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Project Summary

Scientific goals of the project:

derive and investigate numerical algorithms for optimal
control-based (normal and tangential) boundary feedback
stabilization of multi-field flow problems;

explore the potentials and limitations of feedback-based (Riccati)
stabilization techniques;

extend current methods for flow described by Navier-Stokes
equations to flow problems coupled with other field equations of
increasing complexity.

Major challenge:

Numerical solution of algebraic Riccati equations associated to special
LQR problem for linearized Navier-Stokes/Oseen-like equations.
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Optimal Control-Based Stabilization for NSEs
Analytical solution [Raymond ’05–’07]

Linearized Navier-Stokes control system:

∂tz + (z · ∇)w + (w · ∇)z− 1

Re
∆z− ωz +∇p = 0 in Q∞ (1a)

div z = 0 in Q∞ (1b)

z = bu in Σ∞ (1c)

z(0) = z0 in Ω, (1d)

ωz with ω > 0 de-stabilizes the system further, needed to guarantee exponential

stabilization, ω controls decay rate!

Cost functional (with P = Helmholtz projector)

J(z , u) =
1

2

∫ ∞

0

〈Pz,Pz〉L2(Ω) + ρu(t)2 dt, (2)

the linear-quadratic optimal control problem associated to (1) becomes

inf {J(z, u) | (z, u) satisfies (1), u ∈ L2(0,∞)} . (3)
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Optimal Control-Based Stabilization for NSEs
Analytical Solution [Raymond’05–’07]

Proposition [Raymond ’05, Bahdra ’09]

The solution to the instationary Navier-Stokes equations with perturbed
initial data is exponentially controlled to the steady-state solution w by
the feedback law

u = −ρ−1B∗XzH ,

where

– zH := Pz, with P : L2(Ω) 7→ V 0
n (Ω) being the Helmholtz projector

( div zH ≡ 0);

– X = X∗ ∈ L(V 0
n (Ω)) is the unique nonnegative semidefinite weak

solution of the operator Riccati equation

0 = I + (A + ωI)∗X + X(A + ωI)− X(BτB
∗
τ + ρ−1BnB

∗
n)X,

A is the linearized Navier-Stokes operator restricted to V 0
n ;

Bτ and Bn correspond to the projection of the control action in the
tangential and normal directions.
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Project Summary
Project Objectives

Apply optimal control-based feedback stabilization to (multi-)field problems
with increasing complexity:

Proof of concept: Navier-Stokes with normal boundary control for model
problem (von Kármán vortex shedding).

Navier-Stokes coupled with (passive) transport of (reactive) species.

Phase transition liquid/solid with convection.

Stabilization of a flow with a free capillary surface.

Control for electrically conducting fluids in presence of outer magnetic
fields (MHD).

All scenarios require

formulation as abstract parabolic Cauchy problem,

definition of quadratic cost functional,

formulation of corresponding ARE,

spatial discretization (FEM),

numerical solution of large-scale ARE.
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Solving Large-Scale Algebraic Riccati Equations
Low-Rank Newton-ADI for AREs

Consider
0 = R(X ) := CTC + ATX + XA− XBBTX

Re-write Newton’s method for AREs (Aj := A− BBTXj)

DR(Xj) (Nj) = −R(Xj)

⇐⇒
AT
j (Xj + Nj)︸ ︷︷ ︸

=Xj+1

+ (Xj + Nj)︸ ︷︷ ︸
=Xj+1

Aj = −CTC − XjBB
TXj︸ ︷︷ ︸

=:−WjW T
j

Set Xj = ZjZ
T
j for rank (Zj)� n =⇒

AT
j

(
Zj+1Z

T
j+1

)
+
(
Zj+1Z

T
j+1

)
Aj = −WjW

T
j

Factored Newton Iteration [B./Li/Penzl ’99/’08]

Solve Lyapunov equations for Zj+1 directly by factored ADI iteration and
exploit ‘sparse + low-rank’ structure of Aj .
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Solving Large-Scale Algebraic Riccati Equations
Feedback Iteration

Optimal feedback
K∗ = BTX∗ = BTZ∗Z

T
∗

can be computed by direct feedback iteration:

jth Newton iteration:

Kj = BTZjZ
T
j =

kmax∑
k=1

(BTVj,k)V T
j,k

j→∞
−−−−→ K∗ = BTZ∗Z

T
∗

Kj can be updated in ADI iteration, Aj = BKj

⇒ no need to form Zj , need only fixed workspace for Kj ∈ Rm×n!

Related to earlier work by [Banks/Ito ’91].

Zj,k = [Zj,k−1,Vj,k ],

j : Newton index,

k: ADI index.
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Solving the Helmholtz-projected Navier-Stokes ARE
0 = M + (A + ωM)TX + X (A + ωM) − XBBTX

Problems with Newton-Kleinman

1 Discretization of Helmholtz-projected linearized Navier-Stokes equations
would need divergence-free finite elements.

Here, we want to use standard discretization
(Taylor-Hood elements available in flow solver Navier).

