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Max Planck Institute Magdeburg Martin Köhler, Fast Approximate Solution of the NGEP 3/26



Motivation Spectral Division and the Sign Function Divide, Shift and Conquer Algorithm Numerical Results Conclusions

Motivation
Non-Symmetric Generalized Eigenvalue Problem

We consider the non-symmetric generalized eigenvalue problem:

Ax = λBx ,

where A ∈ Rn×n and B ∈ Rn×n are non-singular matrices and
λ ∈ C is an eigenvalue with its eigenvector x ∈ Rn.

Key idea behind the solution:

Compute the generalized Schur decomposition:

QHAZ︸ ︷︷ ︸
S

y = λQHBZ︸ ︷︷ ︸
T

y ,

where S ∈ Cn×n and T ∈ Cn×n are upper triangular and
Q ∈ Cn×n and Z ∈ Cn×n are unitary matrices.

Direct solution of generalized Lyapunov equation:

AXET + EXAT + M = 0,

Direct solution of generalized Sylvester equations:

AXB + CXD + M = 0

or

AR − LB = C

DR − LE = F ,

Various analysis methods for dynamical systems,

. . .

Applications:
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Motivation
QZ Algorithm [Moler, Stewart ’73]

Common way to compute the generalized Schur decomposition:

QZ Algorithm

1 Compute B̃ = QB using the QR decomposition and
transform A into Ã = QHA.

2 Reduce the pair (Ã, B̃) to Hessenberg-Triangular form using
Givens-Rotations.

3 Apply QZ steps to (Ã, B̃) until the matrix Ã has reduced
Hessenberg form. → generalized Schur form.

→ Implemented in LAPACK as DGGES or built using DGEQRF,
DGGHRD, and DHGEQZ,

→ Need ≈ 66n3 Flops,
→ No parallel version in ScaLAPACK available.

DGEQRF provides a level-3 BLAS
implementation. ,
Givens-Rotations are only level-1
BLAS operations. /

Sequences of Givens-Rotations
//
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2 Reduce the pair (Ã, B̃) to Hessenberg-Triangular form using
Givens-Rotations.
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Hessenberg form. → generalized Schur form.

→ Implemented in LAPACK as DGGES or built using DGEQRF,
DGGHRD, and DHGEQZ,

→ Need ≈ 66n3 Flops,
→ No parallel version in ScaLAPACK available.

DGEQRF provides a level-3 BLAS
implementation. ,
Givens-Rotations are only level-1
BLAS operations. /

Sequences of Givens-Rotations
//

Max Planck Institute Magdeburg Martin Köhler, Fast Approximate Solution of the NGEP 5/26



Motivation Spectral Division and the Sign Function Divide, Shift and Conquer Algorithm Numerical Results Conclusions

Motivation
QZ Algorithm [Moler, Stewart ’73]

Common way to compute the generalized Schur decomposition:

QZ Algorithm

1 Compute B̃ = QB using the QR decomposition and
transform A into Ã = QHA.
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Motivation
QZ on Multicore Architectures

Example: Runtime to compute the generalized Schur form on a
dual 8-core Intel®Xeon® E5-2690:

Intel® MKL 11.0 OpenBLAS 0.2.8
Matrix dim. 1 Th. 8 Th. 16 Th. 1 Th. 8 Th. 16 Th.

rbs480 480 1.23s 1.10s 1.23s 1.38s 2.07s 2.41s
bsst09 1083 16.28s 16.29s 16.46s 16.90s 16.89s 17.13s

peec 1434 40.36s 39.90s 40.01s 41.07s 41.08s 44.86s
bsst11 1473 48.07s 47.49s 47.48s 48.82s 48.17s 53.44s

→ No acceleration using parallel BLAS at all.

