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Non-Symmetric Generalized Eigenvalue Problem

We consider the non-symmetric generalized eigenvalue problem:
Ax = ABx,

where A € R"™" and B € R™ " are non-singular matrices and
A € C is an eigenvalue with its eigenvector x € R".
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Motivation

Non-Symmetric Generalized Eigenvalue Problem

We consider the non-symmetric generalized eigenvalue problem:
Ax = ABx,

where A € R"™" and B € R™ " are non-singular matrices and
A € C is an eigenvalue with its eigenvector x € R".

Key idea behind the solution:
Compute the generalized Schur decomposition:

RMAZy =)Q"Bzy,
e -

where S € C™" and T € C™" are upper triangular and
Q € C™" and Z € C™" are unitary matrices.
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Motivation

Non-Symmetric Generalized Eigenvalue Problem

We consider the non-symmetric generalized eigenvalue problem:
Ax = ABx,

where A € R"™" and B € R™ " are non-singular matrices and
A € C is an eigenvalue with its eigenvector x € R".

Key idea behind the solution:
Compute the generalized Schur decomposition:

QTAZy=)Q"BZy,
5 Y

where S € R™" and T € R™ " are quasi upper triangular and
Q € R™"™ and Z € R™" are orthogonal matrices.
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Non-Symmetric Generalized Eigenvalue Problem

Applications:
We

@ Direct solution of generalized Lyapunov equation:

AXET + EXAT + M =0,

\;\Vheer @ Direct solution of generalized Sylvester equations:
AXB+ CXD+ M =0
Key
Com O
AR—-LB=C
DR — LE = F,

wherl @ Various analysis methods for dynamical systems,
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\

d
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QZ Algorithm [MOLER, STEWART ’73]

Common way to compute the generalized Schur decomposition:
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QZ Algorithm [MOLER, STEWART 73]

Common way to compute the generalized Schur decomposition:

QZ Algorithm

© Compute B = QB using the QR decomposition and
transform A into A = Q" A.

©Q Reduce the pair (Z\, B) to Hessenberg-Triangular form using
Givens-Rotations.

© Apply QZ steps to (A, B) until the matrix A has reduced
Hessenberg form. — generalized Schur form.
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Motivation @
QZ Algorithm [MOLER, STEWART ’73]

Common way to compute the generalized Schur decomposition:

QZ Algorithm

Q@ Compute B = @B using the QR decomposition| and
transform A into A = QHA.

Q@ Reduce the pair (A, B) to Hessenberg- Triangular form using
Givens-Rotations.

© Apply QZ steps to (2\, B) until the matr x A has reduced

Hessenberg form. — g DGEQRF provides a level-3 BLAS
limplementation. ©)
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Motivation &
QZ Algorithm [MOLER, STEWART ’73]

Common way to compute the generalized Schur decomposition:

QZ Algorithm

© Compute B = QB using the QR decomposition and
transform A into A = Q" A.

©Q Reduce the pair (Z\, B) to Hessenberg-Triangular form using

(Givens-Rotations.!
© Apply QZ steps to (A, B) until the matrx A has reduced

Hessenberg form. — g[Givens—Rotations are only level-1
lBLAS operations. ®
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QZ Algorithm [MOLER, STEWART 73]

Common way to compute the generalized Schur decomposition:

QZ Algorithm

© Compute B = QB usi

transform A into A = (

Q Reduce the nair (A, B) to Hessenberg-Triangular form using
Givens-Rottions.

Q@ Apply to (A, B) until the matrix A has reduced
Hessenberg form. — generalized Schur form.

Sequences of Givens-Rotations
®0
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QZ Algorithm [MOLER, STEWART ’73

Common way to compute the generalized Schur decomposition:

QZ Algorithm

@ Compute B = QBN using the QR decomposition and
transform A into A = Q" A.

@ Reduce the pair (/Z\, B) to Hessenberg-Triangular form using
Givens-Rotations.

© Apply QZ steps to (A, B) until the matrix A has reduced
Hessenberg form. — generalized Schur form.