Explicit projection of ansatz functions possible using application of
Helmholtz projection, but too expensive in general.

2 Each step of Newton-Kleinman iteration: solve

AT
j Zj+1Z

T
j+1 + Zj+1Z

T
j+1Aj = −M − KT

j Kj

nv := rank (M) = dim of ansatz space for velocities.

 need to solve nv + m linear systems of equations in each step of
Newton-ADI iteration!

3 Linearized system (i.e., A + ωM) is unstable in general.

But to start Newton iteration, a stabilizing initial guess is needed!
√
�

0 = I+ (A+ωI)∗X+X(A+ωI)−X(BτB∗τ + ρ−1BnB∗n)Xtoday

annual meeting Banz 2009

[Benner ’08-’10] Partial Stabilization of Descriptor Systems Using Spectral Projectors;
to appear in V. Olshevsky et al (eds.), Numerical Linear Algebra in Signals, Systems and

Control, Lecture Notes in Electrical Engineering, Springer-Verlag.

[Hein ’10] MPC/LQG-Based Optimal Control of Nonlinear Parabolic PDEs;
PhD thesis Chemnitz UT.
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9/18 Eberhard Bänsch, Peter Benner, Jens Saak Feedback Stabilization of Multi-Field Flow Problems



Project Summary Solving AREs for lin. NSE First Results for Scenario 1 References

Solving AREs for Linearized Navier-Stokes Eqns.
Solution to 1. Problem/no need for divergence free FE

incompressible Navier-Stokes-Equations

∂v

∂t
− 1

Re
∆v + v.∇v +∇p = 0 + B.C.

∇.v = 0
(NSE)

Spatial FE discretization

Mv̇(t) = K (v)v(t)− Gp(t) + B1u(t)

0 = GT v(t)
(SNSE)

Linearization and change of notation

E11v̇(t) = A11v(t) + A12p(t) + B1u(t)

0 = AT
12v(t)

y(t) = Cvv(t) + Cpp(t) + Du(t)

(DANSE)
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Spatial FE discretization

Mv̇(t) = K (v)v(t)− Gp(t) + B1u(t)

0 = GT v(t)
(SNSE)

Linearization and change of notation

E11v̇(t) = A11v(t) + A12p(t) + B1u(t)

0 = AT
12v(t)

y(t) = Cvv(t) + Cpp(t) + Du(t)

(DANSE)

10/18 Eberhard Bänsch, Peter Benner, Jens Saak Feedback Stabilization of Multi-Field Flow Problems



Project Summary Solving AREs for lin. NSE First Results for Scenario 1 References

Solving AREs for Linearized Navier-Stokes Eqns.
Solution to 1. Problem/no need for divergence free FE

incompressible Navier-Stokes-Equations

∂v

∂t
− 1

Re
∆v + v.∇v +∇p = 0 + B.C.

∇.v = 0
(NSE)

Spatial FE discretization

Mv̇(t) = K (v)v(t)− Gp(t) + B1u(t)

0 = GT v(t)
(SNSE)

Linearization and change of notation

E11v̇(t) = A11v(t) + A12p(t) + B1u(t)

0 = AT
12v(t)

y(t) = Cvv(t) + Cpp(t) + Du(t)

(DANSE)
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10/18 Eberhard Bänsch, Peter Benner, Jens Saak Feedback Stabilization of Multi-Field Flow Problems



Project Summary Solving AREs for lin. NSE First Results for Scenario 1 References

Solving AREs for Linearized Navier-Stokes Eqns.
Solution to 1. Problem/no need for divergence free FE

E11v̇(t) = A11v(t) + A12p(t) + B1u(t)

0 = AT
12v(t)

y(t) = Cvv(t) + Cpp(t) + Du(t)
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0 = AT
12v(t)

y(t) = Cvv(t) + Cpp(t) + Du(t)

Multiplication of line one from the left by AT
12E
−1
11 together with

0 = AT
12v(t)⇒ 0 = AT

12v̇(t) reveals the

0 = AT
12E
−1
11 A11v(t) + AT

12E
−1
11 A12p(t) + AT

12E
−1
11 B1u(t),

hidden manifold
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Multiplication of line one from the left by AT
12E
−1
11 together with

0 = AT
12v(t)⇒ 0 = AT

12v̇(t) reveals the

0 = AT
12E
−1
11 A11v(t) + AT

12E
−1
11 A12p(t) + AT

12E
−1
11 B1u(t),

hidden manifold

which implies

p(t) = −
(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11 A11v(t)−

(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11 B1u(t).
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Solving AREs for Linearized Navier-Stokes Eqns.
Solution to 1. Problem/no need for divergence free FE

Inserting p we find

E11v̇(t) =
(
I − A12

(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11

)
A11v(t)

+
(
I − A12

(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11

)
B1u(t)

