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1.1 Why Parallel Computing?
Classically the area of Scientific Computing, or more precisely that of High Per-
formance Computing (HPC) has been themajor source for the demand on paral-
lel computing techniques and abilities. Nowadays the picture is changing dras-
tically due to the emerging field of multi and many Core architectures. In only
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a few years of time one has to expect computer programs of all kinds to have
to run on highly parallel desktop computers. Therefore, we can currently state
three important reasons for the interest in parallel computing techniques:

1. Problem size exceeds desktop capabilities.
2. Problem is inherently parallel (e.g. Monte-Carlo simulations).
3. Modern architectures require parallel programming skills to take best ada-

vatage of their features.

Here, the last one is clearly the modern one that has come up with the availabil-
ity ofMultiCore processors in basically all modern devices starting fromdesktop
computers, possibly equippedwith high performance graphics processing units
(GPUs), but also reaching down tomodern smart-phones withMultiCoremobile
processors. The first two are more classical approaches requiring specialized
HPC hardware or networks of many standard PCs (the so called Clusters). Al-
though especially for the second MultiCore processors may give a huge impact,
too.

1.2 Flynn’s Taxonomy of Parallel Architectures
The basic definition of a parallel computer is very vague in order to cover a large
class of systems. Important details that are not considered by the definition are:

• How many processing elements?
• How complex are they?
• How are they connected?
• How is their cooperation coordinated?
• What kind of problems can be solved?

The basic classification allowing answers to most of these questions is known
as Flynn’s taxonomy. It distinguishes four categories of parallel computers.
The four categories allowing basic answers to the questions on global process
control, as well as the resulting data and control flow in the machine are

1. Single-Instruction, Single-Data (SISD)
2. Multiple-Instruction, Single-Data (MISD)
3. Single-Instruction, Multiple-Data (SIMD)
4. Multiple-Instruction, Multiple-Data (MIMD)
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All four of these serve asmachine models for different kinds of actual hardware
implementations. The models with their properties subdivisions and example
hardware are discussed in the next few sections.
1.2.1 Single-Instruction, Single-Data (SISD)
Themost simple and classically most common architectural model is the single-
instruction, single-data model. It represents what has been the standard for
desktop computers until the introduction of MultiCore processors only a few
years ago. The SISD model is characterized by

• a single processing element,
• executing a single instruction,
• on a single piece of data,
• in each step of the execution.

It is thus in fact the standard sequential computer implementing, e.g., the von
Neumannmodel1.
Examples

• desktop computers until Intel® Pentium® 4 era,
• early netBooks on Intel® Atom™ basis,
• pocket calculators,
• abacus,
• embedded circuits

A schematic presentation of the model is given in Figure 1.1.

inst
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Figure 1.1: Single-Instruction, Single-Data (SISD) machine model
1see, e.g., http://en.wikipedia.org/wiki/Von_Neumann_architecture

http://en.wikipedia.org/wiki/Von_Neumann_architecture
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1.2.2 Multiple-Instruction, Single-Data (MISD)
In contrast to the SISD model in the MISD architecture we have

• multiple processing elements,
• executing a separate instruction each,
• all on the same single piece of data,
• in each step of the execution.

The MISD model is usually not considered very useful in practice. Figure 1.2
shows the graphical representation of this model.
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Figure 1.2: Multiple-Instruction, Single-Data (MISD) machine model

1.2.3 Single-Instruction, Multiple-Data (SIMD)
The single-instruction, multiple-data model is a much more useful approach
compared to MISD. Here the characterization is

• multiple processing elements,
• execute the same instruction,
• on a multiple pieces of data,
• in each step of the execution.

This model is thus the ideal model for all kinds of vector operations
c “ a ` αb.

Here for every triple of entries in a, b, and c we have to perform the same three
instructions. First we scale the entry in b, then add it to the corresponding entry
in a and store the result to the appropriate position in c.
Examples
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• Graphics Processing Units,
• Vector Computers,
• SSE (Streaming SIMD Extension) registers of modern CPUs.

The attractiveness of the SIMD model for vector operations, i.e., linear algebra
operations, comes at a cost.
Consider the simple conditional expression

if (b==0) c=a; else c=a/b;

The SIMDmodel requires the execution of both cases sequentially. First all pro-
cesses for which the condition is true execute their assignment, then the other
do the second assignment. Therefore, conditionals need to be avoided on SIMD
architectures to guarantee maximum performance. Figure 1.3 makes it even
more obvious that SIMD architectures are ideal to utilize data level parallelism.
The SIMD model is characterized by the “run the same set of operations at the
same time in parallel” paradigm. This is helpful in vector operations as seen
above, but brings in the restrictions for conditionals we have also seen. The
SPMD model described in the next section as one subclass of the MIMD model
weakens this restriction.
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Figure 1.3: Single-Instruction, Multiple-Data (SIMD) machine model

1.2.4 Multiple-Instruction, Multiple-Data (MIMD)
Themost flexible architectural approach is describedby themultiple-instruction,
multiple-data model. MIMD allows

• multiple processing elements,
• to execute a different instruction,
• on a separate piece of data,
• at each instance of time.
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Examples
• multicore and multi-processor desktop PCs,
• cluster systems.

MIMD computer systems can be further divided into three class regarding their
memory configuration:
distributed memory
Every processing element has a certain exclusive portion of the entire memory
available in the system. Data needs to be exchanged via an interconnection
network. These machines will be treated in more detail in Chapter 5.
shared memory
All processing units in the system can access all data in the main memory. Sev-
eral different models describing the uniformity of the access like UMA, NUMA,
and ccNUMA will be treated in Chapter 3.
hybrid
Certain groups of processing elements share a part of the entire data and in-
struction storage.
When working with MIMD systems users basically follow either of the following
two programming models.
Single Program, Multiple Data (SPMD)
SPMD is a programmingmodel forMIMDsystems. “In SPMDmultiple autonomous
processors simultaneously execute the same program at independent points.”2
This contrasts to the SIMD model where the execution points are not indepen-
dent.
This is opposed to
Multiple Program, Multiple Data (MPMD)
Adifferent programmingmodel forMIMDsystems, wheremultiple autonomous
processing units execute different programs at the same time. Typically Mas-
ter/Worker like management methods of parallel programs are associated with
this class. There theMaster is acting as a controller process executing a different
programs than its Workers performing the actual computations.

2Wikipedia: http://en.wikipedia.org/wiki/SPMD

http://en.wikipedia.org/wiki/SPMD
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Figure 1.4: Multiple-Instruction, Multiple-Data (MIMD) machine model

1.3 Memory Hierarchies in Parallel Computers
1.3.1 Repetition Sequential Processor
Recall the basic ideas for thememory hierarchy on a sequential systemwe have
discussed in Chapter 4 of the first part of this lecture. We have classified sev-
eral types of storage into fast medium speed and slow storage/memory. Based
on this classification we derived strategies for data management to optimize
the run-time of a program executing a certain variant of an algorithm. For lin-
ear algebra operations this mainly lead to the reformulation of the algorithms
in block matrix fashion where we could execute cubically many operations on
quadratically many entries in terms of the matrix dimension. This turned out to
be the optimal way of using the Caches on the processor.

• L3 Cache
• L2 Cache
• L1 Cache
• Registers

• Main Random Access Memory (RAM)

• Network Storage
• Local Storage– Tape– Hard Disk Drive (HDD)– Solid State Disk (SSD)

• Cloud

fast

medium

slow and
very slow

Figure 1.5: Basic memory hierarchy on a single processor system.
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1.3.2 Shared Memory
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Core P#0
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L2 (256KB)

L1 (32KB)
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Indexes: physical

Date: Mo 09 Jul 2012 13:37:17 CEST

Figure 1.6: A sample dual core Xeon® setup
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Figure 1.7: A sample Core™ 2 Quad setup
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Figure 1.8: A four processor octa-core Xeon® system
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1.3.3 General Memory Setting

system bus
Main Memory

P1

cache

. . . Pn

cache

Accelerator Device

InterconnectI/O

Figure 1.10: Schematic of a general parallel system

1.4 Communication Networks
The Interconnect in the last figure stands for any kind of Communication grid.
This can be implemented either as

• local hardware interconnect,
or in the form of

• network interconnect.
In classical supercomputers the first wasmainly used, whereas in today’s cluster
based systems often the network solution is used in the one form or the other.
1.4.1 Hardware
Network hardware is nowadays mainly one of the two types
MyriNet

• shipping since 2005
• transfer rates up to 10Gbit/s
• lower overhead compared to Ethernet
• less interference of the actual transfer and CPU
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• thus higher throughput
• lost significance (2005 28.2% TOP500 down to 0.8% in 2011)

Infiniband
• transfer rates up to 300Gbit/s
• most relevant implementation driven by OpenFabrics Alliance3,⇝ usable
on Linux, BSD, Windows systems.

• features remote direct memory access (RDMA)⇝ reduced CPU overhead
• can also be used for TCP/IP communication

Omni-Path
• transfer rates up to 100Gbit/s
• introduced by Intel® in 2015/2016
• rising significance
• Intel®’s approach to address cluster of ą 10 000 nodes

1.4.2 Topologies
1. Linear array: nodes aligned on a string each being connected to at most

two neighbors.
2. Ring: nodes are aligned in a ring each being connected to exactly two

neighbors
3. Complete graph: every node is connected to all other nodes
4. Mesh and Torus: Every node is connected to a number of neighbors (2–4

in 2d mesh, 4 in 2d torus).
5. k-dimensional cube / hypercube: Recursive construction of a well con-

nected network of 2k nodes each connected to k neighbors. Line for two,
square for four, cube fore eight.

6. Tree: Nodes are arranged in groups, groups of groups and so forth until
only one large group is left, which represents the root of the tree.

3http://www.openfabrics.org/

http://www.openfabrics.org/
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2.1 Time Measurement and Operation Counts
2.1.1 The Single Processor Case

Definition 2.1:
In general we call the time elapsed between issuing a command and re-
ceiving its results the runtime, or execution time of the corresponding pro-
cess. Some authors also call it elapsed time, or wall clock time.
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In the purely sequential case it is closely related to the so called CPU time of the
process. There the main contributions are:

• user CPU time: Time spent in execution of instructions of the process.
• system CPU time: Time spent in execution of operating system routines
called by the process.

• waiting time: Time spent waiting for time slices, completion of I/O, mem-
ory fetches. . .

That means the time we have to wait for a response of the program includes
the waiting times besides the CPU time. We have focused on minimizing the
waiting times mainly caused by cache misses in part one of the lecture in win-
ter term. Other waiting times caused by the overall load of the system are out
of our reach anyway. Therefore, we will basically neglect this contribution for
further considerations. The same holds for the system CPU time part. The time
spent here strongly depends on the type and implementation of system calls
in the underlying operating system, which we also can not influence. Only in
multi-threading environments, where system calls (e.g. for storing intermedi-
ate results to disks) can be executed independent of the rest of the execution
of the process, one should try and use threads (see Section 3.3.2) to minimize
their influence.
In the followingwehave a closer look on theuser CPU time contribution. Amajor
part of this is due to the execution of different instructions issued by the pro-
gram. The upcoming two sectionswill get into detail on the problems connected
to varying instructions and the concepts of low and high level instructions.
2.1.2 Instructions: Timings and Counts
clock rate and cycle time
The clock rate of a processor tells us how often it can switch instructions per
second. Closely related is the (clock) cycle time, i.e., the time elapsed between
two subsequent clock ticks.

Example 2.2:
A CPU with a clock rate of 3.5 GHz “ 3.5 ¨ 109 1/s executes 3.5 ¨ 109 clock ticks
per second. The length of a clock cycle thus is

1{p3.5 ¨ 109q s “ 1{3.5 ¨ 10´9 ¨ s « 0.29 ns

Different instructions require different times to get executed. This is repre-
sented by the so called cycles per instruction (CPI) of the corresponding instruc-
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tion. An average CPI is connected to a process A via CPIpAq.
This number determines the total user CPU time together with the number of
instructions and cycle time via

TU_CPU pAq “ ninstrpAq ¨ CPIpAq ¨ tcycle

Clever choices of the instructions can influence the values ofninstrpAq andCPIpAq.
⇝ compiler optimization.
2.1.3 MIPS versus FLOPS
A common performance measure of CPU manufacturers is the Million instruc-
tions per second (MIPS) rate. It can be expressed as

MIPSpAq “
ninstrpAq

TU_CPU pAq ¨ 106
“

rcycle
CPIpAq ¨ 106

,

where rcycle is the cycle rate of the CPU.
This measure can be misleading in high performance computing, since higher
instruction throughput does not necessarily mean shorter execution time.
More common for the comparison in scientific computing is the rate of floating
point operations (FLOPS) executed. The MFLOPS rate of a program A can be
expressed as

MFLOPSpAq “
nFLOPSpAq

TU_CPU pAq ¨ 106
r1{ss,

with nFLOPSpAq the total number of FLOPS issued by the program A.
Note that not all FLOPS (see also Chapter 4 winter term) take the same time to
execute. Usually divisions and square roots aremuch slower. TheMFLOPS rate,
however, does not take this into account.
2.1.4 CPU_Time versus Execution Time
On a parallel machine time measurement includes some notable side effects
that are best explained by a simple example. The following is a simple script in
MATLAB®.
Example 2.3 (A simple MATLAB test):
Input:
ct0=0;
A=randn(1500);
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tic
ct0=cputime;
pause(2)
toc
cputime-ct0

tic
ct0=cputime;
[Q,R]=qr(A);
toc
cputime-ct0

Output:
Elapsed time is 2.000208 seconds.

ans =

0.0300

Elapsed time is 0.733860 seconds.

ans =

21.6800

The results have been obtained in MATLABR2010b on a system with four octa-
core Xeon® processors.
Obviously, in a parallel environment the CPU time can be much higher than the
actual execution time elapsed between start and end of the process.
In any case, it can be much smaller, as well.

The first result is easily explained by the splitting of the execution time into
user/system CPU time and waiting time. The process is mainly waiting for the
sleep system call to return whilst basically accumulating no active CPU time.

The second result is due to the fact that the activity is distributed to several
cores. Each activity accumulates its own CPU time and these are summed up to
the total CPU time of the process.

2.2 Parallel Cost and Optimality
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Definition 2.4 (Parallel cost and cost-optimality):
The cost of a parallel program with data size n is defined as

Cppnq “ p ˚ Tppnq.

Here Tppnq is the parallel runtime of the process, i.e., its execution time on
p processors.
The parallel program is called cost-optimal if

Cp “ T ˚pnq.

Here, T ˚pnq represents the execution time of the fastest sequential pro-
gram solving the same problem.

In practice T ˚pnq is often approximated by T1pnq. This is due to the fact that
the optimal algorithm for a problem is often not available for comparison, or
not available at all. The later basically means that a proof of existence for the
algorithm exists, but is not constructive so that the actual algorithm fulfilling the
optimal sequential cost is unknown.

2.3 Speedup
The speedup of a parallel program

Sppnq “
T ˚pnq

Tppnq
,

is a measure for the acceleration, in terms of execution time, we can expect
from a parallel program. The speedup is strictly limited from above by p since
otherwise the parallel program would motivate a faster sequential algorithm. A
method to derive such a sequential algorithm is described in [18, Chapter 4].

In practice often the speedup is computedwith respect to the sequential version
of the code, i.e.,

Sppnq «
T1pnq

Tppnq
.

2.4 Parallel Efficiency
Usually, the parallel execution of the work a program has to perform comes at
the cost of certain management of subtasks. Their distribution, organization
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and interdependence leads to a fraction of the total execution, that has to be
done extra.

Definition 2.5:
The fraction of work that has to be performed by a sequential algorithm
as well is described by the parallel efficiency of a program. It is computed
as

Eppnq “
T ˚pnq

Cppnq
“

Sppnq

p
“

T ˚

p ¨ Tppnq
.

The parallel efficiency obviously is limited from above by Eppnq “ 1 represent-
ing the perfect speedup of p. Since the values range from 0 to 1 the parallel
efficiency is often also represented as a percent value, i.e., Eppnqis identified
with 100 ˚ Eppnq.

2.5 Amdahl’s Law
Inmany situations it is impossible to parallelize the entire program. Certain frac-
tions remain that need to be performed sequentially. When a (constant) fraction
f of the program needs to be executed sequentially, Amdahl’s law describes the
maximum attainable speedup.
The total parallel runtime Tppnq then consists of

• f ¨ T ˚pnq the time for the sequential fraction and
• p1 ´ fq{p ¨ T ˚pnq the time for the fully parallel part.

The best attainable speedup can thus be expressed as
Sppnq “

T ˚pnq

f ¨ T ˚pnq `
1´f
p T ˚pnq

“
1

f `
1´f
p

ď
1

f
.

2.6 Scalability of Parallel Programs
Question
Is the parallel efficiency of a parallel program independent of the number of
processors p used?
The question is answered by the concept of parallel scalability. Scientific com-
puting and HPC distinguish two forms of scalability:
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• strong scalability captures the dependence of the parallel runtime on
the number of processors for a fixed total problem size.

• weak scalability captures the dependence of the parallel runtime on the
number of processors for a fixed problem size per processor.
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3.1 Symmetric Multiprocessing
Definition 3.1 (Symmetric Multiprocessing (SMP)):
The situation where two or more identical processing elements access a
shared periphery (i.e., memory, I/O,. . . ) is called symmetric multiprocessing
or simply (SMP).

The most common examples are
• Multiprocessor systems, where the processing elements are the single
processors,

• Multicore CPUs, where the processing elements are given by the single
cores.

3.2 Memory Hierarchy
3.2.1 Basic Memory Layout
3.2.2 Uniform Memory Access (UMA)
UMA is a shared memory computer model, where

• one physical memory resource,
• is shared among all processing units,
• all having uniform access to it.

Especially, that means that all memory locations can be requested by all pro-
cessors at the same time scale, independent of which processor performs the
request and which chip in the memory holds the location.
Local caches one the single processing units are allowed. That means classical
multicore chips are an example of a UMA system.
3.2.3 Non-Uniform Memory Access (NUMA)
Contrasting the UMA model in NUMA the system consists of

• one logical shared memory unit,
• gathered from two or more physical resources,
• each bound to (groups of) single processing units.

Due to the distributed nature of the memory, access times vary depending on
whether the request goes to local or foreign memory.
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Figure 3.1: AMDs Bulldozer layout is a NUMA example.By The Portable Hardware Locality (hwloc) Project (Raysonho@Open Grid Scheduler / Grid Engine) [see web page for license], via WikimediaCommons

Examples are current multiprocessor systems with multicore processors per
socket and a separate portion of thememory controlled by each socket, or “clus-
ter on a chip” design processors like AMDs bulldozer series.
3.2.4 Cache Coherence

Definition 3.2 (cache coherence):
The problem of keeping multiple copies of a single piece of data in the
local caches of the different processors, that hold it, consistent is called
cache coherence problem.

Cache coherence protocols:
• guarantee a consistent view of the main memory at any time.
• Several protocols exist.
• Basic idea is to invalidate all other copies whenever one of them is up-
dated.

3.3 Processes and Threads
3.3.1 Multiprocessing

Definition 3.3 (Process):
A computer program in execution is called a process.
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A process consists of:
• the programs machine code,
• the program data worked on,
• the current execution state, i.e., the context of the process, register and
cache contents, . . .

Each process has a separate address space in the main memory.
Execution time slices are assigned to the active processes by the operating sys-
tem’s (OS’s) scheduler. A switch of processes requires exchanging the process
context, i.e., a short execution delay.
Multiple processes may be used for the parallel execution of compute tasks.

On Unix/Linux systems the fork() system call can be used to generate child
processes. Each child process is generated as a copy of the calling parent pro-
cess. It receives an exact copy of the address space of the parent and a new
unique process ID (PID).

Communication between parent and child processes can be implemented via
sockets or files, which usually leads to large overhead for data exchange.
3.3.2 Threading

Definition 3.4 (Thread):
In the threadmodel, a processmay consist of several execution sub-entities,
i.e control flows, progressing at the same time. These are usually called
threads, or lightweight processes.

All threads of a process share the same address space. Thus communication
and thread generation is simple and fast. There is no need to exchange data
since everything is shared anyway.

Two types of implementations exist:
• user level threads:

– administration and scheduling in user space,
– threading library maps the threads into the parent process,
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– quick task switches avoiding the OS.
• kernel threads:

– administration and scheduling by OS kernel and scheduler,
– different threads of the same process may run on different proces-
sors,

– blocking of single threads does not block the entire process,
– thread switches require OS context switches.

Here we concentrate on POSIX threads, or Pthreads. These are available on
all major OSes. The actual implementations range from user space wrappers
(pthreads-w32 mapping pthreads to windows threads) to lightweight pro-
cess type implementations (e.g. Solaris 2).
3.3.3 Mapping of user level threads to kernel threads or processes

UT
UT
UT
UT

UT
UT
UT

OSP

OSP

OSP

OSP

OSP
OSP

OSP

PU
PU
PU
PU

Figure 3.2: N:1 mapping for OS incapable of kernel threads

3.3.4 Properties and Problems
Parallel versus concurrent execution

1. Often the two notions parallel and concurrent execution are used as syn-
onyms of each other. In fact concurrent is more general.

