
Summer Term 2024Otto-von-Guericke-University Magdeburg
Max Planck Institute for Dynamics of Complex Technical Systems
Computational Methods for Systems and Control Theory

Dr. Jens Saak, M. Sc. Jonas Schulze
Website: http://www.mpi-magdeburg.mpg.de/csc/teaching/24ss/stmsc

Seminar: Scientific Computing
Presentation Topics and Related Literature

April 12, 2024

The order of the topics is completely random so far. If you find a topic you would be interested in, you may propose
a week in the term you would like to use for the seminar slot. Note, however, that some topics are better suited for
early presentation, while others might benefit from information from part II of the lecture and should be presented
rather late in the term.

Open Source Licenses Publishing code is a critical issue in modern scientific computing. One publishes work
and especially research ideas and if proper care is taken one can decide how much of the copyright stays with
oneself and what others are allowed to do with the codes. This, however, requires a basic knowledge of existing
license models. Several open source licenses that allow more or less flexible use of the codes by others. The
differences are small but may have critical consequences. A good starting point for the literature study are the two
web sites [30, 33].

Reproducibility and Documentation of Computer Experiments The “Reproducibility Crisis” is a standing term
across the sciences. It describes the problem of a lack of documentation of any kind of computer experiment and
the corresponding lack of availability of the corresponding software, that are used to draw scientific conclusions. A
recent literature review and best practice guide is available in [20].

MEX-extensions for MATLAB® and OCT-extensions for Octave using Own Codes MATLAB and its open-
source counterpart GNU Octave provide binary interfaces to integrate external libraries into own written codes or
to combine MATLAB and Octave scripts with own written C and Fortran codes to improve the performance of your
projects. The talk should introduce both the MATLAB [11] and the Octave [15] interface and how they are used and
how the data interchange works.

Scientific Computing in Python I & II With the introduction of a proper n-d Array by the NumPy [14] Package the
foundation for efficient scientific computations in Python was established. Today a huge number of packages is avail-
able including, but not limited to SciPy [17], matplotlib [12], mpi4py [13]. Also sophisticated MATLAB alternatives like
the Scientific PYthon Development EnviRonment (spyder) [16] make it possible to write high performance numerical
codes avoiding costly licenses and still benefiting from a certain abstraction compared to programming in C, C++, or
Fortran.
Taken by: Sebastian Hauer

Julia — The Basics The Julia Programming language [10] is a fresh approach to develop a new programming
language for scientific computing. The authors say:

“Julia is a high-level, high-performance dynamic programming language for technical computing, with
syntax that is familiar to users of other technical computing environments. It provides a sophisticated
compiler, distributed parallel execution, numerical accuracy, and an extensive mathematical function
library. The library, largely written in Julia itself, also integrates mature, best-of-breed C and Fortran
libraries for linear algebra, random number generation, signal processing, and string processing.”

The talk should introduce the basic of the programming language and point out some of the unique features which
distinguishes it from other scientific programming environments like MATLAB, GNU Octave or NumPy/SciPy.

http://www.mpi-magdeburg.mpg.de/csc/teaching/24ss/stmsc

Julia — Parallel Features Most modern computers possess more than one CPU, and several computers can be
combined together in a cluster. Harnessing the power of these multiple CPUs allows many computations to be
completed more quickly. The Julia language provide several construct to parallelize the workload using different
techniques like remote execution, parallel loops, shared arrays, coroutines, By the design of the language this
works on a classical desktop computer as well as on a huge cluster. The talk should present the main parallel
programming features of Julia and their differences to “standard” shared and distributed memory parallelization
techniques.

Modeling Application Behavior by the Roofline Model Todays largest supercomputers have an energy con-
sumption that requires them to be located next to huge power plants. The ever increasing demand for computing
power has raised the energy consumption to a more than critical level. Over the recent few years the Green500 [23]
list has introduced a new ranking of supercomputers that takes their energy consumption into account. Energy
measurement metric and power saving methodologies [6] today play an important role for many super computing
centers. The roofline model is one approach to estimate the performance of an algorithm with respect to a given
performance measure. Those measures can be floating point operations, but also energy or combinations of both.

Posit Arithmetic A new data type called a posit is designed as a direct drop-in replacement for IEEE Standard
754 floating-point numbers (floats). Unlike earlier forms of universal number (unum) arithmetic, posits do not require
interval arithmetic or variable size operands; like floats, they round if an answer is inexact. However, they provide
compelling advantages over floats, including larger dynamic range, higher accuracy, better closure, bitwise identical
results across systems, simpler hardware, and simpler exception handling. Posits never overflow to infinity or under-
flow to zero, and “Not-a-Number” (NaN) indicates an action instead of a bit pattern. A posit processing unit takes
less circuitry than an IEEE float FPU. With lower power use and smaller silicon footprint, the posit operations per
second (POPS) supported by a chip can be significantly higher than the FLOPS using similar hardware resources.
GPU accelerators and Deep Learning processors, in particular, can do more per Watt and per dollar with posits, yet
deliver superior answer quality.
Taken by: Martin Rips

Vector Units of Modern CPUs Since about 8 years it is no longer possible to increase the clock rate of a processor
without consuming unacceptably much energy, or getting into trouble with the signal-runtime. One way to increase
the performance of a CPU is to do many operations in parallel. The lowest level parallel operations are directly
implemented in the CPU as vector units, such as MMX, SEE2, AVX or AltiVec. They can be exploited in optimized
program code and compilers [25, 1, 27, 3] or assembly language. Knowing how to use these vector units optimally
is a key ingredient to every scientific computing code.