Definition [Heinkenschloss/Sorensen/Sun ’08]

Π := I − A12

(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11
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Solving AREs for Linearized Navier-Stokes Eqns.
Derivation of the Projected State Space System and Matrix Equations

Definition [Heinkenschloss/Sorensen/Sun ’08]

Π := I − A12

(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11

Properties

Π2 = Π

ΠE11 = E11ΠT

null(Π) = range(A12)

range(Π) = null(AT
12E
−1
11 )

Which imply

Lemma 1 [Heinkenschloss/Sorensen/Sun ’08]

Π is an oblique projector

AT
12z = 0⇔ ΠT z = z

⇒ ΠT v(t) = v(t)
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Solving AREs for Linearized Navier-Stokes Eqns.
Derivation of the Projected State Space System and Matrix Equations

Thus (DANSE) is equivalent to the

ΠE11ΠT d

dt
v(t) = ΠA11ΠT v(t) + ΠB1u(t)

y(t) = CΠT v(t) +
(
D − Cp

(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11 B1

)
u(t),

projected state space system

where C = Cv − Cp

(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11 A11.

If necessary p can be determined from

p(t) = −
(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11 A11v(t)−

(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11 B1u(t).
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)−1
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12E
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12E
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Simplification: D = 0, Cp = 0.
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Solving AREs for Linearized Navier-Stokes Eqns.
Derivation of the Projected State Space System and Matrix Equations

Thus (DANSE) is equivalent to the

ΠE11ΠT d

dt
v(t) = ΠA11ΠT v(t) + ΠB1u(t)

y(t) = CΠT v(t),

projected state space system

where C = Cv .

Leads to

ΠCTCΠT + ΠAT
11ΠTXΠE11ΠT + ΠET

11ΠTXΠA11ΠT

−ΠET
11ΠTXΠB1B

T
1 ΠTXΠE11ΠT = 0

ΠTXΠ = X .

projected Riccati equation

Simplification: D = 0, Cp = 0.
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Solving AREs for Linearized Navier-Stokes Eqns.
Solving the Projected Matrix Equations

Apply factored-Newton-ADI

Central question

How do we solve systems of equations (Ai := A11 + BKi )

Z = ΠTZ , Π (E11 + piAi ) ΠTZ = ΠG̃

in the (inner) ADI steps avoiding the computation of Π?

For Ai = A11

Lemma [Heinkenschloss/Sorensen/Sun ’08]

Z = ΠTZ

Π (E11 + piA11) ΠTZ = ΠG̃
⇔
[
E11 + piA11 A12

AT
12 0

] [
Z
Λ

]
=

[
G̃
0

]
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=
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exploit “sparse + low rank” structure of Ai ,

precondition our saddle point problem.
(joint work with A. Wathen/M. Stoll)

tasks
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First Results for Scenario 1
Navier-Stokes Coupled with (Passive) Transport of (Reactive) Species

Goal: stabilize concentration at certain level

Model equations:

∂tv −
1

Re
∆v + v.∇v +∇p = f

div v = 0

∂tc + v.∇c− 1

Re · Sc
∆c = 0

with boundary conditions:

v = v0 c = c0 = const on Γin

v = 0 ∂νc = 0 on Γwall

v = 0 c = 0 on Γr ,

16/18 Eberhard Bänsch, Peter Benner, Jens Saak Feedback Stabilization of Multi-Field Flow Problems



Project Summary Solving AREs for lin. NSE First Results for Scenario 1 References

First Results for Scenario 1
Navier-Stokes Coupled with (Passive) Transport of (Reactive) Species

Goal: stabilize concentration at certain level

Model equations:

∂tv −
1

Re
∆v + v.∇v +∇p = f

div v = 0

∂tc + v.∇c− 1

Re · Sc
∆c = 0

Domain:

Γin

Γwall

ΓoutΓr
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First Results for Scenario 1
Results for Re = 10, Sc = 10 shown at 3×speed

no control piecewise constant feedback

Computations by Heiko Weichelt
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2 E. Bänsch and P. Benner
Stabilization of Incompressible Flow Problems by Riccati-Based Feedback
Submitted April 2010; revised August 2010.

3 P. Benner and J. Saak
A Galerkin-Newton-ADI Method for Solving Large-Scale Algebraic Riccati Equations,
Preprint SPP1253-090 (January 2010)
Submitted to SIMAX

4 P. Benner, J.-R. Li, and T. Penzl.
Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic
control problems.
Numer. Lin. Alg. Appl., vol. 15, no. 9, pp. 755–777, 2008.

5 P. Benner and T. Stykel.
Numerical algorithms for projected generalized Riccati equations.
Preprint, 2009.

6 R. Schneider, T. Rothaug and P. Benner.
Flow stabilisation by Dirichlet boundary control.
Proc. Appl. Math. Mech., vol. 8, pp. 10961–10962, 2008.
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