

Single-Pattern-Multi-Value LU Decomposition Basic Ideas and Parallelization

Martin Köhler joint work with Peter Benner and Jens Saak

Mathematics in Industry and Technology Chemnitz University of Technology

Facing the Multicore-Challenge Heidelberg Academy of Sciences

March 19, 2010

Outline

1 Motivation

- Matrix Equations
- Problem Memory Usage

2 Single-Pattern-Multi-Value Idea

- Preparation
- Resulting Algorithm
- "Single-Pattern-Multi-Value" Idea

3 Numerical Results

- Pattern-Reuse
- Memory Saving
- Overall Results

4 Outlook

- Open Problems
- Current Implementation: C.M.E.S.S.

Matrix Equations Problem - Memory Usage

Lyapunov Equation

$$FX + XF^{T} = -GG^{T} \tag{1}$$

with $F \in \mathbb{R}^{n \times n}$, $G \in \mathbb{R}^{n \times p}$ and unknown $X \in \mathbb{R}^{n \times n}$, $X = X^T > 0$

Arises in:

- Optimal Control
- Model Order Reduction
- a Newton-step for Algebraic Ricatti Equations

$$R(X) = Q + A^T X + XA + XGX = 0$$

Solution methods:

- \bullet dense matrices: Bartel-Stewart alg., Hammarling's method, Sign-Function $\mathcal{O}(n^3)$
- sparse matrices: Alternating-Directions-Implicit iteration
 \$\mathcal{O}(nnz(F))\$

Matrix Equations Problem - Memory Usage

Alternating Directions Implicit Iteration

Algorithm 1 Low-rank Cholesky factor ADI iteration (LRCF-ADI)

Input: F, G defining $FX + XF^{T} = -GG^{T}$ and shift parameters $\{p_{1}, \ldots, p_{imax}\}$ Output: $Z = Z_{imax} \in \mathbb{C}^{n \times t_{imax}}$, such that $ZZ^{H} \approx X$ 1: Solve $(A + p_{1}I)V_{1} = \sqrt{-2 \operatorname{Re}(p_{1})}G$ for V_{1} 2: $Z_{1} = V_{1}$ 3: for $i = 2, 3, \ldots, i_{max}$ do 4: Solve $(A + p_{i}I)\tilde{V} = (V_{i-1})$ for \tilde{V} 5: $V_{i} = \sqrt{\operatorname{Re}(p_{i})}/\operatorname{Re}(p_{i-1})(V_{i-1} - (p_{i} + \overline{p_{i-1}})\tilde{V})$ 6: $Z_{i} = [Z_{i-1} \quad V_{i}]$ 7: end for

Matrix Equations Problem - Memory Usage

Problem - Memory Usage

We need p_{imax} decompositions and have to hold them in memory. In case of a simple FDM semi-discretized PDE problem¹, we get with $p_{imax} = 16$

N	size of L+U in MB	16 LUs in MB
100	0.02	0.35
2 500	1.16	18.59
10 000	6.45	103.20
40 000	33.62	537.92
90 000	90.75	1 452.00
250 000	285.10	4 561.30
562 500	718.00	11 488.00
1000000	1 379.00	22 064.00

 $^{^{\}rm 1}{\rm instationary}$ convection-diffusion equation on the unit square with homogeneous 1st kind boundary conditions

Matrix Equations Problem - Memory Usage

Problem - Memory Usage

We need p_{imax} decompositions and have to hold them in memory. In case of a simple FDM semi-discretized PDF problem¹ we get with $p_{imax} = 16$

¹instationary convection-diffusion equation on the unit square with homogeneous 1st kind boundary conditions

Preparation Resulting Algorithm "Single-Pattern-Multi-Value" Idea

Single-Pattern-Multi-Value Idea

If we compute a LU factorization of a matrix A, we know

- the pattern of L and U including the number of non-zero entries
- sizes and values of all data structures

Remark: Numerically zero entries must not be rejected in the pattern.

Definition

Let $A \in \mathbb{R}^{n \times m}$ be a matrix. We call the set

$$\mathcal{P}(A) = \{(i,j) \mid A_{i,j} \neq 0\}$$

pattern of A. Furthermore we define

$$\mathcal{P}_{\mathcal{R}}(\mathcal{A},i) = \{j \mid \mathcal{A}_{i,j} \neq 0\}$$

as the pattern of the *i*-th row of A.

