Numerical Methods for linear quadratic regulator systems with parabolic PDEs

Jens Saak joint work with Hermann Mena (EPN Quito Ecuador) Peter Benner and Sabine Hein (née Görner) (MiIT)

Mathematik in Industrie und Technik Fakultät für Mathematik TU Chemnitz

> Uni Trier 03.03.2009

Outline

2 Tracking Control

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs

Feedback-Control of Linear Parabolic PDEs

- Parabolic PDEs and Abstract Cauchy-Problems
- LQR Design for Abstract Cauchy Problems
- 2 Tracking Control
- 3 Non-linear Systems

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs Parabolic PDEs and Abstract Cauchy-Problems

Consider a control problem for a

parabolic partial differential equation

$$rac{\partial \mathbf{x}}{\partial t} +
abla \cdot (\mathbf{c}(\mathbf{x}) - \mathbf{k}(
abla \mathbf{x})) + \mathbf{q}(\mathbf{x}) = \mathbf{v}(\xi, t), \quad t \in [0, T_f], \quad (\mathsf{PDE})$$

on a domain $\Omega \subset \mathbb{R}^d, d = 1, 2, 3.$

Here:

- q uncontrolled sink or source
- k diffusive part
- c convection part

For ease of presentation we consider $T_f = \infty$.

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs Parabolic PDEs and Abstract Cauchy-Problems

Consider a control problem for a

parabolic partial differential equation

$$rac{\partial \mathbf{x}}{\partial t} +
abla \cdot (\mathbf{c}(\mathbf{x}) - \mathbf{k}(
abla \mathbf{x})) + \mathbf{q}(\mathbf{x}) = \mathbf{v}(\xi, t), \quad t \in [0, T_f], \quad (\mathsf{PDE})$$

on a domain $\Omega \subset \mathbb{R}^d, d = 1, 2, 3.$

Here $\mathbf{v}(\xi, t) = \mathcal{B}(\xi)\mathbf{u}(t)$

u control

 \mathcal{B} input operator

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs Parabolic PDEs and Abstract Cauchy-Problems

Consider a control problem for a

parabolic partial differential equation

$$rac{\partial \mathbf{x}}{\partial t} +
abla \cdot (\mathbf{c}(\mathbf{x}) - \mathbf{k}(
abla \mathbf{x})) + \mathbf{q}(\mathbf{x}) = \mathbf{v}(\xi, t), \quad t \in [0, T_f], \quad (\mathsf{PDE})$$

on a domain $\Omega \subset \mathbb{R}^d, d = 1, 2, 3.$

If (PDE) is linear, then a variational formulation leads to a Cauchy problem for the

linear evolution equation

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \qquad \mathbf{x}(0) = \mathbf{x}_0 \in \mathcal{X}.$$

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Formulation)

lineare evolution equation

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{u}, \qquad \boldsymbol{x}(0) = \boldsymbol{x}_0 \in \mathcal{X}, \ \ \text{(Cauchy)}$$

with linear operators

$$\textbf{A}: \text{dom}(\textbf{A}) \subset \mathcal{X} \rightarrow \mathcal{X}, \qquad \textbf{B}: \mathcal{U} \rightarrow \mathcal{X},$$

on separable Hilbert spaces \mathcal{X} (state space), $\mathcal{U} = \mathbb{R}^k$ (i.e., \mathcal{U} is finite dim.).

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Formulation)

lineare evolution equation

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{u}, \qquad \boldsymbol{x}(0) = \boldsymbol{x}_0 \in \mathcal{X}, \ \ (\mathsf{Cauchy})$$

output equation

 $\textbf{y} = \textbf{C}\textbf{x}, \ (\texttt{output})$

with linear operators

 $\textbf{A}: \text{dom}(\textbf{A}) \subset \mathcal{X} \rightarrow \mathcal{X}, \qquad \textbf{B}: \mathcal{U} \rightarrow \mathcal{X}, \qquad \textbf{C}: \mathcal{X} \rightarrow \mathcal{Y},$

on separable Hilbert spaces \mathcal{X} (state space), $\mathcal{U} = \mathbb{R}^k$ (i.e., \mathcal{U} is finite dim.) and \mathcal{Y} (observation space).