→ We need a new and faster way to approximate the generalized
Schur decomposition on current hardware.
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Max Planck Institute Magdeburg Martin Köhler, Fast Approximate Solution of the NGEP 6/26



Motivation Spectral Division and the Sign Function Divide, Shift and Conquer Algorithm Numerical Results Conclusions

Motivation
QZ on Multicore Architectures

Example: Runtime to compute the generalized Schur form on a
dual 8-core Intel®Xeon® E5-2690:

Intel® MKL 11.0 OpenBLAS 0.2.8
Matrix dim. 1 Th. 8 Th. 16 Th. 1 Th. 8 Th. 16 Th.

rbs480 480 1.00 1.12 1.00 1.00 0.66 0.57
bsst09 1083 1.00 1.00 0.99 1.00 1.00 0.99

peec 1434 1.00 1.01 1.01 1.00 1.00 0.92
bsst11 1473 1.00 1.01 1.01 1.00 1.01 0.91

→ No acceleration using parallel BLAS at all.

→ We need a new and faster way to approximate the generalized
Schur decomposition on current hardware.
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Spectral Division and the
Sign Function
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Spectral Division and the Sign Function
Spectral Division

From the block generalized Schur form:(
QT

1

QT
2

)
︸ ︷︷ ︸

QT

A
(
Z1 Z2

)︸ ︷︷ ︸
Z

=

(
A11 A12

0 A22

)

and (
QT

1

QT
2

)
︸ ︷︷ ︸

QT

B
(
Z1 Z2

)︸ ︷︷ ︸
Z

=

(
B11 B12

0 B22

)
,

we get two independent eigenvalue problems (A11,B11) and
(A22,B22).

Our Aim: Split (A,B) such that Λ(A11,B11) ⊂ C− and
Λ(A22,B22) ⊂ C+.

Find a way to compute two orthog-
onal matrices Q = [Q1,Q2] and
Z = [Z1,Z2] by using parallely scaling
level-3 BLAS operations.

Problem:

Max Planck Institute Magdeburg Martin Köhler, Fast Approximate Solution of the NGEP 8/26
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Spectral Division and the Sign Function
(Generalized) Sign Function

Matrix Sign Function

Let Y diag(J1, J2)Y−1 = A be the Jordan canonical form of a
matrix A ∈ Rn×n with Λ(J1) ⊂ C− and Λ(J2) ⊂ C+. Then

sign (A) := Y

(
−I1 0

0 I2

)
Y−1

is the sign of the matrix A, where dim(Ii ) = dim(Ji ), i = 1, 2.

Some properties:
Range(I + sign (A)) is the subspace corresponding to all
eigenvalues with positive real part.

sign (A)2 = I

Max Planck Institute Magdeburg Martin Köhler, Fast Approximate Solution of the NGEP 9/26
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Spectral Division and the Sign Function
(Generalized) Sign Function [Gardiner, Laub’86]

From sign (A)2 = I follows the Newton scheme:

A0 ← A, Ak+1 ←
1

2

(
Ak + A−1k

)
, k = 0, 1, 2, . . .

to compute the sign of a matrix.

Properties change to:

Range (B + sign (A,B)) is the right deflating subspace
corresponding to all eigenvalues with positive real part.

Range (B − sign (A,B)) is the right deflating subspace
corresponding to all eigenvalues with negative real part.

The generalized sign function iteration
employs only level-3 routines: DGETRF,
DGETRS, and DGEMM.

The matrix Z = [Z1,Z2] can be constructed
using the range properties.

