Einführung	Die H_2 -Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
00	00000	0000000000	0	

\mathcal{H}_2 -Modellreduktion

Verfahren, Implementierung, Vergleich

Martin Köhler

Diplomverteidigung

15. Dezember 2010

Einführung	Die H_2 -Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
Überb	lick			MI

- 2 Die \mathcal{H}_2 -Norm
- 3 \mathcal{H}_2 -Modellreduktion
- 4 Spezieller Sylvesterlöser
- 5 Schlussfolgerungen und Ausblick

Einführung	Die H_2 -Norm	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
0				
Einfüł	nrung			MI

LTI-System

$$\dot{x}(t) = A \quad x(t) + B \quad u(t)$$

 $y(t) = C \quad x(t)$

Einführung	Die H_2 -Norm	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
0				
Einfüł	nrung			

LTI-System

$$\dot{x}(t) = A \quad x(t) + B \quad u(t)$$

 $y(t) = C \quad x(t)$

Matrizen:

- Systemmatrix $A \in \mathbb{R}^{n \times n}$,
- Eingangsmatrix $B \in \mathbb{R}^{n \times m}$,
- Ausgangsmatrix $C \in \mathbb{R}^{p \times n}$

Einführung	Die H_2 -Norm	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
0				
Einfüh	nrung			

$$\dot{x}(t) = A \quad x(t) + B \quad u(t)$$
$$y(t) = C \quad x(t)$$

Matrizen:

- Systemmatrix $A \in \mathbb{R}^{n \times n}$,
- Eingangsmatrix $B \in \mathbb{R}^{n \times m}$,
- Ausgangsmatrix $C \in \mathbb{R}^{p \times n}$

Für p = m = 1 Single-Input Single-Output (SISO) System

Einführung	Die H2-Norm	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
00				
Einführ	ung			

Problemstellung der Modellreduktion

großes LTI-System

$$\dot{x}(t) = A \quad x(t) + B \quad u(t)$$

 $y(t) = C \quad x(t)$

Probleme

- Moderne Anwendungen führen zu Systemen in der Größenordnung $> 10^4$
- Effiziente Simulation ist nicht möglich

Einführung ⊙●	Die H ₂ -Norm 00000	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser O	Schlussfolgerungen und Ausblick
Einfül Problemst	Trung tellung der Modell	reduktion		
groß	es I TI-System			

Lösung

Projektion auf reduzierten Unterraum mit $A_r = W^T A V$, $B_r = W^T B$ und $C_r = C V$.

 $\dot{x}(t) = A x(t) + B u(t)$

y(t) = C x(t)

Entscheidend ist die Wahl von W = span (W) und V = span (V) mit $W^T V = I$.

reduktion

$$\vec{x}(t) = \vec{A} \quad \vec{x}(t) + \vec{B} \quad u(t)$$

$$\vec{y}(t) = \vec{c} \quad \vec{x}(t)$$

Modell-

Einführung	Die H_2 -Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
00	00000	0000000000		
Die \mathcal{H}	2-Norm			

Um ein nutzbares reduziertes Modell zu erhalten, ist ein nahezu gleiches Ein-Ausgangsverhalten notwendig. Die Bewertung wird durch den Übergang vom Orts- in den Frequenzbereich ermöglicht.

Einführung	Die H_2 -Norm	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
00	00000	0000000000		
Die \mathcal{H}	l_2 -Norm			Mil
Die Über	tragungefunktion			

Um ein nutzbares reduziertes Modell zu erhalten, ist ein nahezu gleiches Ein-Ausgangsverhalten notwendig. Die Bewertung wird durch den Übergang vom Orts- in den Frequenzbereich ermöglicht.

Wenden wir die Laplace-Transformation auf das System

$$\Sigma: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

an, so erhalten wir die Übertragungsfunktion

$$H(s)=C(sI-A)^{-1}B.$$

Einführung	Die H_2 -Norm	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
00	00000	0000000000		
Die \mathcal{H}	l_2 -Norm			Mil
Die Über	tragungefunktion			

Um ein nutzbares reduziertes Modell zu erhalten, ist ein nahezu gleiches Ein-Ausgangsverhalten notwendig. Die Bewertung wird durch den Übergang vom Orts- in den Frequenzbereich ermöglicht.

Wenden wir die Laplace-Transformation auf das System

$$\Sigma: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

an, so erhalten wir die Übertragungsfunktion

$$H(s)=C(sI-A)^{-1}B.$$

 \rightarrow SISO-Fall: komplexe rationale Funktion

Einführung	Die H_2 -Norm	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
00	00000	0000000000		
Die \mathcal{H}	l_2 -Norm			Mil
Die Über	tragungefunktion			

Um ein nutzbares reduziertes Modell zu erhalten, ist ein nahezu gleiches Ein-Ausgangsverhalten notwendig. Die Bewertung wird durch den Übergang vom Orts- in den Frequenzbereich ermöglicht.

Wenden wir die Laplace-Transformation auf das System

$$\Sigma: \begin{cases} E\dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

an, so erhalten wir die Übertragungsfunktion

$$H(s) = C(sE - A)^{-1}B.$$

 \rightarrow SISO-Fall: komplexe rationale Funktion

Einführung	Die H_2 -Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
	00000			
Die \mathcal{H}_2 Einordnung	2 -Norm g in einen Funkti	onenraum		M

 \rightarrow Um später die Differenz zweier Übertragungsfunktionen im Mittel bewerten zu können, ist ein Funktionenraum mit 2-Norm zu suchen.

 \rightarrow Um später die Differenz zweier Übertragungsfunktionen im Mittel bewerten zu können, ist ein Funktionenraum mit 2-Norm zu suchen.

Definition (Hardy-Raum \mathcal{H}_2)

Sei \mathcal{H}_2 der Hilbertraum aller Funktionen g(z), die analytisch für alle $z \in \mathbb{C}_{>0}$ sind und für jeden festen Realteil $\operatorname{Re}(z) = x > 0$ als Funktion von $y \in \mathbb{R}$ mit z = x + iy quadratisch integrierbar sind, das heißt

$$\sup_{x>0}\int_{-\infty}^{\infty}|g(x+iy)|^2 \, \mathrm{d} y<\infty.$$

Das Skalarprodukt ist definiert durch

$$\langle G,H\rangle_{\mathcal{H}_2} := \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} \overline{G(i\omega)} H(i\omega) \,\mathrm{d}\omega = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} G(-i\omega) H(i\omega) \,\mathrm{d}\omega.$$

Einführung	Die H_2 -Norm	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
00	00000	0000000000		
Die \mathcal{H}_{i}	2 -Norm Berechnungsmö	öglichkeiten des Skalar	produktes	M

Satz (GUGERCIN ET. AL. '08)

Seien die SISO-Übertragungsfunktionen

$$G(s) = c^{T}(sI - A)^{-1}b$$
 und $H(s) = \tilde{c}^{T}(sI - \tilde{A})^{-1}\tilde{b}$

gegeben. Dann kann das Skalarprodukt $\langle G, H \rangle_{\mathcal{H}_2}$ durch das Lösen der folgenden Sylvestergleichung bestimmt werden.

Ist P Lösung von $AP + P\tilde{A}^T + b\tilde{b}^T = 0$, dann ist $\langle G, H \rangle_{\mathcal{H}_2} = c^T P\tilde{c}$.

