
Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

1/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

Single-Pattern-Multi-Value LU
Decomposition

Basic Ideas and Parallelization

Martin Köhler
joint work with Peter Benner and Jens Saak

Mathematics in Industry and Technology
Chemnitz University of Technology

Facing the Multicore-Challenge
Heidelberg Academy of Sciences

March 19, 2010

1/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

Outline

1 Motivation
Matrix Equations
Problem - Memory Usage

2 Single-Pattern-Multi-Value Idea
Preparation
Resulting Algorithm
“Single-Pattern-Multi-Value” Idea

3 Numerical Results
Pattern-Reuse
Memory Saving
Overall Results

4 Outlook
Open Problems
Current Implementation: C.M.E.S.S.

2/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

Matrix Equations
Problem - Memory Usage

Lyapunov Equation

FX + XFT = −GGT (1)

with F ∈ Rn×n, G ∈ Rn×p and unknown X ∈ Rn×n, X = XT > 0

Arises in:

Optimal Control

Model Order Reduction

a Newton-step for Algebraic Ricatti Equations

R(X) = Q + ATX + XA + XGX = 0

Solution methods:

dense matrices: Bartel-Stewart alg., Hammarling’s method,
Sign-Function O(n3)

sparse matrices: Alternating-Directions-Implicit iteration
O(nnz(F))

3/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

Matrix Equations
Problem - Memory Usage

Alternating Directions Implicit Iteration

Consider the LRCF-ADI algorithm to solve FX + XFT = −GGT :

Algorithm 1 Low-rank Cholesky factor ADI iteration (LRCF-ADI)

Input: F ,G defining FX + XFT = −GGT and
shift parameters {p1, . . . , pimax}

Output: Z = Zimax ∈ Cn×timax , such that ZZH ≈ X
1: Solve (A + p1I)V1 =

√
−2Re (p1)G for V1

2: Z1 = V1

3: for i = 2, 3, . . . , imax do
4: Solve (A + pi I)Ṽ = (Vi−1) for Ṽ
5: Vi =

√
Re (pi)/Re (pi−1)(Vi−1 − (pi + pi−1)Ṽ)

6: Zi = [Zi−1 Vi]
7: end for

4/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

Matrix Equations
Problem - Memory Usage

Problem - Memory Usage

We need pimax decompositions and have to hold them in memory. In case
of a simple FDM semi-discretized PDE problem1, we get with pimax = 16

N size of L+U in MB 16 LUs in MB
100 0.02 0.35

2 500 1.16 18.59
10 000 6.45 103.20
40 000 33.62 537.92
90 000 90.75 1 452.00

250 000 285.10 4 561.30
562 500 718.00 11 488.00

1 000 000 1 379.00 22 064.00

impracticable on non HPC
machines

1instationary convection-diffusion equation on the unit square with homogeneous
1st kind boundary conditions
5/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

Matrix Equations
Problem - Memory Usage

Problem - Memory Usage

We need pimax decompositions and have to hold them in memory. In case
of a simple FDM semi-discretized PDE problem1, we get with pimax = 16

N size of L+U in MB 16 LUs in MB
100 0.02 0.35

2 500 1.16 18.59
10 000 6.45 103.20
40 000 33.62 537.92
90 000 90.75 1 452.00

250 000 285.10 4 561.30
562 500 718.00 11 488.00

1 000 000 1 379.00 22 064.00

impracticable on non HPC
machines

1instationary convection-diffusion equation on the unit square with homogeneous
1st kind boundary conditions
5/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

Preparation
Resulting Algorithm
“Single-Pattern-Multi-Value” Idea

Single-Pattern-Multi-Value Idea
Preparation

If we compute a LU factorization of a matrix A, we know

the pattern of L and U including the number of non-zero entries

sizes and values of all data structures

Remark: Numerically zero entries must not be rejected in the pattern.

