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Consider a control problem for a

parabolic partial differential equation

∂x

∂t
+∇ · (c(x)− k(∇x)) + q(x) = v(ξ, t), t ∈ [0,Tf ], (PDE)

on a domain Ω ⊂ Rd , d = 1, 2, 3.

Here:

q uncontrolled sink or source

k diffusive part

c convection part

For ease of presentation we consider Tf =∞.
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Consider a control problem for a

parabolic partial differential equation

∂x

∂t
+∇ · (c(x)− k(∇x)) + q(x) = v(ξ, t), t ∈ [0,Tf ], (PDE)

on a domain Ω ⊂ Rd , d = 1, 2, 3.

Here v(ξ, t) = B(ξ)u(t)

u control

B input operator
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Consider a control problem for a

parabolic partial differential equation

∂x

∂t
+∇ · (c(x)− k(∇x)) + q(x) = v(ξ, t), t ∈ [0,Tf ], (PDE)

on a domain Ω ⊂ Rd , d = 1, 2, 3.

If (PDE) is linear, then a variational formulation leads to a
Cauchy problem for the

linear evolution equation

ẋ = Ax + Bu, x(0) = x0 ∈ X .

4/21 jens.saak@mathematik.tu-chemnitz.de Jens Saak Numerics for LQR problems with parabolic PDEs



Feedback-Control of Linear Parabolic PDEs
Tracking Control

Non-linear Systems

Parabolic PDEs and Abstract Cauchy-Problems
LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs
LQR Design for Abstract Cauchy Problems (Formulation)

lineare evolution equation

ẋ = Ax + Bu, x(0) = x0 ∈ X , (Cauchy)

output equation

y = Cx, (output)

with linear operators

A : dom(A) ⊂ X → X , B : U → X ,

C : X → Y,

on separable Hilbert spaces X (state space), U = Rk (i.e., U is
finite dim.).
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lineare evolution equation

ẋ = Ax + Bu, x(0) = x0 ∈ X , (Cauchy)

output equation

y = Cx, (output)

with linear operators

A : dom(A) ⊂ X → X , B : U → X , C : X → Y,

on separable Hilbert spaces X (state space), U = Rk (i.e., U is
finite dim.) and Y (observation space).
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lineare evolution equation

ẋ = Ax + Bu, x(0) = x0 ∈ X , (Cauchy)

output equation

y = Cx, (output)

Defining Q := C∗Q̂C with Q̂ = Q̂∗ ≥ 0, and R = R∗ > 0 we state the

cost function

J (u) =
1

2

∞∫
0

< Q̂y, y > + < Ru,u > dt. (cost)
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0
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lineare evolution equation

ẋ = Ax + Bu, x(0) = x0 ∈ X , (Cauchy)

output equation

y = Cx, (output)

cost function

J (u) =
1

2

∫ ∞
0

< Qx, x > + < Ru,u > dt. (cost)

We can now formulate the

LQR–problem.

Minimize (cost) with respect to (Cauchy).
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Well understood in the open literature:
Analogously to ODE systems case we find the

optimal state feedback

u = −R−1B∗X∞x.

Here X∞ is the stabilizing, positive semidefinite, selfadjoint
solution to the

Operator–Algebraic–Riccati–equation

0 = R(X) := Q + A∗X + XA− XBR−1B∗X. (O-ARE)

e.g. [Lions ‘71; Lasiecka/Triggiani ‘00; Bensoussan et al. ‘92/‘06;

Pritchard/Salamon ‘87; Curtain/Zwart ’95]
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(Cauchy) can now be rewritten as

closed loop system

ẋ = (A− BR−1B∗X∞)x,

and the

optimal solution trajectory

is given as
x(t) = S(t)x0,

where S(t) is the operator semigroup generated by
A− BR−1B∗X∞.
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Let (Xn)n∈N a Galerkin scheme for X . We formulate the

n-d evolution equation

ẋ = Anx + Bnu, Xn 3 xn(0) = Pnx0,
(n-d Cauchy)

output equation

yn = Cnxn,
(n-d output)

with linear operators

An : dom(An) ⊂ Xn → Xn, Bn : U → Xn, Cn : Xn → Yn,

on n-d Hilbert spaces Xn (state space) and Yn (observation space),
but still U = Rk .
Pn : X → Xn the canonical orthogonal projection.
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Let (Xn)n∈N a Galerkin scheme for X . We formulate the

n-d evolution equation

ẋ = Anx + Bnu, Xn 3 xn(0) = Pnx0,
(n-d Cauchy)

output equation

yn = Cnxn,
(n-d output)

Defining Qn := C∗
n Q̂nCn with Q̂n = Q̂∗

n ≥ 0, and R = R∗ > 0 we

formulate

cost function

Jn(u) =
1

2

∞∫
0

< Q̂nyn, yn > + < Ru,u > dt. (n-d Cost)
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n-d evolution equation

ẋ = Anx + Bnu, Xn 3 xn(0) = Pnx0,
(n-d Cauchy)

output equation

yn = Cnxn,
(n-d output)

cost function

J (u) =
1

2

∫ ∞
0

< Qnxn, xn > + < Ru,u > dt. (n-d cost)

and state the

n-d LQR–problem.