Einführung 00	Die \mathcal{H}_2 -Norm	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser O	Schlussfolgerungen und Ausblick
Die ${\cal H}$	2-Norm			Mil

Satz (GUGERCIN ET. AL. '08)

Seien die SISO-Übertragungsfunktionen

Alternative Berechnungsmöglichkeiten des Skalarproduktes

$$G(s) = c^{T}(sI - A)^{-1}b$$
 und $H(s) = \tilde{c}^{T}(sI - \tilde{A})^{-1}\tilde{b}$

gegeben. Dann kann das Skalarprodukt $\langle G, H \rangle_{\mathcal{H}_2}$ durch das Lösen der folgenden Sylvestergleichung bestimmt werden.

Ist P Lösung von $AP + P\tilde{A}^T + b\tilde{b}^T = 0$, dann ist $\langle G, H \rangle_{\mathcal{H}_2} = c^T P\tilde{c}$.

 $\rightarrow \mathcal{H}_2$ -Norm von $G(s) = C^T (sI - A)^{-1} B$ mit

$$AP + PA^T + BB^T = 0, \quad \|G\|_{\mathcal{H}_2}^2 = c^T Pc$$

berechenbar.

7/25

Einführung	Die H_2 -Norm	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
	00000			
Die ${\cal H}$	2-Norm			MI

Satz (K. '10)

Seien die SISO-Übertragungsfunktionen

Alternative Berechnungsmöglichkeiten des Skalarproduktes

$$G(s) = c^{T}(s\boldsymbol{E} - A)^{-1}b$$
 und $H(s) = \tilde{c}^{T}(s\boldsymbol{\tilde{E}} - \tilde{A})^{-1}\tilde{b}$

gegeben. Dann kann das Skalarprodukt $\langle G, H \rangle_{\mathcal{H}_2}$ durch das Lösen der folgenden Sylvestergleichung bestimmt werden.

Ist P Lösung von $AP\tilde{E}^{T} + EP\tilde{A}^{T} + b\tilde{b}^{T} = 0$, dann ist $\langle G, H \rangle_{\mathcal{H}_{2}} = c^{T}P\tilde{c}$

 $\rightarrow \mathcal{H}_2$ -Norm von $G(s) = C^T (sI - A)^{-1} B$ mit

$$APE^{\mathsf{T}} + EPA^{\mathsf{T}} + BB^{\mathsf{T}} = 0, \quad \|G\|_{\mathcal{H}_2}^2 = c^{\mathsf{T}}Pc$$

berechenbar.

7/25

Einführung	Die H_2 -Norm	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
	00000			
Die ${\cal H}$	2-Norm			

 $G(s) = c^{T}(sI - A)^{-1}b$ und $H(s) = \tilde{c}^{T}(sI - \tilde{A})^{-1}\tilde{b}$

Ist P Lön BARTELS, STEWART '72 $t \langle G, H \rangle_{H_2} = c^T P \tilde{c}.$

 $[\underline{AP + PA^{\mathsf{T}} + BB^{\mathsf{T}} = 0}], \quad \|G\|_{\mathcal{H}_{2}}^{2} = c^{\mathsf{T}} Pc$

 H_2 -Modellreduktion

Nurch das Lösen der

 \rightarrow Berechnungsmöglichkeit **ohne** Integralauswertung notwendig

Bartels-Stewart-Algorithmus

PENZL '98, SAAK '09

Martin Köhler

Alternative Berechnungsmöglichkeiten des Skalarproduktes

Seien die SISO-Übertragungsfunktionen

Berechnung mit

ADI-Verfahren

 $\rightarrow \mathcal{H}_2$ -Norm von $G(s) = C^{T}(sI - A)^{-1}B$ mit

Satz (GUGERCIN ET. AL. '08)

gegeben. D

folgenden S

berechenbar. 7/25

Rückführung auf ein Abstandssystem:

$$G(s) - H(s) = c^{T}(sI - A)^{-1}b - \tilde{c}^{T}(sI - \tilde{A})^{-1}\tilde{b}$$

= $\underbrace{(c^{T} - \tilde{c}^{T})}_{\hat{c}^{T}} \underbrace{\begin{pmatrix} (sI - A)^{-1} & 0\\ 0 & (sI - \tilde{A})^{-1} \end{pmatrix}}_{(sI - \hat{A})^{-1}} \underbrace{\begin{pmatrix} b^{T}\\ \tilde{b}^{T} \end{pmatrix}}_{\hat{b}}$

Rückführung auf ein Abstandssystem:

$$G(s) - H(s) = c^{T}(sI - A)^{-1}b - \tilde{c}^{T}(sI - \tilde{A})^{-1}\tilde{b}$$

= $\underbrace{(c^{T} - \tilde{c}^{T})}_{\hat{c}^{T}} \underbrace{\begin{pmatrix} (sI - A)^{-1} & 0\\ 0 & (sI - \tilde{A})^{-1} \end{pmatrix}}_{(sI - \tilde{A})^{-1}} \underbrace{\begin{pmatrix} b^{T}\\ \tilde{b}^{T} \end{pmatrix}}_{\hat{b}}$

Ausnutzen der Residuenformulierung:

$$\begin{aligned} |G - H||_{\mathcal{H}_{2}}^{2} &= \langle G - H, G - H \rangle_{\mathcal{H}_{2}} = ||G||_{\mathcal{H}_{2}}^{2} - 2 \langle G, H \rangle_{\mathcal{H}_{2}} + ||H||_{\mathcal{H}_{2}}^{2} \\ &= \sum_{k=1}^{n} \rho_{k}^{G} (G(-\lambda_{k}) - H(-\lambda_{k})) - \sum_{k=1}^{m} \rho_{k}^{H} (G(-\mu_{k}) - H(-\mu_{k})) \end{aligned}$$

mit $\rho_k^{\mathcal{G}} = \operatorname{res} (\mathcal{G}(s), \lambda_k)$ und $\rho_k^{\mathcal{H}} = \operatorname{res} (\mathcal{H}(s), \mu_k)$.

Einführung 00	Die \mathcal{H}_2 -Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser O	Schlussfolgerungen und Ausblick
Die ${\cal H}$	2-Norm			M

DIE H_2 -INORM Abstand zwischen zweier Übertragungsfunktionen

Ausnutzen der Residuenformulierung:

$$\begin{aligned} |G - H||_{\mathcal{H}_{2}}^{2} &= \langle G - H, G - H \rangle_{\mathcal{H}_{2}} = ||G||_{\mathcal{H}_{2}}^{2} - 2 \langle G, H \rangle_{\mathcal{H}_{2}} + ||H||_{\mathcal{H}_{2}}^{2} \\ &= \sum_{k=1}^{n} \rho_{k}^{G} (G(-\lambda_{k}) - H(-\lambda_{k})) - \sum_{k=1}^{m} \rho_{k}^{H} (G(-\mu_{k}) - H(-\mu_{k})) \end{aligned}$$

mit $\rho_k^{\mathcal{G}} = \operatorname{res} (\mathcal{G}(s), \lambda_k)$ und $\rho_k^{\mathcal{H}} = \operatorname{res} (\mathcal{H}(s), \mu_k)$.

Einführung	Die H_2 -Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
	00000			
Die ${\cal H}$	2-Norm			

DIE H_2 -NORM Abstand zwischen zweier Übertragungsfunktionen

Ausnutzen der Residuenformulierung:

$$\|G - H\|_{\mathcal{H}_2}^2 = \langle G - H, G - H \rangle_{\mathcal{H}_2} = \|G\|_{\mathcal{H}_2}^2 - 2 \langle G, H \rangle_{\mathcal{H}_2} + \|H\|_{\mathcal{H}_2}^2$$
$$= \sum_{k=1}^n \rho_k^G (G(-\lambda_k) - H(-\lambda_k)) - \sum_{k=1}^m \rho_k^H (G(-\mu_k) - H(-\mu_k))$$
mit ρ_k^G = re Nützlich in der Herleitung des Modellreduktionsverfahrens

Berechnung der \mathcal{H}_2 -Norm mit dem Bartel-Stewart-Algorithmus und dem ADI-Verfahren.

