
CUDA

Chapter 4

GPU Computing and
Accelerators: Part II

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 177/337

CUDA

Compute Unified Device Architecture (CUDA)
What is CUDA?

CUDA is two things at the same time:

1 platform model
for the hardware implementation of general purpose
graphics processing units made by the Nvidia®

Corporation.

2 programming model
realizing the software implementation and scheduling of
tasks of the parallel programs on the above hardware.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 178/337

CUDA

Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (thread)

A thread, or more precisely GPU-thread is the smallest unit of data and
instructions to be executed in a parallel CUDA program.

In contrast to CPU-threads a task switch between GPU-threads is usually
almost for free due to the special CUDA architecture.

Definition (warp)

The CUDA hardware consists of streaming multi-processors that are
executing several threads simultaneously. GPU-threads are therefore
grouped in so called warps of threads.

The number of threads in a warp may depend on the hardware. They are
mostly 32 threads per warp which in turn is the smallest number of tasks
executed in SIMD style.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 179/337

CUDA

Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (thread)

A thread, or more precisely GPU-thread is the smallest unit of data and
instructions to be executed in a parallel CUDA program.

In contrast to CPU-threads a task switch between GPU-threads is usually
almost for free due to the special CUDA architecture.

Definition (warp)

The CUDA hardware consists of streaming multi-processors that are
executing several threads simultaneously. GPU-threads are therefore
grouped in so called warps of threads.

The number of threads in a warp may depend on the hardware. They are
mostly 32 threads per warp which in turn is the smallest number of tasks
executed in SIMD style.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 179/337

CUDA

Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (thread)

A thread, or more precisely GPU-thread is the smallest unit of data and
instructions to be executed in a parallel CUDA program.

In contrast to CPU-threads a task switch between GPU-threads is usually
almost for free due to the special CUDA architecture.

Definition (warp)

The CUDA hardware consists of streaming multi-processors that are
executing several threads simultaneously. GPU-threads are therefore
grouped in so called warps of threads.

The number of threads in a warp may depend on the hardware. They are
mostly 32 threads per warp which in turn is the smallest number of tasks
executed in SIMD style.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 179/337

CUDA

Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (thread)

A thread, or more precisely GPU-thread is the smallest unit of data and
instructions to be executed in a parallel CUDA program.

In contrast to CPU-threads a task switch between GPU-threads is usually
almost for free due to the special CUDA architecture.

Definition (warp)

The CUDA hardware consists of streaming multi-processors that are
executing several threads simultaneously. GPU-threads are therefore
grouped in so called warps of threads.

The number of threads in a warp may depend on the hardware. They are
mostly 32 threads per warp which in turn is the smallest number of tasks
executed in SIMD style.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 179/337

CUDA

Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (block)

A block is larger group of threads that can contain 64-512 threads.

Ideally it contains a multiple of 32 threads so it can best be split into
warps by the CUDA environment for scheduling.

Definition (grid)

The actual work to be performed by a program or algorithm is distributed
to one or two dimensional grid of blocks.

The grid represents the largest freedom in design that the developer has.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 180/337

CUDA

Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (block)

A block is larger group of threads that can contain 64-512 threads.

Ideally it contains a multiple of 32 threads so it can best be split into
warps by the CUDA environment for scheduling.

Definition (grid)

The actual work to be performed by a program or algorithm is distributed
to one or two dimensional grid of blocks.

The grid represents the largest freedom in design that the developer has.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 180/337

CUDA

Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (block)

A block is larger group of threads that can contain 64-512 threads.

Ideally it contains a multiple of 32 threads so it can best be split into
warps by the CUDA environment for scheduling.

Definition (grid)

The actual work to be performed by a program or algorithm is distributed
to one or two dimensional grid of blocks.

The grid represents the largest freedom in design that the developer has.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 180/337

CUDA

Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (block)

A block is larger group of threads that can contain 64-512 threads.

Ideally it contains a multiple of 32 threads so it can best be split into
warps by the CUDA environment for scheduling.

Definition (grid)

The actual work to be performed by a program or algorithm is distributed
to one or two dimensional grid of blocks.

The grid represents the largest freedom in design that the developer has.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 180/337

CUDA

Compute Unified Device Architecture (CUDA)
Basic Definitions

The central notions to understand data management in a CUDA program
are those of host and device. Here host refers to the computer that hosts
the GPU. Especially the CPU and memory of the host are relevant. The
device then is the GPU installed on the host system.

In case multiple GPUs are installed on a single host system with multiple
CPUs, each GPU is connected to a single CPU representing a single
NUMA node of the host system.