Observations:
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Spectral Division and the Sign Function
Spectral Division using the Sign Function [Sun, Quintana-Ort́ı ’04]

Questions:

1 How to contruct Z using level-3 operations in a robust way?

2 How to compute the corresponding Q?
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Spectral Division and the Sign Function
Spectral Division using the Sign Function [Sun, Quintana-Ort́ı ’04]

Questions:

1 How to contruct Z using level-3 operations in a robust way?

2 How to compute the corresponding Q?

Computation of Z : From the range properties follows:

(B + sign (A,B))Z1 = 0 and (B + sign (A,B))Z2 = K
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Spectral Division and the Sign Function
Spectral Division using the Sign Function [Sun, Quintana-Ort́ı ’04]

Questions:

1 How to contruct Z using level-3 operations in a robust way?

2 How to compute the corresponding Q?

Computation of Z : From the range properties follows:

(B + sign (A,B))[Z1,Z2] = [0,K ]
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Spectral Division and the Sign Function
Spectral Division using the Sign Function [Sun, Quintana-Ort́ı ’04]

Questions:

1 How to contruct Z using level-3 operations in a robust way?

2 How to compute the corresponding Q?

Computation of Z : From the range properties follows:

(B + sign (A,B))T = [Z1,Z2]

(
0
K

)
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Spectral Division and the Sign Function
Spectral Division using the Sign Function [Sun, Quintana-Ort́ı ’04]

Questions:

1 How to contruct Z using level-3 operations in a robust way?

2 How to compute the corresponding Q?

Computation of Z : From the range properties follows:

(B + sign (A,B))T = [Z2,Z1]

(
K
0

)
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Spectral Division and the Sign Function
Spectral Division using the Sign Function [Sun, Quintana-Ort́ı ’04]

Questions:

1 How to contruct Z using level-3 operations in a robust way?

2 How to compute the corresponding Q?

Computation of Z : From the range properties follows:

(B + sign (A,B))TΠZ = [Z2,Z1]

(
K
0

)
→ use a Rank Revealing QR Decomposition (RRQR)
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Spectral Division and the Sign Function
Spectral Division using the Sign Function [Sun, Quintana-Ort́ı ’04]

Questions:

1 How to contruct Z using level-3 operations in a robust way?

2 How to compute the corresponding Q?

Computation of Q:

Q1 lies in the range of AZ1 + BZ1,

Q2 is complementary orthogonal to AZ1 + BZ1.
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1 How to contruct Z using level-3 operations in a robust way?

2 How to compute the corresponding Q?

Computation of Q:(
QH

1

QH
2

)
[AZ1,BZ1] =

(
M
0

)
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Questions:

1 How to contruct Z using level-3 operations in a robust way?

2 How to compute the corresponding Q?

Computation of Q:

[AZ1,BZ1] = [Q1,Q2]

(
M
0

)
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Questions:

1 How to contruct Z using level-3 operations in a robust way?

2 How to compute the corresponding Q?

Computation of Q:

[AZ1,BZ1] ΠQ = [Q1,Q2]

(
M
0

)
→ use a RRQR procedure again.
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Spectral Division and the Sign Function
Spectral Division using the Sign Function [Sun, Quintana-Ort́ı ’04]

Questions:

1 How to contruct Z using level-3 operations in a robust way?

2 How to compute the corresponding Q?

Computation of Q:

[AZ1,BZ1] ΠQ = [Q1,Q2]

(
M
0

)
→ use a RRQR procedure again.

We can compute Q and Z from sign (A,B) using
two RRQR procedures.
→ use level-3 subroutine DGEQP3 from LAPACK.
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Spectral Division and the Sign Function
Spectral Division using the Sign Function

Algorithm 1 Spectral Division using the Generalized Sign function

Input: A ∈ Rn×n and B ∈ Rn×n non-singular, Λ(A,B) ∩ iR = {},
Output: Q ∈ Rn×n and Z ∈ Rn×n orthogonal, such that the spec-

trum is split at iR.
1: Compute S = sign (A,B) using the Newton iteration
2: Compute Z = [Z1,Z2] using a RRQR procedure:

(B + S)TΠZ = [Z2,Z1]

(
K
0

)
3: Compute Q = [Q1,Q2] using a RRQR procedure:

[AZ1,BZ1]ΠQ = [Q1,Q2]

(
M
0

)

Generalized Sign Function: ≈ 70n3 Flops
RRQR using DGEQP3 for Z : 8

3n
3 Flops

RRQR using DGEQP3 for Q
minimum: 0 Flops
maximum: 8n3 Flops

Transform A and B: 8n3 Flops

→ more than QZ
→ but only level-3 enabled operations.