Heuristik für den Abbruch des ADI-Verfahrens:

- 16 Parameter
- 250 Iterationsschritte
- 2-Norm Residuum $< u \cdot n$
- Änderung im 2-Norm Residuum $< u \cdot \sqrt{n}$
- Frobenius-Norm Kriterium $< u \cdot \sqrt{n}$

Berechnung der $\mathcal{H}_2\text{-Norm}$ mit dem Bartel-Stewart-Algorithmus und dem ADI-Verfahren.

Heuristik für den Abbruch des ADI-Verfahrens:

- 16 Parameter
- 250 Iterationsschritte
- 2-Norm Residuum $< u \cdot n$
- Änderung im 2-Norm Residuum $< u \cdot \sqrt{n}$
- Frobenius-Norm Kriterium $< u \cdot \sqrt{n}$

Problem	absoluter Fehler	relativer Fehler	u · n	$\ B\ _{2}$
FDM-Heat 625	3.5527e-14	1.2787e-14	1.3877e-13	50.0
2 500	3.0144e-12	2.2212e-13	5.5511e-13	250.0
10 000	5.3518e-11	1.0598e-12	2.2204e-12	1000.0
Künstlich	1.1663e-11	3.7177e-13	9.0594e-14	408.0

Tabelle: Normunterschied bei der Berechnung mittels dicht- und dünnbesetzter Verfahren

Einführung	Die H_2 -Norm	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
	00000			
Die \mathcal{H}	2-Norm			

Problem/	MATLAB®	MATLAB	C.M.E.S.S.	C.M.E.S.S.
Dimension	dense	sparse	dense	sparse
FDM-Heat 625	0.59	0.13	0.89	0.02
2 500	20.00	0.46	56.19	0.05
10 000	1 008.40	2.50	4 948.89	0.28
40 000	-	9.75	-	2.12
90 000	-	31.74	-	9.36
160 000	-	69.65	-	29.72
250 000	-	138.69	-	56.02
562 500	-	395.43	-	186.36
1 000 000	-	881.52	-	1 714.48
Künstlich reell	0.04	-	0.07	-
komplex	-	0.42	-	0.07

Tabelle: Laufzeit der $\mathcal{H}_2\text{-Norm}$ Berechnung für 2D Wärmeleitung (FDM) und das künstliche Problem.

Einführung	Die H_2 -Norm	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
00	00000	0000000000		
Die $\mathcal H$	2 -Norm e Ergebnisse			

Problem/	MATLAB®	MATLAB	C.M.E.S.S.	C.M.E.S.S.
Dimension	dense	sparse	dense	sparse
FDM-Heat 625	0.59	0.13	0.89	0.02
2 500	20.00	0.46	56.19	0.05
10 000	1 008.40	2.50		0.28
40 000	-	9.75	-	2.12
90 000		21 74		9.36
160 000	Unterschied	e zwischen o	len eingesetz-	29.72
250 000	ten BLAS E	Bibliotheken		56.02
562 500	-	395.43	-	186.36
1 000 000	-	881.52	-	1 714.48
Künstlich reell	0.04	-	0.07	-
komplex	-	0.42	-	0.07

Tabelle: Laufzeit der $\mathcal{H}_2\text{-Norm}$ Berechnung für 2D Wärmeleitung (FDM) und das künstliche Problem.

Einführung	Die \mathcal{H}_2 -Norm	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
00	00000	0000000000		
Die \mathcal{H}_2 Numerische	-Norm Ergebnisse			

Einführung	Die \mathcal{H}_2 -Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
00				
\mathcal{H}_{\circ} -Modellreduktion				

Problemstellung

Gegeben sei ein LTI-System Σ der Dimension n mit der Übertragungsfunktion

$$H(s)=C(sI-A)^{-1}B.$$

Gesucht ist ein reduziertes Modell Σ_r der Dimension $n_r \ll n$ und der Übertragungsfunktion

$$H_r(s)=C_r(sI-A_r)^{-1}B_r,$$

welche die Eigenschaft

$$\|H - H_r\|_{\mathcal{H}_2} < \varepsilon$$
 bzw. min $\|H - H_r\|_{\mathcal{H}_2}$

zu einem gegebenen ε bzw. n_r erfüllt.

Einführung		\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
\mathcal{H}_2 -Modellreduktion			0	
Interpolatio	onsansatz			

 \rightarrow Übertragungsfunktion eines LTI-Systems ist rationale Funktion

Einführung 00	Die H ₂ -Norm 00000	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser O	Schlussfolgerungen und Ausblick
$\mathcal{H}_2 extsf{-}M$ Interpolat	odellredukt ionsansatz	tion		

 \rightarrow Übertragungsfunktion eines LTI-Systems ist rationale Funktion \rightarrow H_r soll H möglichst gut interpolieren. $\mathcal V$ und $\mathcal W$ sind entsprechend zu konstruieren.

Einführung		\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
00	00000	0000000000	0	
$\mathcal{H}_2 ext{-Modellreduktion}$				M

 \rightarrow Übertragungsfunktion eines LTI-Systems ist rationale Funktion \rightarrow H_r soll H möglichst gut interpolieren. $\mathcal V$ und $\mathcal W$ sind entsprechend zu konstruieren.

Satz (GRIMME '97, GUGERCIN ET. AL. '08)

Gegeben sei ein SISO LTI-System Σ , ein Punkt $\sigma \in \mathbb{C}$ mit $\sigma \notin \Lambda(A)$ und $\sigma \notin \Lambda(A_r)$ und ein reduziertes Modell Σ_r , welches durch Projektion in \mathcal{V} und \mathcal{W} aus Σ entsteht. Dann gelten folgende Aussagen:

• Ist
$$(\sigma I - A)^{-1}B \in \mathcal{V}$$
, so gilt $H(\sigma) = H_r(\sigma)$.

Ist
$$(\overline{\sigma}I - A)^{-T}C^T \in W$$
, so gilt $H(\sigma) = H_r(\sigma)$.

● Ist
$$(\sigma I - A)^{-1}B \in \mathcal{V}$$
 und $(\overline{\sigma}I - A)^{-T}C^{T} \in \mathcal{W}$, so gilt $H(\sigma) = H_{r}(\sigma)$ und $H'(\sigma) = H'_{r}(\sigma)$.

Einführung 00	Die H ₂ -Norm 00000	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser O	Schlussfolgerungen und Ausblick
$\mathcal{H}_2 ext{-}M$ Interpolat	odellredukt ionsansatz	tion		M

 \rightarrow Übertragungsfunktion eines LTI-Systems ist rationale Funktion \rightarrow H_r soll H möglichst gut interpolieren. $\mathcal V$ und $\mathcal W$ sind entsprechend zu konstruieren.

Satz (K. '10)

Gegeben sei ein SISO LTI-System Σ , ein Punkt $\sigma \in \mathbb{C}$ mit $\sigma \notin \Lambda(A)$ und $\sigma \notin \Lambda(A_r)$ und ein reduziertes Modell Σ_r , welches durch Projektion in \mathcal{V} und \mathcal{W} aus Σ entsteht. Dann gelten folgende Aussagen:

• Ist
$$(\sigma \mathbf{E} - A)^{-1}B \in \mathcal{V}$$
, so gilt $H(\sigma) = H_r(\sigma)$.