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Formulation)

lineare evolution equation

$$\mathbf{y} = \mathbf{C}\mathbf{x}, \text{ (output)}$$

Defining $\bm{Q}:=\bm{C}^*\hat{\bm{Q}}\bm{C}$ with $\hat{\bm{Q}}=\hat{\bm{Q}}^*\geq 0,$ and $\bm{R}=\bm{R}^*>0$ we state the

cost function

$$\mathcal{J}(\mathbf{u}) = \frac{1}{2} \int_{0}^{\infty} \langle \hat{\mathbf{Q}} \mathbf{y}, \mathbf{y} \rangle + \langle \mathbf{R} \mathbf{u}, \mathbf{u} \rangle dt.$$
 (cost)

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Formulation)

lineare evolution equation

$$\mathbf{y} = \mathbf{C}\mathbf{x}, \text{ (output)}$$

Defining $\bm{Q}:=\bm{C}^*\hat{\bm{Q}}\bm{C}$ with $\hat{\bm{Q}}=\hat{\bm{Q}}^*\geq 0,$ and $\bm{R}=\bm{R}^*>0$ we state the

cost function

$$\mathcal{J}(\mathbf{u}) = \frac{1}{2} \int_{0}^{\infty} \langle \mathbf{Q}\mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{R}\mathbf{u}, \mathbf{u} \rangle dt. \qquad (\text{cost})$$

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Formulation)

lineare evolution equation

$$\dot{\textbf{x}} = \textbf{A}\textbf{x} + \textbf{B}\textbf{u}, \qquad \textbf{x}(0) = \textbf{x}_0 \in \mathcal{X}, \ \ (\mathsf{Cauchy})$$

$$\mathbf{y} = \mathbf{C}\mathbf{x}, \text{ (output)}$$

cost function

$$\mathcal{J}(\mathbf{u}) = rac{1}{2} \int_0^\infty \langle \mathbf{Q} \mathbf{x}, \mathbf{x}
angle + \langle \mathbf{R} \mathbf{u}, \mathbf{u}
angle dt.$$
 (cost)

We can now formulate the

LQR-problem.

Minimize (cost) with respect to (Cauchy).

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Solution)

Well understood in the open literature: Analogously to ODE systems case we find the

optimal state feedback

$$\mathbf{u} = -\mathbf{R}^{-1}\mathbf{B}^*\mathbf{X}_{\infty}\mathbf{x}.$$

Here \boldsymbol{X}_∞ is the stabilizing, positive semidefinite, selfadjoint solution to the

Operator-Algebraic-Riccati-equation

$$0 = \mathcal{R}(\mathbf{X}) := \mathbf{Q} + \mathbf{A}^* \mathbf{X} + \mathbf{X} \mathbf{A} - \mathbf{X} \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^* \mathbf{X}.$$

(O-ARE)

e.g. [Lions '71; Lasiecka/Triggiani '00; Bensoussan et al. '92/'06; Pritchard/Salamon '87; Curtain/Zwart '95]

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Solution)

(Cauchy) can now be rewritten as

closed loop system

$$\dot{\mathbf{x}} = (\mathbf{A} - \mathbf{B}\mathbf{R}^{-1}\mathbf{B}^*\mathbf{X}_{\infty})\mathbf{x},$$

and the

optimal solution trajectory

is given as

$$\mathbf{x}(t) = \mathbf{S}(t)\mathbf{x}_0,$$

where $\mathbf{S}(t)$ is the operator semigroup generated by $\mathbf{A} - \mathbf{B}\mathbf{R}^{-1}\mathbf{B}^*\mathbf{X}_{\infty}$.