— Implemented in LAPACK as DGGES or built using DGEQRF,
DGGHRD, and DHGEQZ,

— Need ~ 66n> Flops,

— No parallel version in ScaLAPACK available.
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QZ on Multicore Architectures

Example: Runtime to compute the generalized Schur form on a
dual 8-core Intel®Xeon® E5-2690:

Intel® MKL 11.0 OpenBLAS 0.2.8
Matrix | dim. [ 1 Th. | 8 Th. | 16 Th. | 1 Th. | 8 Th. | 16 Th.
rbs480 | 480 | 1.23s | 1.10s | 1.23s | 1.38s | 2.07s | 2.41s
bsst09 | 1083 | 16.28s | 16.29s | 16.46s | 16.90s | 16.89s | 17.13s
peec | 1434 | 40.36s | 39.90s | 40.01s | 41.07s | 41.08s | 44.86s
bsstll | 1473 | 48.07s | 47.49s | 47.48s | 48.82s | 48.17s | 53.44s
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QZ on Multicore Architectures

Example: Runtime to compute the generalized Schur form on a
dual 8-core Intel®Xeon® E5-2690:

Intel® MKL 11.0 OpenBLAS 0.2.8
Matrix | dim. [ 1 Th. [ 8 Th. | 16 Th. | 1 Th. | 8 Th. | 16 Th.
rbs480 | 480 | 1.00 | 1.12 1.00 | 1.00 | 0.66 0.57
bsst09 | 1083 | 1.00 | 1.00 099 | 1.00 | 1.00 0.99
peec | 1434 | 1.00 | 1.01 1.01 | 1.00 | 1.00 0.92
bsstll | 1473 | 1.00 | 1.01 1.01 | 1.00 | 1.01 0.91
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QZ on Multicore Architectures

Example: Runtime to compute the generalized Schur form on a
dual 8-core Intel®Xeon® E5-2690:

Intel® MKL 11.0 OpenBLAS 0.2.8
Matrix | dim. [ 1 Th. [ 8 Th. | 16 Th. | 1 Th. | 8 Th. | 16 Th.
rbs480 | 480 | 1.00 | 1.12 1.00 | 1.00 | 0.66 0.57
bsst09 | 1083 | 1.00 | 1.00 099 | 1.00 | 1.00 0.99
peec | 1434 | 1.00 | 1.01 1.01 | 1.00 | 1.00 0.92
bsstll | 1473 | 1.00 | 1.01 1.01 | 1.00 | 1.01 0.91

— No acceleration using parallel BLAS at all.
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QZ on Multicore Architectures

Motivation S al Division and the Sign Function

Shift and Conquer Algorithm

Numeric

al Results

Example: Runtime to compute the generalized Schur form on a
dual 8-core Intel®Xeon® E5-2690:

Intel® MKL 11.0 OpenBLAS 0.2.8
Matrix | dim. [ 1 Th. | 8 Th. | 16 Th. | 1 Th. | 8 Th. | 16 Th.
rbs480 | 480 | 1.00 | 1.12 1.00 | 1.00 | 0.66 0.57
bsst09 | 1083 | 1.00 | 1.00 099 | 1.00 | 1.00 0.99
peec | 1434 | 1.00 | 1.01 1.01 | 1.00 | 1.00 0.92
bsstll | 1473 | 1.00 | 1.01 1.01 | 1.00 | 1.01 0.91

— No acceleration using parallel BLAS at all.

— We need a new and faster way to approximate the generalized

Schur decomposition on current hardware.

Max Planck Institute Magdeburg
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Spectral Division and the

Sign Function
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Spectral Division and the Sign Function

Spectral Division

From the block generalized Schur form:

Q/ (A1 Ap
(o) r@ 2= (% %)
——

z
QT
and -
Bi1 B
(Ql-,-)B(Zl Zz):< 11 12)7
Qz —— 0 B22
S~— Z
QT
we get two independent eigenvalue problems (A;1, Bi1) and
(A2, Bx).
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Spectral Division and the Sign Function

Spectral Division

From the block generalized Schur form:

Q/ (A1 Ap
(o) r@ 2= (% %)
——

z
QT
and -
Bi1 B
(Ql-,-)B(Zl Zz):< 11 12)7
Qz —— 0 B22
S~— Z
QT
we get two independent eigenvalue problems (A;1, Bi1) and
(A2, Bx).