Ist
$$(\overline{\sigma} \boldsymbol{E} - \boldsymbol{A})^{-T} \boldsymbol{C}^{T} \in \mathcal{W}$$
, so gilt $H(\sigma) = H_r(\sigma)$.

● Ist
$$(\sigma E - A)^{-1}B \in \mathcal{V}$$
 und $(\overline{\sigma} E - A)^{-T}C^{T} \in \mathcal{W}$, so gilt $H(\sigma) = H_{r}(\sigma)$ und $H'(\sigma) = H'_{r}(\sigma)$.

Der Interpolationsansatz ist problemlos auf verallgemeinerte Systeme zu übertragen.

Einführung 00	Die H ₂ -Norm 00000	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser O	Schlussfolgerungen und Ausblick
$\mathcal{H}_2 ext{-}M$ Interpolat	odellreduk ^t ionsansatz	tion		

 \rightarrow Ubertragungsfunktion eines LTI-Systems ist rationale Funktion \rightarrow H_r soll H möglichst gut interpolieren. \mathcal{V} und \mathcal{W} sind entsprechend zu konstruieren.

Satz (K. '10)

Gegeben sei ein SISO LTI-System Σ , ein Punkt $\sigma \in \mathbb{C}$ mit $\sigma \notin \Lambda(A)$ und $\sigma \notin \Lambda(A_r)$ und ein reduziertes Modell Σ_r , welches durch Projektion in \mathcal{V} und \mathcal{W} Problem Den the formula of σ is the sind die Interpolationspunkte σ zu is late wählen? Ist wählen? Ist $(\sigma E - A)^{-1}B \in \mathcal{V}$ und $(\sigma E - A)^{-1}C^{+} \in \mathcal{W}$, so gift $H(\sigma) = H_r(\sigma)$ und $H'(\sigma) = H'_r(\sigma)$.

Der Interpolationsansatz ist problemlos auf verallgemeinerte Systeme zu übertragen.

Einführung 00	Die H ₂ -Norm 00000	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser O	Schlussfolgerungen und Ausblick
$\mathcal{H}_2 ext{-Modellreduktion}$ Optimalitätskriterien				M

 $\rightarrow \mathcal{H}_2$ ist ein Hilbertraum, somit klassische Bestapproximationsresultate nutzbar, aber:

 $\rightarrow \mathcal{H}_2$ ist ein Hilbertraum, somit klassische Bestapproximationsresultate nutzbar, aber:

• Einschränkungen, zum Beispiel festgelegte Polstellenmenge

- Einschränkungen, zum Beispiel festgelegte Polstellenmenge
- Auswertung der Skalarprodukte ist zu teuer

Einführung 00	Die H ₂ -Norm 00000	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser O	Schlussfolgerungen und Ausblick
$\mathcal{H}_2 ext{-}M$ Optimalitä	odellreduk [†] ^{ätskriterien}	tion		M

- Einschränkungen, zum Beispiel festgelegte Polstellenmenge
- Auswertung der Skalarprodukte ist zu teuer
- passende Basiselemente für die reduzierte Übertragungsfunktion nicht bekannt

Einführung 00	Die H2-Norm 00000	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser O	Schlussfolgerungen und Ausblick
$\mathcal{H}_2 extsf{-}M_2$ Optimalitä	odellreduk [†] ^{itskriterien}	tion		

- Einschränkungen, zum Beispiel festgelegte Polstellenmenge
- Auswertung der Skalarprodukte ist zu teuer
- passende Basiselemente für die reduzierte Übertragungsfunktion nicht bekannt

Abschwächung des Minimabegriffs: lokal minimal:

 $\exists \ \varepsilon > 0, \ \text{so dass} \ \|H - H_r\|_{\mathcal{H}_2} \leq \|H - \tilde{H}_r^\varepsilon\|_{\mathcal{H}_2}, \quad \forall \ \|H_r - \tilde{H}_r^\varepsilon\|_{\mathcal{H}_2} \leq C\varepsilon$

Einführung 00	Die H ₂ -Norm 00000	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser O	Schlussfolgerungen und Ausblick
\mathcal{H}_2 -Modellreduktion				M

- Einschränkungen, zum Beispiel festgelegte Polstellenmenge
- Auswertung der Skalarprodukte ist zu teuer
- passende Basiselemente für die reduzierte Übertragungsfunktion nicht bekannt

Abschwächung des Minimabegriffs: lokal minimal:

$$\exists \ \varepsilon > 0, \ \text{so dass} \ \|H - H_r\|_{\mathcal{H}_2} \le \|H - \tilde{H}_r^\varepsilon\|_{\mathcal{H}_2}, \quad \forall \ \|H_r - \tilde{H}_r^\varepsilon\|_{\mathcal{H}_2} \le C\varepsilon$$

Neues Bestapproximationsresultat: Für lokal minimales Hr gilt

$$\langle H - H_r, H_r \cdot G_1 + G_2 \rangle_{\mathcal{H}_2} = 0$$

für alle reellen $G_{1,2}$ mit gleichen Polstellen wie H_r .

Einführung 00	Die H ₂ -Norm 00000	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser O	Schlussfolgerungen und Ausblick
\mathcal{H}_2 -Modellreduktion				M

- Einschränkungen, zum Beispiel festgelegte Polstellenmenge
- Auswertung der Skalarprodukte ist zu teuer
- passende Basiselemente für die reduzierte Übertragungsfunktion nicht bekannt

Abschwächung des Minimabegriffs: lokal minimal:

$$\exists \ \varepsilon > 0, \ \text{so dass} \ \|H - H_r\|_{\mathcal{H}_2} \le \|H - \tilde{H}_r^\varepsilon\|_{\mathcal{H}_2}, \quad \forall \ \|H_r - \tilde{H}_r^\varepsilon\|_{\mathcal{H}_2} \le C\varepsilon$$

Für lokal minimale H_r folgt aus $\langle H - H_r, H_r \cdot G_1 + G_2 \rangle_{\mathcal{H}_2} = 0$, dass

$$H(-\mu_i) = H_r(-\mu_i)$$
 und $H'(-\mu_i) = H'_r(-\mu_i)$

an allen Polstellen μ_i von H_r gilt.

Einführung 00	Die \mathcal{H}_2 -Norm 00000	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser O	Schlussfolgerungen und Ausblich	
\mathcal{H}_2 - Das II	-Modellreduktio	on		M	
	Grundidee: Starte m betrachte deren Verä	nit einer beliebig Inderung.	en Parametermenge [Gugercin '(μ und $_{[8]}$	

 \to Bestimmung von ${\cal V}$ und ${\cal W}$ zu einer gegebenen Menge von Interpolationspunkten möglich.

Einführung 00	Die H ₂ -Norm 00000	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser O	Schlussfolgerungen und Ausblick
\mathcal{H}_2 -Modellreduktion				M

 \to Bestimmung von ${\cal V}$ und ${\cal W}$ zu einer gegebenen Menge von Interpolationspunkten möglich.

 \rightarrow Die Funktion $\lambda(\mu)$ bildet die Parametermenge auf die erhaltenen Polstellen ab.

 \rightarrow Eine gute Parametermenge ist erzielt, wenn $\lambda(\mu)$ genau das Spiegelbild von μ ist.