The host CPU controls the execution of the program. However host and
device may execute their tasks asynchronously. When not specified
differently data transfers between them serve as implicit synchronization
points.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 181/337

CUDA

Compute Unified Device Architecture (CUDA)
Basic Definitions

The central notions to understand data management in a CUDA program
are those of host and device. Here host refers to the computer that hosts
the GPU. Especially the CPU and memory of the host are relevant. The
device then is the GPU installed on the host system.

In case multiple GPUs are installed on a single host system with multiple
CPUs, each GPU is connected to a single CPU representing a single
NUMA node of the host system.

The host CPU controls the execution of the program. However host and
device may execute their tasks asynchronously. When not specified
differently data transfers between them serve as implicit synchronization
points.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 181/337

CUDA

Compute Unified Device Architecture (CUDA)
Basic Definitions

The central notions to understand data management in a CUDA program
are those of host and device. Here host refers to the computer that hosts
the GPU. Especially the CPU and memory of the host are relevant. The
device then is the GPU installed on the host system.

In case multiple GPUs are installed on a single host system with multiple
CPUs, each GPU is connected to a single CPU representing a single
NUMA node of the host system.

The host CPU controls the execution of the program. However host and
device may execute their tasks asynchronously. When not specified
differently data transfers between them serve as implicit synchronization
points.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 181/337

CUDA

Compute Unified Device Architecture (CUDA)
Basic Definitions

Definition (kernel)

The kernel is the core element of a CUDA parallel program. It represents
the function that specifies the work a certain thread in a block on a grid
has to execute.

We will see in the course of this Chapter how we the kernel knows what
it has to do.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 182/337

CUDA

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension

We will next introduce the most basic elements of the CUDA C language
extension. These consist of two very important things.

1 qualifiers that apply to functions and specify where the function
should be executed,

2 launch size specifiers that control the grid and block sizes that are
used to run a kernel.

An extensive API, defining C-style functions and data types to be used in
CUDA programs, together with a handful of libraries for several kinds of
tasks (e.g., a BLAS implementation) complete the picture.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 183/337

CUDA

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension

Figure: The CUDA GPU computing applications framework (taken from CUDA
C programming guide)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 184/337

CUDA

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension: Qualifiers

global This qualifier applies to a function and is used to
indicate that it in fact represents a kernel.

device The qualifier that specifies functions that should be run
on the device, but are not kernels. It can be useful for subtasks
called in a kernel. It also applies to variables determining them to
reside on the device.

host Being basically redundant this qualifier can be used to
explicitly state that a function is to be executed on the host. It is
therefore optional.

shared applies to a variable declaring that it should reside in the
shared memory of a streaming multiprocessor

constant applies to a variable specifying the residence in the
constant memory.

Note that global and device functions are not allowed to be
recursive.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 185/337

CUDA

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension: Qualifiers

global This qualifier applies to a function and is used to
indicate that it in fact represents a kernel.

device The qualifier that specifies functions that should be run
on the device, but are not kernels. It can be useful for subtasks
called in a kernel. It also applies to variables determining them to
reside on the device.

host Being basically redundant this qualifier can be used to
explicitly state that a function is to be executed on the host. It is
therefore optional.

shared applies to a variable declaring that it should reside in the
shared memory of a streaming multiprocessor

constant applies to a variable specifying the residence in the
constant memory.

Note that global and device functions are not allowed to be
recursive.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 185/337

CUDA

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension: Qualifiers

global This qualifier applies to a function and is used to
indicate that it in fact represents a kernel.

device The qualifier that specifies functions that should be run
on the device, but are not kernels. It can be useful for subtasks
called in a kernel. It also applies to variables determining them to
reside on the device.

host Being basically redundant this qualifier can be used to
explicitly state that a function is to be executed on the host. It is
therefore optional.

shared applies to a variable declaring that it should reside in the
shared memory of a streaming multiprocessor

constant applies to a variable specifying the residence in the
constant memory.

Note that global and device functions are not allowed to be
recursive.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 185/337

CUDA

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension: Qualifiers

global This qualifier applies to a function and is used to
indicate that it in fact represents a kernel.

device The qualifier that specifies functions that should be run
on the device, but are not kernels. It can be useful for subtasks
called in a kernel. It also applies to variables determining them to
reside on the device.

host Being basically redundant this qualifier can be used to
explicitly state that a function is to be executed on the host. It is
therefore optional.

shared applies to a variable declaring that it should reside in the
shared memory of a streaming multiprocessor

constant applies to a variable specifying the residence in the
constant memory.