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Approximation)

Let $(\mathcal{X}_n)_{n\in\mathbb{N}}$ a Galerkin scheme for \mathcal{X} . We formulate the

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

01

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Approximation)

Let $(\mathcal{X}_n)_{n\in\mathbb{N}}$ a Galerkin scheme for \mathcal{X} . We formulate the

n-d evolution equation

ż

$$= A_n x + B_n \mathbf{u}, \qquad \mathcal{X}_n \ni x_n(0) = \mathbf{P}_n \mathbf{x}_0,$$

(n-d Cauchy)

$$y_n = C_n x_n,$$

(n-d output)

with linear operators

 $A_n : \operatorname{dom}(A_n) \subset \mathcal{X}_n \to \mathcal{X}_n, \qquad B_n : \mathcal{U} \to \mathcal{X}_n, \qquad C_n : \mathcal{X}_n \to \mathcal{Y}_n,$

on n-d Hilbert spaces \mathcal{X}_n (state space) and \mathcal{Y}_n (observation space), but still $\mathcal{U} = \mathbb{R}^k$. $\mathbf{P}_n : \mathcal{X} \to \mathcal{X}_n$ the canonical orthogonal projection.

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Approximation)

Let $(\mathcal{X}_n)_{n\in\mathbb{N}}$ a Galerkin scheme for \mathcal{X} . We formulate the

n-d evolution equationoutput equation
$$\dot{x} = A_n x + B_n \mathbf{u},$$
 $\mathcal{X}_n \ni x_n(0) = \mathbf{P}_n \mathbf{x}_0,$
(n-d Cauchy) $y_n = C_n x_n,$
(n-d output)

Defining
$$Q_n:=C_n^*\hat{Q}_nC_n$$
 with $\hat{Q}_n=\hat{Q}_n^*\geq 0$, and ${f R}={f R}^*>0$ we formulate

cost function

$$\mathcal{J}_n(\mathbf{u}) = \frac{1}{2} \int_0^\infty \langle \hat{Q}_n y_n, y_n \rangle + \langle \mathbf{R} \mathbf{u}, \mathbf{u} \rangle dt. \qquad (n-d \text{ Cost})$$

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Approximation)

Let $(\mathcal{X}_n)_{n\in\mathbb{N}}$ a Galerkin scheme for \mathcal{X} . We formulate the

n-d evolution equationoutput equation
$$\dot{x} = A_n x + B_n \mathbf{u},$$
 $\mathcal{X}_n \ni x_n(0) = \mathbf{P}_n \mathbf{x}_0,$
(n-d Cauchy) $y_n = C_n x_n,$
(n-d output)

Defining
$$Q_n:=C_n^*\hat{Q}_nC_n$$
 with $\hat{Q}_n=\hat{Q}_n^*\geq 0$, and ${f R}={f R}^*>0$ we formulate

cost function

$$\mathcal{J}_n(\mathbf{u}) = \frac{1}{2} \int_0^\infty \langle \mathbf{Q}_n \mathbf{x}_n, \mathbf{x}_n \rangle + \langle \mathbf{R}\mathbf{u}, \mathbf{u} \rangle dt. \qquad (n-d \text{ Cost})$$

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Approximation)

n-d evolution equationoutput equation $\dot{x} = A_n x + B_n \mathbf{u},$ $\mathcal{X}_n \ni x_n(0) = \mathbf{P}_n \mathbf{x}_0,$
(n-d Cauchy) $y_n = C_n x_n,$
(n-d output)

cost function

$$\mathcal{J}(\mathbf{u}) = rac{1}{2} \int_0^\infty < Q_n x_n, x_n > + < \mathbf{R} \mathbf{u}, \mathbf{u} > dt.$$
 (n-d cost)

and state the

n-d LQR-problem.

Minimize (n-d Cost) with respect to (n-d Cauchy).