Our Aim: Split (A, B) such that A(A11,B11) € C_ and
/\(Azg, B22) C C+.
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Spectral Division and the Sign Function

Spectral Division

From the block gene'alized Schuitorm:

@z
Q) A2 = (i
| ) Y Problem:
QT Find a way to compute two orthog-
d onal matrices @ = [Qi, @] and
an QT Z = |24, Z] by using parallely scaling
1 level-3 BLAS operations.
(Q} ) B@ = ’
)
—— 7 \ 0 522/
QT
we get two independent eigenvalue problems.{A:, Bi1) and
(A2, Bx).

Our Aim: Split (A, B) such that A(A11, B11) € C_ and
N(Ax, B22) C Cy.
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Spectral Division and the Sign Function

(Generalized) Sign Function

Matrix Sign Function

Let Y diag(J1,/2)Y ! = A be the Jordan canonical form of a
matrix A € R™" with A(J;) C C_ and A(J2) C C4. Then

sign (A) == Y (‘0’1 Z) y-1

is the sign of the matrix A, where dim(/;) = dim(J;), i =1,2.
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Spectral Division and the Sign Function

(Generalized) Sign Function

Matrix Sign Function

Let Y diag(J1,/2)Y ! = A be the Jordan canonical form of a
matrix A € R™" with A(J;) C C_ and A(J2) C C4. Then

sign (A) == Y (‘0’1 Z) y-1

is the sign of the matrix A, where dim(/;) = dim(J;), i =1,2.

Some properties:
o Range(/ + sign (A)) is the subspace corresponding to all
eigenvalues with positive real part.

@ sign (A)2 =1
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Spectral Division and the Sign Function 9
(Generalized) Sign Function [GARDINER, LAUB’86]

From sign (A)? = I follows the Newton scheme:
1 il
Ao A, At =5 (AcHA), k=012,...

to compute the sign of a matrix.
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Spectral Division and the Sign Function 9
(Generalized) Sign Function [GARDINER, LAUB’86]

The Generalized Sign function iteration:

1
Ao +— A, Ak+1<—§(Ak+BA;18), k=0,1,2,...
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Spectral Division and the Sign Function 9
(Generalized) Sign Function [GARDINER, LAUB’86]

The Generalized Sign function iteration:

1
Ao A, A« — (A +iBA'B), k=0,1,2,...
2Ck

i
where ¢ is a additional scaling factor. Typical: ¢, = (%) "
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Spectral Division and the Sign Function :
(Generalized) Sign Function [GARDINER, LAUB’86]

The Generalized Sign function iteration:

1
Ao A, A« — (A +iBA'B), k=0,1,2,...
2Ck

1
where ¢ is a additional scaling factor. Typical: ¢, = (%) "
Properties change to:

o Range (B + sign (A, B)) is the right deflating subspace
corresponding to all eigenvalues with positive real part.

e Range (B — sign (A, B)) is the right deflating subspace
corresponding to all eigenvalues with negative real part.
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Spectral Division and the Sign Function :
(Generalized) Sign Function [GARDINER, LAUB’86]

The Generalized Sign function iteration:

1 _
R g O bservations S

o The generalized sign function iteration
employs only level-3 routines: DGETRF, L\k))i

where DGETRS, and DGEMM. B)|

o The matrix Z = [Z1, Z>] can be constructed

using the range properties.
o Ra ;

corresponding to all eigenvalues with positive real part.

Proper

e Range (B — sign (A, B)) is the right deflating subspace
corresponding to all eigenvalues with negative real part.
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Spectral Division and the Sign Function

Spectral Division using the Sign Function [SuN, QUINTANA-ORTS ’

Questions:
@ How to contruct Z using level-3 operations in a robust way?

@ How to compute the corresponding Q7
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Spectral Division and the Sign Function 9
Spectral Division using the Sign Function [SuN, QUINTANA-ORT{ ’04]
Questions:

@ How to contruct Z using level-3 operations in a robust way?

©Q How to compute the corresponding Q7?

Computation of Z: From the range properties follows:

(B+sign(A,B))Z1 =0 and (B+sign(A,B))Z =K
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Spectral Division and the Sign Functlon )
Spectral Division using the Sign Function [SuN, QUINTANA-ORT] ’04]

Questions:
@ How to contruct Z using level-3 operations in a robust way?

©Q How to compute the corresponding Q7?