Einführung	Die \mathcal{H}_2 -Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
00	00000	0000000000		
\mathcal{H}_2 -M	odellreduk [.]	tion		MI

 \to Bestimmung von ${\cal V}$ und ${\cal W}$ zu einer gegebenen Menge von Interpolationspunkten möglich.

 \rightarrow Die Funktion $\lambda(\mu)$ bildet die Parametermenge auf die erhaltenen Polstellen ab.

 \rightarrow Eine gute Parametermenge ist erzielt, wenn $\lambda(\mu)$ genau das Spiegelbild von μ ist.

 \rightarrow Wir suchen daher eine Nullstelle von

$$f(\mu) = \lambda(\mu) + \mu.$$

Mit einem Newtonansatz erhalten wir

$$\mu^{(n+1)} = \mu^{(n)} - (I - J^{(\lambda)})^{-1} (\lambda(\mu^{(n)}) + \mu^{(n)}),$$

mit $J_{ij}^{(\lambda)} = \frac{\partial \lambda_i}{\partial \mu_i}$.

Einführung	Die H2-Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
00	00000	0000000000		
\mathcal{H}_2 -M	odellredukt	tion		MI

 \to Bestimmung von ${\cal V}$ und ${\cal W}$ zu einer gegebenen Menge von Interpolationspunkten möglich.

 \rightarrow Die Funktion $\lambda(\mu)$ bildet die Parametermenge auf die erhaltenen Polstellen ab.

 \rightarrow Eine gute Parametermenge ist erzielt, wenn $\lambda(\mu)$ genau das Spiegelbild von μ ist.

 \rightarrow Wir suchen daher eine Nullstelle von

$$f(\mu) = \lambda(\mu) + \mu.$$

Mit einem vereinfachten Newtonansatz, J = 0, erhalten wir

$$\mu^{(n+1)} = -\lambda(\mu^{(n)}).$$

 $\label{eq:algorithmus1} Algorithmus1 \ \ lterativer \ Rationaler \ \ \ Krylovinterpolationsalgorithmus$

Input:
$$A \in \mathbb{R}^{n \times n}$$
, $b = B \in \mathbb{R}^{n}$, $c = C^{T} \in \mathbb{R}^{n}$ und $\mu^{(0)} = \{\mu_{1}, \dots, \mu_{r}\}$.
Output: $A_{r} \in \mathbb{R}^{r \times r}$, $b_{r} = B_{r} \in \mathbb{R}^{r}$, $c_{r} = C_{r}^{T} \in \mathbb{R}^{r}$ mit lokal minimalem H_{r}
1: $k \leftarrow 0$
2: Bestimme $\mathcal{V} = \text{span}(\mathcal{V}) = \text{span}((\mu_{1}I - A)^{-1}b, \dots, (\mu_{r}I - A)^{-1}b)$
3: Bestimme $\mathcal{W} = \text{span}(\mathcal{W}) = \text{span}((\mu_{1}I - A)^{-T}c, \dots, (\mu_{r}I - A)^{-T}c)$
4: $W = W(W^{T}V)^{-T}$ damit $W^{T}V = I$
5: while $\|\mu^{(k+1)} - \mu^{(k)}\| > tol$ do
6: $A_{r} = W^{T}AV$
7: $\mu_{i}^{(k)} = -\lambda_{i}(A_{r})$
8: Bestimme $\mathcal{V} = \text{span}(\mathcal{V}) = \text{span}((\mu_{1}I - A)^{-1}b, \dots, (\mu_{r}I - A)^{-1}b)$
9: Bestimme $\mathcal{W} = \text{span}(\mathcal{W}) = \text{span}((\mu_{1}I - A)^{-T}c, \dots, (\mu_{r}I - A)^{-T}c)$
10: $W = W(W^{T}V)^{-T}$
11: $k \leftarrow k + 1$
12: end while
13: $A_{r} = W^{T}AV$, $b_{r} = W^{T}b$, $c_{r} = V^{T}c$

Einführung	Die \mathcal{H}_2 -Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
		0000000000		
\mathcal{H}_{o} -Modellreduktion				

Algorithmus 1 Iterativer Rationaler Krylovinterpolationsalgorithmus

Input:
$$A \in \mathbb{R}^{n \times n}$$
, $b = B \in \mathbb{R}^{n}$, $c = C^{T} \in \mathbb{R}^{n}$ und $\mu^{(0)} = \{\mu_{1}, ..., \mu_{r}\}$.
Output: $A_{r} \in \mathbb{R}^{r \times r}$, $b_{r} = B_{r} \in \mathbb{R}^{r}$, $c_{r} = C_{r}^{T} \in \mathbb{R}^{r}$ mit lokal minimalem H_{r}
1: $k \leftarrow 0$
2: Bestimme $\mathcal{V} = \operatorname{span}(V) = \operatorname{span}((\mu_{1}I - A)^{-1}b, ..., (\mu_{r}I - A)^{-1}b)$
3: Bestimme $\mathcal{W} = \operatorname{span}(W) = \operatorname{span}((\mu_{1}I - A)^{-T}c, ..., (\mu_{r}I - A)^{-T}c)$
4: $W = W(W^{T}V)^{-T}$ damit $W^{T}V = I$
5: while $\|\mu^{(k+1)} - \mu^{(k)}\| > t$
6: $A_{r} = W^{T}AV$
7: $\mu_{i}^{(k)} = -\lambda_{i}(A_{r})$
8: Bestimme $\mathcal{W} = \operatorname{span}(V)$
9: Bes

Das IRKA-Verfahren

Abbildung: Bodeplot für das künstliche Problem

Abbildung: Bodeplot für das künstliche Problem

Abbildung: Bodeplot für das künstliche Problem

\mathcal{H}_2 -Modellreduktion

Abbildung: Bodeplot für das künstliche Problem

Einführung 00	Die H ₂ -Norm 00000	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser O	Schlussfolgerungen und Ausblick
$\mathcal{H}_2 ext{-}M_0$ Numerisch	odellredukt ne Ergebnisse - IR	tion KA		

Dimension r	$\ H-H_r\ _{\mathcal{H}_2}$
5	1.814e+01
10	1.513e+01
15	2.670e-03
20	1.383e-03
25	2.339e-08

Tabelle: Finaler \mathcal{H}_2 -Fehler, künstliches Problem

Einführung 00	Die H ₂ -Norm 00000	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser O	Schlussfolgerungen und Ausblick
$\mathcal{H}_2\text{-}M_2$ Numerisch	odellredukt ne Ergebnisse - IR	tion KA		M

Dimension r	$\ H-H_r\ _{\mathcal{H}_2}$
5	1.814e+01
10	1.513e+01
15	2.670e-03
20	1.383e-03
25	2.339e-08

Tabelle: Finaler \mathcal{H}_2 -Fehler, künstliches Problem

Problem	<i>r</i> = 6	<i>r</i> = 10	r = 15	<i>r</i> = 20
FDM-Heat 625	3.796e-05	1.406e-08	2.592e-13	2.055e-14
2 500	1.626e-03	3.745e-06	8.946e-10	1.855e-13
10 000	1.725e-02	1.160e-04	1.338e-07	1.054e-10
40 000	1.217e-01	1.334e-03	4.386e-06	1.866e-08
160 000	6.096e-01	1.321e-02	9.361e-05	7.608e-07
250 000	9.850e-01	2.492e-02	2.155e-04	2.034e-06

