ALAMA-GAMM-ANLA Meeting, July 14-16, 2014, Barcelona

On an inexact Newton-ADI solver for algebraic Riccati equations related to the LQR problem for linearized Navier-Stokes equations

Peter Benner Jens Saak Heiko K. Weichelt

Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Research group Computational Methods in Systems and Control Theory

Outline		Ø

- 2 Discretized Control Systems
- 3 Nested Iteration
- (Inexact) Newtons Method for AREs

Finite Element Discretization

• Standard FE discretization linearized (coupled) flow problems yields

$$M\frac{d}{dt}\mathbf{x}(t) = A\mathbf{x}(t) + \tilde{G}\mathbf{p}(t) + B\mathbf{u}(t)$$
(1a)

$$0 = G^{\mathsf{T}} \mathbf{v}(t), \tag{1b}$$

$$\mathbf{y}(t) = C\mathbf{x}(t). \tag{1c}$$

Scenario 1	Scenario 2
x(t)=v(t)	$x(t) = \begin{bmatrix} v(t) \\ c(t) \end{bmatrix}$
$M = M_v$	$M = \begin{bmatrix} M_v & 0\\ 0 & M_c \end{bmatrix}$
$A = A_v$	$A = \begin{bmatrix} A_v & 0\\ -R & A_c \end{bmatrix}$
$\tilde{G} = G$	$\tilde{G} = \begin{bmatrix} G \\ 0 \end{bmatrix}$

Finite Element Discretization

• Standard FE discretization linearized (coupled) flow problems yields

$$M\frac{d}{dt}\mathbf{x}(t) = A\mathbf{x}(t) + \tilde{G}\mathbf{p}(t) + B\mathbf{u}(t)$$
(1a)

$$0 = G^{\mathsf{T}} \mathbf{v}(t), \tag{1b}$$

$$\mathbf{y}(t) = C\mathbf{x}(t). \tag{1c}$$

Properties

- Differential algebraic system (DAE) of D-index 2 (iff \tilde{G} has full rank).
- Matrix pencil:

$$\left(\begin{bmatrix} A & \tilde{G} \\ \tilde{G}^T & 0 \end{bmatrix}, \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \right).$$

$$\begin{array}{ll} \text{Scenario 1} & \text{Scenario 2} \\ \textbf{x}(t) = \textbf{v}(t) & \textbf{x}(t) = \begin{bmatrix} \textbf{v}(t) \\ \textbf{c}(t) \end{bmatrix} \\ M = M_{v} & M = \begin{bmatrix} M_{v} & 0 \\ 0 & M_{c} \end{bmatrix} \\ A = A_{v} & A = \begin{bmatrix} A_{v} & 0 \\ -R & A_{c} \end{bmatrix} \\ \tilde{G} = G & \tilde{G} = \begin{bmatrix} G \\ 0 \end{bmatrix} \\ \end{array}$$

Finite Element Discretization

• Standard FE discretization linearized (coupled) flow problems yields

$$M\frac{d}{dt}\mathbf{x}(t) = A\mathbf{x}(t) + \tilde{G}\mathbf{p}(t) + B\mathbf{u}(t)$$
(1a)

$$0 = G^{T} \mathbf{v}(t), \tag{1b}$$
$$\mathbf{y}(t) = C \mathbf{x}(t). \tag{1c}$$

Properties

- Differential algebraic system (DAE) of D-index 2 (iff \tilde{G} has full rank).
- Matrix pencil:

$$\left(\begin{bmatrix} A & \tilde{G} \\ \tilde{G}^{T} & 0 \end{bmatrix}, \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \right).$$

• Descriptor system with multiple inputs and outputs (MIMO).