Computation of Z: From the range properties follows:

(B +sign (A, B))[Z1, Z5] = [0, K]
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Spectral Division and the Sign Functlon )
Spectral Division using the Sign Function [SuN, QUINTANA-ORT] ’04]

Questions:
@ How to contruct Z using level-3 operations in a robust way?

©Q How to compute the corresponding Q7?

Computation of Z: From the range properties follows:

(B +sign (A, B))" =[Z1, 2] (’0<)
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Spectral Division and the Sign Functlon )
Spectral Division using the Sign Function [SuN, QUINTANA-ORT] ’04]

Questions:
@ How to contruct Z using level-3 operations in a robust way?

©Q How to compute the corresponding Q7?

Computation of Z: From the range properties follows:

(B +sign (A, B))T = [2,, Z1] (g)
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Spectral Division and the Sign Function

Spectral Division using the Sign Function [SuN, QUINTANA-ORT] ’64]

Questions:
@ How to contruct Z using level-3 operations in a robust way?

©Q How to compute the corresponding Q7?

Computation of Z: From the range properties follows:

(B +sign(A,B)) Nz = (2, Z1] (g)

— use a Rank Revealing QR Decomposition (RRQR)
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Spectral Division and the Sign Functlon )
Spectral Division using the Sign Function [SuN, QUINTANA-ORT] ’04]

Questions:
@ How to contruct Z using level-3 operations in a robust way?

©Q How to compute the corresponding Q7?

Computation of Q:
o @y lies in the range of AZ; + BZ;,
@ @, is complementary orthogonal to AZ; + BZ;.
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Spectral Division and the Sign Function 9
Spectral Division using the Sign Function [SuN, QUINTANA-ORT{ ’04]

Questions:
@ How to contruct Z using level-3 operations in a robust way?

©Q How to compute the corresponding Q7?

Computation of Q:

(3f)was 521 (1)
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Spectral Division and the Sign Function 9
Spectral Division using the Sign Function [SuN, QUINTANA-ORT{ ’04]

Questions:
@ How to contruct Z using level-3 operations in a robust way?

©Q How to compute the corresponding Q7?

Computation of Q:

(AZ:, BZ1] = [Q1, Q)] ("O/’)
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Spectral Division and the Sign Function
Spectral Division using the Sign Function [SuN, QUINTANA-ORT{ ’04]
Questions:

@ How to contruct Z using level-3 operations in a robust way?

©Q How to compute the corresponding Q7?

Computation of Q:

[AZi, BZ1] Mg = [Q1, Q] (Ao/l)

— use a RRQR procedure again.
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Spectral Division and the Sign Function
Spectral Division using the Sign Function [SuN, QUINTANA-ORT] ’64]

Questions:
@ How to contruct Z using level-3 operations in a robust way?

©Q How to compute the corresponding Q7?

Computation of Q:

[AZy, BZ1] Mg = [Q1, Q2] (Ao/l)

— use a RRQR procedure again.

We can compute Q and Z from sign (A, B) using
two RRQR procedures.
— use level-3 subroutine DGEQP3 from LAPACK.
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Spectral Division and the Sign Function

Spectral Division using the Sign Function

Algorithm 1 Spectral Division using the Generalized Sign function
Input: A€ R™" and B € R™" non-singular, A(A, B) N iR = {},
Output: Q € R™" and Z € R"*" orthogonal, such that the spec-
trum is split at /R.
1. Compute S = sign (A, B) using the Newton iteration
2: Compute Z = [Z1, Z>] using a RRQR procedure:

(B+S) Nz =2, 2] <§)

3: Compute Q = [Q1, Q2] using a RRQR procedure:

(421, 82110 = [, 021 ()
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Spectral Division and the Sign Function

Spectral Division using the Sign Function

Shift and Conquer Algorithm  Numerical Results  Conc

I\ e Computational Costs: Sz Leml C: nction
Input: | Generalized Sign Function: ~ 7013 Flops | = U
Output RRQR using DGEQP3 for Z: §n3 Flops '€ SPeC
trul RRQR using DGEQP3 for Q
1 Cot minimum: 0 Flops
2: Cor maximum: 8n° Flops
Transform A and B: 8n® Flops
— more than QZ
— but only level-3 enabled operations.