Tabelle: Finaler \mathcal{H}_2 -Fehler des IRKA-Verfahrens nach 15 Schritten

$$J(A_r, B_r, C_r) := \|H - H_r\|_{\mathcal{H}_2}^2 = \operatorname{trace}\left(\tilde{C}\tilde{P}\tilde{C}^T\right) = \operatorname{trace}\left(\tilde{B}^T\tilde{Q}\tilde{B}\right)$$

nach A_r , B_r , C_r ,

[Wilson '70]

$$J(A_r, B_r, C_r) := \|H - H_r\|_{\mathcal{H}_2}^2 = \operatorname{trace}\left(\tilde{C}\tilde{P}\tilde{C}^{\mathsf{T}}\right) = \operatorname{trace}\left(\tilde{B}^{\mathsf{T}}\tilde{Q}\tilde{B}\right)$$

nach A_r , B_r , C_r , [WILSON '70] mit der Partitionierung der Gramschen

$$\tilde{P} = \begin{pmatrix} P_{11} & P_{12} \\ P_{12}^{\mathsf{T}} & P_{22} \end{pmatrix} \quad \mathsf{bzw.} \quad \tilde{Q} = \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{12}^{\mathsf{T}} & Q_{22} \end{pmatrix}$$

$$J(A_r, B_r, C_r) := \|H - H_r\|_{\mathcal{H}_2}^2 = \operatorname{trace}\left(\tilde{C}\tilde{P}\tilde{C}^{\,T}\right) = \operatorname{trace}\left(\tilde{B}^{\,T}\tilde{Q}\tilde{B}\right)$$

nach A_r , B_r , C_r , [WILSON '70] mit der Partitionierung der Gramschen

$$\tilde{P} = \begin{pmatrix} P_{11} & P_{12} \\ P_{12}^T & P_{22} \end{pmatrix}$$
 bzw. $\tilde{Q} = \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{12}^T & Q_{22} \end{pmatrix}$

erhalten wir:

•
$$\nabla_{A_r} J = 2 \left(P_{12}^T Q_{12} + P_{22} Q_{22} \right) = 0$$

• $\nabla_{B_r} J = 2Q_{12}^T B + 2Q_{22} Br = 0 \rightarrow B_r = -Q_{22}^{-1} Q_{12}^T B$
• $\nabla J_{C_r} = -2CP_{12} + 2C_r P_{22} = 0 \rightarrow C_r = CP_{12}P_{22}^{-1}$

 \rightarrow Wilson-Bedingungen für $\mathcal{H}_2\text{-}\mathsf{Optimalit}\mathsf{\"at}$

$$J(A_r, B_r, C_r) := ||H - H_r||_{\mathcal{H}_2}^2 = \operatorname{trace} \left(\tilde{C}\tilde{P}\tilde{C}^T\right) = \operatorname{trace} \left(\tilde{B}^T\tilde{Q}\tilde{B}\right)$$
nach A_r, B_r, C_r ,
mit der Partitionier
 $\tilde{P} = \begin{bmatrix} \operatorname{Ergeben \ die \ Projektoren} \\ W = -Q_{12}Q_{22}^{-1} \\ und \\ V = P_{12}P_{22}^{-1} \end{bmatrix}$
erhalten wir:
• $\nabla_{A_r}J = 2\left(P_{12}^TQ_{12} + P_{22}Q_{22}\right) = 0$
• $\nabla_{B_r}J = 2Q_{12}^TB + 2Q_{22}Br = 0 \rightarrow B_r = -Q_{22}^{-1}Q_{12}^TB$
• $\nabla J_{C_r} = -2CP_{12} + 2C_rP_{22} = 0 \rightarrow C_r = CP_{12}P_{22}^{-1}$
 $\rightarrow \text{Wilson-Bedingungen \ für \ \mathcal{H}_2-\text{Optimalität}}$

Einführung	Die H2-Norm	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
$\mathcal{H}_2 ext{-Mo}$ Das TSIA-V	dellreduk ^{/erfahren}	tion		M

Lösung: Sicherstellung von $W^T V = I$ durch $V = P_{12}$ und $W = Q_{12}(P_{12}Q_{12})^{-1}$ anstelle des Lösens mit P_{22} und Q_{22} .

Lösung: Sicherstellung von $W^T V = I$ durch $V = P_{12}$ und $W = Q_{12}(P_{12}Q_{12})^{-1}$ anstelle des Lösens mit P_{22} und Q_{22} .

 \rightarrow Bedingungen an die erste Ableitung des Fehlerfunktionals bleiben erfüllt.

Lösung: Sicherstellung von $W^T V = I$ durch $V = P_{12}$ und $W = Q_{12}(P_{12}Q_{12})^{-1}$ anstelle des Lösens mit P_{22} und Q_{22} .

 \rightarrow Bedingungen an die erste Ableitung des Fehlerfunktionals bleiben erfüllt.

 \rightarrow Aus Konditionsgründen ist die Korrekturgleichung durch die Biorthonormalisierung wie im IRKA-Verfahren zu ersetzen.

Einführung	Die H2-Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
00	00000	000000000000		
$\mathcal{H}_2 ext{-}M$	odellredukt -Verfahren	tion		

Lösung: Sicherstellung von $W^T V = I$ durch $V = P_{12}$ und $W = Q_{12}(P_{12}Q_{12})^{-1}$ anstelle des Lösens mit P_{22} und Q_{22} .

 \rightarrow Bedingungen an die erste Ableitung des Fehlerfunktionals bleiben erfüllt.

 \rightarrow Aus Konditionsgründen ist die Korrekturgleichung durch die Biorthonormalisierung wie im IRKA-Verfahren zu ersetzen.

Problem: Bestimmung der optimalen P_{12} und Q_{12} benötigt bereits das optimale reduzierte Modell.

Einführung	Die \mathcal{H}_2 -Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
		000000000000		
\mathcal{H}_2 -M	odellredukt	tion		

Lösung: Sicherstellung von $W^T V = I$ durch $V = P_{12}$ und $W = Q_{12}(P_{12}Q_{12})^{-1}$ anstelle des Lösens mit P_{22} und Q_{22} .

 \rightarrow Bedingungen an die erste Ableitung des Fehlerfunktionals bleiben erfüllt.

 \rightarrow Aus Konditionsgründen ist die Korrekturgleichung durch die Biorthonormalisierung wie im IRKA-Verfahren zu ersetzen.

Problem: Bestimmung der optimalen P_{12} und Q_{12} benötigt bereits das optimale reduzierte Modell.

Lösung: Berechnen aus beliebigem reduzierten Modell P_{12} und Q_{12} und bestimmen fortlaufend A_r , B_r , C_r , P_{12} und Q_{12} als Fixpunktiteration.