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Approximation)

Analogously to the $\infty\text{-dim.}$ case we now find:

optimal state feedback

$$\mathbf{u} = -\mathbf{R}^{-1}B_n^*X_nx_n,$$

where X_n is the stabilizing, positive semidefinite, selfadjoint solution to the

n-d Operator-Algebraic-Riccati-Equation

 $0 = \mathcal{R}_n(X) := Q_n + A_n^* X + X A_n - X B_n \mathbf{R}^{-1} B_n^* X. \quad (n-d \text{ O-ARE})$

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Approximation)

As above we can write (n-d Cauchy) as

closed loop system

$$\dot{x}_n = (A_n - B_n \mathbf{R}^{-1} B_n^* X_n) x_n,$$

and the

optimal solution

is given as

$$x_n(t)=S_n(t)\mathbf{P}_n\mathbf{x}_0,$$

also again $S_n(t)$ is the operator semigroup generated by $A_n - B_n \mathbf{R}^{-1} B_n^* X_n$.

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Approximation)

M

Approximation

The n-d LQR–problems approximate the $\infty\text{-dim}$ LQR–problem in the following sense

- $X_n \mathbf{P}_n \mathbf{v} \to \mathbf{X} \mathbf{v}$ for $n \to \infty$ and any $\mathbf{v} \in \mathcal{X}$,
- $S_n(t)\mathbf{P}_n\mathbf{v} \to \mathbf{S}(t)\mathbf{v}$ for $n \to \infty$ and any $\mathbf{v} \in \mathcal{X}$,

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Approximation)

Approximation

The n-d LQR–problems approximate the $\infty\text{-dim}$ LQR–problem in the following sense

- $X_n \mathbf{P}_n \mathbf{v} \to \mathbf{X} \mathbf{v}$ for $n \to \infty$ and any $\mathbf{v} \in \mathcal{X}$,
- $S_n(t)\mathbf{P}_n\mathbf{v} \to \mathbf{S}(t)\mathbf{v}$ for $n \to \infty$ and any $\mathbf{v} \in \mathcal{X}$,

that means in the strong operator-topology.

[Banks/Kunisch'84] distributed control of parabolic PDEs
[Benner/S.'05] boundary control with mixed boundary conditions
[Lasiecka/Triggiani'00] weakens regularity conditions on (Cauchy), also has convergence rates
[Ito'87/'90; Morris'94] general Cauchy problems
[...] many more

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Approximation)

Approximation

The n-d LQR–problems approximate the $\infty\text{-dim}$ LQR–problem in the following sense

- $X_n \mathbf{P}_n \mathbf{v} \to \mathbf{X} \mathbf{v}$ for $n \to \infty$ and any $\mathbf{v} \in \mathcal{X}$,
- $S_n(t)\mathbf{P}_n\mathbf{v} \to \mathbf{S}(t)\mathbf{v}$ for $n \to \infty$ and any $\mathbf{v} \in \mathcal{X}$,

that means in the strong operator-topology.

Remarks:

• For a chosen basis (e.g. from spatial FDM/FEM discretization) all n-d operators have matrix representations and S(t) coincides with the matrix-exponential $e^{(A-BR^{-1}B^TX)t}$.

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Approximation)

Approximation

The n-d LQR–problems approximate the $\infty\text{-dim}$ LQR–problem in the following sense

- $X_n \mathbf{P}_n \mathbf{v} \to \mathbf{X} \mathbf{v}$ for $n \to \infty$ and any $\mathbf{v} \in \mathcal{X}$,
- $S_n(t)\mathbf{P}_n\mathbf{v} \to \mathbf{S}(t)\mathbf{v}$ for $n \to \infty$ and any $\mathbf{v} \in \mathcal{X}$,

that means in the strong operator-topology.