Finite Element Discretization

• Standard FE discretization linearized (coupled) flow problems yields

$$M\frac{d}{dt}\mathbf{x}(t) = A\mathbf{x}(t) + \tilde{G}\mathbf{p}(t) + B\mathbf{u}(t)$$
(1a)

$$0 = G^{\mathsf{T}} \mathbf{v}(t), \tag{1b}$$

$$\mathbf{y}(t) = C\mathbf{x}(t). \tag{1c}$$

Properties

- Differential algebraic system (DAE) of D-index 2 (iff \tilde{G} has full rank).
- Matrix pencil:

$$\left(\begin{bmatrix} A & \tilde{G} \\ \tilde{G}^{T} & 0 \end{bmatrix}, \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \right).$$

- Descriptor system with multiple inputs and outputs (MIMO).
- Implicit index reduction to apply standard LQR approach

[Heinkenschloss/Sorensen/Sun '08].

Motivation 000	Discretized System ○●	Nested Iteration	(Inexact) Newtons Method for AREs	Summary OO
Discr	etized Contr	ol Systems		

LQR Approach for Projected System

Minimize

$$\mathcal{J}(\mathbf{y},\mathbf{u}) = rac{1}{2}\int_0^\infty \lambda ||\mathbf{y}||^2 + ||\mathbf{u}||^2 \, \mathsf{dt}$$

subject to

$$\mathcal{M}\frac{d}{dt}\tilde{\mathbf{x}}(t) = \mathcal{A}\tilde{\mathbf{x}}(t) + \mathcal{B}\mathbf{u}(t),$$

$$\mathbf{y}(t) = \mathcal{C}\tilde{\mathbf{x}}(t).$$
 (2)

[BÄNSCH/BENNER/S./WEICHELT 13]

Discr	atized Contr	ol Systoms	
	$\circ \bullet$		00

LQR Approach for Projected System

Minimize

$$\mathcal{J}(\mathbf{y},\mathbf{u}) = rac{1}{2}\int_0^\infty \lambda ||\mathbf{y}||^2 + ||\mathbf{u}||^2 \, \mathrm{dt}$$

subject to

$$\mathcal{M}\frac{d}{dt}\tilde{\mathbf{x}}(t) = \mathcal{A}\tilde{\mathbf{x}}(t) + \mathcal{B}\mathbf{u}(t),$$

$$\mathbf{y}(t) = \mathcal{C}\tilde{\mathbf{x}}(t).$$
 (2)

Riccati Based Feedback Approach

(e.g.:[Locatelli '01])

[BÄNSCH/BENNER/S./WEICHELT 13]

- Optimal control: $\mathbf{u}(t) = -\mathcal{K}\tilde{\mathbf{x}}(t)$.
- Feedback: $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$,

where X is the solution of the generalized algebraic Riccati equation

 $\mathcal{R}(X) = \mathcal{C}^{\mathsf{T}} \mathcal{C} + \mathcal{A}^{\mathsf{T}} X \mathcal{M} + \mathcal{M}^{\mathsf{T}} X \mathcal{A} - \mathcal{M}^{\mathsf{T}} X \mathcal{B} \mathcal{B}^{\mathsf{T}} X \mathcal{M} = 0.$

 Motivation
 Discretized System
 Nested Iteration
 (Inexact) Newtons Method for AREs
 Summary

 000
 00
 0000000
 00

Nested Iteration – Overview

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T X \mathcal{M} + \mathcal{M}^T X \mathcal{A} - \mathcal{M}^T X \mathcal{B} \mathcal{B}^T X \mathcal{M} = 0$
 Motivation
 Discretized System
 Nested Iteration
 (Inexact) Newtons Method for AREs
 Summary

 000
 00
 0000000
 00

Nested Iteration – Overview

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T X \mathcal{M} + \mathcal{M}^T X \mathcal{A} - \mathcal{M}^T X \mathcal{B} \mathcal{B}^T X \mathcal{M} = 0$

> Step (m + 1): solve Lyapunov equation [KLEINMAN '68] $(\mathcal{A} - \mathcal{BK}^{(m)})^T X^{(m+1)} \mathcal{M} + \mathcal{M}^T X^{(m+1)} (\mathcal{A} - \mathcal{BK}^{(m)}) = -(\mathcal{W}^{(m)})^T \mathcal{W}^{(m)}$

Kleinman-Newton method

low rank ADI method

Nested Iteration – Overview

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T X \mathcal{M} + \mathcal{M}^T X \mathcal{A} - \mathcal{M}^T X \mathcal{B} \mathcal{B}^T X \mathcal{M} = 0$