Algorithmus 2 Zweiseitiger Iterationsalgorithmus, TSIA

Input: $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n}$, $C \in \mathbb{R}^{1 \times n}$ und Startlösung $A_r \in \mathbb{R}^{r \times r}$, $B_r \in \mathbb{R}^{r}$ und $C_r \in \mathbb{R}^{1 \times r}$ Output: $A_r \in \mathbb{R}^{r \times r}$, $B_r \in \mathbb{R}^{r}$, $C_r \in \mathbb{R}^{1 \times r}$ 1: for i = 1, ... do 2: Löse $AP_{12} + P_{12}A_r^T + BB_r^T = 0$ 3: Löse $A^TQ_{12} + Q_{12}A_r - C^TC_r = 0$ 4: $V = P_{12}$, $W = Q_{12}$ 5: [V, W] = biorth(V, W)6: $A_r = W^TAV$, $B_r = W^TB$ und $C_r = CV$ 7: end for

11 NA	بالباب والمعاديا			
00	00000	000000000000	0	
Einführung		\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick

 \mathcal{H}_2 -Modellreduktion Das TSIA-Verfahren

Algorithmus 2 Zweiseitiger Iterationsalgorithmus, TSIA

Einführung	Die H_2 -Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
		00000000000		
	1.11.1.1.1.1			

\mathcal{H}_2 -Modellreduktion Das TSIA-Verfahren

Algorithmus 2 Zweiseitiger Iterationsalgorithmus, TSIA

Input:
$$A \in \mathbb{R}^{n \times n}$$
, $B \in \mathbb{R}^n$, $C \in \mathbb{R}^{1 \times n}$ und Startlösung $A_r \in \mathbb{R}^{r \times r}$, $B_r \in \mathbb{R}^r$ und $C_r \in \mathbb{R}^{1 \times r}$
Output: $A_r \in \mathbb{R}^{r \times r}$, $B_r \in \mathbb{R}^r$, $C_r \in \mathbb{R}^{1 \times r}$
1: for $i = 1, ...$ do
2: Löse $A_{P_{12}} + P_{12}A_r^T + BB_r^T = 0$
3: Löse $A^T Q_{12} + Q_{12}A_r - C^T C_r = 0$
4: $V = P_{12}$, $W = Q_{12}$
5: $[V, W] = \text{biorth}(V, W)$
6: $A_r = W^T AV$, $B_r = W^T B$ und $C_r = CV$
7: end for

 \rightarrow Durch zusätzliches Lösen von $A_r^T Q_{22} + Q_{22} A_r + C_r^T C_r = 0$ kann mit

$$\|\boldsymbol{H} - \boldsymbol{H}_r\|_{\mathcal{H}_2}^2 = \|\boldsymbol{H}\|_{\mathcal{H}_2}^2 + \mathsf{trace}\left(\boldsymbol{B}_r^{\mathsf{T}}\boldsymbol{Q}_{22}\boldsymbol{B}_r\right) + 2\,\mathsf{trace}\left(\boldsymbol{B}^{\mathsf{T}}\boldsymbol{Q}_{12}\boldsymbol{B}_r\right)$$

effizient der \mathcal{H}_2 -Fehler bestimmt werden.

19/25

Numerische Ergebnisse - TSIA

H_2 -IVIOOEIII COUNTREAUNTION Numerische Ergebnisse - TSIA

\mathcal{H}_2 -Modellreduktion

Einführung	Die H_2 -Norm	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
00	00000	00000000000		
$\mathcal{H}_2 extsf{-}M_2$ Numerisch	odellredukt	tion _{SIA}		MI

Dimension r	$\ H-H_r\ _{\mathcal{H}_2}$
6	1.049e+01
10	1.775e+00
15	2.670e-03
20	1.698e-06
25	9.422e-10

Tabelle: Finaler \mathcal{H}_2 -Fehler, künstliches Problem
Einführung		\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
00	00000	00000000000		
$\mathcal{H}_2 extsf{-}M_2$ Numerisch	odellredukt	tion _{SIA}		MI

Dimension r	$\ H-H_r\ _{\mathcal{H}_2}$
6	1.049e+01
10	1.775e+00
15	2.670e-03
20	1.698e-06
25	9.422e-10

Tabelle: Finaler \mathcal{H}_2 -Fehler, künstliches Problem

Problem	<i>r</i> = 6	<i>r</i> = 10	r = 15	<i>r</i> = 20
FDM-Heat 625	3.796e-05	1.406e-08	2.762e-13	1.417e-14
2 500	1.626e-03	3.745e-06	8.813e-10	4.260e-13
10 000	1.725e-02	1.160e-04	1.338e-07	1.839e-10
40 000	1.217e-01	1.334e-03	4.386e-06	1.868e-08
160 000	6.111e-01	1.340e-02	9.400e-05	7.966e-07
250 000	9.895e-01	2.543e-02	2.163e-04	2.079e-06

Tabelle: Finaler \mathcal{H}_2 -Fehler des TSIA-Verfahrens nach 15 Schritten

Einführung		\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
00	00000	00000000000		
$\mathcal{H}_2 ext{-}M_2$	odellredukt nhang IRKA- und	tion TSIA-Verfahren		M

 \rightarrow IRKA- und TSIA-Verfahren sind 2 Methoden zur $\mathcal{H}_2\text{-Modellreduktion:}$ gibt es Gemeinsamkeiten?

Einführung 00	Die H ₂ -Norm 00000	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser O	Schlussfolgerungen und Ausblick
$\mathcal{H}_2 ext{-}Mc$ Zusammen	dellreduk hang IRKA- und	tion TSIA-Verfahren		M

 \rightarrow IRKA- und TSIA-Verfahren sind 2 Methoden zur $\mathcal{H}_2\text{-Modellreduktion:}$ gibt es Gemeinsamkeiten?

Satz (K. '10)

Sei mit Σ ein unreduziertes SISO LTI-System gegeben. Weiterhin sei Σ_r ein zugehöriges reduziertes System. Des Weiteren seien A und A_r reell und stabil. Mit $\mu_i = -\lambda_i(A_r)$ seien die Interpolationspunkte für das IRKA-Verfahren gegeben, dann gilt

 $\mathcal{V}^{IRKA} = \mathcal{V}^{TSIA}$

und

$$\mathcal{W}^{IRKA} = \mathcal{W}^{TSIA}.$$

Einführung		\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
00	00000	00000000000		
$\mathcal{H}_2 ext{-Mo}$ Zusammenh	dellreduk [:] ang IRKA- und	tion I TSIA-Verfahren		M

 \rightarrow IRKA- und TSIA-Verfahren sind 2 Methoden zur $\mathcal{H}_2\text{-Modellreduktion:}$ gibt es Gemeinsamkeiten?

Satz (K. '10)

Sei mit Σ ein unreduziertes SISO LTI-System gegeben. Weiterhin sei Σ_r ein zugehöriges reduziertes System. Des Weiteren seien A und A_r reell und stabil. Mit $\mu_i = -\lambda_i(A_r)$ seien die Interpolationspunkte für das IRKA-Verfahren gegeben, dann gilt

 $\mathcal{V}^{\textit{IRKA}} = \mathcal{V}^{\textit{TSIA}}$

und

$$\mathcal{W}^{IRKA} = \mathcal{W}^{TSIA}.$$

 \rightarrow Beweis erfolgt mit Hilfe der Eigenwertzerlegung von A_r

\mathcal{H}_2 -Modellreduktion Zusammenhang IRKA- und TSIA-Verfahren

Abbildung: Differenz der Interpolationspunkte im IRKA- und TSIA-Verfahren für die Wärmeleitung

Einführung	Die H2-Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
		0000000000		
$\mathcal{H}_2 ext{-Mo}$ Zusammenh	dellredukt ang IRKA- und	tion TSIA-Verfahren		M

red. Dimension r	$ \delta_{IRKA} - \delta_{TSIA} _2$
6	8.639e-10
12	6.894e-03

Tabelle: Differenz der Interpolationspunkte im IRKA- und TSIA-Verfahren für die Wärmeleitung

Betrachten die Sylvestergleichung

AX + XH + M = 0

mit A groß und dünnbesetzt, H klein und dichtbesetzt.

Betrachten die Sylvestergleichung

AX + XH + M = 0

mit A groß und dünnbesetzt, H klein und dichtbesetzt.

Grundidee: Lösen mit *A* ist möglich. *H* durch deren Schurzerlegung $H = USU^T$ ersetzen und mit "Rückwärtselimination" lösen.

Betrachten die Sylvestergleichung

AX + XH + M = 0

mit A groß und dünnbesetzt, H klein und dichtbesetzt.