Computational Costs:
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Algorithm
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The Divide, Shift and Conquer Algorithm
Recursive Spectral Division

We got two independent eigenvalue problems for (A11,B11) and
(A22,B22) from the spectral division.

Problem: Applying the spectral division again will not give
smaller subproblems again.

Λ(A11,B11) lies completely in C−,

Λ(A22,B22) lies completely in C+,

→ No recursive scheme possible.

Idea

Shift the spectrum of (A11,B11) to the right and (A22,B22) to the
left to get two new spectra which enclose the imaginary axis.
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smaller subproblems again.

Λ(A11,B11) lies completely in C−,
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(A22,B22) from the spectral division.
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Λ(A11,B11) lies completely in C−,
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The Divide, Shift and Conquer Algorithm
Recursive Spectral Division

We want to have two new eigenvalue problems:

(Ã11,B11) := (A11 − θ−B11,B11)

and

(Ã22,B22) := (A22 − θ+B22,B22)

such that we can apply the division algorithm again.

Optimal Choice of θ∗: Chose θ− or respectively θ+ such that
the problems emerging out of (Ã11,B11) and (Ã22,B22) after the
spectral division are equally sized.

Problem: Determining the optimal parameters θ∗ requires the
knowledge of all eigenvalues.
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The Divide, Shift and Conquer Algorithm
Optimal Shift Parameter Approximation

w.l.o.g.: We restrict to (A11,B11) and the left half-plane.

If the real parts of the eigenvalues are equally distributed, the
optimal θ− is obviously given by

θ− :=
1

2
<(λleft)

where λleft is the left-most eigenvalue of (A11,B11).

Cheap approximation of <(λleft):

−<(λleft) ≤ ρ(A11,B11)

≤ ‖B−111 A11‖2 ≤ ‖B−111 A11‖F

where ρ(A11,B11) is the spectral radius of of (A11,B11).
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The Divide, Shift and Conquer Algorithm
The Algorithm

Combining the spectral division and the shift parameter
computation gives the following recursive scheme:

Algorithm 2 [Q,Z] = dscqz(A,B)

Input: A ∈ Rn×n and B ∈ Rn×n non-singular, Λ(A,B) ∩ ıR = {}
Output: (QTAZ ,QTBZ ) in real Schur form.

1: if (A,B) is trivial to solve then
2: Compute Q,Z directly and return them.
3: end if
4: Compute Q and Z using Algorithm 1 and transform (A,B).
5: Set θ− = − 1

2‖B
−1
11 A11‖F and θ+ = 1

2‖B
−1
22 A22‖F .

6: [Q̃1, Z̃1]=dscqz(A11 − θ−B11,B11).

7: [Q̃2, Z̃2]=dscqz(A22 − θ+B22,B22).

8: Update Q := Q

(
Q̃1 0

0 Q̃2

)
and Z := Z

(
Z̃1 0

0 Z̃2

)
.

9: return [Q,Z]

Trivial: The Schur form can be
computed directly, i.e. the prob-
lem is of size 1× 1 or 2× 2.
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The Divide, Shift and Conquer Algorithm
Implementation Details

The evaluation of θ− = −1
2‖B

−1
11 A11‖F and

θ+ = 1
2‖B

−1
22 A22‖F is only necessary after the first step.

The spectral radius can not increase during the recursion.
→ We pass |θ−| and |θ+| as spectral radius θ to the to the
next step and use

θ− := −1

2
θ and θ+ :=

1

2
θ

as new parameters in the next step.

→ We can guarantee θ∗ → 0 during the recursion.

Reformulate the recursion as an iterative scheme.