Step (m + 1): solve Lyapunov equation [KLEINMAN '68] $(\mathcal{A} - \mathcal{BK}^{(m)})^T X^{(m+1)} \mathcal{M} + \mathcal{M}^T X^{(m+1)} (\mathcal{A} - \mathcal{BK}^{(m)}) = -(\mathcal{W}^{(m)})^T \mathcal{W}^{(m)}$

Step i: solve the projected linear system [BENNER/KÜRSCHNER/S. '13] $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_i\mathcal{M})^T\mathcal{V}_i = \mathcal{Y}_{i-1}$ (3)

Kleinman-Newton method

Krylov solver

Nested Iteration – Overview

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T X \mathcal{M} + \mathcal{M}^T X \mathcal{A} - \mathcal{M}^T X \mathcal{B} \mathcal{B}^T X \mathcal{M} = 0$

 $\begin{aligned} & \textbf{Step (m + 1): solve Lyapunov equation} \\ & (\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^{\mathsf{T}} \mathcal{X}^{(m+1)} \mathcal{M} + \mathcal{M}^{\mathsf{T}} \mathcal{X}^{(m+1)} (\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^{\mathsf{T}} \mathcal{W}^{(m)} \end{aligned}$

Step i: solve the projected linear system [BENNER/KÜRSCHNER/S. '13] $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_i\mathcal{M})^T\mathcal{V}_i = \mathcal{Y}_{i-1}$ (3)

Avoid explicit projection using [HEINKENSCHLOSS/SORENSEN/SUN '08]:

low rank ADI method

Krylov solver

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary OOO OOOOOOO OO OO</

Nested Iteration – Overview

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T X \mathcal{M} + \mathcal{M}^T X \mathcal{A} - \mathcal{M}^T X \mathcal{B} \mathcal{B}^T X \mathcal{M} = 0$

 $\begin{aligned} \text{Step } (m+1): \text{ solve Lyapunov equation} & [\text{KLEINMAN '68}] \\ (\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^{\mathcal{T}} X^{(m+1)} \mathcal{M} + \mathcal{M}^{\mathcal{T}} X^{(m+1)} (\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) &= -(\mathcal{W}^{(m)})^{\mathcal{T}} \mathcal{W}^{(m)} \end{aligned}$

Step i: solve the projected linear system [BENNER/KÜRSCHNER/S. '13]

$$(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_i\mathcal{M})^T\mathcal{V}_i = \mathcal{Y}_{i-1}$$
 (3)
Avoid explicit projection using [HEINKENSCHLOSS/SORENSEN/SUN '08]:
Replace (3) and solve instead the saddle point system (SPS)
 $\begin{bmatrix} \mathcal{A}^T - (\mathcal{K}^{(m)})^T \mathcal{B}^T + q_i \mathcal{M}^T & \tilde{G} \\ \tilde{G}^T & 0 \end{bmatrix} \begin{bmatrix} \mathcal{V}_i \\ * \end{bmatrix} = \begin{bmatrix} Y \\ 0 \end{bmatrix}$
for different ADI shifts $q_i \in \mathbb{C}^-$ for a couple of rhs Y.

low rank ADI method

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary OOO OOOOOOO OO OO</

Nested Iteration – Overview

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T X \mathcal{M} + \mathcal{M}^T X \mathcal{A} - \mathcal{M}^T X \mathcal{B} \mathcal{B}^T X \mathcal{M} = 0$

 $\begin{aligned} & \textbf{Step (m + 1): solve Lyapunov equation} & [\text{KLEINMAN '68}] \\ & (\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^{\mathsf{T}} \mathcal{X}^{(m+1)} \mathcal{M} + \mathcal{M}^{\mathsf{T}} \mathcal{X}^{(m+1)} (\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^{\mathsf{T}} \mathcal{W}^{(m)} \end{aligned}$