3: CO"’P’“"’F‘?—W"T“W

(421, 82110 = [, 021 ()
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The Divide, Shift and Conquer

Algorithm
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The Divide, Shift and Conquer Algorithm

Recursive Spectral Division

We got two independent eigenvalue problems for (A11, B11) and
(A22, B22) from the spectral division.
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Divide, Shift and Conquer Algorithm  Numerical Results

The Divide, Shift and Conquer Algorithm

Recursive Spectral Division

We got two independent eigenvalue problems for (A11, B11) and
(A22, B22) from the spectral division.

Problem: Applying the spectral division again will not give
smaller subproblems again.

o A(A11, B11) lies completely in C_,

o A(Az, By) lies completely in Cy.,

— No recursive scheme possible.
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Divide, Shift and Conquer Algorithm

Original Spectrum: —
Recu 4 ‘ ‘
xN(A11, Bi1) “
V xN(Az2, B)
( 2| .
& :
o X M
9 & X
(cu 0+ x I x |
£ . .
@© X
g )
] -2 *
_4 | | | | | |
-5 -4 -3 -2 -1 0 1 2 3
real part
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Divide, Shift and Conquer Algorithm
0

The Divide, Shift and Conquer Algorithm

Recursive Spectral Division

We got two independent eigenvalue problems for (A11, B11) and
(A22, B22) from the spectral division.

Problem: Applying the spectral division again will not give
smaller subproblems again.

o A(A11, B11) lies completely in C_,

o A(Az, By) lies completely in Cy.,

— No recursive scheme possible.

Shift the spectrum of (A11, Bi1) to the right and (Agz, Ba) to the
left to get two new spectra which enclose the imaginary axis.
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Divide, Shift and Conquer Algorithm

Shifted Spectrum: —
Recu 4 I
*N(A11, Bi1) “

V *N(Ax2, Bx)
( 2| .

5 »

o 3 X
9 > X 2

rcu 0+ » x x X X —

& x § *

@© X

Ebs Balt
] -2 .

_4 | | | s

IS -2 -1 0 1 2 i
¢
1 real part
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The Divide, Shift and Conquer Algorithm

Recursive Spectral Division

We want to have two new eigenvalue problems:
(A1, Bi1) := (A1 — 0—Bi1, B1)
and

(A2, B2) = (Axz — 04 Bz, Bao)

such that we can apply the division algorithm again.
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onquer Algorithm

Recursive Spectral Division
We want to have two new eigenvalue problems:
(A11, B11) := (A1 — 0_Bu1, Bi1)
and

(A2, B2) = (Axz — 04 Bz, Bao)

such that we can apply the division algorithm again.

Optimal Choice of 6,: Chose Q_ or respective~ly 0+ such that
the problems emerging out of (A;1, B11) and (Axp, Bxp) after the
spectral division are equally sized.
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The Divide, Shift and Conquer Algorithm

Recursive Spectral Division

We want to have two new eigenvalue problems:
(A1, Bi1) := (A1 — 0—Bi1, B1)

and

(Azz, B2z) := (A2 — 04 B, Bao)
such that we can apply the division algorithm again.

Optimal Choice of 0,: Chose 0_ or respectively 6 such that
the problems emerging out of (A;1, B11) and (Axp, Bxp) after the
spectral division are equally sized.

Problem: Determining the optimal parameters 6, requires the
knowledge of all eigenvalues.
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The Divide, Shift and Conquer Algorithm

Optimal Shift Parameter Approximation

w.l.o.g.: We restrict to (Ai11, Bi1) and the left half-plane.

If the real parts of the eigenvalues are equally distributed, the
optimal 0_ is obviously given by

1
9_ = Eé}%()\left)

where Ajeg is the left-most eigenvalue of (A1, Bi1).
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The D|V|de Shift and Conquer Algorlthm

Optimal Shift Parameter Approximation

w.l.o.g.: We restrict to (Ai11, Bi1) and the left half-plane.

If the real parts of the eigenvalues are equally distributed, the

optimal 0_ is obviously given by

1
0_ = Eé}%()\left)

where Ajeg is the left-most eigenvalue of (A1, Bi1).

Cheap approximation of (A ):

—R(Ners) < p(Au1, Bir)
where p(A11, Bi1) is the spectral radius of of (A11, B11).
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Optimal Shift Parameter Approximation
w.l.o.g.: We restrict to (Ai11, Bi1) and the left half-plane.