Remarks:

- For a chosen basis (e.g. from spatial FDM/FEM discretization) all n-d operators have matrix representations and S(t) coincides with the matrix-exponential $e^{(A-BR^{-1}B^TX)t}$.
- **u** and **R** are always kept fixed, i.e., **u** from computations for an n-d problem can directly be applied in the ∞ -d problem.

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Numerics)

Main task in numerical solution

Efficient solution of the large sparse matrix-Riccati-equations

$$0 = \mathcal{R}_h(X) := Q_h + A_h^* X + X A_h - X B_h \mathbf{R}^{-1} B_h^* X, \quad (\mathsf{M-ARE})$$

with regard to both memory and CPU usage.

Classical methods are not applicable due to their cubic complexity.

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Numerics)

(M-ARE) is non-linear \Rightarrow

Newton's method for the ARE

$$\mathcal{R}_h'|_X(N_\ell) = -\mathcal{R}_h(X_\ell), \qquad X_{\ell+1} = X_\ell + N_\ell.$$

The Frechét derivative of \mathcal{R}_h at X is given as the Lyapunov operator

$$\mathcal{R}'_h|_X: \quad Z \mapsto (A_h - B_h R^{-1} B_h^T X)^T Z + Z(A_h - B_h R^{-1} B_h^T X).$$

Thus we find the

one step Newton iteration

$$(A_{h}-B_{h}R^{-1}B_{h}^{T}X_{\ell})^{T}X_{\ell+1}+X_{\ell+1}(A_{h}-B_{h}R^{-1}B_{h}^{T}X_{\ell})=-C_{h}^{T}Q_{h}C_{h}-X_{\ell}B_{h}R^{-1}B_{h}^{T}X_{\ell}.$$

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Numerics)

In every Newton step we solve a

Lyapunov equation

$$F^T X + XF = -GG^T.$$

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Numerics)

In every Newton step we solve a

Lyapunov equation

$$F^T X + XF = -GG^T.$$

(Lyapunov)

Available solvers for large sparse Lyapunov equations (Lyapunov)

ADI [Wachspress'88; Penzl'99; Benner/Li/Penzl'08; Li/White'02];

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Numerics)

In every Newton step we solve a

Lyapunov equation

$$F^T X + XF = -GG^T.$$

(Lyapunov)

Available solvers for large sparse Lyapunov equations (Lyapunov)

ADI [Wachspress'88; Penzl'99; Benner/Li/Penzl'08; Li/White'02];

Krylov [Kasenally/Jaimoukha'94; Jbilou/Riquet'06; Simoncini'06]

Smith [Penzl'99; Gugercin/Sorensen/Antoulas'03]

... many more

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Numerics)

In every Newton step we solve a

Lyapunov equation

$$F^T X + XF = -GG^T.$$

(Lyapunov)

Available solvers for large sparse Lyapunov equations (Lyapunov)

ADI [Wachspress'88; Penzl'99; Benner/Li/Penzl'08; Li/White'02];

Krylov [Kasenally/Jaimoukha'94; Jbilou/Riquet'06; Simoncini'06]

Smith [Penzl'99; Gugercin/Sorensen/Antoulas'03]

... many more

ADI needs shift-paramets; Choice of shifts: [Ellner/Wachspress'91; Penzl'00; Benner/Mena/S.'06; Starke '89; Sabino'06; Wachspress '08]

Parabolic PDEs and Abstract Cauchy-Problems LQR Design for Abstract Cauchy Problems

Feedback-Control of Linear Parabolic PDEs LQR Design for Abstract Cauchy Problems (Numerics)

In every Newton step we solve a

Lyapunov equation

$$F^T X + XF = -GG^T.$$

(Lyapunov)

Available solvers for large sparse Lyapunov equations (Lyapunov)

ADI [Wachspress'88; Penzl'99; Benner/Li/Penzl'08; Li/White'02];

Krylov [Kasenally/Jaimoukha'94; Jbilou/Riquet'06; Simoncini'06]

Smith [Penzl'99; Gugercin/Sorensen/Antoulas'03]

... many more

For Systems with very few inputs Newton-ADI and Newton-Smith can iterate on the feedback $K_h := \mathbf{R}^{-1} B_h^T X$ directly[Penzl'00;Banks/Ito'91].