2. Theparallel execution of a set of tasks requires parallel hardware onwhich
they can be executed simultaneously.
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Figure 3.3: 1:1 mapping of user threads to kernel threads

3. The concurrent execution only requires a quasi parallel environment that
allows all tasks to be in progress at the same time.

4. That means “parallel” execution defines a subset of “concurrent” execu-
tion.

Definition 3.5 (race condition):
When several threads/processes of a parallel programhave read andwrite
access to a common piece of data, access needs to be mutually exclusive.
Failure to ensure this, leads to a race condition, where the final value de-
pends on the sequence of uncontrollable/random events. Usually data cor-
ruption is then unavoidable.

Example 3.6:Two possible execution orders due to random external events (e.g. in the oper-ating system.)
Thread 1 Thread 2 value

0
read 0

increment 0
write 1

read 1
increment 1

write 2

Thread 1 Thread 2 value
0

read 0
read 0

increment 0
write 1

increment 1
write 1
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Figure 3.4: N:M mapping of user threads to kernel threads with library thread
scheduler

3.3.5 Protection of critical regions
Definition 3.7 (semaphore):
A semaphore is a simple flag (binary semaphore) or a counter (counting
semaphore) indicating the availability of shared resources in a critical re-
gion.

Definition 3.8 (mutual exclusion variable (mutex)):
Themutual exclusion variable, or shortlymutex variable, implements a sim-
ple locking mechanism regarding the critical region. Each process/thread
checks the lock upon entry to the region. If it is open the process/thread
enters and locks it behind. Thus, all other processes/threads are pre-
vented from entering and the process in the critical region has exclusive
access to the shared data. When exiting the region the lock is opened.

Both the above definitions introduce the programming models. Actual imple-
mentations may be more or less complete. For example the pthreads-imple-
mentation lacks counting semaphores.

Definition 3.9 (deadlock):
A deadlock describes the unfortunate situation, when semaphores, or
mutexes have not, or have inappropriately been applied such that no pro-
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cess/thread is able to enter the critical region anymore and the parallel
program is unable to proceed.

3.3.6 Dining Philosophers

Figure 3.5: The dining philosophers problem

Example 3.10 (dining philosophers):
• Each philosopher alternatingly eats or thinks,
• to eat the left and right forks are both required,
• every fork can only be used by one philosopher at a time,
• forks must be put back after eating.

Image by Benjamin D. Esham / Wikimedia Commons [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)]

simple solution attempt
• think until the left fork is available; when it is, pick it up;
• think until the right fork is available; when it is, pick it up;
• when both forks are held, eat for a fixed amount of time;
• then, put the right fork down;
• then, put the left fork down;
• repeat from the beginning.

http://creativecommons.org/licenses/by-sa/3.0
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All philosophers decide to eat at the same time ñ deadlock.

More sophisticated solutions avoiding the deadlocks have been found since [4].
Three of them are also available on Wikipedia1.

3.4 POSIX Threads
3.4.1 Basics
Common to all the following commands:
Compiling and linking needs to be performed with -pthread (for GNU and
Intel compilers).
The pthread functions and related data types aremade available in a C program
using:

#include <pthread.h>

3.4.2 Creation of threads
int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg);

• thread unique identifier to distinguish from other threads,
• attr attributes for determining thread properties. NULLmeans default
properties,

• start_routine pointer to the function to be started in the newly cre-
ated thread,

• arg the argument of the above function.
Note that only a single argument can be passed to the threads start function.
The argument of the start function is a void pointer. We can thus define:

struct point3d{ double x,y,z; };
struct norm_args{

struct point3d *P;
double norm;

};
struct norm_args args;

1http://en.wikipedia.org/wiki/Dining_philosophers_problem

http://en.wikipedia.org/wiki/Dining_philosophers_problem
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and upon thread creation pass
err=pthread_create(tid, NULL, norm, (void *) &args);

to a start function
void *norm(void *arg) {

struct norm_args *args=(struct norm_args *)arg;
struct point3d *P;
P = args->P;
args->norm = P->x * P->x + P->y * P->y + P->z * P->z;
return NULL;

};

int main(int argc, char* argv[]){
pthread_t tid1,tid2;

struct point3d point;
struct norm_args args;

args.P = &point;

point.x=10; point.y=10; point.z=0;
pthread_create(&tid1, NULL, norm, &args);

point.x=20; point.y=20; point.z=-50;
pthread_create(&tid2, NULL, norm, &args);

pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

}

Depending on the execution of threadtid1 the argumentpointmay get over-
written before it has been fetched, the analogue holds for the norm argument
inside the function.
3.4.3 Exiting threads and waiting for their termination
Pthreads can exit in different forms:

• they return from their start function,
• they call pthread_exit() to cleanly exit,
• they are aborted by a call to pthread_cancel(),
• the process they are associated to is terminated by an exit() call.
int pthread_exit(void *retval);

• retval return value of the exiting thread to the calling thread,
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• threads exit implicitly when their start function is exited,
• the return value may be evaluated from another thread of the same pro-
cess via the pthread_join() function,

• after the last thread in a process exits the process terminates callingexit()
with a zero return value. Only then shared resources are released auto-
matically.
int pthread_join(pthread_t thread, void **retval);

• Waits for a thread to terminate and fetches its return value.
• thread the identifier of the thread to wait for,
• retval destination to copy the return value (if not NULL) to.

3.5 Pthread coordination mechanisms
3.5.1 Mutex and condition variables
The Pthread standard supports four types of synchronization and coordination
facilities:

1. pthread_join(); we have seen this function above
2. Mutex variable functions for handling mutexes as defined above
3. Condition variable functions treat a condition variable that can be used

to indicate a certain event in which the threads are interested. Condition
variables may be used to implement semaphore like structures and trig-
gers for special more complex situation that require the threads to act in
a certain way.

4. pthread_once() can be used to make sure that certain initializations
are performed by one and only one thread when called by multiple ones.

3.5.2 Mutex variables
A mutex variable needs to be initialized before its first use. This can be done in
two ways.
Dynamic initialization:
int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict
attr);

Static/Macro initialization:
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
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• mutex is the mutex variable to be initialized
• attr can be used to adapt the mutex properties, as for the pthreads
NULL gives the default attributes,

• restrict2 is a C99-standard keyword limiting the pointer aliasing fea-
tures and guiding compilers and aiding in the caching optimization.

• initialization may fail if the system has insufficient memory (error code
ENOMEM) or other resources (EAGAIN)

int pthread_mutex_lock(pthread_mutex_t *mutex);

• If mutex is unlocked the function returns with the mutex in locked state,
• If mutex is already locked the execution is blocked until the lock is re-
leased and it can proceed as above,

• Four types of mutexes are defined:
– PTHREAD_MUTEX_NORMAL

– PTHREAD_MUTEX_ERRORCHECK

– PTHREAD_MUTEX_RECURSIVE

– PTHREAD_MUTEX_DEFAULT

All of them show different behavior when locked mutexes should again
be locked by the same thread or a thread tries to unlock a previously un-
locked mutex and similar unintended situations. This, especially, regards
error handling and deadlock detection.

int pthread_mutex_trylock(pthread_mutex_t *mutex);

• The function is equivalent to pthread_mutex_lock(), except that it
returns immediately in any case.

• Success or failure are determined from the return value.
• If the mutex type is PTHREAD_MUTEX_RECURSIVE the lock count is in-
creased by one and the function returns success.

int pthread_mutex_unlock(pthread_mutex_t *mutex);

• the function releases the lock
• what exactly “release” means, depends on the properties of the mutex
variable

2For further information refer to the C99 standard [12] or the brief description at https:
//en.wikipedia.org/wiki/Restrict

https://en.wikipedia.org/wiki/Restrict
https://en.wikipedia.org/wiki/Restrict
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• e.g., for type PTHREAD_MUTEX_RECURSIVEmutexes it means that the
counter is decreased by one and they become available once it reaches
zero

• if the mutex becomes available, i.e., unlocked by the function call and
there are blocked threadswaiting for it, the threading policy decideswhich
thread acquires mutex next.

int pthread_mutex_destroy(pthread_mutex_t *mutex);

• destroys the mutex referenced by mutex
• the destroyed mutex then becomes uninitialized
• pthread_mutex_init() canbeused to initialize the samemutex vari-
able again

• if mutex is locked or referenced, pthread_mutex_destroy() fails
with error code EBUSY

3.5.3 Avoiding mutex triggered deadlocks
Example 3.11 (A deadlock situation when locking multiple mutexes):Problem:

• Consider two mutex variables ma and mb, as well as two threads T1 and
T2.

• T1 locks ma first and then mb,
• T2 locks mb first and then ma,
• If T1 is interrupted by the scheduler after lockingma, but before lockingmb
and in the meantime T2 succeeds in locking it, then the classical deadlock
occurs.

Locking hierarchy solution: The basic idea, here, is that all threads need to
lock the critical mutexes in the same order. This can easily be guaranteed by
hierarchically ordering the mutexes.
Back off strategy solution: Whenwewant to keep the differing locking orders,
we may use pthread_mutex_trylock() with a back off strategy.

• Locking is tried in the desired order,
• when a trylock fails, the thread unlocks all previously locked mutexes (it
backs off of the protected resources),

• after the back off it starts over from the first one.
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3.5.4 Condition variables
Dynamic initialization:
int pthread_cond_init(pthread_cond_t *restrict cond,

const pthread_condattr_t *restrict
attr);

Static/Macro initialization:
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

• cond the condition to be initialized
• attr can be used to adapt the condition properties, as for the pthreads
NULL gives the default attributes,

• restrict: see pthread_mutex_init()
• every condition variable is associated to a mutex.

int pthread_cond_destroy(pthread_cond_t *cond);

• destroys the condition variable referenced by cond
• the destroyed condition then becomes uninitialized
• pthread_cond_init() can reinitialize the same condition variable
• if cond is blocking threads when destroyed the standard does not specify
the behavior of pthread_cond_destroy().

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

• assumes that mutex was locked before by the calling thread,
• results in the thread getting blocked and at the same time (atomically)
releasing mutex

• another threadmay evaluate this to wake up the now blocked thread (see
pthread_cond_signal())

• upon waking up the thread automatically tries to gain access to mutex
again,

• if it succeeds it should test the condition again to check whether another
thread changed it in the meantime.

int pthread_cond_signal(pthread_cond_t *cond);

• if no thread is blocked on the condition variable cond there is no effect,
• otherwise, one of the waiting threads is woken up and proceeds as de-
scribed above.
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int pthread_cond_broadcast(pthread_cond_t *cond);

• wakes up all threads blocking on cond,
• all of them try to acquire the associated mutex,
• only one of them can succeed,
• the others get blocked on the mutex now.

int pthread_cond_timedwait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex,
const struct timespec *restrict

abstime);

• equivalent to pthread_cond_wait() except that it only blocks for the
period specified by abstime,

• if the thread did not get signaled or broadcast before abstime expires
it returns with error code ETIMEDOUT.

3.5.5 A counting semaphore for Pthreads
Semaphores are not available in the POSIX Threads standard.

However, they can be created using the existing mechanisms of mutexes and
conditions.
A counting semaphore should be a data type that acts like a counter with non-
negative values and for which two operations are defined:

1. A signal operation increments the counter and wakes up a task blocked
on the semaphore if one exists.

2. A wait operation simply decrements the counter if it is positive. If it was
zero already the thread is blocking on the semaphore.

• data structure for the semaphore:
typedef struct _sema_t{

int count;
pthread_mutex_t m;
pthread_cond_t c;

} sema_t;

• the initialization
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void InitSema(sema_t *ps){
pthread_mutex_init(&ps->m,NULL);
pthread_cond_init(&ps->c,NULL);

}

• and the cleanup
void CleanupSema(void *arg){
pthread_mutex_unlock((pthread_mutex_t *) arg);

}

void ReleaseSema(sema_t *ps){ // signal operation
pthread_mutex_lock(&ps->m) ;
pthread_cleanup_push(CleanupSema,&ps->m);
{

ps->count++;
pthread_cond_signal(&ps->c) ;

}
pthread_cleanup_pop ( 1 ) ;

}

void AcquireSema(sema_t *ps){ // wait operation
pthread_mutex_lock(&ps->mutex);
pthread_cleanup_push(CleanupSema,&ps->m);
{

while(ps->count==0)
pthread_cond_wait(&ps->c,&ps->m) ;

ps->count--;
}
pthread_cleanup_pop(1);

}

3.5.6 A typical application example for semaphores
Example 3.12 (Producer/Consumer queue buffer protection):
Basic setup:

• A buffer of fixed size n is shared by
• a producer thread generating entries and storing them in the buffer if it
is not full,

• a consumer thread removing entries from the samebuffer for further pro-
cessing unless it is empty.

For the realization of the protected access two semaphores are required:
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1. Number of entries occupied (initialized by 0),
2. Number of free entries (initialized by n).

The Mechanism works for an arbitrary number of producers and consumers.
3.5.7 Coordination models for the cooperation of threads

1. Master/Slave model:
• A master thread is controlling the execution of the program,
• the slave threads are executing the work.

2. Client/Server model:
• Client threads produce requests,
• Server threads execute the corresponding work.

3. Pipeline model:
• Every thread (except for the first and last in line) produces output
that serves as input for another thread,

• after a startup phase (filling the pipeline) the parallel execution is
achieved.

4. Worker model:
• equally privileged workers organize their workload,
• an important variant is the task pool treated as detailed example
next.

3.6 Task Pools
3.6.1 Basic idea of the task pool
Idea:
Creation of a parallel threaded program that can dynamically schedule tasks on
the available processors. This enables us to work on highly irregular problems
like adaptive or hierarchical algorithms, as well as unbalanced problems like
the sparse matrix vector product with strongly varying numbers of elements
per row, much more efficiently.

Key ingredients in the approach are:



3.6. Task Pools 39

• usage of a fixed number of threads
• organization of the pending tasks in a task pool,
• threads fetch the tasks from the pool and execute them leading to a dy-
namic assignment of the work load.

Main advantages

• automatic dynamic load balancing among the threads
• comparably small overhead for the administration of threads

3.6.2 Implementation of a basic task pool
Data structures

• data strucutre for one task:
typedef struct _work_t{

void (*routine) (void*); //worker function to call
void* arg ;
struct _work_t *next;

} work_t ;

• data structure for the task pool:
typedef struct _tpool_t{

int num_threads ; // number of threads
int max_size, curr_size; // max./cur. number of

tasks in pool
pthread_t *threads; //array of threads
work_t *head , *tail; // start/end of the task

queue
pthread_mutex_t lock; //access control for the task

pool
pthread_cond_t not_empty ; // tasks are available
pthread_cond_t not_full ; // tasks may be added

} tpool_t ;

Initialization
tpool_t *tpool_init(int num_threads , int max_size){

int i;
tpool_t *tpl;

tpl=(tpool_t *) malloc (sizeof(tpool_t));
tpl->num_threads=num_threads ;
tpl->max_size=max_size ;
tpl->cur_size=0;
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tpl->head=tpl->tail=NULL;

pthread_mutex_init(&tpl->lock, NULL);
pthread_cond_init(&tpl->not_empty, NULL);
pthread_cond_init(&tpl->not_full, NULL);
tpl->threads=(pthread_t *) malloc(num_threads *sizeof(

pthread_t));
for(i=0; i<num_threads; i++)

pthread_create(tpl->threads+i, NULL, tpool_thread, (
void *)tpl) ;

return tpl;
}

Worker Threads
void *tpool_thread(void *vtpl){

tpool_t *tpl=(tpool_t *) vtpl;
work_t *wl ;

for ( ; ; ) {
pthread_mutex_lock(&tpl->lock);
while(tpl->cur_size==0)

pthread_cond_wait(&tpl->not_empty , &tpl->lock);
wl=tpl->head; tpl->cur_size--;
if(tpl->cur_size==0)

tpl->head=tpl->tail=NULL;
else tpl->head = wl->next;
if (tpl->cur_size==tpl->max_size-1) // pool full

pthread_cond_signal(&tpl->not_full);
pthread_mutex_unlock(&tpl->lock);
(*(wl->routine)) (wl->arg);
free(wl);

}
}

Task insertion
void tpool_insert(tpool_t *tpl, void(*f) (void*), void *arg

){
work_t *wl ;

pthread_mutex_lock(&tpl->lock);
while(tpl->cur_size==tpl->max_size)

pthread_cond_wait(&tpl->not_full, &tpl->lock);
wl=(work_t *) malloc(sizeof(work_t));
wl->routine=f; wl->arg=arg; wl->next=NULL ;
if( tpl->cur_size==0){

tpl->head=tpl->tail=wl;
pthread_cond_signal(&tpl->not_empty);
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}
else{

tpl->tail->next=wl; tpl->tail=wl;
}
tpl->cur_size++;
pthread_mutex_unlock(&tpl->lock);

}

3.7 Shared Memory Blocks
3.7.1 General shared memory blocks
In contrast to Threads, different processes do not share their address space.
Therefore, different ways to communicate in multiprocessing applications are
necessary.
One possible way are shared memory objects. Unix-like operating systems pro-
vide at least one of:

• old: System V Release 4 (SVR4) Shared Memory3
• new: POSIX Shared Memory4.

Both techniques implement shared memory objects, like common memory,
semaphores and message queues, which are accessible from different appli-
cations with different address spaces.
3.7.2 POSIX Shared Memory
Common Memory Locations

• They are used to share data between applications.
• They are managed by the kernel and not by the application.
• Each location is represented as a file in /dev/shm/.
• They are handled like normal files.
• They are created using shm_open and mapped to the memory using
mmap.

• Exist as long as no application deletes them.
• Even when the creating program exits they stay available,

3System V Interface Definition, AT&T Unix System Laboratories, 19914IEEE Std 1003.1-2001Portable Operating System Interface System Interfaces
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• See manpage: man 7 shm_overview.

POSIX Semaphores
• Counting semaphores are available form different address spaces.
• They correspond to pthread_mutex_* in threaded applications.
• They are represented as a file in /dev/shm/sem.*.
• See manpage: man 7 sem_overview.

Message Queues
• They represent a generalized Signal concept which can transfer a small
payload (2 to 4 KiB).

• They correspond to pthread_cond_* in threaded applications.
• They can be represented as file in /dev/mqueue.
• See manpage: man 7 mq_overview.

3.8 Open Multi-Processing (OpenMP)
3.8.1 This is OpenMP
Mission

“The OpenMP Application Program Interface (API) supports multi-platform
shared-memory parallel programming in C/C++ and Fortran on all architec-
tures, including Unix platforms and Windows NT platforms. Jointly defined
by a group of major computer hardware and software vendors, OpenMP is
a portable, scalable model that gives shared-memory parallel programmers
a simple and flexible interface for developing parallel applications for plat-
forms ranging from the desktop to the supercomputer.” a

aThe Mission statement from http://www.openmp.org/about/about-us/

The OpenMP Architecture Review Board (ARB)
The ARB is a non-profit enterprise owning the OpenMP brand and responsible
for overseeing, producing and approving the OpenMP standards.

Members of the ARB include: (status: April 22, 2021)

http://www.openmp.org/about/about-us/
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• Hardware manufacturers: e.g. AMD, NVidia, IBM, NEC, HP
• Software companies: e.g. Oracle, SuSe
• Compute centers: e.g. Sandia NL, Lawrence Livermore NL, CSC, Leibniz
Supercomputing Center, Barcelona Supercomuting Center

• Universities: e.g. University of Tennessee, RWTH Aachen, Uni Basel, Uni
Bristol

Complete list available at: http://www.openmp.org/about/members/

History
Oct. 1997 OpenMP 1.0 for Fortran,
Oct. 1998 OpenMP 1.0 for C/C++,
Nov. 2000 OpenMP 2.0 for Fortran,
March 2002 OpenMP 2.0 for C/C++,
May 2005 OpenMP 2.5 (first joint Fortran/C/C++ version),
May 2008 OpenMP 3.0,
Sept. 2011 OpenMP 3.1,
July 2013 OpenMP 4.0,
Nov. 2015 OpenMP 4.5,
Nov. 2018 OpenMP 5.0,
Nov. 2020 OpenMP 5.1 (current standard)

3.8.2 What OpenMP can do for us
• Easy shared memory parallel adaption of existing sequential codes
• Easy preservation of sequential implementations
• Easy porting to different platforms and compilers
• Parallel implementation of only fragments
• No extra runtime environment
• Easy to learn and apply

http://www.openmp.org/about/members/
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Figure 3.6: Classification of the OpenMP extensions by tasks of the el-
ements (Image Source: https://commons.wikimedia.org/wiki/File:OpenMP_

language_extensions.svg).

3.8.3 What OpenMP is NOT for!
• Distributed memory parallel systems (by itself)
• Most efficient use of shared memory systems
• Automatic checking for (data dependencies,) data conflicts, race condi-
tions, or deadlocks

• Automatic synchronization of input and output
3.8.4 The Structure of the Standard
The standard divides the extensions into four classes:

1. Directives: Basic control structures that initialize/end the parallel envi-
ronments

2. Clauses: Fine tuning parameters added to the directives.
3. Environment Variables: Variables in the calling shell used to control the

parallel environment without recompilation.
4. Runtime Library Routines: Runtime usable functions for the determi-

nation and modification of parameters of the parallel environment.
3.8.5 OpenMP directives
The #pragma directive was introduced in C89 as the universal method for ex-
tending the space of directives. It was further standardized in C99, where espe-
cially the token STDC was reserved for standard C extensions.

https://commons.wikimedia.org/wiki/File:OpenMP_language_extensions.svg 
https://commons.wikimedia.org/wiki/File:OpenMP_language_extensions.svg 
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In part 1 of the Scientific Computing lecture we have seen the floating point
environment for, e.g., checking the exception flags in IEEE arithmetic:
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
/* starting here the compiler needs to assume we are

accessing the
floating point status and mode registers*/

OpenMP is an extension in the sense of C89 and enabled by the
#pragma omp

preprocessor directive. It applies to the succeeding structural code block. That
means, it applies to the next single line of code, a block encapsulated by a C
control structure (e.g. a for-loop), or a portion of code enclosed by {}.
Compilers that do not know the omp pragma simply ignore it. The following
switches enable OpenMP support for your code compilation:

GNU GCC -fopenmp
Intel ICC -qopenmp
LLVM CLANG -fopenmp
IBM XLC -qsmp
PGI -mp

Otherwise theomppragmas are ignored and the sequential code version is com-
piled.
A list of compilers supportingOpenMPcanbe found athttps://www.openmp.
org/resources/openmp-compilers-tools/

The following versions of the OpenMP standard are currently supported by the
GCC compiler (April 2017):
OpenMP 2.5 starting from GCC 4.2.0,
OpenMP 3.0 starting from GCC 4.4.0,
OpenMP 3.1 starting from GCC 4.7.0,
OpenMP 4.0 starting from GCC 4.9.1,
OpenMP 4.5 starting from GCC 6.1.0 (except of gfortran (planned for GCC

11)).
In the following we give a brief list of the most classic directives with their most
basic clauses. The recent standards extend, both, the list of directives and the

https://www.openmp.org/resources/openmp-compilers-tools/
https://www.openmp.org/resources/openmp-compilers-tools/
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available clauses per directive. Unless explicitly specified differently, this list
represents the status of OpenMP 3.0.
omp parallel directive. The parallel construct initializes a group of
threads and starts parallel execution:
#pragma omp parallel [clause[[,]clause]...]

The clauses can be used to influence the behavior of the parallel execution. They
will be explained in Section 3.8.6.
Available clauses for parallel:

• if(scalar expression)

• num_threads(integer expression)

• default(shared| none)

• private(list)
• firstprivate(list)
• shared(list)
• copyin(list)
• reduction(operation:list)

Example 3.14 (A minimal OpenMP parallel “hello world” program):
#include <stdio.h>

int main(void)
{
#pragma omp parallel

printf("Hello, world.\n");
return 0;

}

Example 3.14 automatically lets OpenMP tune the number of threads used to
the number of available processors. Afterward the parallel execution environ-
ment is started and all threads execute the printf statement.
omp loop directive. The loop construct specifies that the iterations of the
loop should be distributed among the active threads.
#pragma omp for [clause[[,]clause]...]

for loops
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The for-loop construct needs to be used inside a structured code block of a
parallel construct.
Available clauses for for:

• private(list)
• firstprivate(list)
• lastprivate(list)
• reduction(operator:list)
• schedule(kind[,chunk_size])
• collapse(n)
• ordered
• nowait

omp parallel loop directive. Since often the parallel environment
is used to introduce a for-loop construction only, a shortcut parallel for
exists for this special task
#pragma omp parallel for [clause[[,] clause]...]

With the exception of the nowait clause all clauses accepted by parallel
and for can be used with parallel forwith the identically same behaviors
and restrictions.
Example 3.15 (OpenMP parallel vector triad):
double triad(double *a, double *b, double *c, double *d,

int length){
int i,j;
const int repeat=100;
double start, end;

get_walltime(&start);
for (j=0; j<repeat; j++){

#pragma omp parallel for
for (i=0 ; i<length; i++){

a[i]=b[i] + c[i] * d[i];
} /*end of parallel section*/

}
get_walltime(&end);
return repeat*length*2.0 / ((end-start) * 1.0e6); /*

return MFLOPS */
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}

Note that loop counters are protected automatically.
omp sections directive. When different tasks are to be distributed among
the encountering team of threads the sections construct can be used. Each
section will be executed only once by one thread in the team.
#pragma omp sections [clause[[,] clause]...]
{

[#pragma omp section]
structured code block

[#pragma omp section]
structured code block

...
}

Available clauses for sections:
• private(list)
• firstprivate(list)
• lastprivate(list)
• reduction(operator:list)
• nowait

omp parallel sections directive. Analogous to the loop constructs,
alsosections canbeusedonly inside aparallel construct. Theparallel sections
construct merges them for easier use
#pragma omp parallel sections [clause[[,] clause]...]
{

[#pragma omp section]
structured code block

[#pragma omp section]
structured code block

...
}

Available clauses are those available for parallel and sections with the
exception of nowait, as in the case of for.
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
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#define N 50

int main (int argc, char *argv[]) {
int i, nthrd, tid;
float a[N], b[N], c[N], d[N];

/* Some initializations */
for (i=0; i<N; i++) {

a[i] = i * 1.5;
b[i] = i + 42.0;
c[i] = d[i] = 0.0;

}
/* Start 2 threads */

#pragma omp parallel shared(a,b,c,d,nthrd) private(i,tid)
num_threads(2)

{
tid = omp_get_thread_num();
if (tid == 0) {

nthrd = omp_get_num_threads();
printf("Number of threads = %d\n", nthrd);

}
printf("Thread %d starting...\n",tid);

#pragma omp sections
{

#pragma omp section
{

printf("Thread %d doing section 1\n",tid);
for (i=0; i<N; i++) {

c[i] = a[i] + b[i];
}
sleep(tid+2); /* Delay the thread for a few

seconds */
} /* End of first section */

#pragma omp section
{

printf("Thread %d doing section 2\n",tid);
for (i=0; i<N; i++) {

d[i] = a[i] * b[i];
}
sleep(tid+2); /* Delay the thread for a few

seconds */
} /* End of second section */

} /* end of sections */
printf("Thread %d done.\n",tid);

} /* end of omp parallel */

/* Print the results */
printf("c: ");
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for (i=0; i<N; i++) {
printf("%.2f ", c[i]);

}
printf("\n\nd: ");
for (i=0; i<N; i++) {

printf("%.2f ", d[i]);
}
printf("\n");
exit(0);

}

omp single directive. A construct that makes sure that a structured code
block is executed by only one thread (not necessarily the master thread) in a
team of threads is given by the single directive.
#pragma omp single [clause[[,] clause]...]

Available clauses for the single construct are:
• private(list)
• firstprivate(list)
• lastprivate(list)
• nowait

Example 3.16 (OpenMP 4.5 Example 1.11 — single1.c):
#include <stdio.h>

void work1() {}
void work2() {}
void main()
{
#pragma omp parallel

{
#pragma omp single

printf("Beginning work1.\n");
work1();
#pragma omp single

printf("Finishing work1.\n");
#pragma omp single nowait

printf("Finished work1 and beginning work2.\n");
work2();
}

}
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omp master directive. The master construct specifies a structured block
that is executed by the master thread of the team.
#pragma omp master

The following structured block is only executed by the master thread of the
parallel team. There is no synchronization on entry or on exit with the other
threads.
Example 3.17 (OpenMP 4.5 Example 1.13 — master1.c):
void master_example( float* x, float* xold, int n, float

tol ){
int c = 0, i, toobig; loat error, y;
#pragma omp parallel
{

do{
#pragma omp for private(i)
for( i = 1; i < n-1; ++i ){ xold[i] = x[i]; }
#pragma omp single
toobig = 0;
#pragma omp for private(i,y,error) reduction(+:toobig

)
for( i = 1; i < n-1; ++i ){

y = x[i];
x[i] = average( xold[i-1], x[i], xold[i+1] );
error = y - x[i];
if( error > tol || error < -tol ) ++toobig;

}
#pragma omp master
{ printf( "iteration %d, toobig=%d\n", ++c, toobig );

}
}while( toobig > 0 );

}
}

omp tasksdirective. TheOpenMP task construct (introducedwithOpenMP
3.0) allows to parallelize irregular algorithms. The task construct inserts a piece
of work into a thread pool running in the background (see Section 3.6).
#pragma omp task [clause[[,] clause]...]
structured code block

Available clauses for task (not complete):
• if(scalar-expression)
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• final(scalar-expression)
• default(shared | none)

• private(list)
• firstprivate(list)
• shared(list)
• priority(priority-value)

Using the taskwait directive:
#pragma omp taskwait

one can wait for the completion of all previously created tasks at any position
inside a parallel region in order to synchronize the parallel execution.

Due to the fact that tasks are running in the background they aremostly emitted
by a single thread or a sequential code block. Therefore, mostly the single
and master directives are used.

Tasks have to be defined inside an OpenMP parallel region. The end of the
parallel region, unless it is used with the nowait clause, is an implicit synchro-
nization point and the program waits until all tasks created inside the parallel
region are finished.
The support to describe data dependencies between tasks is one of the most
beneficial features of the OpenMP 4 standard. For scientific computing this
means that algorithms relying on dependency-graphs can be parallelized with-
out using other third-party code or libraries.

“Although we expect to see DAG-based models widely adopted, changes in
other parts of the software ecosystem will inevitably affect the way that that
model is implemented. The appearance of DAG scheduling constructs in the
OpenMP 4.0 standard offers a particularly important example of this point.
[. . . ] However, the inclusion of DAG scheduling constructs in the OpenMP
standard, along with the rapid implementation of support for them (with
excellent multithreading performance) in the GNU compiler suite, throws
open the doors to widespread adoption of this model in academic and com-
mercial applications for shared memory.” a

aJack Dongarra et. al., Numerical Algorithms and Libraries at Exascale
The data dependencies are defined using the depend clause during the task
creation:

https://www.hpcwire.com/2015/10/19/numerical-algorithms-and-libraries-at-exascale/


3.8. OpenMP 53

#pragma omp task depend(direction:list) [depend(direction:
list)] [clauses...]

structured code block

Each depend clause consists of a data-flow direction and a list of identifiers.
Possible directions are:

• in— The identifiers are input dependencies.
• out— The identifiers are output dependencies.
• inout— The identifiers are input and output dependencies.

The list of identifiers is a comma separated list of variables fromwhich a pointer
can be created.
Tasks with a common inout or output dependencies are executed in the
order as they are created.

Example 3.18 (OpenMP 4.5 Example 3.3.4 — task_dep4.c):
#include <stdio.h>
int main() {

int x = 1;
#pragma omp parallel

#pragma omp single
{

#pragma omp task shared(x) depend(out: x)
x = 2;
#pragma omp task shared(x) depend(in: x)
printf("x + 1 = %d. ", x+1);
#pragma omp task shared(x) depend(in: x)
printf("x + 2 = %d\n", x+2);

}
return 0;

}

Array elements, e.g. y[i] or A[i+ldA*j], are also valid identifiers in the
depend clause. Intervals on arrays, like A[i:j], are also allowed. Refer to the
“array sections” section in the standard for details on the latter.
Example 3.19 (OpenMP 4.5 Example 3.3.5 — task_dep5.c):
// Assume BS divides N perfectly
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void matmul_depend(int N, int BS, float A[N][N], float B[N
][N], float C[N][N] )

{
int i, j, k, ii, jj, kk;
for (i = 0; i < N; i+=BS) {

for (j = 0; j < N; j+=BS) {
for (k = 0; k < N; k+=BS) {

#pragma omp task private(ii, jj, kk) firstprivate(i
,j,k) \

depend ( in: A[i][k], B[k][j] ) \
depend ( inout: C[i][j] )

for (ii = i; ii < i+BS; ii++ )
for (jj = j; jj < j+BS; jj++ )

for (kk = k; kk < k+BS; kk++ )
C[ii][jj] = C[ii][jj] + A[ii][kk] * B[kk][jj

];
}

}
}

}

omp barrierdirective. A synchronization construct thatmakes the threads
wait until all threads in the team have reached this point and only then contin-
ues execution.
#pragma omp barrier

Note that all constructs that allow the nowait clause have an implicit barrier
at their end. Still sometimes explicit synchronization is required.

3.8.6 OpenMP clauses
The OpenMP clauses we have seen above can be divided into two classes

1. attribute clauses related to data sharing
2. clauses controlling data copying

We have the following basic properties for clauses:
• clauses usually take a list of arguments
• lists are comma separated and enclosed by ().
• all list items must be visible to the clause
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Data sharing
Data sharing attributes of a variable in a parallel or task construct can be
one of

• predetermined, e.g., loop counters infororparallel for constructs
are always private, const qualified variables are shared, more can
be found in the Section on the loop construct of the OpenMP standard

• explicitly determined are those attributeswhere variables are referenced
in a clause setting the attributes

• implicitly determined, are the attributes of variables referenced in a
given construct but are neither predetermined nor explicitly specified

The following is a list of the most frequently used data sharing clauses.
default(shared|none)

• determines the default attributes of variables in the context of a task or
parallel construct.

• defaults to shared when not explicitly given in a parallel construct
• all other (except task) constructs inherit the default from the enclosing
construct if no default clause is given explicitly.

shared(list)

Sets the data sharing attributes of all variables in list to be of shared type.
That means the variable is considered to be in the shared memory of the team
of threads.

private(list)

Each variable of the list is declared to be a private copy of the thread and not
accessible from other threads in the team. It can not be applied to variables
that are part of other variables(elements in arrays or members of a structure).

firstprivate(list)

As above but additionally the value of the item in the list is initialized from the
corresponding original item when the construct is encountered. The clause has
a few more restrictions found in the standard.

lastprivate(list)
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As private but causes the original item to be updated after the end of the
region from the last iterate of the enclosed loop or the lexically last section
in a sections region.
reduction(operator:list)

Accumulates all itemsof the list into a private copy according to the givenoperator
and then combines it with the original instance.

+ (0) | (0)
* (1) ˆ (0)
- (0) && (1)
& (˜0) || (0)
max (Least number in reduction list item type)
min (Largest number in reduction list item type)

Table 3.1: Operators for reduction with initialization values in ()

Example 3.20 (OpenMP reduction minimal example):
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[]) {
int i, n;
float a[100], b[100], sum;

/* Some initializations */
n = 100;
for (i=0; i < n; i++)

a[i] = b[i] = i * 1.0;
sum = 0.0;

#pragma omp parallel for reduction(+:sum)
for (i=0; i < n; i++)

sum = sum + (a[i] * b[i]);
printf(" Sum = %f\n",sum);
}

The following are cited from OpenMP 3.1 API C/C++ Syntax Quick Reference
Card:
“These clauses support the copying of data values from private or threadprivate
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variables on one implicit task or thread to the corresponding variables on other
implicit tasks or threads in the team.”
copyin(list)

“Copies the value of the master thread’s threadprivate variable to the thread-
private variable of each other member of the team executing the parallel
region.”
copyprivate(list)

“Broadcasts a value from the data environment of one implicit task to the data
environments of the other implicit tasks belonging to the parallel region.”
3.8.7 OpenMP Environment Variables
Environment variables can be used to influence the behavior of an OpenMP
process, without recompiling the binary, at runtime.
OMP_SCHEDULE

Specifies the runtime schedule type. Available values are static, dynamic,
guided, or auto together with an optional chunk size.
OMP_NUM_THREADS

Must be set to a list of positive integers determining the numbers of threads at
the corresponding nested level.
OMP_PROC_BIND

The value of this variable must be true or false. It determines whether
threads may be moved between processors at runtime.
More environment variables can be found in Section 6 of the OpenMP 5.1 stan-
dard.
3.8.8 OpenMP runtime library functions
We only treat thread and processor number related functions
void omp_set_num_threads(int num_threads)

Determines the number of threads in subsequent parallel regions that do not
specify a num_threads clause.
int omp_get_num_threads(void)
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Returns the number of threads in the current team.
int omp_get_max_threads(void)

Provides the maximum number of threads that could be used in a subsequent
parallel construct.
int omp_get_thread_num(void)

Returns the thread ID of the current thread. IDs are integers from zero (the
master thread) to the number of threads in the team minus one.
int omp_get_num_procs(void)

returns the number of processors available to the program.
More runtime library functions and detailed descriptions can be found in Sec-
tion 3 of the OpenMP standard.
Example 3.21 (Hello World revisited):
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[]) {
int th_id, nthreads;

#pragma omp parallel private(th_id)
{

th_id = omp_get_thread_num();

printf("Hello World from thread %d\n", th_id);
#pragma omp barrier
if ( th_id == 0 ) {

nthreads = omp_get_num_threads();
printf("There are %d threads\n",nthreads);

}
}
return EXIT_SUCCESS;

}

Two important rules of thumb:
In case of nested loops it is usually best to apply the parallelization to the out-
ermost possible loop.

It is in general a good idea to first optimize the sequential code and only then
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add parallelism to further increase the speed of execution.

3.9 Tree Reduction
3.9.1 The OpenMP reduction minimal example revisited
Recall Example 3.20, where we have investigated the usage of the OpenMP
reduction clause. This section is dedicated to the detailed introduction of
one possible implementation of such a reduction operation. Note that still in the
OpenMP standard version 3.1 we do have the reduction clause only for arrays
of basic scalar data types. Thus we might be interested to implement similar
strategies for complex data types using, e.g., PThreads ourselves.
The main properties of the reduction are

• accumulation of data via a binary operator (here `)
• intrinsically sequential operation causing a race condition in multi-thread
based implementations (since every iteration step depends on the result
of its predecessor.)

3.9.2 Basic idea of tree reduction
s[1] s[2] s[3] s[4] s[5]

` ` s[5]

` s[5]

`

Figure 3.7: Tree reduction basic idea.

• ideally the number of elements is a power of 2
• best splitting of the actual data depends on the hardware used
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3.9.3 Practical tree reduction on multiple cores
Consider the setting as before a, b P R100. Further we have four equal cores.
How do we compute the accumulation in parallel? Basically 2 choices

Example 3.22 (Another approach for the dot example):1. Task pool ap-proach: define a task pool and feed it with n{2 “ 50 work packages
accumulating 2 elements into 1. When these are done, schedule the next
25 and so on by further binary accumulation of 2 intermediate results
per work package.

2. #Processors=#Threads approach: Divide the work by the number of
threads, i.e. on our 4 cores each gets 25 subsequent indices to sum up.
The reduction is then performed on the results of the threads.

Note that in the first approach we will need to make sure that the next level
will only be started as soon as the data is ready, e.g. by condition variables, or
barriers. The second can accumulated the partial sums in a vector of length 4
and do the final sum after the parallel region sequentially.

3.10 Dense Linear Systems of Equations
3.10.1 Repetition blocked algorithms
We have seen in the Chapter 6 of part I of the lecture that blocked operations
are crucial for optimal exploitation of the memory hierarchy and especially the
caches.
Algorithm 3.1: Gaussian elimination — row-by-row-version
Input: A P Rnˆn allowing LU decompositionOutput: A overwritten by L,U

1 for k “ 1 : n ´ 1 do
2 k0 “ argmaxi“k:n |Api, kq|;
3 Swap rows k and k0;
4 Apk ` 1 : n, kq “ Apk ` 1 : n, bq{Apk, kq;
5 for i “ k ` 1 : n do
6 for j “ k ` 1 : n do
7 Api, jq “ Api, jq ´ Api, kqApk, jq;

Observation:
• Innermost loop performs rank-1 update on the Apk ` 1 : n, k ` 1 : nq

submatrix in the lower right,



3.10. Dense Linear Systems 61

• i.e. a BLAS level 2 operation.

Algorithm 3.2: Gaussian elimination — Outer product formulation
Input: A P Rnˆn allowing LU decompositionOutput: L,U P Rnˆn such that A “ LU stored in A stored in A

1 for k “ 1 : n ´ 1 do
2 rows“ k ` 1 : n;
3 Aprows, kq “ Aprows, kq{Apk, kq;
4 Aprows,rowsq “ Aprows,rowsq ´ Aprows, kqApk,rowsq;

Idea of the blocked version

• Replace the rank-1 update (BLAS level 2) by a rank-r update (BLAS level
3),

• Thus replace the Opn2q / Opn2q operation per data ratio the more desir-
ableOpn3q /Opn2q ratio,

• Therefore exploit the fast local caches of modern CPUs more optimally.

Algorithm 3.3: Gaussian elimination — Block outer product formulation
Input: A P Rnˆn allowing LU decomposition, r prescribed block sizeOutput: A “ LU with L,U stored in A

1 k “ 1;
2 while k ď n do
3 ℓ “ minpn, k ` r ´ 1q;
4 Compute Apk : ℓ, k : ℓq “ L̃Ũ via Algorithm 3.1;
5 Solve L̃Z “ Apk : ℓ, ℓ ` 1 : nq and store Z in A;
6 SolveWŨ “ Apℓ ` 1 : n, k : ℓq and storeW in A;
7 Perform the rank-r update:

Apℓ ` 1 : n, ℓ ` 1 : nq “ Apℓ ` 1 : n, ℓ ` 1 : nq ´ WZ;
8 k “ ℓ ` 1;

Algorithm 3.3 now replaces the rank-1 update by rank-r BLAS level 3 updates.
Due to the fact that BLAS level 3 uses Opn3q operations on Opn2q data this is
ensures more optimal exploitation of the local cache hierarchy. The block size r
can be further exploited in the computation ofW andZ and the rank-r update.
It is used to optimize the data portions for the cache.
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3.10.2 Fork-Join parallel implementation for multicore machines
We have basically two ways to implement naive parallel versions of the block
outer product elimination in Algorithm 3.3.
Threaded BLAS available
Assuming we have a BLAS implementation that uses threading to speed up
especially the level 3 operations, we can get a naive parallel version of Algo-
rithm 3.3 following:

• Compute line 4 with the sequential version of the LU
• Exploite the threaded BLAS for the block operations in lines 5–7

Netlib BLAS

If we have only the strictly sequential reference implementation of BLAS from
Netlib available we can still do the following:

• Compute line 4 with the sequential version of the LU
• Employ OpenMP/PThreads to perform the BLAS calls for the block oper-
ations in lines 5–7 in parallel.

Both these approaches fall into the class of parallel codes described by the fol-
lowing paradigm.

Definition 3.23 (Fork-Join Parallelism):
An algorithm that performs certain parts sequentially between others that
are executed in parallel is called fork-join-parallel.

...¨ ¨ ¨ ¨ ¨ ¨

Figure 3.8: A sketch of the fork-join execution model.

Advantages
• Easy to achieve.
• Many threaded BLAS implementations available.
• Basically usable from any user code that requires linear system solves.
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Disadvantages
• Very naive implementation.
• Sequential fraction limits the speedup (Amdahl’s law).
• Therefore, only useful for small numbers of cores.

3.10.3 DAG scheduling of block operations aiming atmanycore sys-tems
Definition 3.24 (Directed Acyclic Graph (DAG)):
A directed acyclic graph is a graph where

• all edges have one distinct direction,
• directions are such that no cycles are possible for any path in the
graph.

Where is the connection to parallel mathematical algorithms?
• Consider every node in the graph a task in the computation.
• Every task requires a certain number of previous tasks to have finished.
• Also none of the previous tasks depend on the later ones.
• Thus, the dependencies give us the directions and cycles can not appear
by construction.

Title Suppressed Due to Excessive Length 13

Fig. 3. The dependency graph of Algorithm 2 on a matrix with p = q = 3.

critical path. Clearly, in the case of our block algorithm for QR factorization,
the nodes associated to the DGEQRT subroutine have the highest priority and
then three other priority levels can be defined for DTSQRT, DLARFB and DSSRFB
in descending order.

This dynamic scheduling results in an out of order execution where idle time
is almost completely eliminated since only very loose synchronization is required
between the threads. Figure 4 shows part of the execution flow of Algorithm 2 on
a 8-cores machine (2-way Quad Clovertown) when tasks are dynamically sched-
uled based on dependencies in the DAG. Each line in the execution flow shows
which tasks are performed by one of the threads involved in the factorization.

Figure 4 shows that all the idle times, which represent the major scalability
limit of the fork-join approach, can be removed thanks to the very low synchro-
nization requirements of the graph driven execution. The graph driven execution
also provides some degree of adaptivity since tasks are scheduled to threads de-
pending on the availability of execution units.

5 Performance Results

The performance of the tiled algorithms for Cholesky, QR ad LU factorizations
with dynamic scheduling of tasks has been measured on the system described in
Table 2 and compared to the performance of the MKL-9.1 implementations and
to the fork-join approach, i.e., the standard algorithm for block factorizations of
LAPACK associated with multithreaded BLAS (MKL-9.1).

Figures 5, 6, 7 report the performance of the Cholesky, QR and LU factor-
izations for the tiled algorithms with dynamic scheduling, the MKL-9.1 imple-

Figure 3.9: Dependency graph of Algorithm 3.3 for a 3 ˆ 3 block subdivision.
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Figure 3.10: The superiority of DAG scheduling of tasks over fork-join paral-
lelism.
Algorithm 3.4: Conjugate Gradient Method
Input: A P Rnˆn, b P Rn, x0 P Rn

Output: x “ A´1b
1 p0 “ r0 “ b ´ Ax0, α0 “ ∥r0∥22;
2 form “ 0, . . . , n ´ 1 do
3 if αm ­“ 0 then
4 vm “ Apm;
5 λm “ αm

pvm,pmq
;

6 xm`1 “ xm ` λmpm;
7 rm`1 “ rm ´ λmvm;
8 αm`1 “ ∥rm`1∥22;
9 pm`1 “ rm`1 `

αm`1

αm
pm;

10 else
11 STOP;

3.11 Sparse Linear Systems of Equations
3.11.1 The Conjugate Gradient (CG) Method (a prototype iterativesolver)
CG (Algorithm 3.4) uses

• one matrix vector product (performing the main work),
• one dot,
• two axpy,
• one nrm2,
• and a nonstandard axpy operation with result in x.

The last operation can not be performed in a single BLAS call. A combination



3.11. Sparse Linear Systems 65

of scal and axpy is required at least. That especially means that at least one
argument vector is likely to be pulled through the cache hierarchy twice.

3.11.2 Sparse Matrix Vector Products
The key ingredient in the CG method, as in all Krylov-subspace based iterative
solvers and many other linear algebra based algorithms, is the sparse matrix
vector product (SpMVP).
We learned in part 1 of the lecture that sparse matrix operations are bandwidth
limited, i.e., the crucial point is always the data transfer for matrix pattern and
entries to the processing units. We have further observed that bandwidth limi-
tations on thematrix provide certain benefits for the caching of the vector, since
only local portions are used and these do not change much from row to row.
On the other hand, the SpMVP is trivially parallel due to data parallelism. On
multicore architectures the obvious questions are:

• What is the optimal number of threads to use?
• How should the data be distributed among the threads?

The first of the two questions will be treated in a little more detail in the exer-
cises. The second questions is investigated a lot in the literature. We will only add references!
sketch a small selection of approaches considering x “ Ab for x, b P Rn and
A P Rnˆn sparse with properties specified separately in the method descrip-
tions.
Naive row blocking. (e.g., using OpenMP parallel for)
If the matrix A is banded with moderate bandwidth and the number of entries
per row is almost the same for all rows, simply grouping the rows in blocks of
rows (the chunks in OpenMP) will likely do a good job.
The bandwidth limitations guarantee data locality on b and good cache perfor-
mance due to little changes of the local portion of b required by the members
of the group.
Furthermore, the similar lengths of the sparse rows will automatically provide
a proper load balancing.

This provides the easiest form of 1d-partitioning. Alternatively column group-
ing is used. This guarantees locality for the access on b but requires mutual
exclusion when writing the results into x.
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Hypergraph Partitioning.
The simplest form of 2d-partitioning of the matrix A uses (blocks of) columns
and (blocks of) rows at the same time. It is usually referred to as hypergraph
partitioning since the choice fits the following definition.

Definition 3.25 (Hypergraph):
A hypergraph is an ordered pair pV, Eq of sets. It is a generalization of a
graph that consists of vertices (in the set V ) and hyperedges in the set E .
In contrast to an edge in a graph a hyperedge can be an arbitrary subset
of V and not just a pair.

Example 3.26:
Schematic representation of a hypergraph with seven vertices and four hyper-
edges.

v1

e 1 v2 v3

v5
v6

v7

v4

e 2

e 4
e 3

Image source: https://commons.wikimedia.org/wiki/File:Hypergraph-wikipedia.svg

The idea of hypergraph partitioning is to use the hyperedges to find the optimal
partitioning of the vertices into k equal sets for optimal balancing of the work-
load and data communication. The problem of finding the optimal partition is
however np-hard. Therefore cheap heuristics are employed to approximate the
optimal partition.
An interesting variant, especially for symmetric patterns, is the corner symmet-
ric partitioning in Figure 3.11.
Graph Model Partitioning to Nested Dissection

The central node 8 is called vertex separator. The identification of such a prefer-
ably small (group of) node(s) is the central question in the graph model based
partitioning. Successive application of this idea leads to the nested dissection
scheme.

https://commons.wikimedia.org/wiki/File:Hypergraph-wikipedia.svg
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13

“Corner” Symmetric Partitioning

• 1-D partitions reflected across diagonalFigure 3.11: Corner symmetric partitioning of the arrowhead matrix with 2 par-
titions.
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Figure 3.12: arrowhead matrix pattern and connectivity graph.

3.11.3 Preconditioning
Recall:
A preconditioner is an invertible linear operator P that approximates the action
of A´1 for a linear system Ax “ b.

• Invertibility required to ensure proper preservation of solution,
• preconditioner need not be formed as a matrix, as long as its action on a
vector can be provided as a function,

• main purpose of the preconditioner is the grouping of eigenvalues, ideally
in a single cluster at `1.
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Algorithm 3.5: Preconditioned Conjugate Gradient Method
Input: A P Rnˆn, b P Rn, x0 P Rn, A´1 « P P Rnˆn

Output: x “ A´1b
1 r0 “ b ´ Ax0, p0 “ z0 “ Pr0,α0 “ pr0, p0q;
2 form “ 0 : n ´ 1 do
3 if αm ­“ 0 then
4 vm “ Apm;
5 λm “ αm

pvm,pmq2
;

6 xm`1 “ xm ` λmpm;
7 rm`1 “ rm ´ λmvm;
8 zm`1 “ Prm`1;
9 αm`1 “ prm`1, zm`1q2;
10 pm`1 “ zm`1 `

αm`1

αm
pm;

11 else
12 STOP;

3.11.4 Preconditioned CG
3.11.5 Diagonal/Jacobi Preconditioner
LetD P Rnˆn be a diagonalmatrix containing the diagonal ofA. ThenP “ D´1

is called Jacobi or diagonal preconditioner.
Properties

` embarrassingly parallel in computation and application,
` storage requirement n double numbers,
´ only useful for diagonally dominant systems.

3.11.6 Sparse Approximate Inverse (SPAI) Preconditioning
The basic idea of SPAI is to find the best matrix P approximating A´1, while
maintaining the sparsity pattern of A.

min
PpP q“PpAq

∥AP ´ I∥2F “ min
PpP q“PpAq

n
ÿ

j“1

∥Apj ´ ej∥2F
looooooooomooooooooon

n independent least squares problems

` only SpMVP needed for the application,
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` n independent least squares problems allow two multicore approaches:

– rely on threaded BLAS when solving the least squares problems se-
quentially via dgeqrs() from LAPACK,

– use sequential BLAS with OpenMP for parallel solution of the least
squares problems.

´ efficient preconditioning requires additional fill-in, which leads to extra
storage demands and increased computational complexity.

3.11.7 Issues of Sparse Direct Solvers

The following two figures demonstrate the fill in problem as a result of the elim-
ination during the computation of the Cholesky decomposition of a simple 6ˆ6
symmetric example matrix.
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1
2

34

6 5
(a) initial graph G0

H0 “

»

—

—

—

—

—

—

–

1 ˚ ˚

˚ 2 ˚ ˚

˚ 3 ˚

˚ 4
˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) corresponding submatrix 0
2

34

6 5
(c) elimination graph G1

H1 “

»

—

—

—

—

–

2 ˚ ˚ ˚

˚ 3 ˚

˚ 4
˚ 5 ˚

˚ ˚ 6

fi

ffi

ffi

ffi

ffi

fl

(d) corresponding submatrix 1
34

6 5
(e) elimination graph G2

H2 “

»

—

—

–

3 ˚ ˚ ˚

˚ 4 ˚

˚ 5 ˚

˚ ˚ ˚ 6

fi

ffi

ffi

fl

(f) corresponding submatrix 2
4

6 5
(g) elimination graph G3

H3 “

»

–

4 ˚ ˚

˚ 5 ˚

˚ ˚ 6

fi

fl

(h) corresponding submatrix 3
Figure 3.13: Basic graph elimination procedure for a symmetric matrix and the
Cholesky decomposition
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1
2

34

6 5
(a) The filled graph G`pAq “ GpF q

F “

»

—

—

—

—

—

—

–

1 ˚ ˚

˚ 2 ˚ ˚ ˚

˚ 3 ˚ ˚ ˚

˚ ˚ 4 ˚ ˚

˚ ˚ 5 ˚

˚ ˚ ˚ ˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) The final matrix F “ L ` LT with fill.
Figure 3.14: The filled graph and matrix of a Cholesky decomposition example.

Now

L “

»

—

—

—

—

—

—

–

1
˚ 2

˚ 3
˚ ˚ 4

˚ ˚ 5
˚ ˚ ˚ ˚ ˚ 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and thus, the forward elimination is purely sequential. Are we lost?
Consider the Cholesky factor:

L “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1
˚ 2

3
˚ 4
˚ ˚ 5

6
˚ ˚ ˚ 7

˚ ˚ ˚ ˚ ˚ 8
˚ 9

˚ ˚ ˚ ˚ ˚ ˚ ˚ 10

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

We have a very specific sparsity pattern in some column blocks below a certain
diagonal block in columns 3–5 and 7–8. This special structure motivates the
following definitions.

Definition 3.27 (column pattern):
The j-th column pattern P˚j is the set of row indices of all non-diagonal
nonzero entries in the j-th column.
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Definition 3.28 (Supernode):
A supernode is a set of contiguous column indices

Ippq “ tp, p ` 1, . . . , p ` q ´ 1u,

such that for all columns i P Ippq we have
P˚i “ P˚pp`q´1q Y ti ` 1, . . . , p ` q ´ 1u

• Supernodes, thus are special dense diagonal blocks that have the identi-
cally same pattern in each column below the diagonal block.

• Column modifications in forward substitution can be expressed in terms
of supernodes rather than single diagonal entries.

• Inside the supernode block operations we can exploit parallelism.
The elimination tree for the Cholesky factor of a matrix is determined by a sim-
ple method, when the factor is known:

• For each column find the index of the first entry below the diagonal.
• This index determines the parent node in the tree.
• If the connectivity graph is connected, then connecting each node with its
parent determines the elimination tree. If it is not connected the method
creates a forest of smaller trees.

3.11.8 A Task Pool Approach to Parallel Triangular Solves
Consider the Cholesky factor and corresponding elimination tree

L “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1
2

3
4

˚ 5
6

˚ 7
8

˚ ˚ ˚ ˚ 9
˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚ 10

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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2

3
4

5

6
7

89
10

1

` many elimination steps can be executed independently
` a simple task pool scheduling the independent tasks enables parallel ex-

ecution and load balancing
´ elimination treemust be computed to enable proper scheduling and iden-

tification of independent tasks
Remark
Note that elimination trees can be computedwithout computing the filled graph
or the Cholesky factor first.

3.12 Relevant Software and Libraries
The following is a (very likely incomplete) list of software packages relevant to
scientific computing on Unix platforms. All these packages make use of thread-
ing techniques to exploit multicore processors, implement the PThreads stan-
dard, or are intended to control the scheduling of threads and processes and
placement of the process memory in such environments.
Dense Linear Algebra

1. OpenBLAS based on the earlier GotoBLAS project OpenBLAS imple-
ments a complete set of optimized BLAS routines. On a machine with
a single socket it is likely the fastest BLAS implementation one can get.5

2. Intel® Math Kernel Library (MKL) is Intel®s optimized implementation
of BLAS and LAPACK. It is the strongest opponent of OpenBLAS on sin-
gle socket systems. On a system with several sockets no other BLAS li-
brary outperforms MKL.6

5http://xianyi.github.io/OpenBLAS/6http://software.intel.com/en-us/intel-mkl

http://xianyi.github.io/OpenBLAS/
http://software.intel.com/en-us/intel-mkl
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3. PLASMA TheParallel LinearAlgebra Subroutines forMulticoreArchitectures
employs DAG scheduling to increase performance of the linear algebra
subsystem on multicore architectures.7

Sparse Linear Algebra
1. UMFPACK comes as part of the SuiteSparse packageof software libraries

for sparse linear systems of equations. Uses thread parallel multifrontal
techniques to solve linear systems of equations.8

2. Boost uBLAS “is a C++ template class library that provides BLAS level 1, 2,
3 functionality for dense, packed and sparse matrices. The design and imple-
mentation unify mathematical notation via operator overloading and efficient
code generation via expression templates.”9

3. MTL theMatrix Template Library provides an easy to use template based
C++ interface to linear algebra operations. It relies on Boost for fast and
efficient codes.10

4. Eigen“is a C++ template library for linear algebra: matrices, vectors, numeri-
cal solvers, and related algorithms.” Eigen is self-contained and only relies
on a C++98 compliant compiler.11

5. SuperLU_MT Supernode based multithreaded LU decomposition.12

PThreads and Scheduling/Memory Control
1. nptl is theNativePOSIX LinuxThread library that currently provides PThread

support on most Linux platforms.13
2. likwid (Like I KnewWhat I Do) is a light weight library that supports soft-

ware developers to design high performance scientific computing pro-
grams with little overhead.14

3. numactl referred to as libnuma by several Linux distributions, numactl
is a small program/library that can be used to control placement of pro-
cess memory in NUMA environments. The library version seems to be
preferred by the Linux kernel policies.15

7http://icl.cs.utk.edu/plasma/software/8http://faculty.cse.tamu.edu/davis/suitesparse.html9http://www.boost.org/doc/libs/1_70_0/libs/numeric/ublas/doc/
index.htm10http://www.simunova.com/en/mtl411https://eigen.tuxfamily.org/index.php?title=Main_Page12http://crd-legacy.lbl.gov/~xiaoye/SuperLU/13http://en.wikipedia.org/wiki/Native_POSIX_Thread_Library14http://code.google.com/p/likwid/15http://oss.sgi.com/projects/libnuma/

http://icl.cs.utk.edu/plasma/software/
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://www.boost.org/doc/libs/1_70_0/libs/numeric/ublas/doc/index.htm
http://www.boost.org/doc/libs/1_70_0/libs/numeric/ublas/doc/index.htm
http://www.simunova.com/en/mtl4
https://eigen.tuxfamily.org/index.php?title=Main_Page
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
http://en.wikipedia.org/wiki/Native_POSIX_Thread_Library
http://code.google.com/p/likwid/
http://oss.sgi.com/projects/libnuma/
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4.1 Why use accelerators?
We have already discussed in Flynn’s taxonomy that GPUs are SIMD devices.
In the course of this chapter we will see, how this is realized by the so called
streaming multiprocessors on NVIDIA®’s CUDA devices. Other manufacturers
use similar techniwques and thus this is a common theme for general purpose
GPUs. Generally speaking that makes them ideal candidates for linear algebra,
i.e.vector based operations.Other accelerators have different strengths, but we
will focus on GPUs and their programming via CUDA.
The fact that theseGPUs in general comewith their ownmemory installedmakes
using them slightly more complicated, as we are responsible for making sure
that data is always passed to the required locations before use. However, as
we can see from Figure 4.1, these devices feature drastically higher throughput
in both floating point operations and memory, such that the additional transfer
times can often be mitigated, easily.

(a) Floating point operations
(b) Memory bandwidth

Figure 4.1: Throughput comparison of Multicore CPUs and CUDA enabled GPUs
(taken from CUDA C Programming Guide)

A second strong point of GPUs, once the data is sufficiently large, is that due to
their vector processing oriented setup, their are often far more energy efficient
on these operations compared to general purpose CPUs. Table 4.1 shows this
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also in comparison to further accelerators. We can see that GPUs may not be
the best choice for the energy, but they have far easier programming toolkits
and are thusmuch easier to apply than, e.g. the digital signal processors (DSPs),
which win this comparison. Cell processors, on the other hand, have lost signif-
icance soon after the comparison was made.

Architecture GFLOPS GFLOPS/Watt Utilization
Core i7-960 96 1.14 95%
NVIDIA® GTX280 410 2.6 66%
Cell 200 5.0 88%
NVIDIA® GTX480 940 5.4 70%
TI C66x DSP 74 7.4 57%

Table 4.1: Power efficieny comparison of Multicore CPUs and accelerator chips
(taken from Conference Poster by F. Igual and M. Ali)

Recent years have also seen the rise and fall of Intel® Xeon® Phi coprocessor
boards, which, again due to their more complicated programmingmodel, could
not gain a significant market share.

4.2 Memory Hierarchy with Accelerators
4.2.1 Common Features

system bus
Main Memory

P1

cache

. . . Pn

cache

Accelerator Device

I/O

Figure 4.2: Schematic of an accelerator based parallel system
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4.2.2 Graphics Processing Units (GPUs)

Memory Optimizations

www.nvidia.com
CUDA C Best Practices Guide DG-05603-001_v5.0 | 23

bit of metadata (or as hard-coded information in the program) for each pointer.
Using UVA, on the other hand, the physical memory space to which a pointer
points can be determined simply by inspecting the value of the pointer using
cudaPointerGetAttributes().

Under UVA, pinned host memory allocated with cudaHostAlloc() will have identical
host and device pointers, so it is not necessary to call cudaHostGetDevicePointer()
for such allocations. Host memory allocations pinned after-the-fact via
cudaHostRegister(), however, will continue to have different device pointers than
their host pointers, so cudaHostGetDevicePointer() remains necessary in that case.

UVA is also a necessary precondition for enabling peer-to-peer (P2P) transfer of data
directly across the PCIe bus for supported GPUs in supported configurations, bypassing
host memory.

See the CUDA C Programming Guide for further explanations and software requirements
for UVA and P2P.

6.2  Device Memory Spaces
CUDA devices use several memory spaces, which have different characteristics that
reflect their distinct usages in CUDA applications. These memory spaces include global,
local, shared, texture, and registers, as shown in Figure 2  Memory spaces on a CUDA
device.

Figure 2  Memory spaces on a CUDA deviceFigure 4.3: Memory configuration of a CUDA Device (taken from CUDA C Pro-
gramming Guide)

4.2.3 Field Programmable Gate Arrays (FPGAs)

Figure 4.4: Comparison of CPUs and FPGA execution models.

4.3 Compute Unified Device Architecture (CUDA)
4.3.1 What is CUDA?
CUDA is two things at the same time:

1. platform model for the hardware implementation of general purpose

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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graphics processing units made by the NVIDIA® Corporation.
2. programmingmodel realizing the software implementation and schedul-

ing of tasks of the parallel programs on the above hardware.
4.3.2 Basic Definitions

Definition 4.1 (thread):
A thread, or more precisely GPU-thread is the smallest unit of data and
instructions to be executed in a parallel CUDA program.

In contrast to CPU-threads a task switch between GPU-threads is usually almost
for free, or at least a lot less expensive than on Intel-architecture CPUs, due to
the special CUDA architecture.

Definition 4.2 (warp):
The CUDA hardware consists of streaming multi-processors that are ex-
ecuting several threads simultaneously. The GPU-threads are therefore
grouped in so called warps of threads per multi-processor.

The number of threads in a warp may depend on the hardware. One finds
mostly 32 threads per warp which in turn is the smallest number of tasks exe-
cuted in SIMD style. We will see later in this section how the number of threads
per warp can be determined at runtime. In fact NVIDIA® calls their execution
model SIMT for single instruction multiple threads rather than SIMD.
To increase the abstraction and reduce granularity in the programming, but also
to get more flexibility for the scheduling, CUDA arranges the tasks to be exe-
cuted in grids of blocks.

Definition 4.3 (block):
A block is a larger group of threads that can contain 64–512 threads on
older devices and up to 1024 on devices starting from the Kepler genera-
tion.

Ideally, it contains amultiple of 32 threads so it can be split optimally into warps,
by the CUDA environment, for scheduling.
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Definition 4.4 (grid):
The actual work to be performed by a program or algorithm is distributed
to a one, two (maximum for pre-Kepler devices), or three dimensional grid
of blocks.

The grid represents the largest freedom in design that the developer has.

Figure 4.5: Grids of Thread Blocks (taken from CUDA C programming guide)
The central notions to understand data management in a CUDA program are
those of host and device. Here, host refers to the computer that hosts the GPU.
Especially the CPU and memory of the host are relevant. The device then is the
GPU installed on the host system.
In case multiple GPUs are installed on a single host system with multiple CPUs,
each GPU is connected to a single CPU representing a single NUMA node of the
host system.
The host CPU controls the execution of the program. However, host and device
may execute their tasks asynchronously. When not specified differently data
transfers between them serve as implicit synchronization points. Data transfers
can be made asynchronous as well. Then explicit synchronization is necessary.

Definition 4.5 (kernel):
The kernel is the core element of a CUDA parallel program. It represents

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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the function that specifies the work a certain thread in a block on a grid
has to execute.

We will see in the course of this Chapter how the thread executing the kernel
knows which part of the global problem it has to perform.
4.3.3 Most Basic Syntax of the CUDA C Extension
We will next introduce the most basic elements of the CUDA C language exten-
sion. These consist of two important things.

1. qualifiers that apply to functions and specify where (i.e., on host or de-
vice) the function should be executed,

2. launch size specifiers that control the grid and block sizes that are used
to run a kernel.

An extensive API, defining C-style functions and data types to be used in CUDA
programs, together with a handful of libraries for several kinds of tasks (e.g., a
BLAS implementation) complete the picture. See also Figure 4.5.

Figure 4.6: The CUDA GPU computing applications framework (taken from
CUDA C programming guide 11.3.1)

• __global__ This qualifier applies to a function and is used to indicate
that it in fact represents a kernel.

• __device__ The qualifier that specifies functions that should be run
on the device, but are not kernels. It can be useful for subtasks called in
a kernel. It also applies to variables determining them to reside on the
device.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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• __host__ Being basically redundant this qualifier can be used to explic-
itly state that a function is to be executed on the host. It is therefore op-
tional.

• __shared__applies to a variable declaring that it should reside in the
shared memory of a streaming multiprocessor

• __constant__applies to a variable specifying the residence in the con-
stant memory.

Note that __global__ functions are not allowed to be recursive. On old gard-
ware (before Fermi generation) the same is true for __device__ functions.
The most basic launch size specification for a kernel takes the form

<<< grid , block size >>>

where grid specifies the block distribution and block size indicates the
number of threads per block in the grid.
Example 4.6:
Simple 1 one dimensional distributions:

• <<<1,1>>> launches 1 block with 1 thread
• <<<N,1>>> launches N blocks with 1 thread each
• <<<1,N>>> launches 1 block with N threads
• <<<N,M>>> launches a 1d grid of N blocks running M threads each

Both the arguments can also be two, or even three dimensional distributions.
CUDA defines special tuple hiding types for these declarations. Using

dim3 grid(3,2)
dim3 threads(16,16)

one defines a 3ˆ 2 grid of blocks for running 256 threads arranged in a 16ˆ 16
local grid. These are then used in the launch specification as

<<< grid, threads>>>

Launch size specifications are simply appended to the kernel function name
upon calling it.
4.3.4 Introductory Examples
The following examples are taken from the “CUDA by Example” book [19].
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Example 4.7:
#include "../common/book.h"

__global__ void kernel( void ) { }

int main( void ) {
kernel<<<1,1>>>();
printf( "Hello, World!\n" );
return 0;

}

Example 4.8:
#include "../common/book.h"

__global__ void add( int a, int b, int *c ) {

*c = a + b;
}

int main( void ) {
int c;
int *dev_c;
HANDLE_ERROR( cudaMalloc( (void**)&dev_c, sizeof(int) )

);

add<<<1,1>>>( 2, 7, dev_c );

HANDLE_ERROR( cudaMemcpy( &c, dev_c, sizeof(int),
cudaMemcpyDeviceToHost ) );

printf( "2 + 7 = %d\n", c );
HANDLE_ERROR( cudaFree( dev_c ) );

return 0;
}

Example 4.9:
#include "../common/book.h"

__device__ int addem( int a, int b ) {
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return a + b;
}

__global__ void add( int a, int b, int *c ) {

*c = addem( a, b );
}

int main( void ) {
int c;
int *dev_c;
HANDLE_ERROR( cudaMalloc( (void**)&dev_c, sizeof(int) )

);

add<<<1,1>>>( 2, 7, dev_c );

HANDLE_ERROR( cudaMemcpy( &c, dev_c, sizeof(int),
cudaMemcpyDeviceToHost ) );

printf( "2 + 7 = %d\n", c );
HANDLE_ERROR( cudaFree( dev_c ) );

return 0;
}

4.3.5 Compiling CUDA Programs
In order to be able to compile the previous examples, one needs to check a few
prerequisites:

• NVIDIA® device drivers and hardware,
• NVIDIA® CUDA toolkit installation,
• compiler for the host code.

Basic information on CUDA in general, the actual toolkit, and all the informa-
tion on the included accelerated libraries and developer tools can be found at
https://developer.nvidia.com/cuda-toolkit.
Regarding the hardware, basically every NVIDIA® GPU released after the ap-
pearance of the GeForce 8800 GTX in 2006 is CUDA enabled. However, one
needs to make sure that the OS version, the device driver and CUDA Toolkit
version are fitting. Working combinations should be available in the toolkits
documentation.
Regarding the compilers NVIDIA® recommends the following

• Microsoft Windows: Visual Studio

https://developer.nvidia.com/cuda-toolkit
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• Linux: Gnu Compiler Collection (GCC) or CLANG
• MacOS: GCC as well via Apple’s Xcode

On Linux in an x86_64 hardware environment also Intel® and PGI compilers
are supported. On arm platforms also PGI and Arm C/C++ or XLC can work,
while on IBM’s POWER9 series PGI and XLC are supported. One should carefully
check the versions in the Toolkit installation guide, though.

We will in the following restrict ourselves to the Linux world again.
Consider our basic “Hello World!” example is stored in a text file called
hello_world.cu. Using the nvcc compiler provided in the CUDA Toolkit we
can compile it by
nvcc hello_world.cu

Since on Linux nvcc uses gcc to compile the host code this will also generate a
binary called a.out. As for gcc we can specify the output filename, i.e. name
of the resulting executable via

nvcc hello_world.cu -o hello_world

The file extension .cu is used to indicate that we have a C file with CUDA C
extensions.
Among the further compiler options we meet many old friends:
-c for generating object files of single .c or .cu files
-g for generating debug information in the host code
-pg the same for profiling information
-O for specifying the optimization level for the host code
-m specify 32 vs 64bit host architecture

And we have a few more for the device code, e.g.
-G generates debug information for the device code
-arch specifies the GPU architecture to be assumed, i.e. the compute ca-

pabilities of the device (e.g. -arch=sm_20)

4.3.6 Compute Capabilities
The compute capabilities of a device describe the basic set of features and in-
structions supported by this specific hardware. They are given as amajor.minor
style version number defining a general set of capabilities via themajor number
and incremental changes encoded in theminor number. (this coincides with the
sm_majorminor representation for compute capabilities in the -arch flag of
nvcc above)

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
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The compute capabilities are a feature of the specific hardware and unrelated
to the toolkit version number describing the software installation. Each toolkit
is supporting a range of compute capabilities. this is due to the fact that older
hardware platformsdonot get supportedwith newer toolkit versions any longer.
The supported compute capabilities of the latest toolkit version can be found in
the CUDA C programming guide.
We have seen a few thing in this regard already in the definitions of warps and
blocks. Other features are IEEE 754 support, rounding modes etc, as discussed
in the next section. A recent prominent further example is the support for so
called tensor processing units (TPUs), or simply tensor cores, taking the vector
units on the CPUs to the matrix level for low precision floating point numbers,
as a consequence of their common application in manymachine learning appli-
cations.
4.3.7 CUDA and IEEE 754 Floating Point Computations
Compute capabilities 1.3
Double precision floating point numbers have been added in Version 1.3 of the
CUDA compute capabilities. It additionally provides a fused multiply add oper-
ation merging multiplication and addition to be faster and more accurate, but
non IEEE 754 compliant.
Compute Capabilities 2.0 and above
Compute capabilities 2.0 introduces IEEE 754 compliance for most parts of the
standard as the default. The compiler switches

• -ftz=false|true,
• -prec-div=true|false,
• -prec-sqrt= true|false

influence IEEE compliance of the computation. If the second option is used ev-
erywhere one switches to fast mode. The first options are the default though.
IEEE 754 Rounding Modes
IEEE 754 defines four rounding modes

• round to nearest,
• round towards zero,
• round towards `8,
• round towards ´8,

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
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all of which are supported by CUDA. However in contrast to x86 CPUs where
they can be dynamically switched, CUDA uses them statically.
Compiler intrinsics can be used to change the mode for individual operations,
though.

Main Differences to x86 CPUs
• no dynamical control of roundingmodes, instead roundingmodes can be
hard-coded per instruction

• floating point exceptions not handled (especially all NaNs are silent)
• no status flags indicating the exceptions exist

4.3.8 Data Communication Issues
Local versus Remote memory
Viewing from the host perspective, the device memory is remote memory that
can only be accessed via the comparably slow system bus.
Looking at things from the device perspective the same holds true for the hosts
memory. Going even further, already the device memory may be considered
slow from the view of the streaming multiprocessors. The local memory of the
multiprocessors should be used to implement a user controlled cache.

Figure 4.7: The CUDA memory hierarchy (taken from CUDA C programming
guide)

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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(a) bad pattern causing waitingtimes due to communication.

GPU task
transfer to host

(b) good pattern.

Figure 4.8: Execution patterns for CUDA programs

Consequences for CUDA Programs

• Keep data movements between device and host as little as possible
• If they are necessary, try to overlap communication and computations.
See also Figure 4.8

• Make use of multiprocessors local shared memory to cache buffer kernel
operations and avoid frequent access to global device memory

Example 4.10:
/*
* Copyright 1993-2010 NVIDIA Corporation. All rights

reserved.

*
* NVIDIA Corporation and its licensors retain all

intellectual property and

* proprietary rights in and to this software and related
documentation.

* Any use, reproduction, disclosure, or distribution of
this software

* and related documentation without an express license
agreement from

* NVIDIA Corporation is strictly prohibited.

*
* Please refer to the applicable NVIDIA end user license

agreement (EULA)

* associated with this source code for terms and
conditions that govern

* your use of this NVIDIA software.

*
*/

#include "../common/book.h"

#define imin(a,b) (a<b?a:b)
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const int N = 33 * 1024;
const int threadsPerBlock = 256;
const int blocksPerGrid =

imin( 32, (N+threadsPerBlock-1) /
threadsPerBlock );

__global__ void dot( float *a, float *b, float *c ) {
__shared__ float cache[threadsPerBlock];
int tid = threadIdx.x + blockIdx.x * blockDim.x;
int cacheIndex = threadIdx.x;

float temp = 0;
while (tid < N) {

temp += a[tid] * b[tid];
tid += blockDim.x * gridDim.x;

}

// set the cache values
cache[cacheIndex] = temp;

// synchronize threads in this block
__syncthreads();

// for reductions, threadsPerBlock must be a power of 2
// because of the following code
int i = blockDim.x/2;
while (i != 0) {

if (cacheIndex < i)
cache[cacheIndex] += cache[cacheIndex + i];

__syncthreads();
i /= 2;

}

if (cacheIndex == 0)
c[blockIdx.x] = cache[0];

}

int main( void ) {
float *a, *b, c, *partial_c;
float *dev_a, *dev_b, *dev_partial_c;

// allocate memory on the cpu side
a = (float*)malloc( N*sizeof(float) );
b = (float*)malloc( N*sizeof(float) );
partial_c = (float*)malloc( blocksPerGrid*sizeof(float)

);
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// allocate the memory on the GPU
HANDLE_ERROR( cudaMalloc( (void**)&dev_a,

N*sizeof(float) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_b,

N*sizeof(float) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_partial_c,

blocksPerGrid*sizeof(float) )
);

// fill in the host memory with data
for (int i=0; i<N; i++) {

a[i] = i;
b[i] = i*2;

}

// copy the arrays ’a’ and ’b’ to the GPU
HANDLE_ERROR( cudaMemcpy( dev_a, a, N*sizeof(float),

cudaMemcpyHostToDevice ) );
HANDLE_ERROR( cudaMemcpy( dev_b, b, N*sizeof(float),

cudaMemcpyHostToDevice ) );

dot<<<blocksPerGrid,threadsPerBlock>>>( dev_a, dev_b,
dev_partial_c )

;

// copy the array ’c’ back from the GPU to the CPU
HANDLE_ERROR( cudaMemcpy( partial_c, dev_partial_c,

blocksPerGrid*sizeof(float),
cudaMemcpyDeviceToHost ) );

// finish up on the CPU side
c = 0;
for (int i=0; i<blocksPerGrid; i++) {

c += partial_c[i];
}

#define sum_squares(x) (x*(x+1)*(2*x+1)/6)
printf( "Does GPU value %.6g = %.6g?\n", c,

2 * sum_squares( (float)(N - 1) ) );

// free memory on the gpu side
HANDLE_ERROR( cudaFree( dev_a ) );
HANDLE_ERROR( cudaFree( dev_b ) );
HANDLE_ERROR( cudaFree( dev_partial_c ) );

// free memory on the cpu side
free( a );
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free( b );
free( partial_c );

}

Note:
• automatic scaling of blocksPerGrid
• usage of local shared buffer cache
• synchronization in reduction block

4.3.9 The CUDA Application Programmers Interface
We have seen some elements of the CUDA API in the examples before:

• qualifiers:
– __global__,
– __device__,
– __host__,
– __shared__,
– __constant__

• launch size specifiers <<<grid, block size>>>

• type dim3
• predefined variables:

– threadIdx.x,
– blockIdx.x,
– blockDim.x,
– gridDim.x

• memory functions: cudaMalloc(), cudaFree(), cudaMemcpy()
• thread synchronization mechanism: __syncthreads();

Some have been introduced earlier. For the others and a few more we will go
into some more detail now.
Important Memory Operations•

cudaError_t cudaFree ( void* devPtr )
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Frees the memory on the device that is refered to by devPtr.•
cudaError_t cudaMalloc ( void** devPtr, size_t size )

Allocate an amount corresponding to size of memory on the device and
associate it to devPtr.•

cudaError_t cudaMemcpy ( void* dst, const void* src,
size_t count, cudaMemcpyKind kind )

Copy data between host and device. src and dst represent the source
and destination memory locations. The direction of operation is specified
by kind and can be either cudaMemcpyHostToDevice, or
cudaMemcpyDeviceToHost. The count argument is used to specify
the amount of data to be copied.

Device Management Basics•
cudaError_t cudaGetDeviceCount ( int* count )

Returns the number of compute-capable devices available in the system.•
cudaError_t cudaChooseDevice ( int* device, const

cudaDeviceProp* prop )

Select compute-devicewhich bestmatches criteria specified inprop. These
can, e.g., be int major, int minor version numbers of the compute
capabilities, or whether the chip is int integrated in the chipset or a
plugged in device, but also simply the char name[256] of the device,
and many more.•

cudaError_t cudaGetDevice ( int* device )

Returns which device is currently used by the program.•
cudaError_t cudaSetDevice ( int device )

Set device to be used for GPU executions•
cudaError_t cudaDeviceSynchronize ( void )

Wait for compute device to finish. If for the current device the synchro-
nization flag cudaDeviceScheduleBlockingSyncwas set, the host
thread will block until the device has finished its work.

Error Handling•
const __cudart_builtin__ char* cudaGetErrorString (

cudaError_t error )

Returns the message string for the error code given in error.
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•
cudaError_t cudaGetLastError ( void )

Returns the last error that has been produced by any of the runtime calls
in the same host thread and resets it to cudaSuccess.•
cudaError_t cudaPeekAtLastError ( void )

As above but does not reset the error code.
Event Handling (Measuring Performance)•

cudaError_t cudaEventCreate ( cudaEvent_t* event )

Creates, i.e., initializes the event object event.•
cudaError_t cudaEventRecord ( cudaEvent_t event,

cudaStream_t stream = 0 )

Record event. The record may take some time so before evaluation it is
recommended to use cudaEventSynchronize() to make sure it has
terminated.•
cudaError_t cudaEventSynchronize ( cudaEvent_t event

)

Wait until event has completed operations.•
cudaError_t cudaEventElapsedTime ( float* ms,

cudaEvent_t start, cudaEvent_t end )

Computes the elapsed time between two events (in milliseconds with a
resolution of around 0.5 microseconds).

Example 4.11:
A minimal performance measurement configuration:

cudaEvent_t start, stop;
cudaEventCreate(start);
cudaEventCreate(stop);
cudaEventRecord(start, 0);

// complete some tasks

cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);

float etime;
cudaEventElapsedTime( &etime, start, stop);



94 Chapter 4. GPU Computing and Accelerators

4.3.10 Streams
In Figure 4.8, we have already mentioned, that it is crucial to try and overlap
computation and communication in a CUDAprogram transferring data between
host and device. Here, wewant to introduce additional details on how to do this,
especially when we want to split the execution of our program into several por-
tions of work. Thinking, e.g., of large matrix-vector operations where the entire
data would not fit into the device memory, it may be helpful to split the work
into several execution lines, where some are performing useful work, whilst the
others are transferring the required data to the device or the host.

Definition 4.12 (Stream):
Streams are amechanism that introduces an additional level of parallelism
into the CUDA framework. While the basic setup, we have seen until here,
is SIMD or more precisely SIMT, using streams one can have the GPU do
different things at the same time. Streams are not as flexible and “general
purpose” as tasks on the host CPU, though.

We have ignored/neglected the concept already earlier, when we were talking
about events. The function cudaEventRecord() (see Section 4.3.9) takes, as
the last argument, the stream in which the event is to be recorded.
The basic power of streams is to havememory transfers and computational op-
erations overlap in an asynchronous way. Starting from the Kepler architecture
all devices support the overlapping operations. For pre-Kepler devices, how-
ever, the support can be incomplete and missing different features depending
on the chip.
4.3.11 Page-Locked Memory on the Host
Asynchronous data transfers in CUDA are not only performed without synchro-
nization to the actual computation, they are also intended to interact with the
computation as little as possible. Especially, they should not interrupt the CPU
from performing useful work in the program. They are therefore set up to use
direct memory access (DMA) circumventing CPU interaction.
However, in order to do this, we need to use a special portion of host memory,
that is guaranteed to stay in place during the operation. The default portion
of host memory that we allocate using malloc() is paged memory. It can be
anywhere in the virtual memory of the host and is allowed tomove around, e.g.,
to get swapped to disk when more space is required.
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Definition 4.13 (page-locked memory):
Page-locked memory is a portion of memory that is guaranteed to keep its
position in the virtualmemory. It is not available for any kind of paging op-
erations, such as swapping. Therefore, it is sometimes also called pinned
memory.

Advantages of pinned memory:
• can be used for DMA safely
• transfer speeds can be up to 2ˆ faster than to/from pageable memory

Disadvantages:
• memory fragmentation increases and thus the usability deteriorates.

4.3.12 Streams and Compute Capabilities
Over the years, NVIDIA® has changed the way things are implemented. This is
not only regarding the API in the CUDA toolkit, but also the underlying device
hardware. The very first CUDA enabled devices could not overlap transfers and
executions at all. Then, some devices used separate engines for copy and ker-
nel executions. Modern hardware usually has even two engines for performing
transfers in direction to the host and to the device separately. Basically, we can
classify the devices as follows:

Comp. Capab. Properties
1.0 No overlap
1.1- 1 copy engine and 1 kernel execution engine
2.x- 1 kernel execution engine, 1 copy to host engine and 1

copy to device engine
3.5- eliminates the differences in asynchronous execution

Table 4.2: classification of CUDA enabled devices with respect to the ability of
overlapping memory transfers and computations.

How can I know what my device can do?
ThecudaDeviceProp structure can be used to find out whether a device sup-
ports overlapped operation and howmany execution engines are available. The
important members are

• int deviceOverlap indicating the availability of overlapped opera-
tions
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• int asyncEngineCount storing the number of asynchronous execu-
tion engines available.

The important information, which type of asynchronous execution model is im-
plemented in the hardware can thus be fetched with the function
cudaGetDeviceProperties().
4.3.13 An Introductory Asynchronous Transfer Example
We will see in the following example from the NVIDIA® developer’s blog, why it
is so crucial to know the exact model.
What we want to do is

• copy data to the device
• perform some task (kernel) on it
• get the result back to the host

Example 4.14:
The the critical portion of the code would look like
cudaMemcpy(d_a, a, numBytes, cudaMemcpyHostToDevice);
increment<<<1,N>>>(d_a)
cudaMemcpy(a, d_a, numBytes, cudaMemcpyDeviceToHost);

according to what we have learned until now. This is regarding the default exe-
cution stream and uses synchronous communication.

Non Default Streams Before getting into the details on how to arrange code
regarding asynchronous execution, we will now have a look on the generation
of streams and assignment of tasks to the streams.
Example 4.15 (Creation and Destruction of Streams):
Consider we have the two variables

cudaStream_t stream1;
cudaError_t result;

Then we can create a new stream using
result = cudaStreamCreate(&stream1);

and later get rid of it via
result = cudaStreamDestroy(stream1);

https://developer.nvidia.com/content/how-overlap-data-transfers-cuda-cc
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Example 4.16 (Memory transfers):
Once we have acquired a new stream we have to tell the asynchronous copy
routines to use it. The basic command cudaMemcpyAsync() takes the same
arguments as cudaMemcpy. Only, it has an additional argument specifying the
stream to use:
result = cudaMemcpyAsync(d_a, a, N, cudaMemcpyHostToDevice

, stream1);

Example 4.17 (Kernel Execution):
We need to use the extended launch size specification here:
<<< block distr., thread distr., dyn. mem. per block,

associated stream >>>

The third argument can be used to allocate additional dynamic sharedmemory
per block. We will use 0 here.
kernel<<<1,N,0,stream1>>>(d_a);

The influence of the number of engines (especially for copying data) is best dis-
played in a simple example.
Consider we have a group of streams cooperating on kernel(). Think of a
situation where splitting the problem data into chunks is necessary to fit the
data into the device memory. We basically have two ways to implement the
cooperation,

1. loop over the entire copy-work-copy block
2. loop over the work and copies separately

Note that the asynchronous copy acts different on the control flow than the
cudaMemcpy(). While in the default stream, using cudaMemcpy(), we can
rely on the fact that as soon as the command returns, all data has been trans-
ferred, in the case of cudaMemcpyAsync() it does not even guarantee that
the copy operation has started at all. It will only have scheduled the operation
in a first in first out (FIFO) list of pending operations on the corresponding asyn-
chronous execution engine.

Example 4.18 (Asynchronous Execution Version 1):
Looping over the entire block of copy-work-copy operations is described by the
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following code fragment
for (int i = 0; i < nStreams; ++i) {

int offset = i * streamSize;
cudaMemcpyAsync(&d_a[offset], &a[offset], streamBytes,

cudaMemcpyHostToDevice, stream[i]);
kernel<<<>>>(d_a, offset);
cudaMemcpyAsync(&a[offset], &d_a[offset], streamBytes,

cudaMemcpyDeviceToHost, stream[i]);
}

Example 4.19 (Asynchronous Execution Version 2):
Looping over the single tasks in contrast looks like
for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
cudaMemcpyAsync(&d_a[offset], &a[offset],

streamBytes, cudaMemcpyHostToDevice,
stream[i]);

}

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
kernel<<<>>>(d_a, offset);

}

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
cudaMemcpyAsync(&a[offset], &d_a[offset],

streamBytes, cudaMemcpyDeviceToHost,
stream[i]);

}

The main difficulty in the second variant stems from a problematic signaling on
the C2050 series chips.
Kepler generation chips and later
These chips feature compute capabilities 3.5 and higher. Here, the time line
looks as in “asynchronous version 1” in Figure 4.10 in both cases.
For completeness we list the entire test program that can be found at github1,
as well.

1https://github.com/parallel-forall/code-samples/blob/master/
series/cuda-cpp/overlap-data-transfers/async.cu

https://github.com/parallel-forall/code-samples/blob/master/series/cuda-cpp/overlap-data-transfers/async.cu
https://github.com/parallel-forall/code-samples/blob/master/series/cuda-cpp/overlap-data-transfers/async.cu
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Figure 4.9: Execution time line on a device with a single copy engine.

// Copyright 2012 NVIDIA Corporation

// Licensed under the Apache License, Version 2.0 (the "
License");

// you may not use this file except in compliance with the
License.

// You may obtain a copy of the License at

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in
writing, software

// distributed under the License is distributed on an "AS
IS" BASIS,

// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

// See the License for the specific language governing
permissions and

// limitations under the License.

#include <stdio.h>

// Convenience function for checking CUDA runtime API
results

// can be wrapped around any runtime API call. No-op in
release builds.

inline
cudaError_t checkCuda(cudaError_t result)
{
#if defined(DEBUG) || defined(_DEBUG)
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Figure 4.10: Execution time line on a device with separate copy engines for de-
vice to host (D2H) and host to device (H2D) operations.

if (result != cudaSuccess) {
fprintf(stderr, "CUDA Runtime Error: %s\n",

cudaGetErrorString(result));
assert(result == cudaSuccess);

}
#endif

return result;
}

__global__ void kernel(float *a, int offset)
{

int i = offset + threadIdx.x + blockIdx.x*blockDim.x;
float x = (float)i;
float s = sinf(x);
float c = cosf(x);
a[i] = a[i] + sqrtf(s*s+c*c);

}

float maxError(float *a, int n)
{

float maxE = 0;
for (int i = 0; i < n; i++) {

float error = fabs(a[i]-1.0f);
if (error > maxE) maxE = error;

}
return maxE;

}

int main(int argc, char **argv)
{
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const int blockSize = 256, nStreams = 4;
const int n = 4 * 1024 * blockSize * nStreams;
const int streamSize = n / nStreams;
const int streamBytes = streamSize * sizeof(float);
const int bytes = n * sizeof(float);

int devId = 0;
if (argc > 1) devId = atoi(argv[1]);

cudaDeviceProp prop;
checkCuda( cudaGetDeviceProperties(&prop, devId));
printf("Device : %s\n", prop.name);
checkCuda( cudaSetDevice(devId) );

// allocate pinned host memory and device memory
float *a, *d_a;
checkCuda( cudaMallocHost((void**)&a, bytes) ); // host

pinned
checkCuda( cudaMalloc((void**)&d_a, bytes) ); // device

float ms; // elapsed time in milliseconds

// create events and streams
cudaEvent_t startEvent, stopEvent, dummyEvent;
cudaStream_t stream[nStreams];
checkCuda( cudaEventCreate(&startEvent) );
checkCuda( cudaEventCreate(&stopEvent) );
checkCuda( cudaEventCreate(&dummyEvent) );
for (int i = 0; i < nStreams; ++i)

checkCuda( cudaStreamCreate(&stream[i]) );

// baseline case - sequential transfer and execute
memset(a, 0, bytes);
checkCuda( cudaEventRecord(startEvent,0) );
checkCuda( cudaMemcpy(d_a, a, bytes,

cudaMemcpyHostToDevice) );
kernel<<<n/blockSize, blockSize>>>(d_a, 0);
checkCuda( cudaMemcpy(a, d_a, bytes,

cudaMemcpyDeviceToHost) );
checkCuda( cudaEventRecord(stopEvent, 0) );
checkCuda( cudaEventSynchronize(stopEvent) );
checkCuda( cudaEventElapsedTime(&ms, startEvent,

stopEvent) );
printf("Time for sequential transfer and execute (ms): %f

\n", ms);
printf(" max error: %e\n", maxError(a, n));

// asynchronous version 1: loop over {copy, kernel, copy}
memset(a, 0, bytes);
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checkCuda( cudaEventRecord(startEvent,0) );
for (int i = 0; i < nStreams; ++i) {

int offset = i * streamSize;
checkCuda( cudaMemcpyAsync(&d_a[offset], &a[offset],

streamBytes,
cudaMemcpyHostToDevice,

stream[i]) );
kernel<<<streamSize/blockSize, blockSize, 0, stream[i

]>>>(d_a, offset);
checkCuda( cudaMemcpyAsync(&a[offset], &d_a[offset],

streamBytes,
cudaMemcpyDeviceToHost,

stream[i]) );
}
checkCuda( cudaEventRecord(stopEvent, 0) );
checkCuda( cudaEventSynchronize(stopEvent) );
checkCuda( cudaEventElapsedTime(&ms, startEvent,

stopEvent) );
printf("Time for asynchronous V1 transfer and execute (ms

): %f\n", ms);
printf(" max error: %e\n", maxError(a, n));

// asynchronous version 2:
// loop over copy, loop over kernel, loop over copy
memset(a, 0, bytes);
checkCuda( cudaEventRecord(startEvent,0) );
for (int i = 0; i < nStreams; ++i)
{

int offset = i * streamSize;
checkCuda( cudaMemcpyAsync(&d_a[offset], &a[offset],

streamBytes,
cudaMemcpyHostToDevice,

stream[i]) );
}
for (int i = 0; i < nStreams; ++i)
{

int offset = i * streamSize;
kernel<<<streamSize/blockSize, blockSize, 0, stream[i

]>>>(d_a, offset);
}
for (int i = 0; i < nStreams; ++i)
{

int offset = i * streamSize;
checkCuda( cudaMemcpyAsync(&a[offset], &d_a[offset],

streamBytes,
cudaMemcpyDeviceToHost,

stream[i]) );
}
checkCuda( cudaEventRecord(stopEvent, 0) );
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checkCuda( cudaEventSynchronize(stopEvent) );
checkCuda( cudaEventElapsedTime(&ms, startEvent,

stopEvent) );
printf("Time for asynchronous V2 transfer and execute (ms

): %f\n", ms);
printf(" max error: %e\n", maxError(a, n));

// cleanup
checkCuda( cudaEventDestroy(startEvent) );
checkCuda( cudaEventDestroy(stopEvent) );
checkCuda( cudaEventDestroy(dummyEvent) );
for (int i = 0; i < nStreams; ++i)

checkCuda( cudaStreamDestroy(stream[i]) );
cudaFree(d_a);
cudaFreeHost(a);

return 0;
}

4.3.14 Other Topics
Interoperability with Graphics
Using the same GPU for computations and graphical display of results is possi-
ble. See, e.g. [19, Chapter 8], or [3].

Usage of Multiple GPUs
Usage of multiple GPUs in a single program requires the concepts of zero-copy
host memory, and portable pinned memory. An introduction can be found in [19,
Chapter 11].

4.4 Open Computing Language (OpenCL)
Main Message
The abstraction for the programming and hardware models are very similar to
the CUDA concepts. Mainly OpenCL delivers slightly more flexible implementa-
tions due to vendor independence and uses slightly different vocabulary for the
single ingredients of the concept.
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CUDA OpenCL
thread (Work) item
block (Work) group
streaming multiprocessor compute unit
(CUDA) processor processing unit
Table 4.3: A short CUDA to OpenCL dictionary

4.5 Hybrid CPU-GPU Linear System Solvers
One of themost prominent uses of GPUs is in the actual sense of an accelerator.
The host is responsible for the execution flow anyway. It will keep performing
large portions of the computational task. However, whenever the GPU is much
better suited for certain operations, these will be offloaded to the device. Thus
a hybrid implementation results. Wewill demonstrate this using the block outer
product LU formulation.
4.5.1 The block outer product LU decomposition revisited
Our main question to be treated in this section is how Algorithm 3.1 can be ex-
ploited to set up hybrid solvers using both CPU andGPU as good as possible. We
have seen in Section 3.10 that it can be very beneficial to split the computations
ofW and Z into computations with smaller blocks that can then be scheduled
more flexibly. The keyword there was DAG scheduling to optimize execution
times.
The central question for the hybrid CPU/GPU version of the algorithm now is
where to execute the single steps of the algorithm compared to the DAG sched-
uled version.
Requirements
We want to take into account the following necessities and assumptions when
developing the hybrid version.

• Keep data transfers between host and device limited
• optimize usage of both host and device features
• assume that the entire matrix fits into the device memory.

The assumption on thematrix size may be loosened but will then lead to a com-
pletely different algorithm.
In each outer iteration step perform the leading rˆ r blocks LU decomposition
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4.5.2 Iterative Linear System Solvers
Consider the CGAlgorithm3.4 as one prototype iterative solver. It contains basi-
cally all important computational steps present in any Krylov subspace method
for solving a linear system of equations.
There are mainly two observations we can draw from the algorithm.

1. The single steps need to be executed mainly sequentially
2. basically all operations are vector operations.

There is not much to distribute between host and device. To exploit the devices
vector features all operations should be executed on the device. In case the
matrix can not be stored in device memory completely it may be beneficial to
use streams to split the operation into chunks that can be stored and operate
on those streams in a round robin fashion.
4.5.3 Sparse Iterative Eigenvalue Approximation
Basic Idea

• Very similar to iterative linear solvers based on Krylov subspaces.
• Main ingredient is to use the basis of the subspace to project the eigen-
value problem to a much smaller space and solve it with dense methods
there, i.e. A P Rnˆn large and sparseU P Rmˆn,m ! n orthogonal, then

UAUT
loomoon

mˆm

x “ λx

is anm-dimensional dense eigenproblem.

Here one can offload the solution of the small eigenvalue problem to the host,
while the device keeps extending the basis further. The host can then decide
whether the approximation is good enough, or the extension is required and
the computation needs to continue.

4.6 Relevant Software and Libraries
4.6.1 The CUDA Related Libraries

• CUDA Math provides basically all math functions in math.h as device
functions.
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• CUBLAS the CUDA device based implementation of BLAS

• CUFFTCUDAbased Fast Fourier Transforms, i.e., divide and conquer based
computation of Fourier transforms of complex and real valued data sets.

• CURAND The CURAND library provides facilities that focus on the simple
and efficient generation of high-quality pseudorandom and quasirandom
numbers.

• CUSPARSE Vector-vector andmatrix-vector operations where at least one
participant is sparse.

• Thrust A C++ template library based on the Standard Template library
(STL) for minimal effort implementation of parallel programs.

• CUSOLVER Solvers for Ax “ b, or x “ argminz ∥Az ´ b∥ and sequences
thereof. (both sparse and dense)

4.6.2 Derived Libraries
Matrix Algebra on GPU and Multicore Architectures (MAGMA)2
“TheMAGMA project aims to develop a dense linear algebra library similar to LAPACK
but for heterogeneous/hybrid architectures, starting with current “Multicore+GPU”
systems.

The MAGMA research is based on the idea that, to address the complex challenges of
the emerging hybrid environments, optimal software solutions will themselves have
to hybridize, combining the strengths of different algorithms within a single frame-
work. Building on this idea, we aim to design linear algebra algorithms and frame-
works for hybrid manycore and GPU systems that can enable applications to fully
exploit the power that each of the hybrid components offers.”

Formal Linear Algebra Methodology Environment (FLAME)3
“The objective of the FLAME project is to transform the development of dense linear
algebra libraries from an art reserved for experts to a science that can be understood
by novice and expert alike. Rather than being only a library, the project encompasses
a new notation for expressing algorithms, a methodology for systematic derivation
of algorithms, Application Program Interfaces (APIs) for representing the algorithms
in code, and tools for mechanical derivation, implementation and analysis of algo-
rithms and implementations.”

CUSP4
2http://icl.cs.utk.edu/magma/index.html3http://www.cs.utexas.edu/~flame/web/4https://github.com/cusplibrary

http://icl.cs.utk.edu/magma/index.html
http://www.cs.utexas.edu/~flame/web/
https://github.com/cusplibrary
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“Cusp is a library for sparse linear algebra and graph computations on CUDA. Cusp
provides a flexible, high-level interface for manipulating sparse matrices and solving
sparse linear systems. Get Started with Cusp today!”

Matrix formats:
• Coordinate (COO)
• Compressed Sparse Row (CSR)
• Diagonal (DIA)
• ELL (ELL)
• Hybrid (HYB)

More Features:
• Format conversion
• Dense Arrays
• File I/O (Matrix Market format)

Supported Iterative Solvers:
• Conjugate-Gradient (CG)
• Biconjugate Gradient (BiCG)
• Biconjugate Gradient Stabilized (BiCGstab)
• Generalized Minimum Residual (GMRES)
• Multi-mass Conjugate-Gradient (CG-M)
• Multi-mass Biconjugate Gradient stabilized (BiCGstab-M)

Preconditioners:
• Algebraic Multigrid (AMG) based on Smoothed Aggregation
• Approximate Inverse (AINV)
• Diagonal

CULA tools5
“CULA is a set of GPU-accelerated linear algebra libraries utilizing the NVIDIA CUDA
parallel computing architecture to dramatically improve the computation speed of
sophisticated mathematics.”

5http://www.culatools.com

http://www.culatools.com
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They have separate packages for sparse and dense operation. The libraries are
however commercial.

Besides those, there are many scientific computing packages that support GPU
operations in one way or the other. Also python has packages for both CUDA
(pyCUDA) and OpenCL (pyOpenCL) and MATLAB supports (basically dense only)
operation on CUDA devices.
Ginkgo6
“Ginkgo is a high-performance linear algebra library for manycore systems, with a
focus on sparse solution of linear systems. It is implemented using modern C++ (you
will need at least C++11 compliant compiler to build it), with GPU kernels imple-
mented in CUDA.”

Matrix formats:
• Coordinate (COO)
• Compressed Sparse Row (CSR)
• hybrid
• dense
• ELL-P
• SELL-P

More Features:
• Format conversion
• Dense Arrays
• File I/O (Matrix Market format)
• UFL Collection

Supported Iterative Solvers:
• Conjugate-Gradient (CG)
• Biconjugate Gradient (BiCG)
• Biconjugate Gradient Stabilized (BiCGstab)
• Conjugate-Gradient squared (CGS)
• flexible CG (FCG)

6https://github.com/ginkgo-project/ginkgo

https://github.com/ginkgo-project/ginkgo
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• Generalized Minimum Residual (GMRES)
Preconditioners:

• Jacobi type
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5.1 Distributed Memory Hierarchy
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Communication Network
Figure 5.1: Distributed memory computer schematic

5.2 Comparison of Distributed Memory Systems
5.2.1 Rankings
Several approaches have been followed to compare the large HPC Cluster sys-
tems to each other leading to different kinds of rankings. The classical approach
is following the idea, that linear algebra operations are the core component of
most scientific computing codes. Sophisticated benchmarks in that area have
been developed and serve as comparison criterion for the performance of those
systems. Over the years it became more and more obvious, and today it is the
most pressing difficulty for large computing centers, that the power consump-
tion of the systems is becoming an issue for their operation. The largest systems
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today consume the power provided by a moderate power plant. For example
the Japanese K computer would use the energy providable by 8–10 medium
size (66m diameter rotor) wind turbines. This development gave rise to the idea
of including the energy consumption for operation and cooling of the devices in
the comparison. More recent developments like social networks havemade op-
erations on graphsmore attractive and necessary than before. The centrality of
certain nodes in such networks is a question often asked. This usually requires
specialized algorithms and possibly hardware. The three most important rank-
ings in view of this are described in the following.

1. TOP5001: List of the 500 fastest HPC machines in the world sorted by
their maximal LINPACK2 performance (in TFlops) achieved.

2. Green5003: Taking into account the energy consumption the Green500 is
basically a resorting of the TOP500 according to TFlops/Watt as the rank-
ing measure.

3. (Green) Graph5004:Designed for data intensive computations it uses a
graph algorithm based benchmark to rank the supercomputers with re-
spect to GTEPS (109 Traversed edges per second). As for the TOP500 a
resorting of the systems by an energy measure is provided, as the Green
Graph 500 list5.

5.2.2 Architectural Streams Currently Pursued
The ten leading systems in the TOP500 list are currently (list of November 2018)
of three different types representing the main streams pursued in increasing
the performance of distributed HPC systems.
Mainly all HPC systems today consist of single hosts of one of the following three
types. The performance boost is achieved by connecting ever increasing num-
bers of those hosts in large clusters.

1. Hybrid accelerator/CPU hosts, Summit — IBM Power System AC922, IBM
POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband,
IBM at DOE/SC/Oak Ridge National Laboratory United States Piz Daint —
Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, NVIDIA Tesla P100,
Cray Inc. at Swiss National Supercomputing Centre (CSCS) Switzerland

2. Manycore and embedded hosts Sunway TaihuLight — Sunway MPP,
Sunway SW26010 260C1.45GHz, SunwayNRCPCSequoia—BlueGene/Q, Power
BQC 16C 1.60 GHz at DOE/NNSA/LLNL United States

1http://www.top500.org/2http://www.netlib.org/benchmark/hpl/3http://www.green500.org/4http://www.graph500.org/5http://green.graph500.org/

http://www.top500.org/
http://www.netlib.org/benchmark/hpl/
http://www.green500.org/
http://www.graph500.org/
http://green.graph500.org/
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3. Multicore CPUpoweredhosts, SuperMUC-NG—ThinkSystemSD530, Xeon
Platinum 8174 24C 3.1GHz, Intel Omni-Path, Lenovo at Leibniz Rechenzentrum
Germany

5.2.3 Hybrid Accelerator/CPU Hosts
We have elaborately studied these hosts in the previous chapter.
Compared to a standard desktop (as treated there) in the cluster version the in-
terconnect plays amore important role. Especially, Multi-GPU features may use
GPUs on remote hosts (as compared to remote NUMA nodes) more efficiently
due to the high speed interconnect.
Compared to CPU-only hosts, these systems usually benefit from the large num-
ber of cores generating high flop-rates at comparably low energy costs.

5.2.4 Manycore and Embedded Hosts
Manycore and embedded systems are designed to use low power processors to
get a good flop per Watt ratio. They make up for the lower per core flop counts
by using enormous numbers of cores.
BlueGene/Q

• Base chip IBM PowerPC 64Bit based, 16(+2) cores, 1.6GHz
• each core has a SIMD Quad-vector double precision FPU
• 16 user cores, 1 system assist core, 1 spare core
• cores connected to 32MB eDRAM L2Cache (half core speed) via crossbar
switch

• crates of 512 chips arranged in 5d torus (4 ˆ 4 ˆ 4 ˆ 4 ˆ 2)
• chip-to-chip communication at 2Gbit/s using on-chip logic
• 2 crates per rack⇝ 1024 compute nodes “ 16,384 user cores
• interconnect added in 2 drawers with 8 PCIe slots (e.g. for Infiniband, or
10Gig Ethernet.)

5.2.5 Multicore CPU Hosts
Basically these clusters are a collection of standard processors. The actual mul-
ticore processors, however, are not necessarily of x86 or amd64 type, e.g. many
employ IBM Power 9 processors.
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Standard x86 or amd64 provide the obvious advantage of easy usability, since
software developed for standard desktops can be ported easily. The SPARC and
POWER processors overcome some of the x86 disadvantages (e.g. expensive
task switches) and thus often provide increased performance due to reduced
latency.

5.2.6 The 2020 vision: Exascale Computing
difference name meaning

(symbol)
Kilobyte (kB) 103 Byte = 1000 Byte

2,40% Kibibyte (KiB) 210 Byte = 1024 Byte
Megabyte (MB) 106 Byte = 1000000 Byte

4,86% Mebibyte (MiB) 220 Byte = 1048576 Byte
Gigabyte (GB) 109 Byte = 1000000000 Byte

7,37% Gibibyte (GiB) 230 Byte = 1073741824 Byte
Terabyte (TB) 1012 Byte = 1000000000000 Byte

9,95% Tebibyte (TiB) 240 Byte = 1099511627776 Byte
Petabyte (PB) 1015 Byte = 1000000000000000 Byte

12,6% Pebibyte (PiB) 250 Byte = 1125899906842624 Byte
Exabyte (EB) 1018 Byte = 1000000000000000000 Byte

15,3% Exbibyte (EiB) 260 Byte = 1152921504606846976 Byte
Zettabyte (ZB) 1021 Byte = 1000000000000000000000 Byte

18,1% Zebibyte (ZiB) 270 Byte = 1180591620717411303424 Byte
Yottabyte (YB) 1024 Byte = 1000000000000000000000000 Byte

20,9% Yobibyte (YiB) 280 Byte = 1208925819614629174706176 Byte
Table 5.1: decimal and binary prefixes

The two standard prefixes in decimal and binary representations of memory
sizes are given in Table 5.1. The decimal prefixes are also used for displaying
numbers of floating point operations per second (flops) executed by a certain
machine.

name (location) cores LINPACK perfomance
[TFlop/s]

Summit (USA) 2 397824 143500.0
Sunway TaihuLight(China) 10 649600 93014.6
Sequoia (USA) 1 572864 16324.8
Tianhe-2A (China) 4 981760 61444.5

Table 5.2: Petascale systems available
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Figure 5.2: Performance development of TOP500 HPC machines taken from
TOP500 poster November 2014
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Figure 5.4: Chip technologies of TOP500 HPC machines taken from TOP500
poster November 2018
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Figure 5.5: Installation types of TOP500 HPC machines taken from TOP500
poster November 2018
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Figure 5.6: Accelerators and Co-Processors employed in TOP500 HPCmachines
taken from TOP500 poster November 2018

5.3 Communication of Data
5.3.1 Communication via Message Passing
Message passing
is the programming model commonly used for distributed memory systems,
where each node has its own exclusive memory and we have an overall dis-
tributed address space. Exchange of data between the local memories of sepa-
rate hosts is realized by sending messages between the hosts.

Usually, the communication is (network) socket based, although the basic prin-
ciples can also be applied to multicore machines, e.g., by using shared memory
blocks to implement the communication.
Blocking vs. Non-blocking Communication operations in the Message Pass-
ing Interface (MPI) are belonging to two global classes categorized by their local
(process on host) behavior.

Definition 5.1 (blocking operation):
A communication operation is called blocking if the return of the process
control to the calling processmeans that the operation has completed the
entire transfer.
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Definition 5.2 (non-blocking operation):
In a non-blocking operation the process control is returned to the calling
process as soon as the communication has been initiated. The communi-
cation may be ongoing while the calling process continues its program.

Synchronous vs. Asynchronous Looking at the sameoperations fromaglobal
perspective, i.e., not looking at the local message but the global communication,
they determine the two classes of

Definition 5.3 (synchronous communication):
The synchronous communication between a sending and a receiving pro-
cess is implemented such that sending operations do not complete (i.e.
return control to the calling process) before the receiving counterpart has
at least started the execution.

Definition 5.4 (asynchronous communication):
In asynchronous communication the sending and receiving processes are
not coordinated, i.e., the sender can execute its operation without the
receiving counterpart waiting in its operation.

Example 5.5:
We know counterparts of those types of communication in our daily life:

• oral or telephone chats are synchronous communications, since all part-
ners are engaged in the communication simultaneously.

• classic mail or electronic mail are asynchronous communication, where
the sender never knows if, or when the message was actually received.

Communication Types Communication between MPI processes can not only
be classified via their influence on global or local process flow, but also with
respect to the number of partners involved. MPI is distinguishing between

• point-to-point communication, where both ends are occupied by a sin-
gle process, and

• collective communication where a single process sends out messages
to multiple receiving processes, or collects messages from several send-
ing processes.
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Figure 5.7: Point-to-Point Communication
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Figure 5.9: Reduction Operation
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Figure 5.10: Scatter Operation
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Figure 5.11: Gather Operation

Additionally we have two global, i.e. all-to-all-type, communication types.
Multi-broadcast
This is the situation when all nodes issue a broadcast at the same time, i.e. each
node sends the exact same message to all other nodes.
Total exchange
This is the situation when all nodes issue a scatter at the same time, i.e. each
node sends a specific message to to every other node.

5.4 Communication Networks (revisited)
5.4.1 AsymptoticMessage runtimes in someStandardNetworkTopolo-gies
Assumptions

• All network links are bidirectional
• All-Port-Communication: each node can send out messages on all outgo-
ing links simultaneously

• The same holds for receiving messages
• A messages consists of several bytes sent uninterruptedly
• The time for transmission of a message ofm bytes size is

T pmq “ ts ` mtb,

where ts is a startup time for initialization of the communication and tb isthe time for sending a single byte.
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• The communication is such that the length of the path from source node
to destination node in the corresponding network graph determines the
number of time steps required.

Landau Θ-notation
TheΘpgpxqqnotation describes a class of functions f forwhich roughly speaking
we have that “f is growing essentially as fast as g.”

More precisely we have,
Θpgpxqq “ tfpxq | Dc1, c2 ą 0 and x0, such that

@x ě x0 c1|gpxq| ď fpxq ď c2|gpxq|u

This basically means f P Θpgq when f P Opgq and g P Opfq.
Critical operations are the collective communication operations, since they pro-
duce a notable load on the entire range of links in the network. We will investi-
gate the following in more detail:

1. broadcast
2. scatter
3. multi-broadcast (each node broadcasts)
4. total exchange (each node scatters)

In the following p specifies the number of nodes in the network.
Complete Graph

1

2 3

4

5

Figure 5.12: A complete graph network broadcast example
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• all nodes connected, i.e., path length is one,
• by the assumptions all messages in all types of point to point and collec-
tive communication operations can be sent simultaneously,

• the operations can be performed in Θp1q.
Linear Array

1 2 3 4 5
Figure 5.13: A linear array network example

Single Broadcast
• The root node sendsmessages to its left and right neighbors starting with
the most distant recipients,

• in all other steps each node forwards the message received from one
neighbor in the previous step to its other neighbor.

• The minimal runtime is t
p
2 u (root is the center node)

• The maximal runtime is p ´ 1 (root is an end node)
• Thus the runtime class is Θppq.

Multi Broadcast

1 2 3 4
1 2 3
2 3 4

Step 1

1 2 3 4
1 2

3 4
Step 2

1 2 3 4
1

4
Step 3

Figure 5.14: A linear array network multi broadcast example

Here the arrows represent messages with sending direction and the numbers
indicate the original source node. The runtime is the worst case runtime of the
single broadcast and thus the complexity is Θppq.
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Scatter
The basic idea is that of the single broadcast, only the contents of the messages
need to be treated more carefully. Therefore, the complexity isΘppq as well.

Total exchange
An upper bound to the runtime is given by p scatter operations, resulting in
basically p2 communication steps. In [18, Section 4.3.1.3] the authors present
an algorithm that can do it in p2

4 . Anyway the complexity is Θpp2q.

Ring

1

2 3

4

5

Figure 5.15: A ring network example

The ring is a prototype for the linear array where the root node is always in the
center. Thus, we get the same complexities as in the best case for the linear
array.
Note, however, that we need to cut the transmission at half way around the ring.

Mesh
We consider the d-dimensional mesh with d

?
p nodes per direction, such that we

have p nodes in total as before. The diameter then is dp d
?
p ´ 1q.
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1 2 3

4 5 6

7 8 9

Figure 5.17: The linear array embedded in a 2d mesh.

1 2

34

5 6

78

(a) A 3d cubic mesh networkwith diameter 3 ¨ 1

1 2 3

4 5 6

7 8 9

(b) A 2d square mesh networkwith diameter 2 ¨ 2

Figure 5.16: Two mesh network examples with diameter indications.

Single Broadcast
The single broadcast time is obviously proportional to the diameter of the net-
work. This itself is proportional to the number of nodes in each direction. There-
fore, the complexity class is Θp d

?
pq.

Scatter
• Figure 5.17 shows clearly that the communication time is limited by that
for the linear array from above.

• On the other hand, each node has d to 2d outgoing connections and p´1
messages need to be sent, i.e., t

p´1
d u is a lower limit.

• a scatter is possible in Θppq.

Multi Broadcast
Themulti broadcast time is observed similarly to be part of the complexity class
Θp d

?
pq.
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Total Exchange
The authors in [18, Section 4.3.1.5] show a method that provides Θpp

d`1
d q.

5.4.2 Some Remarks on the Hypercube

(a) 1D hypercube (b) 2D hypercube

(c) 3D hypercube (d) 4D hypercube
Figure 5.18: The first four hypercubes
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Figure 5.19: The hypercube network in 4d

We denote the nodes in the d-dimensional hypercube by d-tuples of bits, i.e., we
use n1, . . . , np P t0, 1u

d. Let a, b, c P t0, 1u
d and ai, bi, ci the i-th bit positions.
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We denote by ‘ the bitwise exclusive or operation, i.e.,
a1 . . . ad ‘ b1 . . . bd “ c1 . . . cd

with
ci “

"

1 where ai ­“ bi,
0 otherwise for 1 ď i ď d.

Note that @z P t0, 1u
d we have

00 . . . 0 ‘ z “ z,

and if v, w P t0, 1u
d differ in only a single bit, so do v ‘ z and w ‘ z.

Properties of the Hypercube graph
• nodes are bit d-tuples,
• each node has d links to other nodes
• neighbors differ in a single bit position
• the diameter of the graph (i.e., the length of the longest path between two
nodes) is d “ logppq.

5.4.3 Communication Routing on the Hypercube
Construction of Spanning Trees for Single Broadcasts

Definition 5.6 (Spanning tree):
A spanning tree of a graph is a tree that

• picks one node of the graph as its root,
• contains all other nodes as nodes or leaves exactly once,
• has only edges that represent valid links in the graph.

Construction Rules for root 00 . . . 0
1. all root connections coincide with the links in the graph.
2. children are generated by inverting a single bit right of the rightmost 1.

The rules above imply
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• that all leave nodes end on a 1 bit,
• the depth of the tree is d ` 1 since d bits are inverted on the path to the
deepest leave 11 . . . 1.

Root nodes other than 00 . . . 0

Spanning trees for other root nodes v are derived by replacing all nodes w by
w ‘ v in the entire tree for root 00 . . . 0.
Why is this the case? We noted above the properties of ‘ that

• 00 . . . 0 is the neutral element, and
• v, w differ in only a single bit ñ v ‘ z, w ‘ z do so as well.

Thus, if pv, wq is a hypercube link, then pv ‘ z, w ‘ zq is one as well.
Single Broadcast
The single broadcast can be implemented in Θplog pq “ Θpdq successively de-
scending through the spanning tree. It can also not be better than that since
the diameter of the hypercube is d.
Scatter
A scatter operation needs to send out p´1 different messages along the d links
of the root node. It can thus not be faster than r

p´1
d s time steps.

Wewill see in the following that this is the timealso needed for amulti-broadcast.
Since a single scatter can not be slower than that we immediately have that a
scatter is Θp

p´1
logppq

q “ Θp
p´1
d q.

Collision Avoiding Spanning Trees for Multi-Broadcast Operations
Problem
The single broadcast spanning trees for the 2d nodes in the d-dimensional hy-
percube are not disjoint in the sense that each link is only used by a single op-
eration in each time step if the multi-broadcast is treated as 2d isolated single
broadcasts.

It is mandatory to construct spanning trees such that all sets of edges used in a
single time step by the different single broadcasts are disjoint.
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Definition 5.7: • The spanning tree for root node t P t0, 1u
d is called

Tt, and simply T0 for t “ 00 . . . 0.
• The set of edges active in time step i for Tt is called Aiptq

Construction
The sets of active edges for root node t P t0, 1u

d may be constructed such that
for any two edges px, yq and px1, y1q in Aip0q x, y and x1, y1 do not differ in the
same bit position and the sets for the other root nodes are derived as

Aiptq “ tpx ‘ t, y ‘ tq | px, yq P Aiu @1 ď i ď m,

wherem is the total number of time steps required.
The basic idea behind this is to assume the opposite. Then for two edges differ-
ing in the same bit position, we could find a node t such that the one edge can
be transformed into the other using the ‘t operation. Thus the construction of
theAiptq would immediately lead to sets of edges that are not pairwise disjoint.

The set Ai of active edges in the i-th step can have at most d entries, since we
only have d bit positions available in the node labels.

Construct the sets Ai such that |Ai| “ d for 1 ď i ă m and |Am| ď d.
What ism?
Since each of the p “ 2d nodes in the tree has an incoming link, except the root,
we have 2d ´ 1 edges in total that are distributed among the Ai, i.e.,

ˇ

ˇ

ˇ

ˇ

ˇ

m
ď

i“1

Ai

ˇ

ˇ

ˇ

ˇ

ˇ

“ 2d ´ 1.

This immediately provides a first estimate form:
m “

R

2d ´ 1

d

V

Note that we can also not get better than that, since each node in the hypercube
has to receive 2d´1messages from the other nodes across its d incoming links.
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Definition 5.8:We collect some further notation:
• Nk :“ tt P t0, 1u

d
| t has k unit bits and d ´ k zero bits.u

• These sets have
nk :“ |Nk| “

ˆ

d
k

˙

“
d!

k!pd ´ kq!

elements.
• TheNk are further subdivided intomk equivalence classesRk1, . . . , Rkmkwith respect to left rotation. That means all elements in a set Rki can beformed from each other by successive cyclic permutation to the left of thebit positions. They are ordered by rightmost concentration of the unit bits,i.e., Rk1 is the class containing p0d´k1kq.
• The elements in the equivalence classes can be ordered by rightmost con-centration of unit bits as well.
• nptq is the global number of node t in this order.
• mptq “ 1` rnptq ´1 mod ds is t’s local number of inside the equivalenceclass. Note thatmptq cycles across the boundaries of equivalence classes.

Note that the global ordering via nptq does not take over the local numbering.
If |Rk´1mk´1

| “ ℓ ă d then in the global order the element withmptq “ ℓ` 1 is
the first one in Rk1 in the global order. Let us denote the sets of destination
nodes in Ai by Ei. Then we set:

E0 “ t00 . . . 0u

Ei “ tt P t0, 1u
d

| pi ´ 1qd ` 1 ď nptq ď idu 1 ď i ă m

Em “ tt P t0, 1u
d

| pm ´ 1qd ` 1 ď nptq ď 2d ´ 1u

The set of active edges are then constructed by the rules:
1. connect t P Ei to start node t1 with themptqth bit inverted,
2. if t “ 11 . . . 1 andmptq “ d connect to t1 “ 101 . . . 1 instead.

By construction in each step the tree uses d edges and all sets Aiptq for thedifferent t are disjoint. Thus, all 2d single broadcasts can be performed simul-
taneously and the multi-broadcast can be done in Θp

p´1
d q.
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Note that although the d-hypercube has only d
2 ¨ 2d edges we can use d ¨ 2d links

in the graph due to the assumption of bidirectional communication.

5.5 Message Passing Interface API
The Message Passing Interface is a standard for creation of parallel programs
using the message passing programming model. It describes

• functionality,
• behavior,
• API syntax

of the required routines. It does, however, not prescribe any implementation
details. It is, e.g., completely open by what means a message is transferred.
The MPI uses a specialized execution environment that spawns and adminis-
trates the instances of a process. Relevant functions for

• setup and destruction of the working environments context
• grouping processes
• actual message transmission
• . . .

are collected in the mpi.h header file. We will see in Section 5.6, for the case of
the Open MPI6 implementation of the standard, how we can compile and run a
program using the MPI features.

5.5.1 MPI Context Initialization and Finalization
The most basic components of the MPI program are
#include <mpi.h>

to make the standard available. Then, before we can use any message passing
routines, we need to initialize the execution context via
int MPI_Init(int *argc, char ***argv)

passing on the usual arguments of themain() function of our C program. After
we have finished ourMPI related work, the execution context is destroyed using
int MPI_Finalize()

6http://www.open-mpi.org/

http://www.open-mpi.org/
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Processes may continue performing local work after the finalization, but with a
very few exceptions none of theMPI functions work anymore. It ismandatory to
make sure that allMPI operations have finishedbefore callingMPI_Finalize().

5.5.2 Process Groups and Communicators
Process Groups

Definition 5.9 (Process group):
Processes in MPI may be clustered in so called process groups. These are
ordered sets of instances of the program numbered from 0 to n ´ 1. The
local numbers of the processes are called rank.