If the real parts of the eigenvalues are equally distributed, the
optimal 0_ is obviously given by

1
0_ = Eé}%()\left)

where Ajeg is the left-most eigenvalue of (A1, Bi1).

Cheap approximation of (A ):
~R(Nets) < p(A11, Bi1) < [|BiitAual2
where p(A11, Bi1) is the spectral radius of of (A11, B11).
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The D|V|de Shift and Conquer Algorlthm

Optimal Shift Parameter Approximation

w.l.o.g.: We restrict to (Ai11, Bi1) and the left half-plane.

If the real parts of the eigenvalues are equally distributed, the

optimal 0_ is obviously given by

1
0_ = Eé}%()\left)

where Ajeg is the left-most eigenvalue of (A1, Bi1).
Cheap approximation of (A ):
—R(Net) < p(A11, Bi1) < Bt Aullz < 1By Aulle
where p(A11, Bi1) is the spectral radius of of (A11, B11).
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The Divide, Shift and Conquer Algorithm

The Algorithm

Combining the spectral division and the shift parameter
computation gives the following recursive scheme:
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Conquer Algorithm

Combining the spectral division and the shift parameter
computation gives the following recursive scheme:

Divide, Shift and Conquer Algorithm  Numerical Results

Algorithm 2 [Q,Z] = dscqz(A,B)

Input: A€ R"™" and B € R"*" non-singular, A(A, B) iR = {}
Output: (QTAZ, QT BZ) in real Schur form.

1: if (A, B) is trivial to solve then

2 Compute Q, Z directly and return them.

3: end if

4: Compute Q and Z using Algorithm 1 and transform (A, B).
5: Se;t 0: = _%HBﬁlAllllF and 0+ = %”82_21/422”[—'

6: [917 gl] =dscqz(A11 —0_ Bll N Bll) .

7. [Q, £21=dscqz(Axn — 01 Bxn,Bx) .

L Ql 0 L 21 0
Update Q := Q ( 0 @2) and Z =7 (0 22>.
return [Q,Z]
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Divide, Shift and Conquer Algorithm  Numerical R
00000 000

Conquer Algorithm

Combining the spectral division and the shift parameter
computation gives the following recursive.scheme:

Algorithm 2 [Q,Z] = dscqz(A,B)

Input: A € R"™" and B/€ R"*" non-si
Output: (QTAZ, QTEZ) in real Schuy| Trivial: The Schur form can be

1: if (A B)is then | computed directly, i.e. the prob-
2 Compute Q, Z directly and retur| lem is of size 1 x 1 or 2 x 2.

3: end if

4: Compute Q and Z using Algorithm 1 and transform (A, B).

5: Se;t 0: = _%HBﬁlAllllF and 0+ = %”82_21/422”[—'

6: [917 gﬂ =dscqz(A11 —60_B11,B11).

7 [Q2, Z21=dscqz (A — 04 B, Bx) .

L Ql 0 L 21 0
Update Q := Q ( 0 @2) and Z =7 (0 22>.
return [Q,Z]
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The Divide, Shift and Conquer Algorithm

Implementation Details

o The evaluation of 6_ = —%”BﬁlAllnF and
0, = %||B;21A22HF is only necessary after the first step.

The spectral radius can not increase during the recursion.
— We pass |0_| and |0.| as spectral radius 6 to the to the
next step and use

1 1
0_:=—=0 and 0, :=-0
2 T2

as new parameters in the next step.
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The D|V|de Shift and Conquer Algorlthm

Implementation Details

o The evaluation of 6_ = —%”BﬁlAllnF and
0, = %||B;21A22HF is only necessary after the first step.

The spectral radius can not increase during the recursion.
— We pass |0_| and |0.| as spectral radius 6 to the to the
next step and use

1
0_ = —50 and (9+ = =0

as new parameters in the next step.
— We can guarantee 6, — 0 during the recursion.
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The Divide, Shift and Conquer Algorithm

Implementation Details

o The evaluation of 6_ = —%||Bl_11A11||,: and
0, = %||B;21A22HF is only necessary after the first step.

o Reformulate the recursion as an iterative scheme.