Minimize (n-d Cost) with respect to (n-d Cauchy).
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Analogously to the ∞-dim. case we now find:

optimal state feedback

u = −R−1B∗nXnxn,

where Xn is the stabilizing, positive semidefinite, selfadjoint
solution to the

n-d Operator-Algebraic-Riccati-Equation

0 = Rn(X ) := Qn + A∗nX + XAn − XBnR
−1B∗nX . (n-d O-ARE)
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As above we can write (n-d Cauchy) as

closed loop system

ẋn = (An − BnR
−1B∗nXn)xn,

and the

optimal solution

is given as
xn(t) = Sn(t)Pnx0,

also again Sn(t) is the operator semigroup generated by
An − BnR−1B∗nXn.
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Approximation

The n-d LQR–problems approximate the ∞-dim LQR–problem in
the following sense

XnPnv→ Xv for n→∞ and any v ∈ X ,

Sn(t)Pnv→ S(t)v for n→∞ and any v ∈ X ,

that means in the strong operator-topology.

[Banks/Kunisch‘84] distributed control of parabolic PDEs

[Benner/S.‘05] boundary control with mixed boundary conditions

[Lasiecka/Triggiani‘00] weakens regularity conditions on (Cauchy),
also has convergence rates

[Ito‘87/‘90; Morris‘94] general Cauchy problems

[...] many more
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Approximation

The n-d LQR–problems approximate the ∞-dim LQR–problem in
the following sense

XnPnv→ Xv for n→∞ and any v ∈ X ,

Sn(t)Pnv→ S(t)v for n→∞ and any v ∈ X ,

that means in the strong operator-topology.

Remarks:

For a chosen basis (e.g. from spatial FDM/FEM discretization) all
n-d operators have matrix representations and S(t) coincides with

the matrix-exponential e(A−BR−1BT X )t .

u and R are always kept fixed, i.e., u from computations for an n-d
problem can directly be applied in the ∞-d problem.
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Main task in numerical solution

Efficient solution of the large sparse matrix–Riccati–equations

0 = Rh(X ) := Qh + A∗hX + XAh − XBhR
−1B∗hX , (M-ARE)

with regard to both memory and CPU usage.

Classical methods are not applicable due to their cubic complexity.
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(M-ARE) is non-linear ⇒

Newton’s method for the ARE

R′h|X (N`) = −Rh(X`), X`+1 = X` + N`.

The Frechét derivative of Rh at X is given as the
Lyapunov operator

R′h|X : Z 7→ (Ah − BhR
−1BT

h X )TZ + Z (Ah − BhR
−1BT

h X ).

Thus we find the

one step Newton iteration

(Ah−BhR
−1BT

h X`)TX`+1+X`+1(Ah−BhR
−1BT

h X`) = −CT
h QhCh−X`BhR

−1BT
h X`.
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In every Newton step we solve a

Lyapunov equation

FTX + XF = −GGT . (Lyapunov)

Available solvers for large sparse Lyapunov equations (Lyapunov)

ADI [Wachspress‘88; Penzl‘99; Benner/Li/Penzl‘08;

Li/White‘02];

Krylov [Kasenally/Jaimoukha‘94; Jbilou/Riquet‘06; Simoncini‘06]

Smith [Penzl‘99; Gugercin/Sorensen/Antoulas‘03]

... many more

All of these work on full rank factors Z of the soultion X to reduce
computational and memory demands.
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In every Newton step we solve a

Lyapunov equation

FTX + XF = −GGT . (Lyapunov)

Available solvers for large sparse Lyapunov equations (Lyapunov)

ADI [Wachspress‘88; Penzl‘99; Benner/Li/Penzl‘08;

Li/White‘02];

Krylov [Kasenally/Jaimoukha‘94; Jbilou/Riquet‘06; Simoncini‘06]

Smith [Penzl‘99; Gugercin/Sorensen/Antoulas‘03]

... many more

ADI needs shift–paramets; Choice of shifts: [Ellner/Wachspress‘91;

Penzl‘00; Benner/Mena/S.‘06; Starke ’89; Sabino‘06; Wachspress ’08]
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In every Newton step we solve a

Lyapunov equation

FTX + XF = −GGT . (Lyapunov)

Available solvers for large sparse Lyapunov equations (Lyapunov)

ADI [Wachspress‘88; Penzl‘99; Benner/Li/Penzl‘08;

Li/White‘02];

Krylov [Kasenally/Jaimoukha‘94; Jbilou/Riquet‘06; Simoncini‘06]

Smith [Penzl‘99; Gugercin/Sorensen/Antoulas‘03]

... many more

For Systems with very few inputs Newton-ADI and Newton-Smith can

iterate on the feedback Kh := R−1BT
h X directly[Penzl‘00;Banks/Ito‘91].