Note that global and device functions are not allowed to be
recursive.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 185/337

CUDA

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension: Qualifiers

global This qualifier applies to a function and is used to
indicate that it in fact represents a kernel.

device The qualifier that specifies functions that should be run
on the device, but are not kernels. It can be useful for subtasks
called in a kernel. It also applies to variables determining them to
reside on the device.

host Being basically redundant this qualifier can be used to
explicitly state that a function is to be executed on the host. It is
therefore optional.

shared applies to a variable declaring that it should reside in the
shared memory of a streaming multiprocessor

constant applies to a variable specifying the residence in the
constant memory.

Note that global and device functions are not allowed to be
recursive.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 185/337

CUDA

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension: Qualifiers

global This qualifier applies to a function and is used to
indicate that it in fact represents a kernel.

device The qualifier that specifies functions that should be run
on the device, but are not kernels. It can be useful for subtasks
called in a kernel. It also applies to variables determining them to
reside on the device.

host Being basically redundant this qualifier can be used to
explicitly state that a function is to be executed on the host. It is
therefore optional.

shared applies to a variable declaring that it should reside in the
shared memory of a streaming multiprocessor

constant applies to a variable specifying the residence in the
constant memory.

Note that global and device functions are not allowed to be
recursive.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 185/337

CUDA

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension: Launch size specifiers

The basic launch size specification for a kernel takes the form

<<< grid , block size >>>

where grid specifies the block distribution and block size indicates
the number of threads per block in the grid.

Example

<<<1,1>>> launches 1 block with 1 thread

<<<N,1>>> launches N blocks with 1 thread each

<<<1,N>>> launches 1 block with N threads

<<<N,M>>> launches a 1d grid of N block running M threads each

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 186/337

CUDA

Compute Unified Device Architecture (CUDA)
Most Basic Syntax of the CUDA C Extension: Launch size specifiers

Both the arguments can be two dimensional distributions. CUDA defines
special tuple hiding types for these declarations. Using

dim3 grid(3,2)
dim3 threads(16,16)

one defines a 3× 2 grid of blocks for running 256 threads arranged in a
16× 16 local grid. These are then used in the launch specification as

<<< grid, threads>>>

Launch size specifications are simply appended to the kernel function
name upon calling it.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 187/337

CUDA

Compute Unified Device Architecture (CUDA)
Intoductory Examples

The following examples are taken from the “CUDA by Example” book.

Example

#include "../common/book.h"

__global__ void kernel(void) {
}

int main(void) {
kernel<<<1,1>>>();
printf("Hello, World!\n");
return 0;

}

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 188/337

CUDA

Compute Unified Device Architecture (CUDA)
Intoductory Examples

Example

#include "../common/book.h"

__global__ void add(int a, int b, int *c) {

*c = a + b;
}

int main(void) {
int c;
int *dev_c;
HANDLE_ERROR(cudaMalloc((void**)&dev_c, sizeof(int)));

add<<<1,1>>>(2, 7, dev_c);

HANDLE_ERROR(cudaMemcpy(&c, dev_c, sizeof(int),
cudaMemcpyDeviceToHost));

printf("2 + 7 = %d\n", c);
HANDLE_ERROR(cudaFree(dev_c));

return 0;
}

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 189/337

CUDA

Compute Unified Device Architecture (CUDA)
Intoductory Examples

Example

#include "../common/book.h"

__device__ int addem(int a, int b) {
return a + b;

}

__global__ void add(int a, int b, int *c) {

*c = addem(a, b);
}

int main(void) {
int c;
int *dev_c;
HANDLE_ERROR(cudaMalloc((void**)&dev_c, sizeof(int)));
add<<<1,1>>>(2, 7, dev_c);
HANDLE_ERROR(cudaMemcpy(&c, dev_c, sizeof(int),

cudaMemcpyDeviceToHost));
printf("2 + 7 = %d\n", c);
HANDLE_ERROR(cudaFree(dev_c));
return 0;

}

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 190/337

CUDA

Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

Before we can rush of and compile the previous examples, we need to
check a few prerequisites:

Nvidia® device drivers and hardware,

Nvidia® CUDA toolkit installation,

compiler for the host code.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 191/337

CUDA

Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

Basic information on CUDA in general can be found at
http://www.nvidia.com/cuda.

The Toolkit and all the
information on the included accelerated libraries and developer tools can
be found at https://developer.nvidia.com/cuda-toolkit.