From the programmers view an MPI group is an object of type MPI_Group,
which can be accessed via a handle. There exists one predefined group constant
MPI_GROUP_EMPTY, denoting the empty group.
Process Group Functions
int MPI_Group_union(MPI_Group group1,

MPI_Group group2,
MPI_Group *newgroup)

Generates the union of two existing groups by including all elements of the first
group, followed by all elements of second group that are not in the first group.

• group1, group2 groups to include
• *newgroup handle of the group to create. This may be equal to the
empty group MPI_GROUP_EMPTY.

The operation is not commutative but associative.
int MPI_Group_intersection(MPI_Group group1,

MPI_Group group2,
MPI_Group *newgroup)

Produces a group at the intersection of two existing groups by including all el-
ements of the first group that are also in the second group, ordered as in the
first group.

• group1, group2 groups to intersect,
• *newgroup handle of the group to create. This may be equal to the
empty group MPI_GROUP_EMPTY.

The operation is not commutative but associative.



5.5. Message Passing Interface API 133

int MPI_Group_difference(MPI_Group group1,
MPI_Group group2,
MPI_Group *newgroup)

Generates the new group from the difference of the existing groups by including
all elements of the first group that are not in the second group, ordered as in
the first group.

• group1, group2 groups to determine the difference from
• *newgroup handle of the group to create. This may be equal to the
empty group MPI_GROUP_EMPTY.

int MPI_Group_incl(MPI_Group group,
int n,
int *ranks,
MPI_Group *newgroup)

Create a new group from an existing group by including a possibly reordered
subset of the processes.

• group the existing group
• n number of ranks used in the new group
• ranks ordered list of members for the new group
• *newgroup handle of the group to create.

int MPI_Group_excl(MPI_Group group,
int n,
int *ranks,
MPI_Group *newgroup)

Create a new group from an existing group by excluding a possibly reordered
subset of the processes.

• group the existing group
• n number of ranks used in the new group
• ranks ordered list of members to exclude from the new group
• *newgroup handle of the group to create.

int MPI_Group_rank(MPI_Group group, int *rank)

Find the rank (local number) of the current process in group.
int MPI_Group_size(MPI_Group group, int *size)

Determines the number of members of a group, returned in size.
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int MPI_Group_compare(MPI_Group group1,
MPI_Group group2,
int *result)

Find out how different group1 and group2 are. The result is MPI_IDENT
if they are the same, MPI_SIMILAR in case they only differ in the order of the
processes and MPI_UNEQUAL otherwise.
Unused groups can be released by calling
int MPI_Group_free(MPI_Group *group)

On successful return group is set to MPI_GROUP_NULL

Communicators

Definition 5.10 (Communicators):
The participants in a communication operation in MPI are usually deter-
mined via so called communicators. MPI distinguishes two types of com-
municators

• intra-communicators for the collective communication inside a pro-
cess group

• inter-communicators for the point-to-point like communication be-
tween two process groups.

If we are following the SPMD programmingmodel and do not want to have task-
parallelism in our code, we are usually fine with the predefined default com-
municator MPI_COMM_WORLD. When people simply speak of a communicator
they usually refer to an intra-communicator. Communicators are objects of type
MPI_Comm

Communicator Functions
int MPI_Comm_create(MPI_Comm comm, MPI_Group group,

MPI_Comm *newcomm)

Create a new communicator for a subset of the processes.
• comm base communicator
• groupprocess group thenew communicatorwill be associatedwith. Must
be a subgroup of the group associated to comm.

• *newcomm handle to the newly created communicator.
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int MPI_Comm_size (MPI_Comm comm, int *size)
int MPI_Comm_rank(MPI_Comm comm, int *rank)
int MPI_Comm_compare(MPI_Comm comm1, MPI_Comm comm2, int *

result)

are the communicator equivalents of the equally called group functions. For
comm equal toMPI_COMM_WORLD the total number of processes and the global
ranks are returned. Otherwise those of the associated group are given.
For theMPI_Comm_compare function the valueMPI_IDENT heremeans that
the underlying groups are in fact the same. MPI_CONGRUENT is returned if the
groups are equal (including the order of theranks) but not the sameone group.
If only the order differs the result is MPI_SIMILAR again and MPI_UNEQUAL
otherwise.
5.5.3 Point-to-Point Communication
int MPI_Send(void *buf,

int count,
MPI_Datatype datatype,
int dest,
int tag,
MPI_Comm comm)

Perform a blocking send operation.
• buf address of the sendbuffer
• count number of elements to send
• datatype type of send buffer elements
• dest the rank of the destination process inside comm
• tag a message identifier
• comm the communicator to use for the transmission

int MPI_Recv(void *buf,
int count,
MPI_Datatype datatype,
int source,
int tag,
MPI_Comm comm,
MPI_Status *status)

Performs a standard-mode blocking receive.
• buf address of the send buffer
• count number of elements to send
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• datatype type of send buffer elements
• source the rank of the sending process inside comm
• tag a message identifier
• comm the communicator to use for the transmission
• status a status object containing information about the sender, the
message tag, and possible errors. Also the length of themessage received
can be retrieved from it using the MPI_Get_count function. This can
be set to the constant MPI_STATUS_IGNORE to save resources if not
needed by the application.

Variants of these functions performing the send and receive in a single call or
that are non-blocking, exist, for the details see the standard and the man pages
of MPI_Sendrcv(), MPI_Isend(), MPI_Irecv().
For the non-blocking communication operations the functionMPI_Test() can
be used to check whether a certain message has been transferred.
5.5.4 Single-Collective Communication
All collective communication functions need to be called on all ranks in the
group. The specific argument root will determine how the operation is per-
formed by the current instance of the process.
int MPI_Barrier(MPI_Comm comm)

Actually not performing a real communication this function makes sure that
process flow stops until all processes in the group associated to comm have
reached this point.

• comm the communicator to use the barrier for
int MPI_Bcast(void *buffer,

int count,
MPI_Datatype datatype,
int root,
MPI_Comm comm)

Broadcasts a message from one process to all other processes of the commu-
nicator.

• *buffer address of the send/receive buffer
• count number of elements to send
• datatype type of send buffer elements
• root the rank of the sending process
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• comm the communicator to be use
int MPI_Reduce(void *sendbuf,

void *recvbuf,
int count,
MPI_Datatype datatype,
MPI_Op op,
int root,
MPI_Comm comm)

Reduces values on all processes within a group associated to a communicator
• *sendbuf address of the send buffer
• *recvbuf address of the receive buffer (only relevant on root)
• count number of elements to send
• datatype type of buffer elements
• op the arithmetic operation to use in the reduce
• root the rank of the root/receiving process
• comm the communicator to be use

int MPI_Scatter(void *sendbuf,
int sendcount,
MPI_Datatype sendtype,
void *recvbuf,
int recvcount,
MPI_Datatype recvtype,
int root,
MPI_Comm comm)

Distributes data from one process among all processes in the communicator
• *sendbuf address of the send buffer
• sendcount number of elements to send
• sendtype type of the send buffer elements
• *recvbuf address of the receive buffer
• recvcount number of elements to receive
• recvtype type of the receive buffer elements
• root the rank of the root/sending process
• comm the communicator to be use

int MPI_Gather(void *sendbuf,
int sendcount,



138 Chapter 5. Distributed Memory Systems

MPI_Datatype sendtype,
void *recvbuf,
int recvcount,
MPI_Datatype recvtype,
int root,
MPI_Comm comm)

Collects data from all processes on a single process.
• *sendbuf address of the send buffer
• sendcount number of elements to send
• sendtype type of the send buffer elements
• *recvbuf address of the receive buffer
• recvcount number of elements to receive
• recvtype type of the receive buffer elements
• root the rank of the root/receiving process
• comm the communicator to be use

5.5.5 Multi-Collective Communication
int MPI_Allgather(void *sendbuf,

int sendcount,
MPI_Datatype sendtype,
void *recvbuf,
int recvcount,
MPI_Datatype recvtype,
MPI_Comm comm)

Collects and redistributes data from all processes to all processes.
• *sendbuf address of the send buffer
• sendcount number of elements to send
• sendtype type of the send buffer elements
• *recvbuf address of the receive buffer
• recvcount number of elements to receive
• recvtype type of the receive buffer elements
• comm the communicator to be use

int MPI_Allreduce(void *sendbuf,
void *recvbuf,
int count,
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MPI_Datatype datatype,
MPI_Op op,
MPI_Comm comm)

Similar to the MPI_Reduce() function it combines values from all processes,
but in addition it distributes the result back to all processes.

• *sendbuf address of the send buffer
• *recvbuf address of the receive buffer
• count number of elements to send
• datatype type of buffer elements
• op the arithmetic operation to use in the reduce
• comm the communicator to be use

int MPI_Alltoall(void *sendbuf,
int sendcount,
MPI_Datatype sendtype,
void *recvbuf,
int recvcount,
MPI_Datatype recvtype,
MPI_Comm comm)

The total exchange operation, i.e., every process sends to all other processes.
• *sendbuf address of the send buffer
• sendcount number of elements to send
• sendtype type of the send buffer elements
• *recvbuf address of the receive buffer
• recvcount number of elements to receive
• recvtype type of the receive buffer elements
• comm the communicator to be use

5.6 Message Passing using Open MPI
Hello World
The obligatory “hello world!” program does no more than initializing the MPI
context, printing the obligatory text from all instances and destroying the con-
text again:
#include <stdio.h>
#include <mpi.h>
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int main (int argc, char** argv){

/* start MPI context*/
MPI_Init(&argc, &argv);

/*Do something*/
printf("Hello world\n");

/* Stop MPI context*/
MPI_Finalize();
return 0;

}

Compilation of Code
In Open MPI7 a C wrapper compiler called mpicc is provided. Its sole purpose
is to transparently

• add relevant compiler and linker flags to the user’s compiler command
line

• and then call the underlying compiler to perform the actual compilation.
Especially, we do not need to care where exactly the necessary MPI libraries are
located and which additional flags are required. If we have specified additional
parameters (e.g. for code optimization, or debugging), mpicc passes them on
to the underlying compiler.
Example 5.11:
Thus, to compile the “hello world” code, we simply use:
mpicc hello_world.c -o hello_world -O2

Running a Parallel Program
The drawback of the MPI framework is that processes need to be started within
a special runtime environment. In the case of Open MPI this is invoked using
the mpirun tool:
mpirun [ options ] <program> [ <args> ]

The tool takes a couple of options that allow to steer the number of processes
spawned, includingwhere they are spawned, control their working environment

7http://www.open-mpi.org/

http://www.open-mpi.org/
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(path, working directory, environment variables, . . . ) and the redirection of stan-
dard input and output and many details more.
The most important options of mpirun for beginners are:
-n <\#> run this many copies, if unset Open MPI spawns one copy per pro-

cessor (aliases are -c, --n, -np).
-H List of hosts (comma separate) to spawn the processes on (aliases -host,

--host)
-hostfile Provide a hostfile to use instead of the list above. (aliases and

synonyms --hostfile, -machinefile, --machinefile)
Example 5.12:
To run 1 copy ofhello_world (from the local directory) each on the two hosts
alpha, beta we may use
mpirun -np 2 -H alpha,beta ./hello_world

5.7 Data Distribution Schemes in Distributed LU
For a 2d data field (like a matrix) there are basically 3 types of data distribution
patterns:

• row/column blocks,
• row/column cyclic,
• checkerboard.

All of them have their advantages and disadvantages in different algorithms.
We will treat them all in the case of the LU decomposition in the following.
Before diving into the details of data distribution we recall that after 4 steps of
the row-by-row LU decomposition (Algorithm 3.1) for a matrix A P R10ˆ10 we
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have the following:
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Furthermore the blue and green parts will no longer be touched and the algo-
rithm proceeds on the smaller lower right part Ap5 : 10, 5 : 10q only.
5.7.1 Row-/Column Block Distribution
Basic Idea:
Group the rows/columns in blocks of rnp s. Each processor then works on one of
those blocks, performing all necessary operations that treat any rows/columns
in the scope.
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Processors P1 and P2 have no more work do do after step 4. This obviously
leads to a very bad load balancing among the processors.
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As a consequence we should not use the block distribution in cases when not
the entirematrix is involved in all computations tomake sure that all processors
are equally well loaded. That means for parallel matrix-vector or matrix-matrix
products it may serve well, but for the LU we need to find a data distribution
that has a better distribution of the workload.
5.7.2 Cyclic-row/-column Distribution
Basic Idea:
Instead of distributing blocks of rows/columns assign a single row/column to
a process until all got one and then start over until all rows/columns are dis-
tributed. For ease of presentation we will restrict to the row-wise distribution in
the following.
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Obviously now the processors only start to become idle after n´ p steps of the
outermost loop, i.e. inApn´pq, which is reasonable for p ! n. Still basically every
processor is responsible for rnp s rows.

Pivoting
Since pivoting adds a considerable amount of extra communication effort, we
do not neglect it here in contrast to earlier appearances. However, we restrict
ourselves to the case of column pivoting. That means as the first step of the
outer for loop we add the pivot selection and row swapping in Algorithm 3.1.
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Differences to the sequential case
1. Determination of the pivot element. The column below the diagonal is

owned by several processors in the distributed parallel case. That means
each processor finds its local pivot element and afterward they are com-
pared among all processors.

2. Usage of the pivot element. If we are lucky enough that the pivot row
is owned by the same processor that owns the row containing the critical
diagonal element, we are fine. We can perform a local row swap as in the
sequential case. Otherwise the pivot row is exchanged with the process
owning the “diagonal row”.

3. Distribution of the pivot row. The pivot row is the key ingredient to the
computation in the step. It is needed by all processors and thus needs to
be broadcast to all active processors.

4. Computation of thematrix element updates. The update step can now
be performed as in the sequential case. Only, each processor just works
through the local rows it owns.

5.7.3 Checkerboard Distribution
Basic Idea:
Distribution of the d-dimensional data array to a d-dimensional processor grid.
Note that we can follow the blocked or cyclic variants just as in the case above.
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Figure 5.20: blocked and cyclic checkerboard matrix distribution for A P R8ˆ8.
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Definition 5.13:
Let n “

śd
i“1 ni be the total problem size and ni the degrees of freedomin the i-th direction. Also p, as before, the number of processors in total.

We call p “ pp1, . . . , pdq a processor distribution if it holds

p ď

d
ź

i“1

pi.

On each processor we assume a local data distribution b “ pb1, . . . , bdq

with
n ď

d
ź

i“1

pibi.

Ideally we want to have equality in both cases to achieve optimal load
balancing.

5.7.4 An Alternative for the LU Using Distributed BLAS and LA-
PACK

The PBLAS project (see Section 5.9) aims at providing a parallel distributed ver-
sion of the BLAS library. In the previous Chapters we have investigated level
3 BLAS based block outer product versions of the LU decomposition (see, e.g.
Algorithm 3.3).

5.8 Data Distribution for other Problems
Basic idea of domain decomposition
Similar to the splitting of the matrix into blocks on which smaller subproblems
are solved, in domain decomposition8methods for boundary value problems the
objective domain onwhich the problem is to be solved is subdivided into smaller
parts. Then on each part a smaller independent boundary value problem is
solved. The interaction between subdomains is only necessary if their intersec-
tion is non empty, i.e., they have a common “boundary”, the interface. In each
iteration step both processes rely on the result of the prior step and exchange
the data on the interface to make it fit in a post-processing procedure.

• The interface is sometimes also called halo.
8http://www.ddm.org

http://www.ddm.org
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Robustness Memory consumption Scalability
Direct methods ✓ X X
Iterative methods X ✓ ✓

Table 5.3: Advantages and disadvantages of linear solver families for sparse
systems of equations.

• The interface may be a single layer of unknowns, but can also be ex-
tended. One then speaks of overlapping domain decompositionmethods.

Performing a simulation of a phenomenon governed by PDEs in a domain Ω,
can be divided into the following steps

• discretize the domainΩ by using some (or amixed) discretization scheme,
FEM, VEM, FDM, DG, . . .

• generate the discretized problem, assemble thematrix and the right hand
side

• solve the linear system associated and obtain the solution
Themost time-consuming step is the solution of the linear system of equations.
Consider the linear system of equations (LSE)

Ax “ b,

where isA P Rnˆn sparse and b, x P Rn. We have seen two classes of methods
to solve such problem

• sparse direct methods: LU, Cholesky, LDLT, QR, etc
• iterative methods: Krylov subspace, Jacobi, Schwarz, Gauss-Seidel, multi-
grid
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5.8.1 Algebraic Domain Decomposition
Given an undirected graph with n nodes, we decompose it into N nonoverlap-
ping subdomains tΩj,Iu1ďjďN ,

ŤN
j“1Ωj,I “ Ω “ t1, . . . , nu. METIS, Par-METIS

and PT-SCOTCH are widely known graph partitioning tools.

Then, add one layer of nodes to have overlapping subdomains Ωj .
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Ω1,4,I
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Ω1,6,I
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Example 5.14 (Illustrating Example):

A “

¨

˚

˚

˝

2 ´1 0 0
´1 3 ´1 0
0 ´1 4 ´1
0 0 ´1 5

˛

‹

‹

‚

R1 “

¨

˝

1 0 0 0
0 1 0 0
0 0 1 0

˛

‚,

R1AR
J
1 “

¨

˝

2 ´1 0
´1 3 ´1
0 ´1 4

˛

‚,

D1 “

¨

˝

1 0 0
0 1 0
0 0 0

˛

‚.

R2 “

¨

˝

0 1 0 0
0 0 1 0
0 0 0 1

˛

‚,

R2AR
J
2 “

¨

˝

3 ´1 0
´1 4 ´1
0 ´1 5

˛

‚,

D2 “

¨

˝

0 0 0
0 1 0
0 0 1

˛

‚.

We have,

• RJ
j Rju “ u ðñ puqi “ 0 @i P ΩzΩj

• pARJ
j DjRjuq

i
“ 0 if i R Ωj

where puqi is the element i of the vector u, [13, 5].



5.8. Data Distribution for other Problems 149

To perform SPMV, we have
v “ Au,

“ A
N
ÿ

j“1

RJ
j DjRju,

“

N
ÿ

j“1

ARJ
j DjRju,

“

N
ÿ

j“1

RJ
j RjAR

J
j DjRju,

To perform α “ vJu, we have
α “ vJu,

“ vJ

N
ÿ

j“1

RJ
j DjRju,

“

N
ÿ

j“1

pRjvq
JDjpRjuq.

Suppose that there exists an invertible matrixM such that
• M « A´1 in some sense and
• solvingMu “ v is relatively simple.

Then, solving
M´1Ax “ M´1b, rather than

Ax “ b

might be more appropriate for an iterative method, since often
κ2pM´1Aq ! κ2pAq.

To define a preconditioner based on the overlapping Schwarz method, we
need the following elements:

• restriction and plongoation operators Rj and RJ
j , respectively

• partition of unityDj

They fulfill the relation
RjDjR

J
j “ I.

The additive Schwarz preconditioner is:
M´1 “

N
ÿ

j“1

RJ
j pRjAR

J
j q

´1
Rj
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5.9 Relevant Software and Libraries
Implementations of the MPI Standard

• Open MPI, Current bugfix release 3.1.4 implements MPI-3.19
• MPICH 3.3 (release of November 21, 2018) supports MPI-3.110
• MVAPICH: The current MVAPICH2 2.3.1 is based on MPICH v3.2.111
• Intel® MPI Library: version 2019 update 4 implements MPI-3.112

Scientific Software
• BLACS (Basic Linear Algebra Communication Subprograms) “is an ongo-
ing investigationwhosepurpose is to create a linear algebra orientedmes-
sage passing interface that may be implemented efficiently and uniformly
across a large range of distributed memory platforms.”13

• ScaLAPACK a BLACS-based scalable distributed implementation of LA-
PACK (current version 2.0.2 of May 1, 2012)14

• PBLAS (Parallel Basic Linear Algebra Subprograms) subproject of the above15
9http://www.openmpi.org10http://www.mpich.org/11http://mvapich.cse.ohio-state.edu/12http://software.intel.com/en-us/intel-mpi-library13http://www.netlib.org/blacs/14http://www.netlib.org/scalapack/15http://www.netlib.org/scalapack/pblas_qref.html

http://www.openmpi.org
http://www.mpich.org/
http://mvapich.cse.ohio-state.edu/
http://software.intel.com/en-us/intel-mpi-library
http://www.netlib.org/blacs/
http://www.netlib.org/scalapack/
http://www.netlib.org/scalapack/pblas_qref.html
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• Boost starting with version 1.35 has a boost.MPI module providing a C++
friendly MPI framework. (current version 1.70.0 April 17, 2019)16

• PETSC “is a suite of data structures and routines for the scalable (parallel)
solution of scientific applications modeled by partial differential equations.”17

• SLEPC is the Scalable Library for Eigenvalue Problem Computations.18
• PARPACK an extension to the ARPACK for eigenvalue computations using
MPI and BLACS for parallel execution.19

16http://www.boost.org/17http://www.mcs.anl.gov/petsc/18http://www.grycap.upv.es/slepc/19http://www.caam.rice.edu/software/ARPACK/

http://www.boost.org/
http://www.mcs.anl.gov/petsc/
http://www.grycap.upv.es/slepc/
http://www.caam.rice.edu/software/ARPACK/
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