Preparation Resulting Algorithm "Single-Pattern-Multi-Value" Idea

Single-Pattern-Multi-Value Idea Preparation

We want to compute $\tilde{L}\tilde{U} = A + pI$ with knowledge of LU = A.

If
$$\mathcal{P}(A + pI) = \mathcal{P}(A)$$
 holds² and $\tilde{L}\tilde{U} = A + pI$:

- $\mathcal{P}(\tilde{L}) = \mathcal{P}(L)$ and $\mathcal{P}(\tilde{U}) = \mathcal{P}(U)$
- want to use $\mathcal{P}(L)$ and $\mathcal{P}(U)$ to compute $\tilde{L}\tilde{U} = A + pI$

• allocate all required memory in one step

²in our case: $A(i, i) \neq 0 \quad \forall i$

Preparation Resulting Algorithm "Single-Pattern-Multi-Value" Idea

Single-Pattern-Multi-Value Idea Preparation

We want to compute $\tilde{L}\tilde{U} = A + pI$ with knowledge of LU = A.

If
$$\mathcal{P}(A + pI) = \mathcal{P}(A)$$
 holds² and $\tilde{L}\tilde{U} = A + pI$:

•
$$\mathcal{P}(\tilde{L}) = \mathcal{P}(L)$$
 and $\mathcal{P}(\tilde{U}) = \mathcal{P}(U)$

- want to use $\mathcal{P}(L)$ and $\mathcal{P}(U)$ to compute $\tilde{L}\tilde{U} = A + pI$
- allocate all required memory in one step

Realization Idea

Reuse $\mathcal{P}(L)$ and $\mathcal{P}(U)$ in a row-wise LU decomposition of A + pI.

²in our case: $A(i, i) \neq 0 \quad \forall i$

Preparation Resulting Algorithm "Single-Pattern-Multi-Value" Idea

Single-Pattern-Multi-Value Idea Resulting Algorithm

Algorithm 2 Pattern-Reuse for $\tilde{L}\tilde{U} = \tilde{A}$

Input: $\tilde{A} := A + pI$, $\mathcal{P}(L)$ and $\mathcal{P}(U)$ with LU = A and $\mathcal{P}(A) = \mathcal{P}(\tilde{A})$ **Output:** \tilde{L} , \tilde{U} with $\tilde{L}\tilde{U} = \tilde{A}$ 1: $\tilde{U}(1, :) = \tilde{A}(1, :)$ 2: for i = 2, ..., n do 3: w = A(i, :) as sparse vector for all $i \in \mathcal{P}_R(L, i)$ ordered do 4. $\tilde{L}(i,j) = \alpha = w(j)/\tilde{U}(j,j)$ 5 $w = w - \alpha \cdot \tilde{U}(i, :)$ 6. 7. end for 8. for all $i \in \mathcal{P}_{\mathcal{R}}(U, i)$ do $\tilde{U}(i,j) = w(j)$ g٠ end for $10 \cdot$ 11: end for

Preparation Resulting Algorithm "Single-Pattern-Multi-Value" Idea

Single-Pattern-Multi-Value Idea "Single-Pattern-Multi-Value" Idea

Another way to reuse information from $\mathcal{P}(L)$ and $\mathcal{P}(U)$.

- the L and U pattern of all system $A + p_i I$ is the same
- only necessary to store them once
- read-only access on $\mathcal{P}(L)$ and $\mathcal{P}(U) \to$ no problems with race conditions
- use multicore CPUs: compute $L_i U_i = A + p_i I$ in parallel for different p_i with Algorithm 2 (\rightarrow OpenMP)

Preparation Resulting Algorithm "Single-Pattern-Multi-Value" Idea

Single-Pattern-Multi-Value Idea "Single-Pattern-Multi-Value" Idea

Another way to reuse information from $\mathcal{P}(L)$ and $\mathcal{P}(U)$.