New definition of “trivial to solve”: The can be solved inside
the cache of a single CPU-core by DGGES.
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The Divide, Shift and Conquer Algorithm
Implementation Details

The evaluation of θ− = −1
2‖B

−1
11 A11‖F and

θ+ = 1
2‖B

−1
22 A22‖F is only necessary after the first step.

Reformulate the recursion as an iterative scheme.

→ Done using a queue.
→ Restrict the additional memory to 4n2 + 2n.
→ Allows further rearrangements of the algorithm.

New definition of “trivial to solve”: The can be solved inside
the cache of a single CPU-core by DGGES.
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The Divide, Shift and Conquer Algorithm
Implementation Details

The evaluation of θ− = −1
2‖B

−1
11 A11‖F and

θ+ = 1
2‖B

−1
22 A22‖F is only necessary after the first step.

Reformulate the recursion as an iterative scheme.

New definition of “trivial to solve”: The can be solved inside
the cache of a single CPU-core by DGGES.

The trivial size ntriv given by:

ntriv ≤ −
11

8
+

√
−135

64
+

C

4
≈
√

C

4

where C is the cache size counted in floating point
numbers of the desired precision.
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The Divide, Shift and Conquer Algorithm
Parallelization

We split the iterative formulation into 3 phases:

1 Perform the whole spectral division and the divide and conquer
procedure of Algorithm 2 without solving the trivial problems.

→ only level-3 operations, use a threaded BLAS library
→ requires the whole memory bandwidth

2 Solve the remaining trivial problems in parallel. Each problem
is solved by one CPU-core in single-threaded mode.

3 Update Q := Q diag (Q1,Q2, . . .) and Z := diag (Z1,Z2, . . .)
with Q∗ and Z∗ from the trivial problems.
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1 Perform the whole spectral division and the divide and conquer
procedure of Algorithm 2 without solving the trivial problems.

2 Solve the remaining trivial problems in parallel. Each problem
is solved by one CPU-core in single-threaded mode.

→ OpenMP, PThreads,...
→ ntriv is hardware dependent.
→ reduce the transfers between cache and main memory.
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The Divide, Shift and Conquer Algorithm
Parallelization

We split the iterative formulation into 3 phases:

1 Perform the whole spectral division and the divide and conquer
procedure of Algorithm 2 without solving the trivial problems.

2 Solve the remaining trivial problems in parallel. Each problem
is solved by one CPU-core in single-threaded mode.

3 Update Q := Q diag (Q1,Q2, . . .) and Z := diag (Z1,Z2, . . .)
with Q∗ and Z∗ from the trivial problems.

→ Involves only matrix-matrix products, use a threaded
BLAS library.
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Numerical Results
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Numerical Results

Test hardware:

Compue-Server Xeon E5-2690 Workstation Xeon E3-1245

CPU: Dual Xeon E5-2690 @ 2.9 GHz Xeon E3-1245 @ 3.3GHz
Cores: 16 (2×8) 4
L2 Cache: 256KiB 256KiB
ntriv 90 90
RAM: 32 GiB DDR3 8 GiB DDR3
OS: Ubuntu 12.04 Ubuntu 12.04
Compiler: GCC 4.6.3 GCC 4.6.3
BLAS: Intel MKL 10.2 Intel MKL 10.2

Test matrices from MatrixMarket and the Oberwolfach Collection:

Name Dimension Name Dimension

(a) rbs480 480 (b) bsst09 1 083
(c) spiral inductor 1434 (d) bcsst11 1 473
(e) filter2D 1 668 (f) bcsst21 3 600
(g) steel profile 5 177 (h) steel profile 20 209
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Numerical Results
Runtime and Speedup

Xeon E3-1245 Dual Xeon E5-2690 - MKL 10.2
Matrix QZ 4 Thr. QZ 1 Thr. 16 Thr. speedup