Performance Portability Modern high performance computing systems come in various flavors, ranging from sim-
ple multicore or manycore hosts, to hybrid machines including accelerators (like GPUs from many different vendors)
and actual distributed computing systems like clusters. Historically each vendor has their own software framework,
making portability between these systems hard. Emerging frameworks address this issue by adding an additional
level of abstraction on top of the vendor libraries. This topic allows group work on the general ideas and the separate
frameworks like MPI, OpenMP, (OpenCL, OpenACC,) Kokkos, SYCL, StarPU.

Profiling and Debugging Finding memory leaks or analyzing code that has strange/unexpected behavior are two
of the most time consuming tasks in software engineering. Debuggers support the programmer in analyzing memory
access of a program, running a program step by step or viewing variables and internal data structures during the
runtime [2, 31, 8]. Some of them are able to detect problems with respect to parallel parts in the program too. On
the other hand, profilers allows to detect correct but slow and badly implemented code. Some of these tools are able
to give hints how the programs can be improved to get a more efficient implementation [4, 7, 9]. Both categories of
tools are the swiss-army-knifes in scientific programming to get a correctly working and efficient program.

Model Order Reduction Many applications in science and technology today deliver very large systems of differ-
ential equations after discretization. Often the states x of these models can be manipulated by certain control inputs
u and one is interested in specific observations y that might be measurements of the state in certain positions. The
dimensions of u and y are typically much smaller than that of x. Therefore people are searching for a way to compute
a good approximation ŷ to y for the same input u, by solving a much smaller dynamical system represented by the

state x̂ with a much smaller dimension than that of x. For linear dynamical systems this problem is mainly solved
today. The book [18] by Antoulas is a nice introduction to methods for this type of problems. Basic methods are also
described in the Model Order Reduction Wiki [32], where additional references can be found.
Taken by: Paul Matschoss

H-matrices and Tensor Methods The Hierarchical Matrix format [24, 22, 26] is a so called data sparse storage
scheme for a class of densely populated matrices that allows storage and application in linear-poly-logarithmic
complexity.

Parallel in Time Methods The solution of ordinary differential equations (ODE) is a key task for many simulations
or control process. Normally, it is a strictly sequential scheme which only uses parallelization in the computation of a
single time step. If the time horizon gets too large and the single step are very expensive one want to use a distributed
cluster to accelerate the whole process. Therefore, the Parallel-in-Time integration is one approach to create an
parallel scheme out of the sequential ODE integration by distributing time slices over all participating processors.
The presentation should give a basic introduction how these method works and how a parallel implementation could
be realized. [28, 19, 29, 21]
Taken by: Alexander Nimtz

GraphBLAS The Basic Linear Algebra Subroutines (BLAS) defines standard building blocks for linear algebra al-
gorithms. The BLAS allowed researchers to focus on higher-level algorithms, while leaving efficient implementations
of the BLAS to, e.g., the hardware vendors. Work on specifying the BLAS started in the 1970’s.
The GraphBLAS is an ongoing effort, started in the 2010’s, to do the same but in the world of graph algorithms. “A
key insight behind this work is that when a graph is represented by a sparse incidence or adjacency matrix, sparse
matrix-vector multiplication is a step of breadth first search. By generalizing the pair of scalar operations involved in
the linear algebra computations to define a semiring, we can extend the range of these primitives to support a wide
range of parallel graph algorithms.” [5]

References

[1] Auto-vectorization with gcc 4.7. http://locklessinc.com/articles/vectorize/.

[2] GDB: The GNU Project Debugger. http://www.gnu.org/software/gdb/.

[3] GNU C Compiler - using vector instructions through built-in functions. http://gcc.gnu.org/
onlinedocs/gcc-4.7.2/gcc/Vector-Extensions.html.

[4] GPROF Tutorial – How to use Linux GNU GCC Profiling Tool. http://www.thegeekstuff.com/2012/
08/gprof-tutorial/.

[5] GraphBLAS Forum. https://graphblas.org/.

[6] Green 500 metrics and methodologies forum. http://www.green500.org/forum.

[7] Intel Advisor. http://software.intel.com/en-us/intel-advisor-xe.

[8] Intel Inspector. http://software.intel.com/en-us/intel-inspector-xe.

[9] Intel VTune Amplifier. http://software.intel.com/en-us/intel-vtune-amplifier-xe.