Linear Systems with Inhomogenities Application in Tracking Control of Parabolic PDEs

Tracking Control LQR Design for Abstract Cauchy Problems

2 Tracking Control

- Linear Systems with Inhomogenities
- Application in Tracking Control of Parabolic PDEs

3 Non-linear Systems

Linear Systems with Inhomogenities Application in Tracking Control of Parabolic PDEs

Tracking Control Linear Systems with Inhomogenities

Reminder for systems with

linear inhomogeneous evolution equations

$$\dot{x} = Ax + Bu + f.$$

Let \hat{x} solve the uncontrolled system $\dot{x} = Ax + f$, then

$$f=\dot{\hat{x}}-A\hat{x},$$

and

$$\dot{x}-\dot{\hat{x}}=A(x-\hat{x})+Bu.$$

We can solve the system

$$\dot{z} = Az + Bu$$

for $z = x - \hat{x}$ to compute the control u.

e.g., [Godunov'97]

Linear Systems with Inhomogenities Application in Tracking Control of Parabolic PDEs

Tracking Control Application in Tracking Control of Parabolic PDEs

Consider $\tilde{\boldsymbol{x}}$ the state we want to track and the

tracking problem

$$\begin{split} \dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{v}, \qquad \mathbf{y} = \mathbf{C}(\mathbf{x} - \tilde{\mathbf{x}}), \\ \mathcal{I}(\mathbf{u}) &= \frac{1}{2} \int_{0}^{\infty} < \mathbf{Q}(\mathbf{x} - \tilde{\mathbf{x}}), \mathbf{x} - \tilde{\mathbf{x}} > + < \mathbf{R}\mathbf{u}, \mathbf{u} > dt. \end{split}$$
(tracking)

Define $\boldsymbol{z} := \boldsymbol{x} - \boldsymbol{\tilde{x}}$ and the Cauchy problem

$$\dot{\mathbf{z}} = \mathbf{A}\mathbf{z} + \mathbf{B}\mathbf{v}, \qquad \mathbf{y} = \mathbf{C}\mathbf{z}. \tag{1}$$

The optimal control then is given as $\mathbf{v} = -\mathbf{K}\mathbf{z}$ as above and (1) is equivalent to

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} - \mathbf{B}\mathbf{K}\mathbf{x} + \dot{\tilde{\mathbf{x}}} - \mathbf{A}\tilde{\mathbf{x}} + \mathbf{B}\mathbf{K}\tilde{\mathbf{x}}.$$

Tracking Control Application in Tracking Control of Parabolic PDEs

Consider $\tilde{\boldsymbol{x}}$ the state we want to track and the

tracking problem

$$\begin{split} \dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{v}, \qquad \mathbf{y} = \mathbf{C}(\mathbf{x} - \tilde{\mathbf{x}}), \\ \mathcal{J}(\mathbf{u}) &= \frac{1}{2} \int_{0}^{\infty} < \mathbf{Q}(\mathbf{x} - \tilde{\mathbf{x}}), \mathbf{x} - \tilde{\mathbf{x}} > + < \mathbf{R}\mathbf{u}, \mathbf{u} > dt. \end{split}$$
(tracking)

- $f := \dot{\tilde{x}} A\tilde{x} + BK\tilde{x}$ is a known inhomogenity when solving the closed loop system.
- Equations (tracking) and (1) require the same algebraic Riccati equation.

