix D:

Basic GPU Workflow

After separation into CPU-aware and GPU-aware operations we have to:

- **1** Compute the panel matrix H on the host CPU,
- **2** Copy the panel matrix H to all GPUs,
- **3** Perfom the rank- N_B update in parallel on the distributed matrix D.

Basic GPU Workflow

After separation into CPU-aware and GPU-aware operations we have to:

- **1** Compute the panel matrix *H* on the host CPU,
- **2** Copy the panel matrix H to all GPUs,
- **3** Perfom the rank- N_B update in parallel on the distributed matrix D.

Parallel Rank-*N_B* Update

$$\begin{bmatrix} A_{13} & b_1 \\ \hline 0 & 0 \\ \hline A_{33} & b_3 \end{bmatrix} \leftarrow \begin{bmatrix} A_{13} & b_1 \\ \hline 0 & 0 \\ \hline A_{33} & b_3 \end{bmatrix} + \underbrace{\begin{bmatrix} -A_{12}A_{22}^{-1} \\ \hline A_{22}^{-1} \\ \hline -A_{32}A_{22}^{-1} \end{bmatrix}}_{H} \begin{bmatrix} A_{23} & b_2 \end{bmatrix}.$$

Basic GPU Workflow

After separation into CPU-aware and GPU-aware operations we have to:

- **1** Compute the panel matrix *H* on the host CPU,
- **2** Copy the panel matrix H to all GPUs,
- **3** Perfom the rank- N_B update in parallel on the distributed matrix D.

Parallel Rank-*N*_B Update

Look-Ahead and Asynchronous Operation

We split right part of D into

$$\begin{bmatrix} A_{13} & b_1 \\ \hline A_{23} & b_2 \\ \hline A_{33} & b_3 \end{bmatrix} := \begin{bmatrix} \hat{A}_{13} & \bar{A}_{13} & b_1 \\ \hline \hat{A}_{23} & \bar{A}_{23} & b_2 \\ \hline \hat{A}_{33} & \bar{A}_{33} & b_3 \end{bmatrix} ,$$

where $\hat{A}_{23} \in \mathbb{R}^{N_B imes N_B}$ and perform the update in two steps as

$$\begin{bmatrix} \hat{A}_{13} \\ \hline 0 \\ \hline \hat{A}_{33} \end{bmatrix} \leftarrow \begin{bmatrix} \hat{A}_{13} \\ \hline 0 \\ \hline \hat{A}_{33} \end{bmatrix} + H\hat{A}_{23}$$
(Look-Ahead GEMM)

and

$$\begin{bmatrix} \overline{A}_{13} & b_1 \\ \hline 0 & 0 \\ \overline{A}_{33} & b_3 \end{bmatrix} \leftarrow \begin{bmatrix} \overline{A}_{13} & b_1 \\ \hline 0 & 0 \\ \overline{A}_{33} & b_3 \end{bmatrix} + H \begin{bmatrix} \overline{A}_{23} & b_2 \end{bmatrix}.$$
(Remaining GEMM)

Look-Ahead and Asynchronous Operation

We split right part of D into

$$\begin{bmatrix} A_{13} & b_1 \\ \hline A_{23} & b_2 \\ \hline A_{33} & b_3 \end{bmatrix} := \begin{bmatrix} \hat{A}_{13} & \bar{A}_{13} & b_1 \\ \hline \hat{A}_{23} & \bar{A}_{23} & b_2 \\ \hline \hat{A}_{33} & \bar{A}_{33} & b_3 \end{bmatrix},$$

where $\hat{A}_{23} \in \mathbb{R}^{N_B imes N_B}$ and perform the update in two steps as

and

s csc Multi-GPU Implementation

Further Caveats

General

- We have to use row major on the GPUs to reduce the number of cache misses during pivoting.
 - \rightarrow The algorithm works implicitly on the transpose of the matrix *D*.
- All memory locations on the host need to be page-aligned and page-locked.

Further Caveats

General

- We have to use row major on the GPUs to reduce the number of cache misses during pivoting.
 - \rightarrow The algorithm works implicitly on the transpose of the matrix D.
- All memory locations on the host need to be page-aligned and page-locked.