(a) 1.31s 0.59s 1.75s 1.16s 0.51s 3.57
(b) 17.27s 10.48s 18.99s 22.68s 6.29s 3.02
(c) 40.16s 15.05s 39.86s 32.47s 8.16s 4.88
(d) 46.77s 43.09s 64.38s 86.90s 25.69s 2.51

(e) 77.35s 28.38s 80.40s 67.40s 14.41s 4.68
(f) 616.05s 526.22s 740.78s 1189.69s 383.08s 1.93
(g) 3046.40s 1006.25s 3286.61s 2684.74s 598.35s 5.49
(h) out of memory 255057s 207198s 38200s 6.68
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Numerical Results
Runtime and Speedup

Xeon E3-1245 Dual Xeon E5-2690 - MKL 10.2
Matrix QZ 4 Thr. QZ 1 Thr. 16 Thr. speedup

(a) 1.31s 0.59s 1.75s 1.16s 0.51s 3.57
(b) 17.27s 10.48s 18.99s 22.68s 6.29s 3.02
(c) 40.16s 15.05s 39.86s 32.47s 8.16s 4.88
(d) 46.77s 43.09s 64.38s 86.90s 25.69s 2.51

(e) 77.35s 28.38s 80.40s 67.40s 14.41s 4.68
(f) 616.05s 526.22s 740.78s 1189.69s 383.08s 1.93
(g) 3046.40s 1006.25s 3286.61s 2684.74s 598.35s 5.49
(h) out of memory 255057s 207198s 38200s 6.68

→ our algorithm uses all available cores,
→ works even on “desktop” computers,
→ significantly faster, even though already the first step of

DSCQZ is theoretically more expensive than the entire QZ
algorithm only counting the floating point operations involved.
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Reduce the runtime from ≈ 3 days to ≈ 10.6 hours.

Power Consumption:
QZ: 16.20KWh (= 2.95d · 225W )
DSCQZ: 4.24KWh (= 10.6h · 400W )
→ save 74% energy! ,

→ our algorithm uses all available cores,
→ works even on “desktop” computers,
→ significantly faster, even though already the first step of

DSCQZ is theoretically more expensive than the entire QZ
algorithm only counting the floating point operations involved.
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Numerical Results
Accuracy

We assume that QZ gives the correct result and define a global
error:

errglobal(A,B) :=
‖ΛQZ (A,B)− ΛDSCQZ (A,B)‖2

‖ΛQZ (A,B)‖2

and local error

errlocal(A,B) := max
i=1,...,n

|λQZ
i (A,B)− λDSCQZ

i (A,B)|
|λQZ

i (A,B)|

for the eigenvalues of (A,B).
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Numerical Results
Accuracy

Matrix errglobal(A,B) errlocal(A,B)

(a) 3.10 e-10 3.15 e-10
(b) 4.63 e-13 4.40 e-11
(c) 1.39 e-14 3.77 e-12
(d) 4.62 e-15 9.44 e-09
(e) 7.60 e-15 5.32 e-11
(f) 6.17 e-15 1.72 e-10
(g) 1.71 e-14 1.06 e-10
(h) 5.21 e-14 1.02 e-09

→ Inaccuracy is caused by the iterative nature of the Newton
iteration,

→ But still acceptable for many applications.
→ Increase accuracy for single eigenvalues using the inverse

iteration.
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Conclusions

We have seen that:

We can formulate a level-3 BLAS based solver for the NGEP,

The new solver scales on multicore architectures,

The level-3 BLAS operations make extensive use of the vector
registers, (→ see 1 thread results)

We get a acceptable approximation of the NGEP in drastically
reduced time.

Further Research:

Include more parallelism from the recursive structure
→ use properties of NUMA architectures to share the work,

Develop a hybrid CPU-Accelerator implementation,

Improve robustness
→ develop fall back situations if the DSCQZ algorithm fails.

Thank you for your
attention!
Questions?
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