Tracking Control Application in Tracking Control of Parabolic PDEs

Consider $\tilde{\boldsymbol{x}}$ the state we want to track and the

tracking problem

$$\begin{split} \dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{v}, \qquad \mathbf{y} = \mathbf{C}(\mathbf{x} - \tilde{\mathbf{x}}), \\ \mathcal{T}(\mathbf{u}) &= \frac{1}{2}\int_{0}^{\infty} < \mathbf{Q}(\mathbf{x} - \tilde{\mathbf{x}}), \mathbf{x} - \tilde{\mathbf{x}} > + < \mathbf{R}\mathbf{u}, \mathbf{u} > dt. \end{split}$$
(tracking)

- We can compute the Feedback for (tracking) with the above technique for (1) and afterwards solve the inhomogeneous closed loop system.
- Method also works for a reference pair (\tilde{x}, \tilde{u}) [Benner/Görner/S.'06]

Heat Distribution in Steel Profiles, a Model Problem Linearization and Results

Non-linear Systems Heat Distribution in Steel Profiles, a Model Problem

Feedback-Control of Linear Parabolic PDEs

- 2 Tracking Control
- 3 Non-linear Systems
 - Heat Distribution in Steel Profiles, a Model Problem
 - Linearization and Results

Heat Distribution in Steel Profiles, a Model Problem Linearization and Results

Non-linear Systems Heat Distribution in Steel Profiles, a Model Problem

The active cooling of steel profiles in a rolling facility serves as a model problem. We consider the in stationary heat equation

$$\begin{array}{rcl} c(x)\rho(x)\frac{\partial}{\partial t}x(\xi,t) &=& \nabla.(\lambda(x)\nabla x(\xi,t)) & \text{ on } \Omega\times(0,T), \\ -\lambda(x)\frac{\partial}{\partial \nu}x(\xi,t) &=& \kappa_i(x(\xi,t)-u_i(t)) & \text{ on } \Gamma_i\times(0,T), \\ & x(\xi,0) &=& x_0(\xi) & \text{ on } \Omega, \end{array}$$
(heat)

x state, temperaturec(x) specific heat capacityu control $\varrho(x)$ density $T \in \mathbb{R} \cup \{\infty\}$ final time $\lambda(x)$ heat conductivity

Heat Distribution in Steel Profiles, a Model Problem Linearization and Results

Non-linear Systems Heat Distribution in Steel Profiles, a Model Problem

The active cooling of steel profiles in a rolling facility serves as a model problem. We consider the in stationary heat equation

$$\begin{array}{rcl} c(x)\rho(x)\frac{\partial}{\partial t}x(\xi,t) &=& \nabla.(\lambda(x)\nabla x(\xi,t)) & \text{ on } \Omega\times(0,T), \\ -\lambda(x)\frac{\partial}{\partial \nu}x(\xi,t) &=& \kappa_i(x(\xi,t)-u_i(t)) & \text{ on } \Gamma_i\times(0,T), \\ & x(\xi,0) &=& x_0(\xi) & \text{ on } \Omega, \end{array}$$
(heat

(heat) obviously is non-linear due to c, ρ and λ depending on the temperature x.

Idea

Freeze the material parameters for one or more time steps. \Rightarrow Linearization \Rightarrow method from the introduction can be applied.

Heat Distribution in Steel Profiles, a Model Problem Linearization and Results

Non-linear Systems

MI

Idea

Freeze the material parameters for one or more time steps. \Rightarrow Linearization \Rightarrow method from the introduction can be applied.

Numerics semi-implicit discretization

Theory embeds to model predictive control. [Benner/S.'07]

Heat Distribution in Steel Profiles, a Model Problem $\ensuremath{\mathsf{Linearization}}$ and $\ensuremath{\mathsf{Results}}$

The End

Thank you for your attention!

- FEM: ALBERTA
- Graphics: Grape/MATLAB
- AREs: LYAPACK

Heat Distribution in Steel Profiles, a Model Problem $\ensuremath{\mathsf{Linearization}}$ and $\ensuremath{\mathsf{Results}}$

Thank you for your attention!

The End

- FEM: ALBERTA
- Graphics: Grape/MATLAB
- AREs: LYAPACK