Step i: solve the projected linear system [BENNER/KÜRSCHNER/S. '13]

$$(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_i\mathcal{M})^T\mathcal{V}_i = \mathcal{Y}_{i-1}$$
 (3)
Avoid explicit projection using [HEINKENSCHLOSS/SORENSEN/SUN '08]:
Replace (3) and solve instead the saddle point system (SPS)
(using Sherman Morrison Woodbury formula)
 $\begin{bmatrix} \mathcal{A}^T + q_i\mathcal{M}^T & \tilde{G} \\ \tilde{G}^T & 0 \end{bmatrix} \begin{bmatrix} \mathcal{V}_i \\ * \end{bmatrix} = \begin{bmatrix} \tilde{Y} \\ 0 \end{bmatrix}$
for different ADI shifts $q_i \in \mathbb{C}^-$ for a couple of rhs \tilde{Y} .

low rank ADI method

		0000	
NIssta			
ineste	ed iteration		

Numerical Issues

Nested iteration depends on various parameters:

- Reynolds and Schmidt number (physical)
- ADI shifts q_i and refinement level (physical, FEM)
- regularization parameter λ (design)
- accuracy for Newton, ADI, and SPS iteration (experiences, nested influence)

Selected Convergence Problems

- Newton-ADI vs. mesh refinement
- Newton-ADI vs. λ
- ADI vs. SPS solver

saak@mpi-magdeburg.mpg.de, inexact Newton-ADI for AREs related to NSEs 10/20

saak@mpi-magdeburg.mpg.de, inexact Newton-ADI for AREs related to NSEs 10/20

saak@mpi-magdeburg.mpg.de, inexact Newton-ADI for AREs related to NSEs 10/20

000	00	00000	000000	00
Neste	d Iteration			
ADI vs. S	PS solver: Stokes on	Scenario 1	[Benner/S./Stoll/We	CICHELT '13]

tol _{SPS}	n _N	$ \nu = 10 $ $ \mid n_{A} $) ⁰ time	1 n _N	$\gamma = 10$ n_{A}	-1 time	n _N	$\nu = 10$ $n_{\rm A}$) ⁻² time	n _N	$ u = 10 $ $ \mid n_{A} $	-3 time
10 ⁻⁵	-	-	_	-	_	-	-	-	-	-	-	-
10 ⁻⁶	_	-	-	12	343	536	17	645	1067	23	1266	2036
10-7	7	144	279	11	273	504	17	525	1001	22	1004	1838
10 ⁻⁸	7	139	304	11	247	520	17	<u>457</u>	<u>998</u>	22	<u>686</u>	1413
10 ⁻⁹	7	139	342	11	247	580	17	434	1074	22	616	1437
10-10	7	138	374	11	247	638	17	434	1167	22	612	1568
10^{-11	7	138	405	11	247	693	17	434	1222	22	612	1707
10 ⁻¹²	7	138	442	11	247	756	17	434	1312	22	606	1856
direct	7	138	/	11	247	/	17	434	/	22	606	/

Table: Number of Newton and ADI steps for varying accuracy of GMRES.

Consider $\mathcal{R}(X) := C^{T}C + \mathcal{A}^{T}X\mathcal{M} + \mathcal{M}^{T}X\mathcal{A} - \mathcal{M}^{T}X\mathcal{B}\mathcal{B}^{T}X\mathcal{M} = 0$

Inexact Kleinman's Iteration for the ARE

$$\mathcal{R}'|_{X^{(m)}}(X^{(m+1)}) - \mathcal{R}'|_{X^{(m)}}(X^{(m)}) + \mathcal{R}(X^{(m)}) = \mathcal{R}^{(m)}, \qquad m = 0, 1, \dots$$

i.e., in every Newton step (approximately) solve a

Lyapunov Equation

$$(\mathcal{F}^{(m)})^{\mathsf{T}} X^{(m+1)} \mathcal{M} + \mathcal{M}^{\mathsf{T}} X^{(m+1)} \mathcal{F}^{(m)} = -(\mathcal{W}^{(m)})^{\mathsf{T}} \mathcal{W}^{(m)} + \mathbb{R}^{(m)}$$