- the L and U pattern of all system $A + p_i I$ is the same
- only necessary to store them once
- read-only access on $\mathcal{P}(L)$ and $\mathcal{P}(U) \to$ no problems with race conditions
- use multicore CPUs: compute $L_i U_i = A + p_i I$ in parallel for different p_i with Algorithm 2 (\rightarrow OpenMP)

- $\rightarrow\,$ reduce the memory usage drastically
- \rightarrow use modern CPUs more efficiently

Pattern-Reuse Memory Saving Overall Results

Numerical Results

Pattern-Reuse

Factorize the FDM matrix A from the example problem on an $Intel^{\mathbb{R}}Xeon^{\mathbb{R}}5160$. Computation times in seconds.

dimension	LU with CSparse	LU with known	savings
		$\mathcal{P}(L), \mathcal{P}(U)$	
10 000	0.06	0.02	57.0%
90 000	1.90	1.17	38.2%
250 000	9.55	7.57	20.7%
1000000	92.70	81.30	12.3%

Pattern-Reuse Memory Saving Overall Results

Numerical Results Memory Saving

Memory usage for $A + p_i I$ with imax = 16 on a 64bit machine:

Ν	size of L+U in MB $$	16 LUs in MB	SPMV ³ LU	savings
10 000	6.45	103.20	53.68	47.99%
90 000	90.75	1 452.00	760.91	47.60%
160000	175.28	2804.50	1 471.50	47.53%
250 000	285.10	4 561.30	2 394.50	47.50%
562 500	718.00	11 488.00	6 038.00	47.44%
1000000	1 379.00	22 064.00	11 604.00	47.41%

³single-pattern-multi-value

Pattern-Reuse Memory Saving Overall Results

Numerical Results

Overall Results

We solve the Lyapunov-Equation arising from Problem 1 on an Intel[®]Xeon[®]5160 CPU, 16 GB RAM. With our implementation and MATLAB[®].

Ν	LyaPack ⁴	M.E.S.S. ⁵	C.M.E.S.S. ⁶
625	0.10	0.23	0.04
10 000	6.22	5.64	0.97
40 000	71.48	34.55	11.09
90 000	418.50	90.49	34.67
160 000	out of mem.	219.90	109.32
250 000	out of mem.	403.80	193.67
562 500	out of mem.	1 216.70	930.14
1000000	out of mem.	2 428.60	2 219.95

⁴current MATLAB toolbox

⁵upcoming MATLAB toolbox

⁶without CSparse \rightarrow slower first decomposition

Pattern-Reuse Memory Saving Overall Results

Numerical Results

- minimize the memory allocation effort (no reallocation needed)
- speedup depends on the cache size of the cpu, the (re)malloc implementation, the memory architecture and the matrix size
- data is read continuously from memory
- reuse of the pattern structure can accelerate factorizations significantly and reduce the memory usage
- memory bandwidth is the bottle neck for many cores

Open Problems Current Implementation: C.M.E.S.S.

Outlook Open Problems

- UMFPack (unsymmetric multifrontal LU) is faster than the reuse but requires more memory
 - $\rightarrow\,$ check if the reuse idea can be ported to UMFPack
 - $\rightarrow\,$ port the memory saving idea to UMFPack
 - $\rightarrow\,$ seems to be not thread safe
- MATLAB-interface with OpenMP support nearly impossible because of conflicting linker/compiler flags some older versions of gcc: XLDFLAGS="\$XLDFLAGS -W1,-z,nodlopen" or MATLAB crashes immediately
- shared memory parallel algorithms for sparse matrices

Open Problems Current Implementation: C.M.E.S.S.

Outlook Current Implementation: C.M.E.S.S.

C.M.E.S.S. is:

- upcoming C library for solving large scale matrix equations
- providing a uniform interface for iterative and direct linear system solvers
- supporting OpenMP where it is possible
- a front end for UMFPack, LAPACK, RRQR, CSparse, SLICOT,...
- dynamically converting between various sparse storage support
- handling sparse and dense matrices in a unified way

See our C.M.E.S.S. poster as well.

Open Problems Current Implementation: C.M.E.S.S.

Outlook Current Implementation: C.M.E.S.S.

C.M.E.S.S. is:

- upcoming C library for solving large scale matrix equations
- providing a uniform interface for iterative and direct linear system solvers
- supporting OpenMP where it is possible
- a front end for UMFPack, LAPACK, RRQR, CSparse, SLICOT,...
- dynamically converting between various sparse storage support
- handling sparse and dense matrices in a unified way

Thanks for your attention.