As for the hardware, basically every Nvidia®GPU released after the
appearance of the GeForce 8800 GTX in 2006 is CUDA enabled.
However, one needs to make sure that the OS version, the device driver
and CUDA Toolkit version are fitting. Working combinations should be
available in the toolkits documentation.

Regarding the compilers Nvidia® recommends the following

Microsoft Windows Visual Studio

Linux Gnu Compiler Collection (GCC)

MacOS GCC as well via Apple’s Xcode

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 192/337

http://www.nvidia.com/cuda
https://developer.nvidia.com/cuda-toolkit

CUDA

Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

Basic information on CUDA in general can be found at
http://www.nvidia.com/cuda. The Toolkit and all the
information on the included accelerated libraries and developer tools can
be found at https://developer.nvidia.com/cuda-toolkit.

As for the hardware, basically every Nvidia®GPU released after the
appearance of the GeForce 8800 GTX in 2006 is CUDA enabled.
However, one needs to make sure that the OS version, the device driver
and CUDA Toolkit version are fitting. Working combinations should be
available in the toolkits documentation.

Regarding the compilers Nvidia® recommends the following

Microsoft Windows Visual Studio

Linux Gnu Compiler Collection (GCC)

MacOS GCC as well via Apple’s Xcode

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 192/337

http://www.nvidia.com/cuda
https://developer.nvidia.com/cuda-toolkit

CUDA

Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

Basic information on CUDA in general can be found at
http://www.nvidia.com/cuda. The Toolkit and all the
information on the included accelerated libraries and developer tools can
be found at https://developer.nvidia.com/cuda-toolkit.

As for the hardware, basically every Nvidia®GPU released after the
appearance of the GeForce 8800 GTX in 2006 is CUDA enabled.
However, one needs to make sure that the OS version, the device driver
and CUDA Toolkit version are fitting. Working combinations should be
available in the toolkits documentation.

Regarding the compilers Nvidia® recommends the following

Microsoft Windows Visual Studio

Linux Gnu Compiler Collection (GCC)

MacOS GCC as well via Apple’s Xcode

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 192/337

http://www.nvidia.com/cuda
https://developer.nvidia.com/cuda-toolkit

CUDA

Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

Basic information on CUDA in general can be found at
http://www.nvidia.com/cuda. The Toolkit and all the
information on the included accelerated libraries and developer tools can
be found at https://developer.nvidia.com/cuda-toolkit.

As for the hardware, basically every Nvidia®GPU released after the
appearance of the GeForce 8800 GTX in 2006 is CUDA enabled.
However, one needs to make sure that the OS version, the device driver
and CUDA Toolkit version are fitting. Working combinations should be
available in the toolkits documentation.

Regarding the compilers Nvidia® recommends the following

Microsoft Windows Visual Studio

Linux Gnu Compiler Collection (GCC)

MacOS GCC as well via Apple’s Xcode

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 192/337

http://www.nvidia.com/cuda
https://developer.nvidia.com/cuda-toolkit

CUDA

Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

We will in the following restrict ourselves to the Linux world again.

Consider our basic “Hello World!” example is stored in a text file called
hello world.cu. Using the nvcc compiler provided in the CUDA
Toolkit we can compile it by

nvcc hello_world.cu

Since on Linux nvcc uses gcc to compile the host code this will also
generate a binary called a.out. As for gcc we can specify the output
filename, i.e. name of the resulting executable via

nvcc hello_world.cu -o hello_world

The file extension .cu is used to indicate that we have a C file with
CUDA C extensions.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 193/337

CUDA

Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

Among the further compiler options we meet many old friends:

-c for generating object files of single .c or .cu files

-g for generating debug information in the host code

-pg the same for profiling information

-O for specifying the optimization level for the host code

-m specify 32 vs 64bit host architecture

And we have a few more for the device code, e.g.

-G generates debug information for the device code

-arch specifies the GPU architecture to be assumed, i.e. the compute
capabilities of the device (e.g. -arch=sm 20)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 194/337

CUDA

Compute Unified Device Architecture (CUDA)
Compiling CUDA Programs

Among the further compiler options we meet many old friends:

-c for generating object files of single .c or .cu files

-g for generating debug information in the host code

-pg the same for profiling information

-O for specifying the optimization level for the host code

-m specify 32 vs 64bit host architecture

And we have a few more for the device code, e.g.

-G generates debug information for the device code

-arch specifies the GPU architecture to be assumed, i.e. the compute
capabilities of the device (e.g. -arch=sm 20)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 194/337