Performance Shift on OpenPOWER:

- \blacksquare Performance gap between CPUs and GPUs: $\approx 20\times$
- Higher bandwidths between main memory, CPU, GPU, and GPU memory
- \rightarrow Panel preparation on the host is slow, even with multi-threaded BLAS.

scs Multi-GPU Implementation

Further Fine grained computation of *H*:

Gener

Perfor

 $\rightarrow \mathsf{Pa}$

Input: Current Panel
$$\begin{bmatrix} A_{12}^T & A_{22}^T & A_{32}^T \end{bmatrix}^T$$

Output: Update matrix H
1: Compute the LU decomposition
 $\begin{bmatrix} L_1 \\ L_2 \end{bmatrix} U = P \begin{bmatrix} A_{22} \\ A_{32} \end{bmatrix}$
2: Enqueue the permutation P on the devices.
3: Enqueue the preparation of the rank- N_B updates on the devices.
4: Compute
 $H := \begin{bmatrix} -A_{12}U^{-1}L_1^{-1} \\ U_1^{-1}L^{-1} \\ -L_2L_1^{-1} \end{bmatrix}$

5: Upload H to the devices.

he

🞯 🚥 Numerical Results

Hardware and Software Environment

OpenPOWER 8 System

- Hardware as given in the Motivation with 2x P100 accelerators
- CentOS 7.3 for ppc64le with custom 4.8.6 Linux Kernel
- IBM XLC 13.1.5 and IBM XLF 15.1.5 compilers
- CUDA 8.0
- IBM ESSL 5.5 as BLAS and LAPACK library on the host

🞯 🚥 Numerical Results

Hardware and Software Environment

OpenPOWER 8 System

- Hardware as given in the Motivation with 2x P100 accelerators
- CentOS 7.3 for ppc64le with custom 4.8.6 Linux Kernel
- IBM XLC 13.1.5 and IBM XLF 15.1.5 compilers
- CUDA 8.0
- IBM ESSL 5.5 as BLAS and LAPACK library on the host

"Old" Reference System

- 2x Intel Xeon E5-2640v3 (8 Cores, 8x 256kB L2 Cache, 20MB L3 Cache)
- 64 GB DDR3 memory
- 2x Nvidia Tesla K20m accelerators
- CentOS 7.3 with Intel Parallel Studio 2017.1 including MKL 2017.1
- CUDA 8.0

Solution of the linear system:

- Random matrix $A \in \mathbb{R}^{n \times n}$ with $n = 1024, 2048, \ldots$
- Right hand side $B \in \mathbb{R}^{n \times n}$ as $B := A \cdot \operatorname{ones}(n, n)$
- Block size varying from 64 to 768(P100) / 1024(K20)
- IEEE Double Precision

n = 5,120

n = 10,240

n = 15,360

Martin Köhler koehlerm@mpi-magdeburg.mpg.de

Accelerated Gauss-Jordan Elimination

n = 20,480

n = 30,720

n = 40,960

🞯 🚥 Numerical Results

Performance with optimal blocksizes

Conclusions

- Speed up up to 5 between the K20 and the P100.
- Hybrid CPU-GPU algorithms are getting complicated due to the large performance differences.
- High bandwidth and smaller latencies yield smaller block sizes for optimal performance.
- "The Power System 822LC is an HPC Cluster in one server."

Conclusions

- Speed up up to 5 between the K20 and the P100.
- Hybrid CPU-GPU algorithms are getting complicated due to the large performance differences.
- High bandwidth and smaller latencies yield smaller block sizes for optimal performance.
- "The Power System 822LC is an HPC Cluster in one server."

Outlook and Future Work

- Implementation of an out-of-core solver
- Develop a fully integrated GPU accelerated matrix-sign function

Conclusions

- Speed up up to 5 between the K20 and the P100.
- Hybrid CPU-GPU algorithms are getting complicated due to the large performance differences.
- High bandwidth and smaller latencies yield smaller block sizes for optimal
 Thank you for your attention!

Outlook and Future Work

- Implementation of an out-of-core solver
- Develop a fully integrated GPU accelerated matrix-sign function