Grundidee: Lösen mit *A* ist möglich. *H* durch deren Schurzerlegung $H = USU^T$ ersetzen und mit "Rückwärtselimination" lösen.

Algorithmus 5 Lösung der speziellen Sylvestergleichung

Input: AX + XS + M = 0 mit $A \in \mathbb{R}^{n \times n}$, $H \in \mathbb{R}^{m \times m}$ und $M \in \mathbb{R}^{n \times m}$ **Output:** $X \in \mathbb{R}^{n \times m}$ 1: Berechne Schurzerlegung $USU^T = H$ 2: $\tilde{M} = MU$ 3: for j = 1, ..., m do 4: Löse $(A + S_{ij}I)\tilde{X}(:,j) = -\tilde{M} - \sum_{i=1}^{j-1} S_{ij}\tilde{X}(:,i)$ 5: end for 6: $X = \tilde{X}U$

inführung	Die H_2 -Norm	\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen un
			•	

Spezieller Sylvesterlöser

Problem						Speedup
FDM-Heat	r	sylv	lyap	sm_sylv	C.M.E.S.S.	lyap sm_sylv
625	5	1.653	0.173	0.024	0.008	7.254
625	10	10.503	0.188	0.048	0.011	3.891
625	15	32.938	0.207	0.081	0.024	2.554
2 500	5	74.934	9.348	0.107	0.051	87.119
2 500	10	559.524	9.722	0.253	0.055	38.394
2 500	15	-	10.094	0.364	0.082	27.712
10 000	5	-	537.658	0.515	0.248	1 044.241
10 000	10	-	543.971	1.171	0.397	464.706
10 000	15	-	553.388	1.946	0.458	284.337
250 000	5	-	-	21.626	22.200	-
250 000	10	-	-	43.516	42.422	-
250 000	15	-	-	85.176	52.031	-

Tabelle: Zeitvergleich: Verschiedene Löser für die spezielle Sylvestergleichung und deren Transponierte, Zeiten in Sekunden

• H2-Modellreduktion mit Matrixgleichungen ist möglich

Einführung	Die \mathcal{H}_2 -Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
Schlur	cefolgorupg	on und Auch	lick	
Schlus	ssioigerung	en una Auspi	ICK	

- \bullet $\mathcal{H}_2\text{-}\mathsf{Modellreduktion}$ mit Matrixgleichungen ist möglich
- Diese ist äquivalent zur Interpolationsidee

Calalia			li al c	
00	00000	0000000000		
Einführung		\mathcal{H}_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick

Schlussfolgerungen und Ausblick

Schlussfolgerungen:

- \mathcal{H}_2 -Modellreduktion mit Matrixgleichungen ist möglich
- Diese ist äquivalent zur Interpolationsidee
- Interpolationsansatz auch für verallgemeinerte Systeme nutzbar

Einführung	Die H_2 -Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
Schlu	ssfolgerung	en und Aushl	lick	
Junu	SSIVIECIUIIE		ICK	

- \mathcal{H}_2 -Modellreduktion mit Matrixgleichungen ist möglich
- Diese ist äquivalent zur Interpolationsidee
- Interpolationsansatz auch für verallgemeinerte Systeme nutzbar
- Anwendung der Single-Pattern Multi-Value Idee zur Lösung von $(A + p_i I)x = b$ auf ADI-Verfahren, IRKA-Verfahren, Sylvesterlöser und Übertragungsfunktion erfolgreich

Einführung	Die H_2 -Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
Schlu	ssfolgerung	en und Aushl	lick	
Junu	SSIVIECIUIIE		ICK	

- \mathcal{H}_2 -Modellreduktion mit Matrixgleichungen ist möglich
- Diese ist äquivalent zur Interpolationsidee
- Interpolationsansatz auch für verallgemeinerte Systeme nutzbar
- Anwendung der Single-Pattern Multi-Value Idee zur Lösung von (A + p_iI)x = b auf ADI-Verfahren, IRKA-Verfahren, Sylvesterlöser und Übertragungsfunktion erfolgreich

In Zukunft zu betrachten:

• Entwicklung von Blocklösern, zum Beispiel für das Fehlersystem

Einführung	Die H_2 -Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
Schlu	ssfolgerung	en und Aushl	lick	
Junu	SSIVIECIUIIE		ICK	

- \mathcal{H}_2 -Modellreduktion mit Matrixgleichungen ist möglich
- Diese ist äquivalent zur Interpolationsidee
- Interpolationsansatz auch für verallgemeinerte Systeme nutzbar
- Anwendung der Single-Pattern Multi-Value Idee zur Lösung von (A + p_iI)x = b auf ADI-Verfahren, IRKA-Verfahren, Sylvesterlöser und Übertragungsfunktion erfolgreich

- Entwicklung von Blocklösern, zum Beispiel für das Fehlersystem
- Anpassung des TSIA-Verfahrens auf verallgemeinerte Systeme

Einführung	Die H_2 -Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
Schlu	ssfolgerung	en und Aushl	lick	
Junu	SSIVIECIUIIE		ICK	

- \mathcal{H}_2 -Modellreduktion mit Matrixgleichungen ist möglich
- Diese ist äquivalent zur Interpolationsidee
- Interpolationsansatz auch für verallgemeinerte Systeme nutzbar
- Anwendung der Single-Pattern Multi-Value Idee zur Lösung von (A + p_iI)x = b auf ADI-Verfahren, IRKA-Verfahren, Sylvesterlöser und Übertragungsfunktion erfolgreich

- Entwicklung von Blocklösern, zum Beispiel für das Fehlersystem
- Anpassung des TSIA-Verfahrens auf verallgemeinerte Systeme
- Entwicklung eines verallgemeinerten speziellen Sylvesterlösers

Einführung	Die H_2 -Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
Schlug	ssfolgerung	en und Auch	lick	
Juliu	ssivigerung			

- \mathcal{H}_2 -Modellreduktion mit Matrixgleichungen ist möglich
- Diese ist äquivalent zur Interpolationsidee
- Interpolationsansatz auch für verallgemeinerte Systeme nutzbar
- Anwendung der Single-Pattern Multi-Value Idee zur Lösung von (A + p_iI)x = b auf ADI-Verfahren, IRKA-Verfahren, Sylvesterlöser und Übertragungsfunktion erfolgreich

- Entwicklung von Blocklösern, zum Beispiel für das Fehlersystem
- Anpassung des TSIA-Verfahrens auf verallgemeinerte Systeme
- Entwicklung eines verallgemeinerten speziellen Sylvesterlösers
- Algorithmus zur gezielten Erfüllung einer \mathcal{H}_2 -Fehlerschranke

Einführung	Die H_2 -Norm	H_2 -Modellreduktion	Spezieller Sylvesterlöser	Schlussfolgerungen und Ausblick
Schlus	sfolgerung	en und Ausbl	ick	

- \mathcal{H}_2 -Modellreduktion mit Matrixgleichungen ist möglich
- Diese ist äquivalent zur Interpolationsidee
- Interpolationsansatz auch für verallgemeinerte Systeme nutzbar
- Anwendung der Single-Pattern Multi-Value Idee zur Lösung von

Danke für Ihre Aufmerksamkeit.

- Entwicklung von Blocklösern, zum Beispiel für das Fehlersystem
- Anpassung des TSIA-Verfahrens auf verallgemeinerte Systeme
- Entwicklung eines verallgemeinerten speziellen Sylvesterlösers
- Algorithmus zur gezielten Erfüllung einer \mathcal{H}_2 -Fehlerschranke