 Motivation
 Discretized System
 Nested Iteration
 (Inexact) Newtons Method for AREs
 Summary

 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

(Inexact) Newtons Method for AREs

Convergence Result[KLEINMAN '68, LANCASTER/RODMAN '95, FEITZINGER/HYLLA/SACHS '09]

Theorem

Let Assumption 1 hold,

 $0 \leq R^{(m)} \leq \mathcal{C}^{\mathsf{T}} \mathcal{C} \quad \text{ and } \quad 0 \leq R^{(m)} \leq \mathcal{M}^{\mathsf{T}} N^{(m)} \mathcal{B} \mathcal{B}^{\mathsf{T}} N^{(m)} \mathcal{M}.$

Then the iterates defined by

$$(\mathcal{F}^{(m)})^T X^{(m+1)} + X^{(m+1)} \mathcal{F}^{(m)} = -(\mathcal{W}^{(m)})^T \mathcal{W}^{(m)} + \mathcal{R}^{(m)}$$

converge to the unique symmetric matrix $X^{(\infty)}$, such that

•
$$\mathcal{R}(X^{(\infty)}) = 0$$

• and
$$\mathcal{A} - \mathcal{B}\mathcal{B}^T X^{(\infty)}\mathcal{M}$$
 is stable.

Furthermore the convergence is quadratic and monotone with

$$0 \leq X^{(\infty)} \leq \cdots \leq X^{(m+1)} \leq X^{(m)} \leq \cdots \leq X^{(1)}.$$

 Motivation
 Discretized System
 Nested Iteration
 (Inexact) Newtons Method for AREs
 Summary

 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

(Inexact) Newtons Method for AREs Convergence Result (Remarks)

Weaker Condition

Replacing

$$R^{(m)} \leq C^T C$$

by

$$R^{(m)} \leq \mathcal{C}^{\mathsf{T}}\mathcal{C} + (\mathcal{K}^{(m)})^{\mathsf{T}}\mathcal{K}^{(m)}$$

keeps the iteration well defined.

Motivation Discretized System Nested Iteration (Inexact) Newtons Method for AREs Summary 000 00 00000 000000 00 000000 00

(Inexact) Newtons Method for AREs

Convergence Result (Remarks)

Weaker Condition

Replacing

$$R^{(m)} \leq C^T C$$

by

$$R^{(m)} \leq \mathcal{C}^{\mathsf{T}}\mathcal{C} + (\mathcal{K}^{(m)})^{\mathsf{T}}\mathcal{K}^{(m)}$$

keeps the iteration well defined.

Large Scale Difficulty $R^{(m)} = \mathcal{Y}_{n_A} \mathcal{Y}_{n_A}^T$, but column spans are unrelated

In general none of the conditions

- $R^{(m)} \leq C^T C$,
- $R^{(m)} \leq C^T C + (\mathcal{K}^{(m)})^T \mathcal{K}^{(m)}$,
- $0 \leq R^{(m)} \leq \mathcal{M}^T N^{(m)} \mathcal{B} \mathcal{B}^T N^{(m)} \mathcal{M},$

can hold in large scale applications.

[Hylla '10]

ion Discretized OO

retized System

Nested Iteration

Inexact) Newtons Method for AREs

Summary 00

(Inexact) Newtons Method for AREs Accuracy control for the (G-)LRCF-ADI

Main Problem:

Can we enforce quadratic convergence without checking $0 \le R^{(m)} \le C^T C$ and $0 \le R^{(m)} \le M^T N^{(m)} B B^T N^{(m)} M$? on D

cretized System

Nested Iteration

Inexact) Newtons Method for AREs

Summary 00

(Inexact) Newtons Method for AREs Accuracy control for the (G-)LRCF-ADI

Main Problem:

Can we enforce quadratic convergence without checking $0 \le R^{(m)} \le C^T C$ and $0 \le R^{(m)} \le M^T N^{(m)} B B^T N^{(m)} M$?