14/21 jens.saak@mathematik.tu-chemnitz.de Jens Saak Numerics for LQR problems with parabolic PDEs



Feedback-Control of Linear Parabolic PDEs
Tracking Control

Non-linear Systems

Linear Systems with Inhomogenities
Application in Tracking Control of Parabolic PDEs

Tracking Control
LQR Design for Abstract Cauchy Problems

1 Feedback-Control of Linear Parabolic PDEs

2 Tracking Control
Linear Systems with Inhomogenities
Application in Tracking Control of Parabolic PDEs

3 Non-linear Systems

15/21 jens.saak@mathematik.tu-chemnitz.de Jens Saak Numerics for LQR problems with parabolic PDEs



Feedback-Control of Linear Parabolic PDEs
Tracking Control

Non-linear Systems

Linear Systems with Inhomogenities
Application in Tracking Control of Parabolic PDEs

Tracking Control
Linear Systems with Inhomogenities

Reminder for systems with

linear inhomogeneous evolution equations

ẋ = Ax + Bu + f .

Let x̂ solve the uncontrolled system ẋ = Ax + f , then

f = ˙̂x − Ax̂ ,

and
ẋ − ˙̂x = A(x − x̂) + Bu.

We can solve the system

ż = Az + Bu

for z = x − x̂ to compute the control u.

e.g., [Godunov‘97]
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Application in Tracking Control of Parabolic PDEs

Consider x̃ the state we want to track and the

tracking problem

ẋ = Ax + Bv, y = C(x− x̃),

J (u) = 1
2

∞∫
0

< Q(x− x̃), x− x̃ > + < Ru,u > dt.
(tracking)

Define z := x− x̃ and the Cauchy problem

ż = Az + Bv, y = Cz. (1)

The optimal control then is given as v = −Kz as above and (1) is
equivalent to

ẋ = Ax− BKx + ˙̃x− Ax̃ + BKx̃.
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Consider x̃ the state we want to track and the

tracking problem

ẋ = Ax + Bv, y = C(x− x̃),

J (u) = 1
2

∞∫
0

< Q(x− x̃), x− x̃ > + < Ru,u > dt.
(tracking)

f := ˙̃x−Ax̃ + BKx̃ is a known inhomogenity when solving the
closed loop system.

Equations (tracking) and (1) require the same algebraic
Riccati equation.
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Application in Tracking Control of Parabolic PDEs

Consider x̃ the state we want to track and the

tracking problem

ẋ = Ax + Bv, y = C(x− x̃),

J (u) = 1
2

∞∫
0

< Q(x− x̃), x− x̃ > + < Ru,u > dt.
(tracking)

We can compute the Feedback for (tracking) with the above
technique for (1) and afterwards solve the inhomogeneous
closed loop system.

Method also works for a reference pair (x̃, ũ)
[Benner/Görner/S.‘06]
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The active cooling of steel profiles in a rolling facility serves as a
model problem. We consider the in stationary heat equation

c(x)ρ(x) ∂∂t x(ξ, t) = ∇.(λ(x)∇x(ξ, t)) on Ω× (0,T ),

−λ(x) ∂
∂ν x(ξ, t) = κi (x(ξ, t)− ui (t)) on Γi × (0,T ),

x(ξ, 0) = x0(ξ) on Ω,
(heat)

x state, temperature

u control

T ∈ R ∪ {∞} final time

c(x) specific heat capacity

%(x) density

λ(x) heat conductivity
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The active cooling of steel profiles in a rolling facility serves as a
model problem. We consider the in stationary heat equation

c(x)ρ(x) ∂∂t x(ξ, t) = ∇.(λ(x)∇x(ξ, t)) on Ω× (0,T ),

−λ(x) ∂
∂ν x(ξ, t) = κi (x(ξ, t)− ui (t)) on Γi × (0,T ),

x(ξ, 0) = x0(ξ) on Ω,
(heat)

(heat) obviously is non-linear due to c , % and λ depending on the
temperature x .

Idea

Freeze the material parameters for one or more time steps. ⇒
Linearization ⇒ method from the introduction can be applied.
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Linearization and Results

Idea

Freeze the material parameters for one or more time steps. ⇒
Linearization ⇒ method from the introduction can be applied.

Numerics semi-implicit discretization

Theory embeds to model predictive control. [Benner/S.‘07]
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The End

Thank you for your attention!
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