[10] The julia programming language. http://julialang.org/.

[11] Matlab mex-file creation api. http://www.mathworks.com/help/matlab/call-mex-files-1.
html.

[12] matplotlib. http://matplotlib.org/.

[13] Mpi for python (mpi4py). http://code.google.com/p/mpi4py/.

[14] Numpy. http://www.numpy.org/.

http://locklessinc.com/articles/vectorize/
http://www.gnu.org/software/gdb/
http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/Vector-Extensions.html
http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/Vector-Extensions.html
http://www.thegeekstuff.com/2012/08/gprof-tutorial/
http://www.thegeekstuff.com/2012/08/gprof-tutorial/
https://graphblas.org/
http://www.green500.org/forum
http://software.intel.com/en-us/intel-advisor-xe
http://software.intel.com/en-us/intel-inspector-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://julialang.org/
http://www.mathworks.com/help/matlab/call-mex-files-1.html
http://www.mathworks.com/help/matlab/call-mex-files-1.html
http://matplotlib.org/
http://code.google.com/p/mpi4py/
http://www.numpy.org/

[15] Octave external code interface. https://www.gnu.org/software/octave/doc/interpreter/
External-Code-Interface.html#External-Code-Interface.

[16] Scientific python development environment (spyder). http://code.google.com/p/spyderlib/.

[17] Scientific tools for python (scipy). http://www.scipy.org/.

[18] A. C. ANTOULAS, Approximation of Large-Scale Dynamical Systems, SIAM Publications, Philadelphia, PA,
2005.

[19] L. BAFFICO, S. BERNARD, Y. MADAY, G. TURINICI, AND G. ZÉRAH, Parallel-in-time molecular-dynamics simu-
lations, Physical Review E, 66 (2002), p. 057701.

[20] J. FEHR, J. HEILAND, C. HIMPE, AND J. SAAK, Best practices for replicability, reproducibility and reusability of
computer-based experiments exemplified by model reduction software, AIMS Mathematics, 1 (2016), pp. 261–
281.

[21] M. J. GANDER AND E. HAIRER, Nonlinear convergence analysis for the parareal algorithm, in Domain decom-
position methods in science and engineering XVII, U. Langer, M. Discacciati, D. E. Keyes, O. B. Widlund, and
W. Zulehner, eds., vol. 60, 2008, pp. 45–56.

[22] L. GRASEDYCK, Theorie und Anwendungen Hierarchischer Matrizen, Dissertation, University of Kiel, Kiel, Ger-
many, 2001. In German, available at http://e-diss.uni-kiel.de/diss_454.

[23] The Green500 list, 2017. Available at http://www.green500.org.

[24] W. HACKBUSCH, Hierarchische Matrizen. Algorithmen und Analysis, Springer-Verlag, Berlin, 2009.

[25] G. HAGER AND G. WELLEIN, Introduction to High Performance Computing for Scientists and Engineers, CRC
Press, Inc., Boca Raton, FL, USA, 1st ed., 2010.

[26] Hlib 1.3.

[27] INTEL, Intel64 and IA-32 Architectures Optimization Reference Manual, tech. rep., In-
tel Corp., 2012. Available at http://www.intel.com/content/dam/doc/manual/
64-ia-32-architectures-optimization-manual.pdf.

[28] J.-L. LIONS, Y. MADAY, AND G. TURINICI, Résolution d’EDP par un schéma en temps “pararéel”, Comptes
Rendus de l’Académie des Sciences. Série I. Mathématique, 332 (2001), pp. 661–668.

[29] Y. MADAY, The parareal in time algorithm, tech. rep., Laboratoire Jacques-Louis Lions, 2008. Available from
https://www.ljll.math.upmc.fr/publications/2008/R08030.html.

[30] OPENSOURCE.ORG, About open source licenses. http://opensource.org/licenses. last visited 2015-
03-26.

[31] J. SEWARD, N. NETHERCOTE, J. WEIDENDORFER, AND THE VALGRIND DEVELOPMENT TEAM, Valgrind 3.3 —
Advanced Debugging and Profiling for GNU/Linux applications, Network Theory Ltd, 2008. More information
available at: http://valgrind.org/.

[32] THE MORWIKI COMMUNITY, MORwiki - Model Order Reduction Wiki. http://modelreduction.org.

[33] TLDRLEGAL COMMUNITY, Software licenses in plain english. https://tldrlegal.com/.

 https://www.gnu.org/software/octave/doc/interpreter/External-Code-Interface.html #External-Code-Interface
 https://www.gnu.org/software/octave/doc/interpreter/External-Code-Interface.html #External-Code-Interface
http://code.google.com/p/spyderlib/
http://www.scipy.org/
http://e-diss.uni-kiel.de/diss_454
http://www.green500.org
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://www.ljll.math.upmc.fr/publications/2008/R08030.html
http://opensource.org/licenses
http://valgrind.org/
http://modelreduction.org
https://tldrlegal.com/