Due to the quadratic nature of $\mathcal{R}(.)$ we have

$$\mathcal{R}(Y) = \mathcal{R}(X) + \mathcal{R}'|_X(Y-X) + \frac{1}{2}\mathcal{R}''|_X(Y-X,Y-X).$$

Nested Iteration

Inexact) Newtons Method for AREs

0

(Inexact) Newtons Method for AREs Accuracy control for the (G-)LRCF-ADI

(

Main Problem:

Can we enforce quadratic convergence without checking $0 \le R^{(m)} \le C^T C$ and $0 \le R^{(m)} \le M^T N^{(m)} B B^T N^{(m)} M$?

Due to the quadratic nature of $\mathcal{R}(.)$ we have

$$\mathcal{R}(Y) = \mathcal{R}(X) + \mathcal{R}'|_X(Y-X) + rac{1}{2}\mathcal{R}''|_X(Y-X,Y-X).$$

Recall the Inexact Kleinman step:

$${\mathcal R}^{(m)} = {\mathcal R}'|_{X^{(m)}}(X^{(m+1)}) - {\mathcal R}'|_{X^{(m)}}(X^{(m)}) + {\mathcal R}(X^{(m)})$$

Nested Iteration

Inexact) Newtons Method for AREs

0

(Inexact) Newtons Method for AREs Accuracy control for the (G-)LRCF-ADI

Main Problem:

Can we enforce quadratic convergence without checking $0 \le R^{(m)} \le C^T C$ and $0 \le R^{(m)} \le M^T N^{(m)} B B^T N^{(m)} M$?

Due to the quadratic nature of $\mathcal{R}(.)$ we have

$$\mathcal{R}(Y) = \mathcal{R}(X) + \mathcal{R}'|_X(Y-X) + \frac{1}{2}\mathcal{R}''|_X(Y-X,Y-X).$$

Recall the Inexact Kleinman step:

$$R^{(m)} = \mathcal{R}(X^{(m)}) + \mathcal{R}'|_{X^{(m)}}(X^{(m+1)} - X^{(m)})$$

Max Planck Institute Magdeburg

Nested Iteration

Inexact) Newtons Method for AREs

0

(Inexact) Newtons Method for AREs Accuracy control for the (G-)LRCF-ADI

Main Problem:

Can we enforce quadratic convergence without checking $0 \le R^{(m)} \le C^T C$ and $0 \le R^{(m)} \le M^T N^{(m)} B B^T N^{(m)} M$?

Due to the quadratic nature of $\mathcal{R}(.)$ we have

$$\mathcal{R}(Y) = \mathcal{R}(X) + \mathcal{R}'|_X(Y-X) + \frac{1}{2}\mathcal{R}''|_X(Y-X,Y-X).$$

Recall the Inexact Kleinman step:

$$R^{(m)} = \mathcal{R}(X^{(m)}) + \mathcal{R}'|_{X^{(m)}}(X^{(m+1)} - X^{(m)})$$

and thus

$$\mathcal{R}(X^{(m+1)}) = R^{(m)} + \frac{1}{2}\mathcal{R}''|_{X^{(m)}}(X^{(m+1)} - X^{(m)}, X^{(m+1)} - X^{(m)})$$

Nested Iteration

Inexact) Newtons Method for AREs

0

(Inexact) Newtons Method for AREs Accuracy control for the (G-)LRCF-ADI

Main Problem:

Can we enforce quadratic convergence without checking $0 \le R^{(m)} \le C^T C$ and $0 \le R^{(m)} \le M^T N^{(m)} B B^T N^{(m)} M$?

Due to the quadratic nature of $\mathcal{R}(.)$ we have

$$\mathcal{R}(Y) = \mathcal{R}(X) + \mathcal{R}'|_X(Y-X) + \frac{1}{2}\mathcal{R}''|_X(Y-X,Y-X).$$

Recall the Inexact Kleinman step:

$$R^{(m)} = \mathcal{R}(X^{(m)}) + \mathcal{R}'|_{X^{(m)}}(X^{(m+1)} - X^{(m)})$$

and thus

$$\mathcal{R}(X^{(m+1)}) = R^{(m)} - \mathcal{M}^{\mathsf{T}} N^{(m)} \mathcal{B} \mathcal{B}^{\mathsf{T}} N^{(m)} \mathcal{M}.$$

Discretized System OO Nested Iteration

(Inexact) Newtons Method for ARE: ○○○○○●○ Summary 00

(Inexact) Newtons Method for AREs Accuracy control for the (G-)LRCF-ADI

Overestimation approach

(good steps are bad)

$$\|\mathcal{R}(X^{(m+1)})\| \le \|\mathcal{R}^{(m)}\| + \|(\Delta \mathcal{K}^{(m+1)})^T \Delta \mathcal{K}^{(m+1)}\| \le \alpha \|\mathcal{R}(X^{(m)})\|^2$$

Nested Iteration

Inexact) Newtons Method for AREs

Summary 00

(Inexact) Newtons Method for AREs Accuracy control for the (G-)LRCF-ADI

Overestimation approach

(good steps are bad)

$$\|\mathcal{R}(X^{(m+1)})\| \le \|\mathcal{R}^{(m)}\| + \|(\Delta \mathcal{K}^{(m+1)})^T \Delta \mathcal{K}^{(m+1)}\| \le \alpha \|\mathcal{R}(X^{(m)})\|^2$$

Low-rank residual approach

(several version with disadvantages)

$$\begin{split} \| R^{(m)} - (\Delta \mathcal{K}^{(m+1)})^T \Delta \mathcal{K}^{(m+1)} \| &= \| \mathcal{Y}^{(m)} (\mathcal{Y}^{(m)})^T - (\Delta \mathcal{K}^{(m+1)})^T \Delta \mathcal{K}^{(m+1)} \| \\ &= \| \mathcal{U}^{(m)} (\mathcal{U}^{(m)})^T \| \\ \mathcal{U}^{(m)} &= [\mathcal{Y}^{(m)}, \ \imath (\Delta \mathcal{K}^{(m+1)})^T] \end{split}$$

(Inexact) Newtons Method for AREs Accuracy control for the (G-)LRCF-ADI

Overestimation approach

(good steps are bad)

$$\|\mathcal{R}(X^{(m+1)})\| \le \|\mathcal{R}^{(m)}\| + \|(\Delta \mathcal{K}^{(m+1)})^T \Delta \mathcal{K}^{(m+1)}\| \le \alpha \|\mathcal{R}(X^{(m)})\|^2$$

Low-rank residual approach

(several version with disadvantages)

$$\begin{split} \| R^{(m)} - (\Delta \mathcal{K}^{(m+1)})^T \Delta \mathcal{K}^{(m+1)} \| &= \| \mathcal{Y}^{(m)} (\mathcal{Y}^{(m)})^T - (\Delta \mathcal{K}^{(m+1)})^T \Delta \mathcal{K}^{(m+1)} \| \\ &= \| \mathcal{U}^{(m)} (\mathcal{U}^{(m)})^T \| \\ \mathcal{U}^{(m)} &= [\mathcal{Y}^{(m)}, \ \imath (\Delta \mathcal{K}^{(m+1)})^T] \end{split}$$

- $\|.\| = \|.\|_2 \rightsquigarrow$ eigensolver convergence?
- \mathcal{U} is complex \rightsquigarrow wrong outer product
- $\|.\| = \|.\|_F \rightsquigarrow$ inner product version reformulation may suffer from numerical cancelation?

vation Discretized System Nested Iteration

(Inexact) Newtons Method for AREs

Summary 00

 $\mathbb{R}^{q \times n}$),

(Inexact) Newtons Method for AREs Accuracy Control of the SPS Solver

Exact Solution of the SPS

[Benner/Kürschner/S. '

•
$$\mathcal{Z}_i^{(m)} = [\mathcal{V}_1, \mathcal{V}_2, \ldots, \mathcal{V}_i].$$

•
$$\operatorname{rank}\left(R^{(m)}\right) = \operatorname{rank}\left(\mathcal{Y}_{i}^{(m)}\right) = p + q$$
 $(B \in \mathbb{R}^{n \times p}, \ C \in$

Discretized System

Nested Iteration

(Inexact) Newtons Method for ARE ○○○○○○●

 $(B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{q \times n}).$

Summary 00

(Inexact) Newtons Method for AREs

Exact Solution of the SPS

• $\mathcal{Z}_i^{(m)} = [\mathcal{V}_1, \mathcal{V}_2, \ldots, \mathcal{V}_i].$

•
$$\operatorname{rank}(R^{(m)}) = \operatorname{rank}(\mathcal{Y}_i^{(m)}) = p + q$$

Inexact/Iterative Solution of the SPS

•
$$\mathcal{Z}_i^{(m)} = [\mathcal{V}_1 + \mathcal{E}_1, \, \mathcal{V}_2 + \mathcal{E}_2, \, \dots, \, \mathcal{V}_i + \mathcal{E}_i],$$

• rank
$$(R^{(m)}) = (2i+1) \cdot (p+q),$$

J^(m) can serve as a convergence indicator, but is not the actual residual factor.

Sumn	nary		Ø

Conclusion

- Explained idea of feedback stabilization for mulit-field flow problems.
- Recalled and adapted the concept of inexact Newtons method for the arising projected AREs.
- Discovered a gap in the theory.
- Showed possible computationally efficient criteria to use once this gap has been closed.

Outlook

- Investigate inexact Newton theory to close the gap.
- Extend ideas to the whole nested iteration, i.e. accuracy control for the SPS solvers.
- Implement and test new ideas.

	00	00000	000000	>	00
iter	atur	Thank you	for you	ır time!	(
	E. BÄNSCH AND P. BE and optimal control for	NNER, Stabilization of incompressible flo partial differential equations, G. Leuger	ow problems by Riccati-bas ing, S. Engell, A. Griewan	sed feedback, in Constrained optim k, M. Hinze, R. Rannacher, V. Sci	nization hulz,
	M. Ulbrich, and S. Ulbr E. BÄNSCH, P. BENNE Navier-Stokes flow, Pre ———, Optimal con	(ch, eds., vol. 100 of International Serie R, J. SAAK, AND H. K. WEICHELT, <i>Ric</i> print SPP1253-154, DFG-SPP1253, 201 ntrol-based feedback stabilization of mu.	s of Numerical Mathemati ccati-based boundary feed 13. Iti-field flow problems, in 7	ics, Birkhauser, 2012, pp. 5–20. back stabilization of incompressibl Trends in PDE Constrained Optim	e ization,
	G. Leugering, P. Benner of Numerical Mathemat P. BENNER, J. SAAK, I Riccati-based boundary	r, S. Engell, A. Griewank, H. Harbrecht, ics, Birkhäuser, 2014, to appear.M. STOLL, AND H. K. WEICHELT, Effic feedback stabilization of incompressible	M. Hinze, R. Rannacher, cient solution of large-scal	and S. Ulbrich, eds., Internationa le saddle point systems arising in i. Comput., 35 (2013), pp. S150–S	I Series 5170.
	H. ELMAN, D. SILVEST dynamics, Oxford Unive F. FEITZINGER, T. HY	ER, AND A. WATHEN, <i>Finite elements :</i> rsity Press, Oxford, 2005. LLA, AND E. W. SACHS, <i>Inexact Kleinn</i>	and fast iterative solvers: nan-Newton method for R	with applications in incompressible Riccati equations, SIAM J. Matrix /	2 fluid Anal.
	Appl., 31 (2009), pp. 2 M. HEINKENSCHLOSS, I application to the Osee	72–288. D. C. Sorensen, and K. Sun, <i>Balance</i> <i>n equations</i> , SIAM J. Sci. Comput., 30	ed truncation model reduc (2008), pp. 1038–1063.	, tion for a class of descriptor syster	ns with
	D. KLEINMAN, <i>On an i</i> pp. 114–115.	terative technique for Riccati equation o	computations, IEEE Trans	. Automat. Control, AC-13 (1968)	
	JP. RAYMOND, <i>Feedb</i> (2006), pp. 790–828.	ack boundary stabilization of the two-d	imensional Navier-Stokes	equations, SIAM J. Control Optim	1., 45