— Done using a queue.
— Restrict the additional memory to 4n® + 2n.
— Allows further rearrangements of the algorithm.
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The D|V|de Shift and Conquer Algorlthm

Implementation Details

o The evaluation of 6_ = —%”BﬁlAllnF and
0, = %||B;21A22HF is only necessary after the first step.
@ Reformulate the recursion as an iterative scheme.

o New definition of “trivial to solve”: The can be solved inside
the cache of a single CPU-core by DGGES.

The trivial size ny, given by:

. 11+ 135+CN [C
v = "'g 64 4  \ 4

where C is the cache size counted in floating point
numbers of the desired precision.
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The Divide, Shift and Conquer Algorithm

Parallelization

We split the iterative formulation into 3 phases:

@ Perform the whole spectral division and the divide and conquer
procedure of Algorithm 2 without solving the trivial problems.

— only level-3 operations, use a threaded BLAS library
— requires the whole memory bandwidth
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The Divide, Shift and Conquer Algorithm

Parallelization

We split the iterative formulation into 3 phases:

@ Perform the whole spectral division and the divide and conquer
procedure of Algorithm 2 without solving the trivial problems.

@ Solve the remaining trivial problems in parallel. Each problem
is solved by one CPU-core in single-threaded mode.

— OpenMP, PThreads,...
— nNgriv IS hardware dependent.
— reduce the transfers between cache and main memory.
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The D|V|de Shift and Conquer Algorlthm

Parallelization

We split the iterative formulation into 3 phases:

@ Perform the whole spectral division and the divide and conquer
procedure of Algorithm 2 without solving the trivial problems.

@ Solve the remaining trivial problems in parallel. Each problem
is solved by one CPU-core in single-threaded mode.

@ Update Q := Qdiag(Q1, Q,...) and Z :=diag (241, 22, ...)
with Q, and Z, from the trivial problems.

— Involves only matrix-matrix products, use a threaded
BLAS library.
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Numerical Results

Test hardware:

Compue-Server Xeon E5-2690 | Workstation Xeon E3-1245
CPU: Dual Xeon E5-2690 @ 2.9 GHz Xeon E3-1245 @ 3.3GHz
Cores: 16 (2x8) 4
L2 Cache: 256KiB 256KiB
Ntriv 90 90
RAM: 32 GiB DDR3 8 GiB DDR3
0sS: Ubuntu 12.04 Ubuntu 12.04
Compiler: GCC 4.6.3 GCC 4.6.3
BLAS: Intel MKL 10.2 Intel MKL 10.2

Test matrices from MatrixMarket and the Oberwolfach Collection:

\ | Name | Dimension | | Name | Dimension |
(a) | rbs480 480 | (b) | bsst09 1083
(c) | spiral inductor 1434 | (d) | besstll 1473
(e) | filter2D 1668 | (f) | besst2l 3600
(g) | steel profile 5177 | (h) | steel profile 20 209
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Numerical Results
Runtime and Speedup

Xeon E3-1245 Dual Xeon E5-2690 - MKL 10.2
Matrix QZ | 4Thr QZ | 1Thr. | 16 Thr. | speedup
(a) 1.31s 0.59s 1.75s 1.16s 0.51s 3.57
(b) 17.27s 10.48s 18.99s 22.68s 6.29s 3.02
(c) 40.16s 15.05s 39.86s 32.47s 8.16s 4.88
(d) 46.77s 43.09s 64.38s 86.90s 25.69s 2,51
(e) 77.35s 28.38s 80.40s 67.40s | 14.41s 4.68
(f) 616.05s 526.22s 740.78s | 1189.69s | 383.08s 1.93
(8) 3046.40s | 1006.25s | 3286.61s | 2684.74s | 598.35s 5.49
(h) out of memory | 255057s | 207198s | 38200s 6.68
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Numerical Results
Runtime and Speedup