Definition

Let A ∈ Rn×m be a matrix. We call the set

P(A) = {(i , j) | Ai,j 6= 0}

pattern of A. Furthermore we define

PR(A, i) = {j | Ai,j 6= 0}

as the pattern of the i-th row of A.

6/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

Preparation
Resulting Algorithm
“Single-Pattern-Multi-Value” Idea

Single-Pattern-Multi-Value Idea
Preparation

We want to compute L̃Ũ = A + pI with knowledge of LU = A.

If P(A + pI) = P(A) holds2 and L̃Ũ = A + pI :

P(L̃) = P(L) and P(Ũ) = P(U)

want to use P(L) and P(U) to compute L̃Ũ = A + pI

allocate all required memory in one step

Realization Idea

Reuse P(L) and P(U) in a row-wise LU decomposition of A + pI .

2in our case: A(i , i) 6= 0 ∀i
7/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

Preparation
Resulting Algorithm
“Single-Pattern-Multi-Value” Idea

Single-Pattern-Multi-Value Idea
Preparation

We want to compute L̃Ũ = A + pI with knowledge of LU = A.

If P(A + pI) = P(A) holds2 and L̃Ũ = A + pI :

P(L̃) = P(L) and P(Ũ) = P(U)

want to use P(L) and P(U) to compute L̃Ũ = A + pI

allocate all required memory in one step

Realization Idea

Reuse P(L) and P(U) in a row-wise LU decomposition of A + pI .

2in our case: A(i , i) 6= 0 ∀i
7/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

Preparation
Resulting Algorithm
“Single-Pattern-Multi-Value” Idea

Single-Pattern-Multi-Value Idea
Resulting Algorithm

Algorithm 2 Pattern-Reuse for L̃Ũ = Ã

Input: Ã := A + pI , P(L) and P(U) with LU = A and P(A) = P(Ã)
Output: L̃, Ũ with L̃Ũ = Ã

1: Ũ(1, :) = Ã(1, :)
2: for i = 2, . . . , n do
3: w = Ã(i , :) as sparse vector
4: for all j ∈ PR(L, i) ordered do
5: L̃(i , j) = α = w(j)/Ũ(j , j)
6: w = w − α · Ũ(j , :)
7: end for
8: for all j ∈ PR(U, i) do
9: Ũ(i , j) = w(j)

10: end for
11: end for

8/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

Preparation
Resulting Algorithm
“Single-Pattern-Multi-Value” Idea

Single-Pattern-Multi-Value Idea
“Single-Pattern-Multi-Value” Idea

Another way to reuse information from P(L) and P(U).

the L and U pattern of all system A + pi I is the same

only necessary to store them once

read-only access on P(L) and P(U) → no problems with
race conditions

use multicore CPUs: compute LiUi = A + pi I in parallel for different
pi with Algorithm 2 (→ OpenMP)

→ reduce the memory usage drastically

→ use modern CPUs more efficiently

9/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

Preparation
Resulting Algorithm
“Single-Pattern-Multi-Value” Idea

Single-Pattern-Multi-Value Idea
“Single-Pattern-Multi-Value” Idea

Another way to reuse information from P(L) and P(U).

the L and U pattern of all system A + pi I is the same

only necessary to store them once

read-only access on P(L) and P(U) → no problems with
race conditions

use multicore CPUs: compute LiUi = A + pi I in parallel for different
pi with Algorithm 2 (→ OpenMP)

→ reduce the memory usage drastically

→ use modern CPUs more efficiently

9/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

Pattern-Reuse
Memory Saving
Overall Results

Numerical Results
Pattern-Reuse

Factorize the FDM matrix A from the example problem on an
Intel®Xeon®5160. Computation times in seconds.

dimension LU with CSparse LU with known savings
P(L), P(U)

10 000 0.06 0.02 57.0%
90 000 1.90 1.17 38.2%

250 000 9.55 7.57 20.7%
1 000 000 92.70 81.30 12.3%

10/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

Pattern-Reuse
Memory Saving
Overall Results

Numerical Results
Memory Saving

Memory usage for A + pi I with imax = 16 on a 64bit machine:

N size of L+U in MB 16 LUs in MB SPMV3 LU savings
10 000 6.45 103.20 53.68 47.99%
90 000 90.75 1 452.00 760.91 47.60%

160 000 175.28 2 804.50 1 471.50 47.53%
250 000 285.10 4 561.30 2 394.50 47.50%
562 500 718.00 11 488.00 6 038.00 47.44%

1 000 000 1 379.00 22 064.00 11 604.00 47.41%

3single-pattern-multi-value
11/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

Pattern-Reuse
Memory Saving
Overall Results

Numerical Results
Overall Results

We solve the Lyapunov-Equation arising from Problem 1 on an
Intel®Xeon®5160 CPU, 16 GB RAM. With our implementation and
MATLAB®.

N LyaPack4 M.E.S.S.5 C.M.E.S.S.6

625 0.10 0.23 0.04
10 000 6.22 5.64 0.97
40 000 71.48 34.55 11.09
90 000 418.50 90.49 34.67

160 000 out of mem. 219.90 109.32
250 000 out of mem. 403.80 193.67
562 500 out of mem. 1 216.70 930.14

1 000 000 out of mem. 2 428.60 2 219.95

4current MATLAB toolbox
5upcoming MATLAB toolbox
6without CSparse → slower first decomposition

12/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

Pattern-Reuse
Memory Saving
Overall Results

Numerical Results
Conclusions

minimize the memory allocation effort (no reallocation
needed)

speedup depends on the cache size of the cpu, the
(re)malloc implementation, the memory architecture
and the matrix size

data is read continuously from memory

reuse of the pattern structure can accelerate
factorizations significantly and reduce the memory usage

memory bandwidth is the bottle neck for many cores

13/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

Open Problems
Current Implementation: C.M.E.S.S.

Outlook
Open Problems

UMFPack (unsymmetric multifrontal LU) is faster than the reuse
but requires more memory

→ check if the reuse idea can be ported to UMFPack
→ port the memory saving idea to UMFPack
→ seems to be not thread safe

MATLAB-interface with OpenMP support nearly impossible because
of conflicting linker/compiler flags some older versions of gcc:
XLDFLAGS="$XLDFLAGS -Wl,-z,nodlopen"

or MATLAB crashes immediately

shared memory parallel algorithms for sparse matrices

14/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

Open Problems
Current Implementation: C.M.E.S.S.

Outlook
Current Implementation: C.M.E.S.S.

C.M.E.S.S. is:

upcoming C library for solving large scale matrix equations

providing a uniform interface for iterative and direct linear system
solvers

supporting OpenMP where it is possible

a front end for UMFPack, LAPACK, RRQR, CSparse, SLICOT,. . .

dynamically converting between various sparse storage support

handling sparse and dense matrices in a unified way

See our C.M.E.S.S. poster as well.

15/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

Motivation
Single-Pattern-Multi-Value Idea

Numerical Results
Outlook

Open Problems
Current Implementation: C.M.E.S.S.

Outlook
Current Implementation: C.M.E.S.S.

C.M.E.S.S. is:

upcoming C library for solving large scale matrix equations

providing a uniform interface for iterative and direct linear system
solvers

supporting OpenMP where it is possible

a front end for UMFPack, LAPACK, RRQR, CSparse, SLICOT,. . .

dynamically converting between various sparse storage support

handling sparse and dense matrices in a unified way

Thanks for your attention.

15/15 komart@hrz.tu-chemnitz.de Martin Köhler SPMV LU decomposition

	Motivation
	Matrix Equations
	Problem - Memory Usage

	Single-Pattern-Multi-Value Idea
	Preparation
	Resulting Algorithm
	``Single-Pattern-Multi-Value'' Idea

	Numerical Results
	Pattern-Reuse
	Memory Saving
	Overall Results

	Outlook
	Open Problems
	Current Implementation: C.M.E.S.S.

	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:

