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Feedback-Control of Linear Parabolic PDEs Diﬂ-

Parabolic PDEs and Abstract Cauchy-Problems

Consider a control problem for a

parabolic partial differential equation

% V- (c(x) — k(Vx)) + q(x) = v(&,t), te[0,T¢], (PDE)

on a domain Q c R, d =1,2,3.

Here:
g uncontrolled sink or source
k diffusive part
C convection part

For ease of presentation we consider T = oc.
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Parabolic PDEs and Abstract Cauchy-Problems

Consider a control problem for a

parabolic partial differential equation

% V- (c(x) — k(Vx)) + q(x) = v(&,t), te[0,T¢], (PDE)

on a domain Q c R, d =1,2,3.

Here v(&, t) = B(&)u(t)

u control

BB input operator
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Parabolic PDEs and Abstract Cauchy-Problems

Consider a control problem for a

parabolic partial differential equation

% V- (c(x) — k(Vx)) + q(x) = v(&,t), te[0,T¢], (PDE)

on a domain Q c R, d =1,2,3.

If (PDE) is linear, then a variational formulation leads to a
Cauchy problem for the

linear evolution equation

x = Ax + Bu, x(0) =xp € X.

4/21  jens.saak@mathematik.tu-chemnitz.de  Jens Saak Numerics for LQR problems with parabolic PDEs



Feedback-Control of Linear Parabolic PDEs

Parabolic PDEs and Abstract Cauchy-Problems
LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs Diﬂ-

LQR Design for Abstract Cauchy Problems (Formulation)

lineare evolution equation

x = Ax + Bu, x(0) = xo € X, (Cauchy)

with linear operators
A:dom(A)C X — X, B:U— X,

on separable Hilbert spaces X (state space), U = R¥ (i.e., U is
finite dim.).
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LQR Design for Abstract Cauchy Problems (Formulation)

lineare evolution equation output equation

x = Ax + Bu, x(0) = xo € X, (Cauchy) y = Cx, (output)

with linear operators
A:dom(A)C X — X, B:U— X, C:x—-),

on separable Hilbert spaces X (state space), U = R¥ (i.e., U is
finite dim.) and ) (observation space).
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Feedback-Control of Linear Parabolic PDEs Diﬂ-

LQR Design for Abstract Cauchy Problems (Formulation)

lineare evolution equation output equation

x = Ax + Bu, x(0) = xo € X, (Cauchy) y = Cx, (output)

Defining Q := C*QC with Q = Q* > 0, and R = R* > 0 we state the

o0

j(u):/<Qy,y>+<Ru,u>dt. (cost)
0
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LQR Design for Abstract Cauchy Problems (Formulation)

lineare evolution equation output equation

x = Ax + Bu, x(0) = xo € X, (Cauchy) y = Cx, (output)

Defining Q := C*QC with Q = Q* > 0, and R = R* > 0 we state the

(e}

1
j(u):2/<Qx,x>+<Ru,u>dt. (cost)
0
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LQR Design for Abstract Cauchy Problems (Formulation)

lineare evolution equation output equation

x = Ax + Bu, x(0) = xo € X, (Cauchy) y = Cx, (output)

1

j(u):/ < Qx,x > 4+ < Ru,u > dt. (cost)
0

We can now formulate the

LQR—problem.

Minimize (cost) with respect to (Cauchy).
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LQR Design for Abstract Cauchy Problems (Solution)

Well understood in the open literature:
Analogously to ODE systems case we find the

optimal state feedback

u=—R IB*Xx.

Here X is the stabilizing, positive semidefinite, selfadjoint
solution to the

Operator—Algebraic—Riccati—equation

0=7R(X):=Q+ A*X + XA — XBR™!B*X. (O-ARE)

e.g. [Lions ‘71; Lasiecka/Triggiani ‘00; Bensoussan et al. ‘92/¢06;
Pritchard/Salamon ‘87; Curtain/Zwart 95|
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Feedback-Control of Linear Parabolic PDEs Diﬂ-

LQR Design for Abstract Cauchy Problems (Solution)

(Cauchy) can now be rewritten as

closed loop system

x = (A —BRB"X,)x,

and the

optimal solution trajectory

is given as
x(t) = S(t)xo,

where S(t) is the operator semigroup generated by
A — BRB*X.
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Feedback-Control of Linear Parabolic PDEs

LQR Design for Abstract Cauchy Problems (Approximation)

Let (X,)nen a Galerkin scheme for X. We formulate the

8/21  jens.saak@mathematik.tu-chemnitz.de  Jens Saak Numerics for LQR problems with parabolic PDEs



Feedback-Control of Linear Parabolic PDEs

Parabolic PDEs and Abstract Cauchy-Problems
LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs Diﬂ-

LQR Design for Abstract Cauchy Problems (Approximation)

Let (Xn)nen a Galerkin scheme for X. We formulate the

n-d evolution equation output equation
X = Anx + Bju, Xn 2 x,(0) = Ppxo, ¥Yn = CoXn,
(n-d Cauchy) (n-d output)

with linear operators
Ap :dom(A,) C X, — X, B, U — X,, Ch: Xy — Y,

on n-d Hilbert spaces X, (state space) and ), (observation space),
but still U = R,

P,: X — X, the canonical orthogonal projection.
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LQR Design for Abstract Cauchy Problems (Approximation)

Let (Xn)nen a Galerkin scheme for X'. We formulate the

n-d evolution equation output equation

X = Apx + Bpu, X, > Xn(o) = Puxo, Yn = CnpXp,
(n-d Cauchy) (n-d output)

Defining @, := C*Q,C, with @, = Q* >0, and R=R* > 0 we
formulate

o0

TIn(u) = / < (A?,,yn./yn > + < Ru,u > dt. (n-d Cost)
0
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LQR Design for Abstract Cauchy Problems (Approximation)

Let (Xn)nen a Galerkin scheme for X'. We formulate the

n-d evolution equation output equation

X = Apx + Bpu, X, > Xn(o) = Puxo, Yn = CnpXp,
(n-d Cauchy) (n-d output)

Defining @, := C*Q,C, with @, = Q* >0, and R=R* > 0 we
formulate

o0

TIn(u) = / < QnXn, xn > + < Ru,u > dt. (n-d Cost)
0
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LQR Design for Abstract Cauchy Problems (Approximation)

n-d evolution equation output equation
x = Apx + Bhu, Xn 2 x,(0) = Ppxo, VYn = Cpxp,
(n-d Cauchy) (n-d output)

J(u) = / < QuXmyXn > + < Ru,u >dt.  (n-d cost)
0

and state the
n-d LQR—problem.

Minimize (n-d Cost) with respect to (n-d Cauchy).
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LQR Design for Abstract Cauchy Problems (Approximation)

Analogously to the co-dim. case we now find:

optimal state feedback

u=—-R1B*X,x,,

where X, is the stabilizing, positive semidefinite, selfadjoint
solution to the

n-d Operator-Algebraic-Riccati-Equation

0=Rn(X) = Qn+ AX + XA, — XB,R"'B:X. (n-d O-ARE)
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Feedback-Control of Linear Parabolic PDEs Diﬂ-

LQR Design for Abstract Cauchy Problems (Approximation)

As above we can write (n-d Cauchy) as

closed loop system

xn = (A, — B,R71B! X,)xy,

and the

optimal solution

is given as
Xn(t) = Sp(t)Pnxo,

also again S,(t) is the operator semigroup generated by
A, — B,R7IB!X,.
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LQR Design for Abstract Cauchy Problems (Approximation)

The n-d LQR—problems approximate the co-dim LQR—problem in
the following sense

o X,P,v — Xv for n — oo and any v € X,
@ Sp(t)P,v — S(t)v for n — oo and any v € X,
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LQR Design for Abstract Cauchy Problems (Approximation)

Approximation

The n-d LQR—problems approximate the co-dim LQR—problem in
the following sense

o X,P,v — Xv for n — oo and any v € X,
@ Sp(t)P,v — S(t)v for n — oo and any v € X,
that means in the strong operator-topology.

[Banks/Kunisch‘84] distributed control of parabolic PDEs
[Benner/S.‘05] boundary control with mixed boundary conditions
[Lasiecka/Triggiani‘00] weakens regularity conditions on (Cauchy),
also has convergence rates
[Tto‘87/°90; Morris‘94] general Cauchy problems
[...] many more
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LQR Design for Abstract Cauchy Problems (Approximation)

Approximation

The n-d LQR—problems approximate the oco-dim LQR—problem in
the following sense

o X,P,v — Xv for n — oo and any v € X,
@ Sp(t)Pyv — S(t)v for n — oo and any v € X,

that means in the strong operator-topology.

Remarks:

@ For a chosen basis (e.g. from spatial FDM/FEM discretization) all
n-d operators have matrix representations and S(t) coincides with

. . —1pT
the matrix-exponential e(A=BR™"B X)t,
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LQR Design for Abstract Cauchy Problems (Approximation)

Approximation

The n-d LQR—problems approximate the oco-dim LQR—problem in
the following sense

o X,P,v — Xv for n — oo and any v € X,
@ Sp(t)Pyv — S(t)v for n — oo and any v € X,

that means in the strong operator-topology.

Remarks:

@ For a chosen basis (e.g. from spatial FDM/FEM discretization) all
n-d operators have matrix representations and S(t) coincides with

. . _ —1pT
the matrix-exponential e(A—BR™ B X)t,

@ u and R are always kept fixed, i.e., u from computations for an n-d
problem can directly be applied in the co-d problem.
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LQR Design for Abstract Cauchy Problems (Numerics)

Main task in numerical solution
Efficient solution of the large sparse matrix—Riccati—equations

0 =Rn(X) := Qp+ ALX + XA, — XB,R'B:X,  (M-ARE)

with regard to both memory and CPU usage.

Classical methods are not applicable due to their cubic complexity.
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LQR Design for Abstract Cauchy Problems (Numerics)

(M-ARE) is non-linear =

Newton's method for the ARE

hix (Ne) = —Rp(Xe), Xoy1 = Xe + N,

The Frechét derivative of Rj at X is given as the
Lyapunov operator

Lx: Z— (Ay—ByRBIX)TZ+ Z(A, — B,RIB/] X).

Thus we find the

one step Newton iteration
(Ah_BhR71BITXZ)TXZ+1+X£+1(Ah_BhRilBI;rXZ) = —C QnCr—XeByR™ By X,.
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Feedback-Control of Linear Parabolic PDEs

LQR Design for Abstract Cauchy Problems (Numerics)

In every Newton step we solve a

Lyapunov equation

FTX+XF=-GG'. (Lyapunov)
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LQR Design for Abstract Cauchy Problems (Numerics)

In every Newton step we solve a

Lyapunov equation

FTX+XF=-GG'. (Lyapunov)

Available solvers for large sparse Lyapunov equations (Lyapunov)

ADI [Wachspress‘88; Penzl‘99; Benner/Li/Penzl‘08;
Li/White02];
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LQR Design for Abstract Cauchy Problems (Numerics)

In every Newton step we solve a

Lyapunov equation

FTX+XF=-GG'. (Lyapunov)

Available solvers for large sparse Lyapunov equations (Lyapunov)
ADI [Wachspress‘88; Penzl‘99; Benner/Li/Penzl‘08;
Li/White‘02];
Krylov [Kasenally/Jaimoukha‘94; Jbilou/Riquet‘06; Simoncini‘06]
Smith [Penzl‘99; Gugercin/Sorensen/Antoulas‘03]

. many more
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LQR Design for Abstract Cauchy Problems (Numerics)

In every Newton step we solve a

Lyapunov equation

FTX+XF=-GG'. (Lyapunov)

Available solvers for large sparse Lyapunov equations (Lyapunov)
ADI [Wachspress‘88; Penzl‘99; Benner/Li/Penzl‘08;
Li/White‘02];
Krylov [Kasenally/Jaimoukha‘94; Jbilou/Riquet‘06; Simoncini‘06]
Smith [Penzl‘99; Gugercin/Sorensen/Antoulas‘03]
. many more

ADI needs shift—paramets; Choice of shifts: [Ellner/Wachspress‘91;
Penzl‘00; Benner/Mena/S.‘06; Starke ’89; Sabino‘06; Wachspress '08]
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LQR Design for Abstract Cauchy Problems (Numerics)

In every Newton step we solve a

Lyapunov equation

FTX+XF=-GG'. (Lyapunov)

Available solvers for large sparse Lyapunov equations (Lyapunov)
ADI [Wachspress‘88; Penzl‘99; Benner/Li/Penzl‘08;
Li/White‘02];
Krylov [Kasenally/Jaimoukha‘94; Jbilou/Riquet‘06; Simoncini‘06]
Smith [Penzl‘99; Gugercin/Sorensen/Antoulas‘03]
. many more

For Systems with very few inputs Newton-ADI and Newton-Smith can
iterate on the feedback Kj, := R™!B/ X directly[Penzl‘00;Banks/Ito‘91].

14/21 jens.saak@mathematik.tu-chemnitz.de Jens Saak Numerics for LQR problems with parabolic PDEs



Linear Systems with Inhomogenities

Tracking Control Application in Tracking Control of Parabolic PDEs

Tracking Control
LQR Design for Abstract Cauchy Problems

@ Feedback-Control of Linear Parabolic PDEs

© Tracking Control
@ Linear Systems with Inhomogenities
@ Application in Tracking Control of Parabolic PDEs

© Non-linear Systems

21 jens.saak@mathematik.tu-chemnitz.de Jens Saak Numerics for LQR problems with parabolic PDEs



Linear Systems with Inhomogenities
Application in Tracking Control of Parabolic PDEs

Tracking Control

Tracking Control

Linear Systems with Inhomogenities

Reminder for systems with

linear inhomogeneous evolution equations

X =Ax+ Bu+f.

Let X solve the uncontrolled system x = Ax + f, then

and _
x—%=A(x—X)+ Bu.

We can solve the system
z=Az+ Bu

for z = x — X to compute the control u.

e.g., [Godunov‘97]
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Tracking Control AT

Application in Tracking Control of Parabolic PDEs

Tracking Control

Consider x the state we want to track and the

tracking problem
x = Ax + By, y = C(x — %),

o0 .
Ju)=1[<Qx—%),x—%>+<Ruu>de. (racking)
0
Define z := x — x and the Cauchy problem
z=Az+ By, y =Cz. (1)
The optimal control then is given as v = —Kz as above and (1) is

equivalent to

x = Ax — BKx + X — A% + BKX.
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Application in Tracking Control of Parabolic PDEs

Consider x the state we want to track and the

tracking problem

).(:Ax—f—BV’ y:C(X—i)7
Ju)=13 [ <Q(x—%),x— %>+ < Ru,u > dt. (tracking)
0

o f:=%— A%+ BKX is a known inhomogenity when solving the
closed loop system.

@ Equations (tracking) and (1) require the same algebraic
Riccati equation.
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Application in Tracking Control of Parabolic PDEs

Consider x the state we want to track and the

tracking problem

).(:Ax—f—BV’ y:C(X—i)7
Ju)=13 [ <Q(x—%),x— %>+ < Ru,u > dt. (tracking)
0

@ We can compute the Feedback for (tracking) with the above
technique for (1) and afterwards solve the inhomogeneous
closed loop system.

@ Method also works for a reference pair (X, i)
[Benner/Gorner/S.06]
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@ Feedback-Control of Linear Parabolic PDEs
© Tracking Control

© Non-linear Systems
@ Heat Distribution in Steel Profiles, a Model
Problem
@ Linearization and Results
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Non-linear Systems
Heat Distribution in Steel Profiles, a Model Problem

The active cooling of steel profiles in a rolling facility serves as a
model problem. We consider the in stationary heat equation

C(X)p(x)%x(g, t) = V. (Ax)Vx(,,t)) onQx(0,T),

“A)gpx(€ 1) = mi(x( 1) = ui(t)) on [y x (0,7),
x(£,0) = x(¢) on ,
(heat)
X state, temperature c(x) specific heat capacity
u control o(x) density
T e RU{oo} final time A(x) heat conductivity
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Non-linear Systems
Heat Distribution in Steel Profiles, a Model Problem

The active cooling of steel profiles in a rolling facility serves as a
model problem. We consider the in stationary heat equation

c(x)p(x)Zx(&t) = V.(Ax)Vx(&,t)  on Qx(0,T),
“AX)Ex(€t) = ki(x(& 1) —ui(t)) onT;x(0,T),
x(£,0) = x(&) on Q,
(heat)

(heat) obviously is non-linear due to ¢, ¢ and A depending on the
temperature x.

Freeze the material parameters for one or more time steps. =
Linearization = method from the introduction can be applied.
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Non-linear Systems Diﬂ-

Linearization and Results

Freeze the material parameters for one or more time steps. =
Linearization = method from the introduction can be applied.

Numerics semi-implicit discretization

Theory embeds to model predictive control. [Benner/S.‘07]
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Mir

Thank you for your attention!

o FEM: ALBERTA

@ Graphics:
Grape/MATLAB

o AREs: LYAPACK
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