Xeon E3-1245 Dual Xeon E5-2690 - MKL 10.2
Matrix QZ | 4Thr QZ | 1Thr. | 16 Thr. | speedup
(a) 1.31s 0.59s 1.75s 1.16s 0.51s 3.57
(b) 17.27s 10.48s 18.99s 22.68s 6.29s 3.02
(c) 40.16s 15.05s 39.86s 32.47s 8.16s 4.88
(d) 46.77s 43.09s 64.38s 86.90s 25.69s 2,51
(e) 77.35s 28.38s 80.40s 67.40s | 14.41s 4.68
(f) 616.05s 526.22s 740.78s | 1189.69s | 383.08s 1.93
(g) 3046.40s | 1006.25s | 3286.61s | 2684.74s | 598.35s 5.49
(h) out of memory | 255057s | 207198s | 38200s 6.68

our algorithm uses all available cores,

works even on “desktop” computers,

significantly faster, even though already the first step of
DSCQZ is theoretically more expensive than the entire QZ
algorithm only counting the floating point operations involved.
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Numerical Results

Runtime and Speedup

Xeon

= \

Matrix QZ Reduce the runtime from ~ 3 days to ~ 10.6 hours.
gzg 1%;;: Power Consumption:
(@ | 46774 DSCQZi  424KWh (= 10.6h-400W )
(e) 77,354 — save 74% energy! ©
(f) 616.05s T 526.225 7AU.78S | 11§9.695 | 383.U85 g5
(g) 3046.40s | 1006.25s | 3286701s | 2084.74s | 592.35s 5.49
(h) | outof | memory | 2550575 | 207198s | (38200s 668

— our algorithm uses all available cores,

— works even on “desktop” computers,

— significantly faster, even though already the first step of
DSCQZ is theoretically more expensive than the entire QZ
algorithm only counting the floating point operations involved.
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Numerical Results

Accuracy

We assume that QZ gives the correct result and define a global
error:

IN®Z(A, B) — APSCRZ(A, B)||2
errgiobal (A, B) 1= [AQZ (A, B)||2

and local error

APZ(A.B) ~AP*U%(A, B)|
erriocal(A, B) := max 2 I
Ioca/( ) ,‘:1,,,.7n |)\IQZ(A3 B)|

for the eigenvalues of (A, B).
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Numerical Results

Accuracy

| Matrix | errgopai(A, B) | erriocai(A, B) |

() 3.10e-10 3.15e-10
(b) 4.63e-13 4.40e-11
(c) 1.39e-14 3.77e12
(d 4.62e-15 9.44e-09
(e) 7.60e15 5.32e11
(f) 6.17¢-15 1.72e-10
(g) 1.71e-14 1.06e-10
(h) 5.21e-14 1.02e-09
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Numerical Results

Accuracy

| Matrix | errgiopai(A, B) | erriocai(A, B) |

() 3.10e-10 3.15e-10
(b) 4.63e-13 4.40e-11
(c) 1.39e-14 3.77e12
(d 4.62e-15 9.44e-09
(e) 7.60e15 5.32e11
(f) 6.17¢-15 1.72e-10
(g) 1.71e-14 1.06e-10
(h) 5.21e-14 1.02e-09

— Inaccuracy is caused by the iterative nature of the Newton
iteration,

— But still acceptable for many applications.

— Increase accuracy for single eigenvalues using the inverse
iteration.
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Conclusions

We have seen that:

@ We can formulate a level-3 BLAS based solver for the NGEP,

@ The new solver scales on multicore architectures,

@ The level-3 BLAS operations make extensive use of the vector
registers, (— see 1 thread results)

@ We get a acceptable approximation of the NGEP in drastically
reduced time.
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Conclusions

We have seen that:

@ We can formulate a level-3 BLAS based solver for the NGEP,

@ The new solver scales on multicore architectures,

@ The level-3 BLAS operations make extensive use of the vector
registers, (— see 1 thread results)

o We get a acceptable approximation of the NGEP in drastically
reduced time.

v

Further Research:

@ Include more parallelism from the recursive structure
— use properties of NUMA architectures to share the work,

@ Develop a hybrid CPU-Accelerator implementation,

@ Improve robustness
— develop fall back situations if the DSCQZ algorithm fails.
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@ We can formulate a level-3 BLAS based solver for the NGEP,

N\

o The ney

gt Thank you for your > the vector

o We get attention | n drastically
—_ Questions? —

—

@ Include more parallelism from the recursive structure
— use properties of NUMA architectures to share the work,

@ Develop a hybrid CPU-Accelerator implementation,

@ Improve robustness
— develop fall back situations if the DSCQZ algorithm fails.
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